
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * 2014 1

Supplementary File of the TPDS Manuscript:
A Hybrid Chemical Reaction Optimization

Scheme for Task Scheduling on Heterogeneous
Computing Systems

Yuming Xu, Kenli Li*, Member, IEEE , Ligang He, Member, IEEE , Longxin Zhang and Keqin Li, Fellow,
IEEE

Abstract–This supplementary file contains the supporting materials of the TPDS manuscript – “A
Hybrid Chemical Reaction Optimization Scheme for Task Scheduling on Heterogeneous
Computing Systems.” It improves the completeness of the TPDS manuscript.

F

1 RELATED WORKS

In this section, we discuss related works on heuristic
scheduling and meta-heuristic scheduling in subsections 1.1
and 1.2, respectively.

1.1 Heuristic-based Algorithms

Heuristic methods usually provide good solutions for re-
stricted instances of a task scheduling problem. They can
find a near optimal solution in polynomial time. A heuristic
method searches a path in the solution space and ignores
other possible paths [1], [2]. The heuristic-based group con-
sists of three subcategories, which are list scheduling [1], [3],
cluster scheduling [4], [5], and duplication-based scheduling
[6].

List scheduling is the most popular among these three
when referring to scheduling DAG applications. A list
scheduling algorithm is usually divided into two steps. In
the first step, list scheduling maintains an ordered list of
tasks within a DAG application according to some greedy
heuristics. In the second step, the task is selected in a spec-
ified order (the highest priority) for mapping to the most
suitable computing processor, which provides the earliest
start time. List scheduling algorithms produce the most effi-
cient schedule without deteriorating the makespan and with
a reasonable time complexity. The major difference among
different list scheduling algorithms is the means by which
priorities are assigned and the most suitable computing
node is selected.

• The authors are with the College of Computer Science and Electronic
Engineering, Hunan University, and with the National Supercomputing
Center in Changsha, Hunan, Changsha, 410082, China.
Corresponding author: Kenli Li, Email: lkl@hnu.edu.cn.

• L. He is also with the Department of Computer Science, University of
Warwick, Coventry, CV4 7AL, United Kingdom.

• Keqin Li is also with the Department of Computer Science, State Univer-
sity of New York, New Paltz, NY 12561, USA

Manuscript received ****, 2014; revised ****, 2014.

Clustering algorithm [4], [5] is another type of heuristic
algorithm, which is mainly proposed for homogeneous sys-
tems and aims to form clusters of tasks that are assigned
to processors. Clustering heuristic algorithm assumes that
there are an unlimited number of computing nodes avail-
able to task executions. The clustering algorithm will use
as many computing nodes as possible in order to reduce
the makespan of a schedule. If the number of computing
nodes used by a schedule is more than the number of nodes
available, then the mapping process is required to merge the
tasks in a candidate schedule onto those available nodes.

The duplication-based scheduling heuristic [6] attempts
to reduce communication delays by executing the key tasks
on a same node or several nodes with less communica-
tion cost. Duplication-based scheduling essentially aims to
further improve the performance of list scheduling, which
produces the shortest makespan. However, it often has two
disadvantages: the first one is the higher time complexity,
such as three times the number of tasks; and the second,
they have lower efficiency because the main strategy is
to duplicate the execution of tasks, which results in more
power and resource consumption.

In this paper, we combine the CRO technique with the
heuristic algorithm to try to find a balance between solution
quality and time overhead of DAG task scheduling. In
the proposed scheduling technique, we use CRO to search
execution order of tasks and use a heuristic method to
determine the most suitable computing node for a selected
task.

1.2 Meta-heuristic

Contrary to heuristic-based algorithms, the meta-heuristic
algorithms are used for combinatorial optimization in which
an optimal solution is sought over a discrete search-space.
The meta-heuristic algorithms have been proposed to solve
a variety of task scheduling problems, and proven to be
a kind of robust algorithm on the DAG task scheduling

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * 2014 2

problem. They incorporate a combinatorial process when
searching for solutions. The meta-heuristic algorithms are
basically classified into two categories by the type of search
strategy [7]. One type of search strategy is an improvement
on simple local search algorithms; Meta-heuristics of this
type include simulated annealing [8], tabu search [9], [10], etc.
The other type of search strategy has a learning component
to the search process; meta-heuristics of this type include
ant colony optimization [11], [12], [13], evolutionary algorithm
[14], [15], genetic algorithms [16], [17], [18], [19], [20], [21],
and particle swarm optimization [22], [23].

Recently, a new meta-heuristic method, named Chemical
reaction optimization (CRO) , has been proposed [24], [25],
[26], [27]. The method encodes solutions as molecules, and
mimics the interactions of molecules in chemical reactions
to search the optimal solutions. In other words, in CRO, all
of solutions are encoded, and then a sequence of operations
are performed over these solutions by loosely simulating the
molecule behaviors in reaction. Gradually, good solutions
will emerge. CRO has already shown its power in solving
problems like resource-constrained project scheduling problem
(RCPSP), channel assignment problem (CAP), and quadratic
assignment problem (QAP) [24], [27]. CRO has also been ap-
plied to solve task scheduling problems [25], [26]. However,
to date, it has only been used to encode scheduling for
independent tasks on heterogeneous computing systems.

Compared with scheduling independent tasks, the chal-
lenge of applying CRO to handle DAG scheduling is that
in DAG scheduling, both task execution order and task-
to-processor mapping need to be considered. In order to
solve the dependent task scheduling problem, we have
been investigating the problem of applying CRO to address
the DAG scheduling. Our previous work presented in [28]
applied the conventional CRO framework to address the
DAG scheduling. In both the work in [28] and the work
presented in this paper, the DAG scheduling is divided
into two phases: 1) determining the execution order of the
tasks in a DAG, and 2) mapping the tasks to computing
nodes. In [28], we developed a double molecular-based CRO
(DMSCRO), i.e., designed and applied the CRO operations
to both phases. During the work, we realized that although
the developed DMSCRO is able to consistently produce
good scheduling solutions, and the time overhead, i.e.,
time spent in finding a good solution, is high. In order to
reduce the time overhead, this paper integrates the heuristic
approach into the CRO technique. In this paper, we design
and apply the CRO operations to the first phase of the
DAG scheduling, i.e., determining the execution order of the
tasks, and then design and develop the heuristic approach
to determine the task-to-processor mapping.

2 BACKGROUND OF CRO
In this section, we introduce the background knowledge
of CRO [24], [25], [29]. In CRO, a molecule has a unique
structure which represents a solution of an optimization
problem, and has itself kinetic energy (KE) and potential energy
(PE), respectively, which are two key properties attached to
the molecule structure. The former is used to control the
acceptance of new solutions with worse fitness and the latter
corresponds to a fitness value of the solution.

CRO mimics the process of a chemical reaction where
molecules undergo a sequence of reactions between each
other or with the environment in a closed container. For ex-
ample, suppose ω and f are a molecular structure (solution)
and a fitness function, respectively. Then PEω = f(ω). KE
is a non-negative number and it helps the molecule escape
from local optimums. During a reaction, a molecule struc-
ture, ω, attempts to change to another molecule structure ω′

if PEω′ ≤ PEω , or PEω′ ≤ PEω +KEω .
A central energy buffer is also implemented in CRO

algorithm. In the environment, the energy stored in the
buffer can be regarded as the energy in the closed container.
The energy may also flow between the molecules and the
energy buffer.

During a CRO process, the following four types of ele-
mentary reactions are likely to happen.

• On-wall ineffective collision: this reaction is an uni-
molecule reaction, whose reactant involves only one
molecule. When a molecule ω collides onto the wall
of the closed container, it is allowed to change to
another molecule ω′, if Eq. (1) related to their energy
values holds,

PEω +KEω ≥ PEω′ . (1)

After collision, the KE energy will be re-distributed.
A certain portion of KE of the new molecule will
be withdrawn to the central energy buffer (i.e., en-
vironment). The KE energy of the new module can
be calculated in Eq. (2),

KEω′ = (PEω − PEω′ +KEω)× a, (2)

where a is a number randomly selected from the
range of [KE LossRate, 1]. KELossRate is the loss rate
of the KE energy, which is a system parameter set
during the initialization stage of CRO.

• Decomposition: this reaction is also an uni-molecule
reaction. A molecule ω can decompose into two new
molecules, ω′

1 and ω′
2, if Eq. (3) holds,

PEω +KEω + buffer ≥ PEω′
1
+ PEω′

2
, (3)

where buffer denotes the energy stored in the
central buffer, which represents the energy interac-
tions between molecules and the environment. Let
Edec = (PEω +KEω)− (PEω′

1
+PEω′

2
). Then after

decomposition, the KE energies of ω′
1 and ω′

2 are
calculated by Eqs. (4) and (5),

KEω′
1
← (Edec + buffer)× δ1 × δ2, (4)

KEω′
2
← (Edec + buffer −KEω′

1
)× δ3 × δ4, (5)

where δ1, δ2, δ3, δ4 is a random number generated
between 0 and 1.
The energy in the buffer is updated by Eq. (6),

buffer ← Edec + buffer − (PEω′
1
+ PEω′

2
). (6)

• Inter-molecular ineffective collision: this reaction is
an inter-molecule reaction, whose reactants involve
two molecules. When two molecules, ω1 and ω2,

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * 2014 3

collide into each other, they can change to two new
molecules, ω′

1 and ω′
2, if Eq. (7) holds,

PEω1 + PEω2 +KEω1 +KEω2 ≥ PEω′
1
+ PEω′

2
. (7)

Einter denotes the spare energy after the inter-
molecule collision, which can be calculated by Eq.
(8),

Einter =(PEω1 + PEω2 +KEω1 +KEω2)

− (PEω′
1
+ PEω′

2
).

(8)

The KEs of the new molecules will share the spare en-
ergy. Therefore, The KEs of ω′

1 and ω′
2 are calculated

by Eqs. (9) and (10),

KEω′
1
← Einter × δ1, (9)

KEω′
2
← Einter × (1− δ1), (10)

where δ1 is a random number generated from [0, 1].
• Synthesis: this reaction is also an inter-molecule re-

action. When two molecules, ω1 and ω2, collide into
each other, they can be combined to generate a new
molecule, ω′, if Eq. (11) holds,

PEω1 + PEω2 +KEω1 +KEω2 ≥ PEω′ . (11)

The KE energy of ω′ is calculated by Eq. (12),

KEω′ = PEω1 +KEω1 + PEω2 +KEω2 − PEω′ . (12)

The fitness of a solution is judged by the PE energy of
the molecule.

The typical execution flow of CRO is as follows.

• The CRO is first initialized to set some system param-
eters, such as the size of the populations (molecules),
KELossRate, InitialKE (the initial energy associated
to molecules), buffer (initial energy in the energy
buffer), MoleColl (It is used later in the process to
determine whether to perform a uni-molecular or an
inter-molecular operation), etc.

• Then the process enters a loop. In each iteration,
the process first decides whether to perform uni-
molecular operations or inter-molecular operations
following on a certain probability. It is decided in the
following way. A random number, b, is generated
in the interval [0, 1]. If b is bigger than the value
of MoleColl that the process sets in the initialization
stage, an uni-molecular operation will be performed;
otherwise, an inter-molecular operation will take
place. If it is an uni-molecular operation, the process
randomly selects a certain number of molecules and
then further decides whether to perform on-wall
collision or decomposition according to Eqs. (1) and
(3). Similarly, if the process decides to perform the
inter-molecular operations, the process then further
decides whether to perform inter-molecular collision
or synthesis according to Eqs. (7) and (11). At the end
of the iteration, the process checks whether a new
better solution is found by checking the PE energy
of each newly generated molecule.

• The iteration process repeats until the stopping cri-
teria satisfies (e.g., the best solution does not change
for a certain number of consecutive iterations).

3 THE HEURISTIC METHOD TO PERFORM TASK-
TO-PROCESSOR MAPPINGS AND THE FRAMEWORK
OF HCRO
3.1 The Heuristic Method to Perform Task-to-Processor
Mappings
The earliest finish time of the exit task will be the makespan
of the DAG job. The earliest finish time of a task relates to
its earliest start time. The earliest start and finish times of a
task is calculated as follows.

EST (Ti, Pk) denotes the earliest start time of task Ti on
the computing node Pk, which can be calculated with Eq.
(13),

EST (Ti, Pk) =
0, Ti = Tentry

max
Tj ∈Pred(Ti)

AFT (Tj , Pl), Pk = Pl

max
Tj ∈Pred(Ti)

(AFT (Tj , Pl) + C(Tj , Ti)), Pk ̸= Pl.

(13)

where EFT (Ti, Pk) denotes the earliest finish time of task
Tj on the computing node Pm.

The Earliest Finish Time (EFT) of node Ti on processor Pk

is represented as EFT (Ti, Pk), shown in Eq. (14),

EFT (Ti, Pk) = AST (Ti, Pk) +W (Ti, Pk). (14)

The Actual Start Time (AST) of node Ti on processor Pk

is represented as AST (Ti, Pk), shown in Eq. (15),

AST (Ti, Pk) = max(EST (Ti, Pk), Avail(Pk)), (15)

where Avail(Pk) is defined as the earliest time at which the
processor Pk is ready for the task execution.

The Actual Finish Time (AFT) of a subtask Ti over all
processors is represented as AFT (Ti), shown in Eq. (16),

AFT (Ti) = min
1≤k≤m

EFT (Ti, Pk). (16)

Using Eq. (16), we can calculate the earliest finish time of
the exit task of the DAG job, which is the makespan of the
DAG job for the given execution order of the tasks.

Since meta-heuristic scheduling works by searching a
good solution in the solution space, the size of solution
space will largely determine the time spent by a meta-
heuristic scheduling method to find a desirable solution.
Theorem 1 below analyze the size of the solution space
under the heuristic CRO method proposed in this paper and
the pure CRO process, respectively.

Theorem 1. When a pure CRO randomly maps n tasks without
dependency on m heterogeneous computing nodes, the solution
space is n!×mn.

Proof. In the pure CRO scheduling, a solution includes
both task execution order and randomly task-to-processor
mapping. For any task in an execution order, there is m
computing node mapping possibilities. Therefore, for any
execution of n tasks, there is total mn mapping possibilities.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * 2014 4

Since there are n! execution orders, the total number of
solutions is n!×mn.

For task-to-processor mapping, the heuristic-based Het-
erogeneous Earliest Finish Time (HEFT) is proposed to search
for a solution in order to minimize makespan without vi-
olating precedence constraints. The HEFT algorithm selects
the subtask with the highest upward rank value at each step
and assigns the selected subtask to the processor, which
minimizes its earliest finish time with an insertion-based
approach [3]. HEFT algorithm is a performance-effective
and low-complexity task scheduling on heterogeneous com-
puting systems. The time complexity of HEFT algorithm is
O(e × m) for e edges and m processors. For a dense graph
when the number of edges is proportional to O(n2) (n is the
number of subtasks), the time complexity is on the order of
O(n2 ×m) [3].

In this paper, in order to accelerate convergence speed of
HCRO algorithm for DAG job scheduling, HEFT algorithm
is adopted to realize the performance-effective and low-
complexity approach which avoids less effective task-to-
processor mapping. A detailed description about the task-
to-processor mapping is given in Algorithm 2.

Algorithm 1 Task-to-Processor Heuristic Mapping
Input:

The task priority queue.
Output:

The schedule scheme and the makespan.
1: Add all subtasks (atoms) Ti to the priority queue according

to their priority;
2: while PriorityQueue ̸= ∅ do
3: Select the first subtask Ti from the priority queue for

scheduling;
4: for each processor Pk in the processor set do
5: Compute AFT (Ti, Pk) value using the insertion based

HEFT scheduling policy;
6: Assign subtask Ti to the processor Pk that minimizes

EFT (Ti);
7: end for
8: Remove Ti from priority queue;
9: end while

10: return makespan= AFT (Texit).

As can be seen from Theorem 1, the size of search space
of the heuristic CRO method proposed in this paper is much
smaller than that of a pure CRO method. Therefore, it is
expected that the heuristic CRO method spends less time
than the pure CRO method to find a desirable solution.

3.2 The Framework of Combining CRO and the Heuris-
tic Method

After execution orders are generated according to the CRO
method, the heuristic method presented in Subsection 3.1
is applied to calculate the makespan related to a given
execution order. The makespan is used as the PE energy
of the solution, that is, the makespan is used as the fit-
ness function of execution order. The entire algorithm for
scheduling a DAG job is outlined in Algorithm 2. The first
step of the algorithm initializes the CRO process. Then the
process enters a loop. In each iteration, the CRO process
is applied to generate new execution orders (Steps 3-18).
Then the heuristic algorithm is used to perform the task-
to-processor mapping for each newly generate execution
order (Steps 20-27) and consequently the corresponding

makespan is obtained (Step 28). The procedure repeats until
the stopping criteria is satisfied.

Algorithm 2 Heuristic CRO Scheduling
Input:

A DAG job.
Output:

A scheduling solution with minimal makespan.
1: Initializing the CRO process;
2: while The stopping criteria is not satisfied do
3: Generate b ∈ [0, 1]
4: if b > MoleColl then
5: Randomly select one molecule ω;
6: if Eq. (3) holds then
7: Perform the decomposition operation on ω to gener-

ate two new molecules;
8: else
9: Perform the Onwall Ineffective Collision on ω to

generate a new molecule;
10: end if
11: else
12: Randomly select two molecules ω1 and ω2;
13: if Eq. (11) holds then
14: Perform the synthesis operation on ω1 and ω2 to

generate a new molecule;
15: else
16: Perform Intermolecular Ineffective Collision on ω1

and ω2 to generate two new molecules;
17: end if
18: end if
19: for each newly generated molecule ω′

i do
20: while The queue of ω′

i is not empty do
21: Select the first task Ti from the queue of ω′

i;
22: for each computing node Pk in the computing sys-

tem do
23: Call Eq.(14) to compute EFT (Ti, Pk);
24: end for
25: Call Eq.(16) to map task Ti to computing node Pk

that provides minimal AFT (Ti);
26: Remove the scheduled task from ω′

i;
27: end while
28: makespan= AFT (Texit);
29: end for
30: Record ω′

i which generates the minimal makespan and the
corresponding task-to-processor mapping;

31: end while
32: Return the scheduling solution with the minimal

makespan.

4 SIZE OF MOLECULAR POPULATION AND A
GOOD UNIFORM COVERAGE

In this section, we elaborate how to generate a good “seed-
ing”, good uniform coverage, and molecular diversity in our
approach in subsection 4.1, and we discuss the problem
of size of initial molecular population in subsection 4.2,
respectively.

4.1 A Good Uniform Coverage
A desirable property for an initial molecular population
is a good uniform coverage. A good uniform coverage is
desired, because information is obtained throughout the
whole feasible solution space. Therefore, by a good uniform
coverage, the molecules are well spread out to cover the
whole feasible solution space. The molecules have a good

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * 2014 5

uniform coverage if they do not form clusters or leave rela-
tively large areas of the feasible solution space unexplored.

In this paper, in order to achieve a good uniform cov-
erage, initially, for the task scheduling problem, the good
“seeding” molecules are generated by three heuristic rank
policies (upward rank, downward rank, and a combination
of level and upward-downward rank), which are the mostly
used by traditional list scheduling approaches to estimating
the priority of each subtask, respectively, as shown in Table
1.

TABLE 1
Task Priorities of DAG Application in Fig.1 of The Main Paper

Ti Rankb Rankt Rankb+t Level
0 74.3 0.0 74.3 0
1 57.3 12.67 70.0 1
2 49.7 24.67 74.3 1
3 51.0 18.67 69.7 1
4 51.0 11.67 62.7 1
5 28.3 24.7 53.0 1
6 29.3 40.7 70.0 2
7 20.3 32.7 53.0 2
8 34.3 40.0 74.3 2
9 14.3 60.0 74.3 3

Then, the priority queues (molecules) are generated by
selecting an atom in the priority queues for these molecules
from left to right, where an atom is selected and insert-
ed into a right position without violating the precedence
constraints in order to make the largest Hamming distance
of two molecules. In other words, this approach uses the
criterion of maximizing the Hamming distance between the
solution (new molecule) under consideration and the solu-
tion (seeding molecule) already generated before. Molecular
diversity of the initial population can help the CRO be
able to reach part of the feasible solution space as large as
possible. Genetically more diversified initial populations are
preferable. Finally, the rest priority queues are generated
by selecting randomly an atom in the priority queues for
these molecules, where an atom is randomly selected in the
selected molecule and inserted into a right position with-
out violating the precedence constraints in order to make
the largest hamming distance of two molecules. The new
generated molecule is added into the molecular population
in order to effectively improve molecular diversity of the
population. Illustration of the initial population is in shown
in Fig. 1.

4.2 Size of Molecular Population
The molecular population consists of PopSize molecules.
The size of the initial population has been investigated
that the underlying idea is always of a trade-off between
efficiency and effectiveness. Intuitively, it would seem that
there should be some “optimal” value for a given size, on
the grounds that a too small molecular population would
not allow sufficient room for exploring the search space
effectively, while a too large molecular population would so
impair the efficiency of the method that no solution could
be expected in a reasonable amount of time.

Initial molecular population size, a slightly different
question that we could ask is regarding a minimum pop-
ulation size for a meaningful search to take place. In Colin
R. Reeves paper [30], the initial principle was adopted that,

at the very least, every point in the search space should
be reachable from the initial population by crossover only.
This requirement can only be satisfied if there is at least one
instance of every allele at each locus in the whole population
of strings. This helps to prevent premature convergence.

0 1 2 3 4 5 6 7 8 9 10 11 12-1

0

1

2

3

4

5

6

7

8

9

10

11

12

N
o.

 o
f s

ub
ta

sk

Position of atom

 Blevel

(a) The good ‘seeding’ being ob-
tained by the heuristic Blevel ap-
proach. The task priority queue is
(0, 1, 3, 4, 2, 8, 6, 5, 7, 9). Sort
RankB in descending order.

0 1 2 3 4 5 6 7 8 9 10 11-1

0

1

2

3

4

5

6

7

8

9

10

N
o.

 o
f s

ub
ta

sk

Position of atom

 1
 2
 3
 4
 5
 6
 7
 8
 9

(b) A good uniform coverage be-
ing generated by selecting an atom
in the priority queues for these
molecules from left to right ac-
cording to the largest Hamming
distance between the new molecule
and the good original seed in Fig.
1.(a)

0 1 2 3 4 5 6 7 8 9 10 11 12-1

0

1

2

3

4

5

6

7

8

9

10

11

12

N
o.

 o
f s

ub
ta

sk

Position of atom

 Tlevel

(c) The good ‘seeding’ being ob-
tained by the heuristic Tlev-
el approach. The task priority
queue is (0, 4, 1, 3, 2, 5, 7, 8,
6, 9). Sort RankT in ascending
order.

0 1 2 3 4 5 6 7 8 9 10 11-1

0

1

2

3

4

5

6

7

8

9

10

N
o.

 o
f s

ub
ta

sk

Position of atom

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

(d) A good uniform coverage
being generated by selecting an
atom in the priority queues for
these molecules from left to right
according to the largest Ham-
ming distance between the new
molecule and the good original
seed in Fig. 1.(c)

0 1 2 3 4 5 6 7 8 9 10 11 12-1

0

1

2

3

4

5

6

7

8

9

10

11

12

N
o.

 o
f s

ub
ta

sk

Position of atom

 Llevel

(e) The good ‘seeding’ be-
ing obtained by the heuris-
tic Llevel&(Blevel+Tlevel) ap-
proach. The task priority queue
is (0, 2, 1, 3, 4, 5, 8, 6, 7,
9). Sort elements in descending
order when they are the same
level.

0 1 2 3 4 5 6 7 8 9 10 11-1

0

1

2

3

4

5

6

7

8

9

10

N
o.

 o
f s

ub
ta

sk

Position of atom

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26

(f) A good uniform coverage be-
ing generated by selecting an
atom in the priority queues for
these molecules from left to right
according to the largest Ham-
ming distance between the new
molecule and the good original
seed in Fig. 1.(e)

0 1 2 3 4 5 6 7 8 9 10 11-1

0

1

2

3

4

5

6

7

8

9

10

N
o.

 o
f s

ub
ta

sk

Position of atom

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26

(g) The sum of individuals
with Blevel, Tlevel and Llev-
el&(Blevel+Tlevel).

0 1 2 3 4 5 6 7 8 9 10 11-1

0

1

2

3

4

5

6

7

8

9

10

N
o.

 o
f s

ub
ta

sk

Position of atom

(h) The initial population with
a good uniform coverage and
molecular diversity. The popu-
lation of size is ten times the
number of nodes of DAG appli-
cation.

Fig. 1. Illustration of the initial population for a simple DAG graph of size
10 (10 tasks).

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * 2014 6

In our experiments, we maintain those parameters un-
changed, such as InitialKE = 10000, buffer=2000, MoleColl
= 0.2, KELossRate = 0.5, and a stopping criterion. By in-
creasing the size of the population, we obtain the average
makespan for different sizes of DAG applications (10, 20,
50), each with 30 independent runs. The results are shown
in Fig. 2.

0 5 10 15 20 25 30 35
134.05

134.10

134.15

134.20

134.25

134.30

A
ve

ra
ge

 m
ak

es
pa

n

Size of populations

 Makespan

(a) The DAG graph of size 10+2
(10 subtasks, 2 dummy nodes),
30 independent runs, 100 DAG
applications with different charac-
teristics, processors=3.

0 5 10 15 20 25 30 35

187.8

188.0

188.2

188.4

188.6

188.8

189.0

189.2

189.4

189.6

189.8

A
ve

ra
ge

 m
ak

es
pa

n

Size of populations

 Makespan

(b) The DAG graph of size 20+2
(20 subtasks, 2 dummy nodes),
30 independent runs, 100 DAG
applications with different charac-
teristics, processors=8.

0 5 10 15 20 25 30 35
199

200

201

202

203

204

205

206

207

A
ve

ra
g

e
 m

a
ke

sp
a

n

Size of populations

 Makespan

(c) The DAG graph of size 50+2
(50 subtasks, 2 dummy nodes),
30 independent runs, 100 DAG
applications with different char-
acteristics, processors=16.

(d) The average makespan of the
three classes DAG graphs.

Fig. 2. Illustration of the average makespan vs. the size of initial popula-
tion.

In Fig. 2(d), we can observe that the makespan decreases
as the size of population increases. When the size of pop-
ulation is twenty times more than the number of nodes
in a DAG application, the makespan remains almost the
same (< 0.5). When the size of population is more than
the number of nodes in a DAG application by between ten
and twenty times, the makespan decreases a little (< 1.0).
Therefore, considering the trade-off between efficiency and
effectiveness, the size of initial population is set as ten times
the number of nodes in a DAG application.

APPENDIX A
DEFINITIONS OF NOTATIONS

In this section, a list of notations and their definitions used
in the paper is provided.

REFERENCES

[1] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms
for allocating directed task graphs to multiprocessors,” ACM
Computing Surveys (CSUR), vol. 31, no. 4, pp. 406–471, Dec. 1999.
[Online]. Available: http://doi.acm.org/10.1145/344588.344618

[2] A. Zomaya, C. Ward, and B. Macey, “Genetic scheduling for par-
allel processor systems: comparative studies and performance is-
sues,” Parallel and Distributed Systems, IEEE Transactions on, vol. 10,
no. 8, pp. 795–812, aug 1999.

TABLE 2
Definitions of Notations

Notation Definition
AFT (Ti) The actual finish time of task Ti

AST (Ti) The actual start time of task Ti

Avail(Pk) The earliest time when processor Pk is
ready for task execution

B The two-dimensional matrix of commu-
nication bandwidths between proces-
sors

B(Pk, Pl) The communication bandwidth be-
tween processors Pk to Pl

CCR The communication to computation ra-
tio, i.e., the ratio of the average commu-
nication cost to the average computa-
tion cost

Cd(Ti, Tj) The amount of communication between
task Ti and task Tj

Cs(Pk) The communication startup cost of pro-
cessor Pk

C(Ti, Tj) The communication cost from task Ti

(scheduled on Pk) to task Tj (scheduled
on Pl)

C(Ti, Tj) The average communication cost of the
edge(Ti, Tj)

E A set of e edges
EFT (Ti, Pk) The earliest finish time of task Ti on

processor Pk

EST (Ti, Pk) The earliest start time of task Ti on
processor Pk

P A set of m heterogeneous processors
Pk The k-th processor in the system

Pred(Ti) A set of the immediate predecessors of
the task Ti

Rankb(Ti) The upward rank of task Ti

Rankt(Ti) The downward rank of task Ti

S(Ti, Pk) The estimated execution speed of task
Ti on processor Pk

Succ(Ti) A set of the immediate successors of the
task Ti

T A set of n weighted tasks in an applica-
tion

Tentry The starting task without any predeces-
sors

Texit The final task with no successors
Ti The i-th task in the application

Wd(Ti) The computational data of task Ti

W (Ti, Pk) The computational cost of task Ti on the
processor Pk

W (Ti) The average computational cost of task
Ti

[3] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performanceeffective and
lowcomplexity task scheduling for heterogeneous computing,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 13, no. 3,
pp. 260–274, mar 2002.

[4] A. Amini, T. Y. Wah, M. Saybani, and S. Yazdi, “A study of density-
grid based clustering algorithms on data streams,” in Fuzzy Sys-
tems and Knowledge Discovery (FSKD), 2011 Eighth International
Conference on, vol. 3, july 2011, pp. 1652–1656.

[5] H. Cheng, “A high efficient task scheduling algorithm based on
heterogeneous multi-core processor,” in Database Technology and
Applications (DBTA), 2010 2nd International Workshop on, nov. 2010,
pp. 1–4.

[6] T. Tsuchiya, T. Osada, and T. Kikuno, “A new heuristic algorithm
based on gas for multiprocessor scheduling with task duplica-
tion,” in Algorithms and Architectures for Parallel Processing, 1997.
ICAPP 97., 1997 3rd International Conference on, dec 1997, pp. 295–
308.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * 2014 7

[7] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Comput. Surv.,
vol. 35, no. 3, pp. 268–308, sep 2003.

[8] M. Kashani and M. Jahanshahi, “Using simulated annealing for
task scheduling in distributed systems,” in Computational Intel-
ligence, Modelling and Simulation, 2009. CSSim ’09. International
Conference on, sept. 2009, pp. 265–269.

[9] R. Shanmugapriya, S. Padmavathi, and S. Shalinie, “Contention
awareness in task scheduling using tabu search,” in Advance
Computing Conference, 2009. IACC 2009. IEEE International, march
2009, pp. 272–277.

[10] Y. W. Wong, R. Goh, S.-H. Kuo, and M. Low, “A tabu search for the
heterogeneous dag scheduling problem,” in Parallel and Distributed
Systems (ICPADS), 2009 15th International Conference on, dec. 2009,
pp. 663–670.

[11] A. Tumeo, C. Pilato, F. Ferrandi, D. Sciuto, and P. Lanzi, “Ant
colony optimization for mapping and scheduling in heteroge-
neous multiprocessor systems,” in Embedded Computer Systems:
Architectures, Modeling, and Simulation, 2008. SAMOS 2008. Inter-
national Conference on, july 2008, pp. 142–149.

[12] F. Ferrandi, P. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant
colony heuristic for mapping and scheduling tasks and commu-
nications on heterogeneous embedded systems,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 29, no. 6, pp. 911–924, june 2010.

[13] B. Cheng, Q. Wang, S. Yang, and X. Hu, “An improved ant colony
optimization for scheduling identical parallel batching machines
with arbitrary job sizes,” Applied Soft Computing, vol. 13, no. 2, pp.
765–772, 2013.

[14] D. Hadka and P. Reed, “Diagnostic assessment of search controls
and failure modes in many-objective evolutionary optimization,”
Evolutionary Computation, vol. 20, no. 3, pp. 423–452, Sept 2012.

[15] J. Secretan, N. Beato, D. D’Ambrosio, A. Rodriguez, A. Campbell,
J. Folsom-Kovarik, and K. Stanley, “Picbreeder: A case study in
collaborative evolutionary exploration of design space,” Evolution-
ary Computation, vol. 19, no. 3, pp. 373–403, Sept 2011.

[16] E. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multipro-
cessor scheduling,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 5, no. 2, pp. 113–120, feb 1994.

[17] S. Song, K. Hwang, and Y.-K. Kwok, “Risk-resilient heuristics
and genetic algorithms for security-assured grid job scheduling,”
Computers, IEEE Transactions on, vol. 55, no. 6, pp. 703–719, june
2006.

[18] J. Wang, Q. Duan, Y. Jiang, and X. Zhu, “A new algorithm for
grid independent task schedule: Genetic simulated annealing,” in
World Automation Congress (WAC), 2010, sept. 2010, pp. 165–171.

[19] K. Dahal, A. Hossain, B. Varghese, A. Abraham, F. Xhafa, and
A. Daradoumis, “Scheduling in multiprocessor system using ge-
netic algorithms,” in Computer Information Systems and Industrial
Management Applications, 2008. CISIM ’08. 7th, june 2008, pp. 281–
286.

[20] M. Mehrjoo, N. Khaji, and M. Ghafory-Ashtiany, “Application
of genetic algorithm in crack detection of beam-like structures
using a new cracked eulercbernoulli beam element,” Applied Soft
Computing, vol. 13, no. 2, pp. 867–880, 2013.

[21] T. Lu and J. Zhu, “A genetic algorithm for finding a path subject
to two constraints,” Applied Soft Computing, vol. 13, no. 2, pp. 891–
898, 2013.

[22] T. Chen, B. Zhang, X. Hao, and Y. Dai, “Task scheduling in grid
based on particle swarm optimization,” in Parallel and Distributed
Computing, 2006. ISPDC ’06. The Fifth International Symposium on,
july 2006, pp. 238–245.

[23] H. Li, L. Wang, and J. Liu, “Task scheduling of computational
grid based on particle swarm algorithm,” in Computational Science
and Optimization (CSO), 2010 Third International Joint Conference on,
vol. 2, may 2010, pp. 332–336.

[24] A. Lam and V. Li, “Chemical-reaction-inspired metaheuristic
for optimization,” Evolutionary Computation, IEEE Transactions on,
vol. 14, no. 3, pp. 381–399, june 2010.

[25] J. Xu, A. Lam, and V. Li, “Chemical reaction optimization for
the grid scheduling problem,” in Communications (ICC), 2010 IEEE
International Conference on, may 2010, pp. 1–5.

[26] ——, “Chemical reaction optimization for task scheduling in grid
computing,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 22, no. 10, pp. 1624–1631, oct. 2011.

[27] A. Y. S. Lam, V. O. K. Li, and J. J. Q. Yu, “Real-coded chemical

reaction optimization,” Evolutionary Computation, IEEE Transactions
on, vol. PP, no. 99, p. 1, 2011.

[28] Y. Xu, K. Li, L. He, and T. K. Truong, “A DAG scheduling scheme
on heterogeneous computing systems using double molecular
structure-based chemical reaction optimization,” Journal of Parallel
and Distributed Computing, vol. 73, no. 9, pp. 1306–1322, 2013.

[29] T. K. Truong, K. Li, and Y. Xu, “Chemical reaction optimization
with greedy strategy for the 01 knapsack problem,” Applied Soft
Computing, vol. 14, no. 1, pp. 101–107, 2013.

[30] C. R. Reeves, “Using genetic algorithms with small populations,”
in Proceedings of the Fifth International Conference on Genetic Algo-
rithms. Morgan Kaufmann, 1993, pp. 92–99.

