
Guarantee Strict Fairness and Utilize
Prediction Better in Parallel Job Scheduling

Yulai Yuan, Yongwei Wu, Member, IEEE, Weimin Zheng, Senior Member, IEEE, and

Keqin Li, Senior Member, IEEE

Abstract—As the most widely used parallel job scheduling strategy, EASY backfilling achieved great success, not only because it can

balance fairness and performance, but also because it is universally applicable to most HPC systems. However, unfairness still exists

in EASY. Our simulation shows that a blocked job can be delayed by later jobs for more than 90 hours on real workloads. Additionally,

directly employing runtime prediction techniques in EASY would lead to a serious situation called reservation violation. In this paper, we

aim at guaranteeing strict fairness (no job is delayed by any jobs of lower priority) while achieving attractive performance, and

employing prediction without causing reservation violation in parallel job scheduling. We propose two novel strategies, namely, shadow

load preemption (SLP) and venture backfilling (VB), which are integrated into EASY to construct preemptive venture EASY backfilling

(PV-EASY). Experimental results on three real HPC workloads demonstrate that PV-EASY is more attractive than EASY in parallel job

scheduling, from both academic and industry perspectives.

Index Terms—Checkpoints, modeling and prediction, parallel system, scheduling, virtualization

Ç

1 INTRODUCTION

PARALLEL job scheduling is critical in large-scale high
performance computing (HPC) systems, since different

scheduling policies can result in different user experience
and resource utilization. Fairness and performance are two
eternal topics in parallel job scheduling, and previous works
focus either on fair scheduling [16], [19], [20] or performance
[13], [14], [23]. However, fairness and performance should
be considered in concert. The first come first served (FCFS)
method mainly guarantees fairness, while the shortest job
first (SJF) method [6] mainly targets performance. This
explains why they are rarely used alone in practice. EASY
backfilling [1] allows later jobs to backfill in idle processors
that cannot satisfy the request of the first blocked job, pro-
vided that these backfilled jobs would not delay the
expected start time (reservation) of the first blocked job in
the queue. EASY provides “relaxed” fairness to jobs via res-
ervation, as well as achieves good performance by shifting
shorter jobs forward. Because of a better balance between
fairness and performance, EASY is the most widely used
job scheduling strategy in HPC systems, and adopted by
lots of major production schedulers [8].

In order to obtain better fairness while achieving attrac-
tive performance, many approaches have been proposed
based on EASY. However, most of them suffer from the
same problem that they mix up fairness with performance,
and try to measure the fairness of schedulers with

performance metrics, such as slowdown queuing fairness
(SQF) [19], fair-slowdown [9], and fair start time [20]. We
claim that fairness is independent of performance metrics,
and propose our definition of strict fairness (no job is
delayed by any jobs of lower priority). Therefore, our first
objective is to guarantee strict fairness as well as achieve
attractive performance in parallel job scheduling.

Another interesting phenomenon is that job runtime
prediction technologies are rarely employed by EASY in
real HPC systems, though EASY is built on highly inaccu-
rate user estimates of jobs’ runtime [3], [12]. This is due to
two reasons. 1) There is a misconception that inaccurate
user estimates of jobs’ runtime can improve performance
[3], [28]. 2) Replacing user estimates directly with system-
generated prediction in EASY would lead to reservation
violation (a blocked job cannot start at its reservation time
(Section 3.2)). These two reasons cause lots of prediction
techniques [24], [26] to be put on the shelf, even if they
have attractive prediction accuracy. To solve above
dilemma, our second objective is to employ prediction
techniques without causing reservation violation.

In this paper, we propose a novel preemptive venture
EASY backfilling (PV-EASY) method which integrates
shadow load preemption (SLP) and venture backfilling (VB)
into EASY. Our work makes two significant contributions.

First, we propose shadow load preemption to guarantee
strict fairness and employ prediction techniques without
causing reservation violation, which makes PV-EASY
more attractive than EASY with regard to fairness. The
load of a system is classified into sunny load and shadow
load (Section 4.1). SLP (Section 4.2) can preempt the pro-
cessors occupied by shadow load to start blocked jobs, and
thus guarantee strict fairness and avoid reservation viola-
tion. Additionally, as observed from our experiments, the
mean bounded slowdown (MBS) and mean weighted
bounded slowdown (MWBS) of blocked jobs in PV-EASY
are mostly lower than those in EASY.

� Y. Yuan, Y. Wu, and W. Zheng are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China.
E-mail: {yuanyulai, wuyw, zwm-dcs}@tsinghua.edu.cn.

� K. Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 28 Nov. 2012; revised 26 Feb. 2013; accepted 10 Mar.
2013; date of publication 26 Mar. 2013; date of current version 21 Feb. 2014.
Recommended for acceptance S.-Q. Zheng.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.88

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014 971

1045-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Second, we propose venture backfilling to improve per-
formance, which makes PV-EASY more attractive than
EASY in terms of performance. VB (Section 4.3) can coun-
teract the negative effects of preemption in SLP and
improve performance. After backfill decisions are made
based on runtime prediction, high priority jobs may still be
venturesomely backfilled on idle processors, without con-
sidering job runtime and reservation. Benefiting from VB,
PV-EASY with simple kill/restart mode and Last Model
predictor achieves the same performance as EASY. More-
over, PV-EASY achieves better performance than EASY if
both of them adopt the same job runtime prediction
techniques.

We evaluate PV-EASY by means of real workloads from
production HPC systems. Our results show that, due to low
resource waste and simple implementations, PV-EASY can
easily facilitate all HPC systems, which makes PV-EASY
attractive in real production environments. Even with the
simple kill/restart preemption mode and Last Model pre-
dictor, the wasted resources in PV-EASY are limited at a
low level (2.48�5.66 percent), and therefore would not affect
system throughput even when the system load is up to
80 percent. Meanwhile, PV-EASY does not need the support
of any complex system features and can be easily imple-
mented in all HPC systems and production schedulers.

Additionally, current checkpoints and virtualization
techniques can improve the performance of PV-EASY sig-
nificantly, and reduce the resource waste dramatically. By
replacing kill/restart mode in PV-EASY with checkpoint/
restart mode (CP-PV-EASY) and suspend/resume mode
(VM-PV-EASY), the job slowdown and resource waste are
further improved.

The rest of this paper is organized as follows. Section 2
provides the background and related work of parallel job
scheduling. In Section 3 we discuss the motivation of this
paper, and then we propose our novel PV-EASY in Section 4.
The experimental design and results are presented in
Section 5. In Sections 6 and 7, we discuss and conclude.

2 BACKGROUND AND RELATED WORK

In the past, besides the most natural and simplest FCFS
strategy, many kinds of order-based parallel job scheduling
strategies [4], [5] have been proposed, such as shortest job
first, smallest job first [6], and smallest cumulative demand
first [6], etc. However, all of them share similar inherent
problems. 1) If the first waiting job is blocked, a “hole” of
idle processors would appear as time goes by, and therefore
results in low system utilization. 2) Most of the above order-
based scheduling strategies, except FCFS, can cause unfair-
ness, even starvation. A successful approach to solve these
two problems is backfilling [1].

Backfilling has two versions, i.e., conservative and
aggressive backfilling. Conservative backfilling only back-
fills jobs that would not delay any previous jobs in the
queue, while aggressive backfilling takes a more aggres-
sive approach that selects backfilled jobs provided that
they would not delay the expected start time of the first
job in the queue. Aggressive backfilling like EASY is
reported to have better performance than conservative
backfilling [2].

To enhance the performance of EASY, many variants
have been proposed, and most of them can be classified into
two categories according to their changes: 1) variants of res-
ervation calculation; 2) variants of backfill selection.

Fairness and performance are two most important met-
rics of parallel job scheduling. Many existing works
(e.g., [13], [14], [23]) tried to promote the performance of
schedulers on certain metrics, including user-aware metrics
(e.g., turnaround time, slowdown) and system-aware met-
rics (e.g., utility and energy saving). Meanwhile, users in
queueing systems are sensitive to fairness [17], [18], and lots
of scheduling studies focused on fairness.

EASY backfilling is built on jobs’ runtime estimates
given by users. However, user estimates of jobs’ runtime
are reported to be highly inaccurate [3], [12]. Even worse,
most users are unable or reluctant to provide better job
runtime estimates when they submit their jobs to HPC
systems [22]. System-generated runtime prediction techni-
ques [24], [26] are reported to have better accuracy than
user estimates, but they are rarely integrated into EASY in
real production systems, due to two misconceptions.
1) Inaccurate runtime estimates of jobs can improve per-
formance [3]. 2) Users would not tolerate jobs being killed
just because predictions were too short. In the rest of this
paper, we use “estimate” to denote the requested time of
a job forecasted by a user, and use “prediction” to indicate
the result of system-generated runtime prediction.

Due to page limitation, more related work about backfill
variants and fairness metrics are reviewed in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2013.88.

3 DESIGN OBJECTIVES

The wide use of EASY in production schedulers and HPC
systems has proved its practicability. Unfortunately, EASY
and its variants still suffer from some serious problems that
will be analyzed in this section. These analyses motivate us
to propose a more powerful parallel job scheduler to guar-
antee strict fairness and employ prediction.

3.1 Guarantee Strict Fairness

Existing works of parallel job scheduling pay more atten-
tion to performance than to fairness. However, HPC users
might be more sensitive to fairness than to performance
[15]. We believe that fairness and performance are both
important to attract users in parallel job scheduling.

Many existing works mix up fairness and performance
by measuring the fairness through performance metrics
[19], [20]. In fact, fairness is independent of performance
and unsuitable to be measured by performance metrics.
Fairness is more like a baseline that needs to be guaranteed
and cannot be broken, like laws, rather than being judged
by metrics which pay more attention to the average situa-
tion, like performance. For fairness, what users concern
about is that they never want to be treated unfairly, or, they
need services with guaranteed fairness.

What is the guaranteed fairness in parallel job schedul-
ing? FCFS is an absolutely fair scheduling strategy, which
holds the view that users are sensitive to service sequences,

972 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

and jumping in a queue is unacceptable. Actually, in a par-
allel system with N resources, most jobs cannot occupy all
the system resources. Suppose the priority factor of jobs in a
parallel system S is submission time. Job A is blocked
because of insufficient idle resources in S. If the jobs submit-
ted later than job A can run on these idle resources without
delaying the start time of A, we believe that the user of A
would not raise any complaint. Thus, we define the notion
of “strict fairness” in parallel job scheduling as follows,
namely, if no job is delayed by any jobs with lower priority, this
scheduling sequence can be viewed as strictly fair.

EASY backfilling maintains a view of “relaxed” fairness
that a job can be backfilled if it would not delay the
“expected” start time (reservation) of the first blocked job.
However, because of the “heel and toe” dynamic [29], the
start time of blocked job is often gradually pushed away by
later jobs unfairly according to the definition of strice fair-
ness. We have observed significant unfairness in EASY
from the experiment on three real workloads (Section 5.1).
As summarized in Table 1, around 20 percent of the blocked
jobs in each workload suffered from unfairness (delayed by
later jobs, denoted as delay jobs). On the average, they were
delayed 80, 169, and 133 minutes in three workloads respec-
tively by later jobs. Moreover, the maximum delay caused
by later jobs can be 90 hours or more (SDSC-BLUE).

In order to overcome the misconception of existing works
about fairness and help the blocked jobs suffering from
unfairness in EASY, we aim at designing a scheduler that
can guarantee strict fairness. Besides, because fairness and
performance are both attractive to users, we do not want to
sacrifice performance in exchange for strict fairness. Thus,
our design objective 1 is that our scheduler should guarantee
strict fairness to the jobs with attractive performance.

3.2 Employ Prediction

Existing prediction techniques are rarely applied in real
production schedulers, because of the misconceptions
stated in Section 2. Tsafrir et al. [12] well clarified how these
misconceptions failed and proposed an EASY variant that
adopts prediction by separating the role of kill-time from
prediction, but we found that directly replacing user esti-
mates with prediction in EASY as it is proposed in [12] can
lead to serious problems as analyzed below and demon-
strated in Fig. 1 (left side is the scheduling decision and
right side is the consequence). These problems are derived
from inherent and unavoidable properties of prediction, i.e.,
underestimate (shorter than jobs’ actual runtime) and overesti-
mate (longer than jobs’ actual runtime and shorter than user
estimates). Notice that user estimates have been proven to
be suitable to play the role of kill-time [12] and we hold the
same view. Thus, a prediction that exceeds a user estimate
is meaningless, and overestimate in this paper is between
runtime and user estimates.

Overestimate of running jobs’ runtime might lead to
resource waste. Because the prediction is shorter than the
user estimate, the reservation time is shortened and fewer
jobs can be backfilled, thus more holes are left and more
computational resource is wasted. On the contrary, overesti-
mate of waiting jobs can result in better performance, for
more jobs can be backfilled because of shorter predictions
compared with user estimates. These consequences of over-
estimate are easy to be deduced, and due to space limita-
tion, they are not shown in Fig. 1.

Underestimate of running jobs’ runtime would shorten
the reservation of the first blocked job in the queue and
therefore reduce the possibility of other waiting jobs being
backfilled. Moreover, this reservation would be violated
because the running jobs cannot actually finish before reser-
vation and release sufficient processors for the blocked job
(user estimates act kill-time). Fig. 1b demonstrates one pos-
sible case of this issue. However, this situation can be
viewed as “benign”, because the reservation of the blocked
job is actually delayed by its predecessors, so the user of the
blocked job would unlikely feel uncomfortable.

Underestimate of waiting jobs’ runtime would lead to
backfilling of a job whose execution time is actually longer
than the reservation of the first blocked job, and thus push-
ing away the actual start time of the first blocked job to
exceed its reservation. This undesired situation, which is
called “reservation violation” in this paper, damages the
original intention of reservation in backfilling. As shown in
Fig. 1c, job 5 is underestimated and not thought to delay the
start of blocked job 2, so job 5 is backfilled at T ¼ 0. But actu-
ally job 5 cannot finish before T ¼ 5 and therefore job 2’s
reservation guaranteed by EASY at T ¼ 5 is violated.

To prove the existence of reservation violation, we imple-
mented a prediction-based EASY backfilling by replacing
user estimates with a predictor when calculating reserva-
tions and choosing backfilled jobs as [12] did, and per-
formed a simulation on three real workloads. The predictor
in this experiment is the Last Model, which predicts the life-
time accuracy (runtime/user estimates) of a job to be the
same as the last job of the same user, and if no such prede-
cessor exists, user estimates will be used instead. The
“benign” situation illustrated in Fig. 1b was filtered out.

TABLE 1
Start Time Delay of Blocked Jobs in EASY

Fig. 1. Replacing user estimates with prediction in EASY.

YUAN ET AL.: GUARANTEE STRICT FAIRNESS AND UTILIZE PREDICTION BETTER IN PARALLEL JOB SCHEDULING 973

Simulation results are shown in Table 2. In each work-
load, tens or hundreds (92�407) of jobs are suffered from
serious reservation violation. The start time of these jobs
are delayed more than 100 minutes from their reservations
on average. In the worst cases, some jobs even experi-
enced a reservation violation of more than 30 hours.
Besides, the bounded slowdown (defined in Section 5.1) of
these victims is dramatically increased. The mean slow-
down increment (SI) is 4.78, 36.13, and 40.78 respectively.
The maximum SI was even up to 1,581 in SDSC-DS. If a
job’s reservation is violated, its owner would have the illu-
sion that this job is starving. Furthermore, most of these
victims are large parallel jobs, which are the target jobs of
HPC systems.

All above analyses indicate that prediction cannot be
directly integrated into EASY as some previous works (e.g.,
[12], [28]) did, mainly due to the existence of reservation
violation caused by unavoidable prediction errors. So, how
can current studies of runtime prediction be able to facilitate
parallel job scheduling, especially for the most widely used
EASY in real production? We answer this question from a
different perspective, i.e., to design a scheduler that can
achieve our design objective 2: a scheduler should employ pre-
diction without causing reservation violation.

4 PREEMPTIVE VENTURE EASY BACKFILLING

In this section, we first introduce our view about the clas-
sification of running load in EASY. Then, we propose a
shadow load preemptive (SLP) backfilling scheduling
scheme, which can guarantee strict fairness and employ
prediction based on EASY. Afterwards, we propose a ven-
ture backfilling strategy, which is used to improve the per-
formance of SLP. We integrate SLP and VB into the
traditional EASY to form a new preemptive venture EASY
backfilling. When a new job is submitted or a running job
is finished, PV-EASY will first try to schedule jobs accord-
ing to their priorities, until the idle resource is not suffi-
cient for the highest priority job in the queue. Then PV-
EASY will start SLP, and afterwards start VB.

4.1 Classification of Running Load in EASY

If a running job’s priority is higher than all jobs in the wait-
ing queue, no one can question its right of holding resour-
ces, and it seems running under sunshine. So the running
load consisting of this kind of jobs is called “sunny load”. On
the contrary, if a running job’s priority is lower than any
waiting jobs, one might consider that this running job got its

resources through improper means, and therefore it is more
likely running in the shadow (not willing to be noticed by
others). We call the running load that consists of this kind of
running jobs “shadow load”.

In EASY, a job can be either “regularly” started (regular
job) if it holds the highest priority, or started by backfilling.
Every regular job has the highest priority in the queue and
deserves its running, so it definitely belongs to the sunny
load during its whole lifetime. Backfilled jobs start only
when the idle resources cannot satisfy the highest priority
job in the queue, so they belong to the shadow load at the
beginning. However, a backfilled job could transit from
shadow load to sunny load during its lifetime.

4.2 Shadow Load Preemption

Shadow load is the root cause of unfairness in EASY. Recall
from the definition of strict fairness, unfairness always hap-
pens in the blocked jobs of EASY. Because of inaccurate esti-
mates of the blocked jobs’ reservation and the backfilled
jobs’ runtime, the start time of a blocked job could be
delayed by the backfilled jobs. It is clear that the jobs that
cause unfairness all belong to shadow load.

Moreover, shadow load could lead to reservation viola-
tion and thus hinders the employment of prediction tech-
nologies in EASY. Underestimate of waiting jobs’
runtime would mislead EASY to backfill long runtime
jobs and therefore cause reservation violation (Sec-
tion 3.2). These backfilled jobs with long runtime also
belong to shadow load.

Jobs in the shadow load must be unnoticeable. They
should not delay the running of other jobs, especially the
blocked jobs with higher priorities. Unfortunately, shadow
load is treated the same as sunny load in EASY, which
exposes the existence of jobs in the shadow load and affects
blocked jobs, thus leading to unfairness and reservation vio-
lation. One approach to solve this inherent issue of EASY is
to restrict the activities of the jobs in the shadow load within
the scope of real “invisible shadow”, and prevent them
from delaying the start of higher priority jobs, by imple-
menting shadow load preemption as follows:

When idle resources of a system are not sufficient for the
highest priority job in the waiting queue, the resources
occupied by the jobs in the shadow load can be preempted, if
this preemption can enable the highest priority job to start
right away. The preemption occurs according to job priori-
ties, from low to high, and the preempted jobs are put back
to the waiting queue.

Because of preemption in SLP, the backfilled jobs of the
shadow load would no longer delay the start of the blocked
jobs and thus strict fairness is guaranteed. If the jobs in the
shadow load are underestimated by the predictor, SLP
ignores their existence and preempts their resources. There-
fore, the risk of reservation violation is eliminated.

Three modes exist in SLP, kill/restart, checkpoint/
restart, and suspend/resume. Kill/restart mode is the
default setting in SLP, but for the HPCs and jobs which
support checkpoints or virtualization techniques, a
preempted job can either restart from its latest check-
point, or suspended when preempted and resume from
its saved status.

TABLE 2
RV Caused by Last Model in EASY

974 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

4.3 Venture Backfilling

Kill/restart mode in SLP is simple, universally supported,
but also resource costly. If a backfilled job in the shadow load
is preempted, all the work it has already done will be totally
lost and it has to restart from its origin next time.

Checkpoint/restart and suspend/resume modes sup-
ported by checkpoint and virtualization technologies are
two better ways to reduce the cost of preemption. Check-
points can enable a preempted job restart from the closest
saved status, and a job running in virtualization environ-
ment can suspend and resume at anytime theoretically
without wasting any work it has already done. But both of
these two modes rely on much more complex techniques
which also bring slowdown to the running jobs and system.

In addition, due to inaccurate runtime prediction, though
a waiting job can actually finish before future preemption
happens, it might be misunderstood by SLP that it cannot
survive from possible preemption. In this situation, these
jobs cannot be backfilled and some holes would appear
without full utilizing system resources.

In order to maximize the surviving opportunity of back-
filled jobs in the shadow load and increase the utilization of
the system, so as to reduce resource waste and improve per-
formance, we propose a venture backfilling method:

1. Compute the reservation time of the first blocked job
in the waiting queue based on sunny load and run-
time prediction.

2. Determine the possible runtime of waiting jobs by
employing system-generated prediction.

3. Select waiting jobs that can be satisfied by idle
resources and have the largest likelihood of success-
ful completion before preemption to be backfilled,
from the nearest predicted completion time to the
furthest within the reservation time.

4. If there still exist idle resources, select waiting jobs to
be backfilled according to their priorities, from high
to low, no matter whether the prediction indicates
they could complete before possible preemption or
not.

Step 3 aims to reduce the occurrence of preemption, and
Step 4 tries to make full use of the resources. Step 4 is a
novel but adventurous approach that is different from exist-
ing EASY variants. It seems that jobs backfilled in Step 4
have very little chance to survive from preemption. But this
is not true. Prediction is always inaccurate and preemption
in SLP occurs from low priority to high priority, so back-
filled jobs of high priority in Step 4 would still have oppor-
tunities to transit to sunny load and complete.

5 EXPERIMENTAL EVALUATION

In this section, we first introduce the experiment design.
Then, we analyze PV-EASY (default with kill/restart

mode) on four important aspects, including the benefit
of maintaining strict fairness, employing prediction, per-
formance, and resource waste. In Section 5.3, the perfor-
mance of CP-PV-EASY (with checkpoints/restart mode)
and VM-PV-EASY (with suspend/resume mode) are ana-
lyzed in detail.

5.1 Experiment Design

We have constructed an event-based simulator to mimic
different scheduling strategies in generic parallel com-
puting clusters, and the workload traces used to drive
our simulator and evaluate PV-EASY are collected from
real HPC systems. We selected three workload traces
(CTC, SDSC-BLUE, and SDSC-DS) from parallel work-
load archive (PWA) [30]. These workload traces are all
named by the names of their HPC systems and affilia-
tions. Table 3 gives an overview of them. They are col-
lected during long production periods and contain large
amount of job entries, with regular load between 60 and
80 percent. Jobs in these workloads use tens of processors
on average, and their mean runtime always exceed
1 hour. More details about the simulator and workloads
are available in Appendix B, available in the online sup-
plemental material.

We only use EASY as a comparison target in our experi-
ments, because the default setting of most parallel schedu-
lers remains plain EASY [8], and furthermore, it is
statistically reported that 90�95 percent of the parallel
scheduler installations do not change this default configu-
ration [7].

The priority factor in our experiments is the submission
time of a job. If not specified, the job runtime predictor used
in each of the scheduling strategies is the Last Model.

In this study, two metrics, mean bounded slowdown and
mean weighted bounded slowdown, are used to evaluate
user-aware performance in parallel job scheduling. Slow-
down is defined as turnaround time (waiting time þ run-
ning time) normalized by running time. Bounded
slowdown eliminates the influence of very short jobs on the
metric [3], and it is defined as follows:

Bounded Slowdown ¼WaittimeþMaxðRuntime; 10Þ
MaxðRuntime; 10Þ :

(1)

In this paper, we use a threshold of 10 seconds, which is
often used in existing works.

MBS is an arithmetic mean value of all jobs’ bounded
slowdown. Every job is regarded as equal in MBS implic-
itly, without considering the number of processors that a
job used. In fact, the purpose of building HPC systems is
to enable the running of large parallel jobs rather than
serial jobs. By considering the number of processors used

TABLE 3
An Overview of the Workloads

YUAN ET AL.: GUARANTEE STRICT FAIRNESS AND UTILIZE PREDICTION BETTER IN PARALLEL JOB SCHEDULING 975

by each job ðParallelismjÞ as weight, we propose MWBS
as follows:

MWBS ¼
PN�1

j¼0 ðBounded Slowdownj � ParallelismjÞ
PN�1

j¼0 Parallelismj

:

(2)

We adopt system load to measure system-aware perfor-
mance, which is computed as CPUTime consumed by all
jobs divided by the total CPUTime available in the system.

5.2 Performance of PV-EASY

In this section, we demonstrate how PV-EASY achieves two
attractive objectives: 1) guaranteeing strict fairness with
good performance, and 2) employing prediction without
causing reservation violation. In addition, the problem of
resource waste in PV-EASY is also analyzed.

5.2.1 Benefits of Maintaining Strict Fairness

Benefiting from shadow load preemption, strict fairness is
guaranteed in PV-EASY. Therefore, there is no need to mea-
sure PV-EASY with fairness metrics. Instead, advantages of
maintaining strict fairness in PV-EASY can still be demon-
strated from another perspective, i.e., how blocked jobs ben-
efit from guaranteed strict fairness.

As shown in Fig. 2, we compare the performance of the
blocked jobs between EASY and PV-EASY. The blocked
jobs are grouped by their parallelism. The MBS of big
blocked jobs (job parallelism larger than 1/4 of the system
processor number) in PV-EASY are mostly smaller than that
those in EASY. As shown in Fig. 3, in terms of the MWBS of
the blocked jobs, big blocked jobs are also better treated in
PV-EASY than in EASY.

Small blocked jobs (job parallelism smaller than 1/4 of
system processor number), as shown in Figs. 2 and 3, do
not receive better treatment in PV-EASY. This perfor-
mance degradation of small blocked jobs in PV-EASY is
a benign consequence of guaranteeing strict fairness,

because fairness and performance are always a tradeoff,
and we will further demonstrate that the overall perfor-
mance of PV-EASY is also attractive in Section 5.2.3.
More analysis of small blocked jobs is given in Appendix
C, available in the online supplemental material.

5.2.2 Employing Prediction

Another objective of PV-EASY is to employ prediction
without causing reservation violation. By applying pre-
emption in PV-EASY, reservation violation can be theo-
retically and practically prevented. Moreover, PV-EASY
provides better supports to prediction than EASY.

In this part of the experiments, to present a fair compari-
son, besides commonly used EASY backfilling which
employs FCFS strategy to choose backfilled jobs (denoted as
FCFS-EASY), a SJF-EASY which selects backfilled jobs by
SJF is also introduced, because PV-EASY also selects back-
filled jobs according to SJF.

Moreover, we proposed a “virtual” predictor to
replace the Last Model in PV-EASY, and also replaced
user estimates (Job Request Time) in FCFS-EASY and
SJF-EASY. This “virtual” predictor generates prediction
with the maximum error of �x% (implemented by set-
ting the prediction to be runtime� ð1þ randomð�
x% � x%ÞÞ, and the mean absolute prediction error of
this “virtual” predictor is around x/2). For every sched-
uling strategy implemented on every trace with every x
value, we repeated the simulation 10 times, and then
report the mean result.

By employing the same prediction technique, PV-EASY
achieves better performance than EASY. As shown in
Fig. 4, PV-EASY outperforms FCFS-EASY and SJF-EASY
when runtime prediction error is bounded within maxi-
mum 10 percent (mean absolute prediction error is
around 5 percent). Considering that existing parallel job
runtime prediction techniques (e.g., [24], [26], [31]) have
been reported to achieve mean absolute prediction error
of more than 20 percent (corresponding to the maximum
runtime prediction error 40 percent in Fig. 4), we believe

Fig. 2. Mean bounded slowdown comparison of blocked Jobs in PV-EASY and EASY.

Fig. 3. Mean weighted bounded slowdown comparison of blocked Jobs in PV-EASY and EASY.

976 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

that PV-EASY can much better support prediction techni-
ques than EASY in the long term.

5.2.3 Performance Comparison with EASY

In SLP, kill/restart preemption mode would cause compu-
tational resource waste and result in performance degrada-
tion. On the other hand, computational resources might still
be left idle in SLP because of inaccurate prediction. So we
proposed venture backfilling to solve these performance
problems. Figs. 5 and 6 show the comparison between PV-
EASY and EASY. It is clear that PV-EASY achieves smaller
(in SDSC-BLUE) or similar (in CTC and SDSC-DS) MBS and
MWBS as EASY. In order to eliminate the doubt that
such performance of PV-EASY benefits from prediction
method that is more accurate than user estimates, we also
compare PV-EASY with EASY-Last (user estimates are
replaced by Last Model in EASY). As shown in Fig. 6,
EASY-Last is the worst, and we are therefore convinced that
venture backfilling successfully promote the performance as
we expected. Thus, we conclude that PV-EASY can better
balance fairness and performance than EASY.

5.2.4 Resource Waste

Kill/restart preemption in PV-EASY is simple but
resource costly. We analyze the total load and wasted

load of the three workloads in PV-EASY and listed the
results in Table 4. Notice that the definition of load in
Table 4 is a little bit different from that in Table 3, because
the system capability here is defined as (system processor
number) X (the time when all jobs finish—the submission
time of the first job).

It is clear that the wasted load of PV-EASY is relatively
small (2.48 to 5.66 percent) and it does not worsen the
system throughput. Each workload (the load varies from
63.02 to 76.21 percent, Table 3) finishes within the same
time in PV-EASY and EASY. This result can be explained
as follows.

First, as shown in Table 5, preemption rate rangings
from 7.77 percent (SDSC-BLUE) to 13.17 percent (CTC).
This small proportion of preempted jobs indicates that
PV-EASY does not disturb too many running jobs. Sec-
ond, the impacts of kill/restart are not serious on these
preempted jobs. In order to quantify these impacts, we
employ two metrics, Mean Killed Times (MKT) and
Runtime Waste (RTW). MTK counts the mean occur-
rences of killing among preempted jobs, and RTW is
defined in formula

RTW ¼ ðTimesum �RuntimeÞ=Runtime; (3)

where Timesum is the accumulative runtime of a job (actual
runtime þ runtime before preemption happens). The
results of MKT and RTW of PV-EASY are shown in
Table 5. On the average, preempted jobs in three work-
loads were killed less than twice (1.72, 1.46, and 1.62
respectively). Besides, these preempted jobs spent only
40�50 percent additional time of their actual running
time. Based on the results of MKT and mean RTW, we
conclude that kill/restart mode does not significantly
impact these preempted jobs.

Fig. 5. Mean bounded slowdown comparison.

Fig. 6. Mean weighted bounded slowdown comparison.

Table 4
Load of PV-EASY in Three Workloads

TABLE 5
Preempted Jobs in PV-EASY

Fig. 4. Performance comparison among “virtual” predictor integrated PV-
EASY, FCFS-EASY and SJF-EASY.

YUAN ET AL.: GUARANTEE STRICT FAIRNESS AND UTILIZE PREDICTION BETTER IN PARALLEL JOB SCHEDULING 977

5.3 Performance Optimization of PV-EASY

In PV-EASY, SLP with kill/restart mode would waste the
work that a job has already done. Checkpoint and virtuali-
zation can be used to decrease this kind of resource waste,
hence promoting the performance of PV-EASY in HPCs.

In this section, we employ checkpoint/restart and sus-
pend/resume modes to replace kill/restart mode in PV-
EASY, and try to figure out whether current checkpoints
and virtualization technologies can well facilitate PV-
EASY and promote the performance of parallel job
scheduling. PV-EASY with checkpoints (checkpoint/
restart mode) is denoted as CP-PV-EASY, and PV-EASY
with virtualization (suspend/resume mode) is denoted
as VM-PV-EASY.

5.3.1 PV-EASY with Checkpoints

The overhead of checkpoint techniques cannot be
ignored in a real environment. Thus we propose a simple
checkpoint/restart model in CP-PV-EASY and experi-
ment to simulate this overhead, which has two assump-
tions: 1) Checkpoint functions every Intervalcheckpoint for
every job; 2) Every pair of checkpoint and restart opera-
tions costs constant times, i.e., TimeCostcheckpoint and
TimeCostrestart.

Many previous works evaluated the overhead of check-
points, including traditional full checkpoints and incre-
mental checkpoint schemes. Wang et al. [10] evaluated the
overhead of several checkpoint strategies on different
benchmarks, such as the MPI version of NPB suite [11] that
includes BT, CG, LU, FT and SP, as well as mpiBLAST [21],
and their methods can reduce the checkpoint overhead of
above benchmarks by no more than 50 seconds, and keep
the restart overhead within 10 seconds. According to these
results, we set the typical value of each parameter in our
checkpoint/restart model as: Intervalcheckpoint ¼ 1 hour,
TimeCostcheckpoint ¼ 50 seconds, and TimeCostrestart ¼ 10
seconds.

To simplify the model, we propose TimeCost ¼
ðTimeCostcheckpoint þ TimeCostrestartÞ as a basic combined
parameter, and set the cost of every checkpoint or check-
point&restart operation to be TimeCost. It is obvious that
this simplification simulates the worst case. In order to
evaluate PV-EASY with different level of overhead,
experiments are performed under different TimeCost (60,
120, and 180 s).

In this experiment, we focus on two important metrics,
job slowdown and resource cost.

Slowdown. As shown in Fig. 7, CP-PV-EASY performs
significantly better than PV-EASY when the CostTime is

limited in 60 seconds. CP-PV-EASY can reduce 9.00, 34.81
and 22.97 percent of the MBS (Fig. 7a) compared with PV-
EASY on three workloads. Even when the CostTime is up
to 180 s, CP-PV-EASY can also achieve 24.21 and 10.90
percent lower MBS than PV-EASY on SDSC-BLUE and
SDSC-DS. The similar results happen on MWBS (Fig. 7b).

Some exceptions appear on CTC in Fig. 7. When CostTime
rises to 120 seconds, MBS of CP-PV-EASY is 5.11 percent
greater than that of PV-EASY. When CostTime is as large as
180 seconds, MBS and MWBS of CP-PV-EASY are all
slightly greater than PV-EASY.

Above exceptions happened on CTC due to its charac-
teristics. As shown in Table 3, CTC has the longest mean
runtime among three workloads, 11,277 seconds, while
SDSC-BLUE is 4,381 seconds and SDSC-DS is 7,569
seconds. In our experiments, Intervalcheckpoint is set to be
1 hour, which means each job in CTC would save three
checkpoints on average, while SDSC-BLUE saves only 1,
and SDSC-DS saves only 2. In this case, the jobs of CTC
would experience more checkpoints operations than other
two HPCs, and therefore MBS and MWBS of CTC increase
more significantly.

Resource Cost. As shown in Table 6, when CostTime is 60
and 120 seconds, preempted job count of CP-PV-EASY is
smaller than that of PV-EASY on three workloads. Only
when CostTime is 180 seconds, preempted job count of CP-
PV-EASY is greater than that of PV-EASY on CTC and
SDSC-DS. Almost the same situation happens on metric
“wasted load” as shown in Table 8. CP-PV-EASY performs
better than PV-EASY when CostTime is 60 and 120 seconds,
while wasted load of CP-PV-EASY increases significantly
when CostTime rise to 180 seconds. For the mean preempted
times (MPT) shown in Table 7, CP-PV-EASY outperforms
PV-EASY for different levels of CostTime.

The above resource cost experiment results indicate
that in modern HPC systems, which always run large
scaled parallelism jobs, like SDSC-BLUE and SDSC-DS,
checkpoints can optimize the performance of PV-EASY
if we can control the CostTime of checkpoint/restart
within 120 seconds and checkpoint functions every

(a) (b)

Fig. 7. Mean bounded slowdown and mean weighted bounded slowdown comparison between PV-EASY and CP-PV-EASY.

TABLE 6
Preempted Job Count Comparison

978 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

hour. When CostTime is as big as 180 seconds, the cost
becomes so big that the benefit of checkpoint/restart
would be counteracted.

5.3.2 PV-EASY with Virtualization

Some recent works, like [25], propose the techniques that
limit scalable virtualization with <5 percent overhead for
key HPC applications in a high-end message-passing par-
allel supercomputer, e.g., a Cray XT4 supercomputer [27]
at scale in excess of 4,096 nodes. Based on these researches,
we will figure out whether PV-EASY could benefit from
current virtualization technology on HPC systems.

We propose a virtualization model that contains
three key parameters: 1) Slowdownvirtualization, slowdown
ratio of a job running on a virtualization platform; 2)
TimeCostsuspend, time cost of the suspend operation; 3)
TimeCostresume, time cost for a job to resume from sus-
pended status. The actual values of these parameters
vary differently among HPC jobs, but the workloads and
platforms used in the paper did not have these informa-
tions. Thus, this model has fixed Slowdownvirtualization, and
TimeCost ¼ ðTimeCostsuspendþ TimeCostresumeÞ for every
job and every suspend&resume operation, without con-
sidering jobs’ parallelism, runtime, and type.

Based on previous work in virtualization [25], we set the
typical values of these parameters as Slowdownvirtualization ¼
5 percent and TimeCost ¼ 60, 120, and 180 seconds, and we
compare the performance of PV-EASY with virtualization
suspend/resume mode with PV-EASY (VM-PV-EASY) in
two aspects: slowdown of jobs and the resource cost.

Slowdown. As shown in Fig. 8, VM-PV-EASY performs
so well on MBS and MWBS, even CostTime is up to 180

seconds. In SDSC-BLUE and SDSC-DS, the MBS of VM-
PV-EASY outperforms PV-EASY significantly, while in
CTC the MBS of VM-PV-EASY is slightly greater than
that of PV-EASY. The reason of this phenomenon in
CTC is caused by the character of its workloads. The
workload of CTC has much longer mean runtime than
SDSC-BLUE and SDSC-DS. In our virtualization model,
longer original runtime plus a fixed Slowdownvirtualization
will result in a longer additional runtime. Obviously,
longer additional runtime will increase the probability of
being preempted in SLP, therefore causes more sus-
pend/resume operation and increases the overhead in
VM-PV-EASY.

Resource Cost. As shown in Table 9, preempted job count
of VM-PV-EASY is slightly less than PV-EASY in SDSC-
BLUE and SDSC-DS, while a little greater than PV-EASY in
CTC. Furthermore, in Table 10, the Mean Preemption Times
(MPT) of VM-PV-EASY outperforms PV-EASY on three dif-
ferent CostTime level. Table 11 illustrates the wasted load of
VM-PV-EASY on different workload, and it is clear that
VM-PV-EASY wastes less resource than PV-EASY in SDSC-
BLUE and SDSC-DS, while VM-PV-EASY causes more
resource waste in CTC.

TABLE 8
Wasted Load Comparison

(a) (b)

Fig. 8. Mean bounded slowdown and mean weighted bounded slowdown comparison between PV-EASY and VM-PV-EASY.

TABLE 9
Preempted Job Counts Comparison

TABLE 10
Mean Preempted Times Comparison

TABLE 11
Wasted Load Comparison

TABLE 7
Mean Preempted Times Comparison

YUAN ET AL.: GUARANTEE STRICT FAIRNESS AND UTILIZE PREDICTION BETTER IN PARALLEL JOB SCHEDULING 979

The above resource cost results indicate that compared
with the kill/restart mode, the suspend/resume mode
leads to less resource waste. The exception happening in
CTC workload is related to its characteristics. CTC has
the smallest mean RTW (shown in Table 5), which means
that PV-EASY with the kill/restart mode in CTC work-
loads wasted the smallest resource. In this kind of work-
load, the overhead of virtualization and suspend/resume
operation in PV-EASY is greater than performance opti-
mization gain that suspend/resume mode could achieve.

6 DISCUSSION

In order to truly facilitate HPC systems, PV-EASY employs
the simplest and universally applicable mechanisms. Both
the kill/restart mode and the Last Model are easily imple-
mented and supported by all HPCs, which makes it easy for
PV-EASY to replace EASY in all production schedulers.

In our experiments, CP-PV-EASY (checkpoint/restart
mode) and VM-PV-EASY (suspend/resume mode) work
so well in modern HPCs which are running highly paral-
lelism jobs like SDSC-BLUE and SDSC-DS. We believe
that with the development of virtualization and check-
points techniques, their operation costs would decrease
as technology advances, and they will facilitate modern
highly parallel HPC systems not only in the consider-
ation of fault tolerance, but also in scheduling strategies
like PV-EASY.

Another noticeable phenomenon is that even with poor
accuracy, EASY with user estimates achieves smaller MBS
and MWBS than both EASY-Last (Figs. 5 and 6) and EASY
with a “virtual” predictor (Fig. 4) whose maxi-mum predic-
tion error is limited within 10 percent. This phenomenon
once led to a pessimistic view that accurate prediction is not
useful in parallel job scheduling. Actually, when user esti-
mates are inaccurate, a “heel and toe” dynamic [29] would
occur, making EASY approximate to SJF, and therefore
achieveing good performance via serious sacrifice of fair-
ness. Thus, in our view, runtime prediction is helpful, since
it can enable schedulers to make better scheduling decisions
to balance fairness and performance.

7 CONCLUSION

EASY backfilling is one of the most widely applied paral-
lel job scheduling strategies in production schedulers.
However, jobs scheduled by EASY may suffer from seri-
ous unfairness, and EASY cannot directly support predic-
tion because this would cause reservation violation. In
this paper, we proposed a new preemptive venture EASY
backfilling strategy, which integrates novel shadow load pre-
emption and venture backfilling approaches. Experiments
on three workloads collected from real HPC systems
show that our PV-EASY is very attractive from both aca-
demic and industry perspectives in the following aspects.

PV-EASY leverages fairness and performance much bet-
ter than EASY in parallel job scheduling. PV-EASY guaran-
tees strict fairness because of SLP, and achieves attractive
performance compared with EASY due to VB.

PV-EASY benefits more from prediction techniques than
EASY. PV-EASY avoids reservation violation that arises

from employing prediction in EASY. Moreover, with the
same runtime predition techniques, PV-EASY achieves
much better performance than EASY.

PV-EASY is easy to implement and not resourcecosting.
It is applicable to all kinds of HPC systems and production
schedulers where EASY works, without introducing any
additional system or application modifications.

PV-EASY with the checkpoints/restart and the suspend/
resume modes provide better schedule performance and
less resource waste. Modern HPC systems with high paral-
lelism and fully supported by checkpoints or virtualization
will benefit more from PV-EASY.

ACKNOWLEDGMENTS

The comments of three anonymous reviewers are
acknowledged. The authors would like to thank Dror
Feitelson for his great work of collecting and publishing
HPC workloads in Parallel Workload Archive. This work
was supported by National Basic Research (973) Program
of China (2011CB302505), Natural Science Foundation of
China (60963005, 61170210), National High-Tech R&D
(863) Program of China (2012AA012600, 2011AA01A203),
Chinese Special Project of Science and Technology
(2012ZX01039001). The work of K. Li was partially per-
formed while he was visiting Tsinghua University dur-
ing the summer of 2012 and winter of 2013 as an
Intellectual Ventures endowed visiting chair professor.

REFERENCES

[1] D.A. Lifka, “The ANL/IBM SP Scheduling System,” Proc. First
Workshop Job Scheduling Strategies for Parallel Processing, pp. 295-
303, 1995.

[2] D.G. Feitelson, “Experimental Analysis of the Root Causes of Per-
formance Evaluation Results: A Backfilling Case Study,” IEEE
Trans. Parallel and Distributed Systems, vol. 16, no. 2, pp. 175-182,
Feb. 2005.

[3] A.W. Mu’Alem and D.G. Feitelson, “Utilization, Predictability,
Workloads, and User Runtime Estimates in Scheduling the IBM
Sp 2 with Backfilling,” IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 6, pp. 529-543, June 2001.

[4] D. Karger, C. Stein, and J. Wein, “Scheduling Algorithms,” CRC
Handbook of Computer Science. CRC Press, 1997.

[5] J. Sgall, “On-line Scheduling,” On-Line Algorithms, A. Fiat and G.
Woeginger, eds., pp. 196-231, , 1998.

[6] S. Majumdar, D.L. Eager, and R.B. Bunt, “Scheduling in Multi-
programmed Parallel Systems,” ACM SIGMETRICS Performance
Evaluation Rev., vol. 16, no. 1, pp. 104-113, 1988.

[7] D. Jackson, “Maui/Moab Default Configuration,” with CTO of
Cluster Resources, 2006.

[8] Y. Etsion and D. Tsafrir, “A Short Survey of Commercial Cluster
Batch Schedulers,” Technical Report 2005-13, The Hebrew Univ.
of Jerusalem, May 2005.

[9] S.H. Chiang, A. Arpaci-Dusseau, and M.K. Vernon, “The Impact
of More Accurate Requested Runtimes on Production Job Sched-
uling Performance,” Proc. Eighth Workshop Job Scheduling Strategies
for Parallel Processing, pp. 103-127, 2002.

[10] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Hybrid
Full/Incremental Check-Point/Restart for MPI Jobs in HPC
Environments,” Proc. Int’l Conf. Parallel and Distributed Systems,
2011.

[11] F.C. Wong, R.P. Martin, R.H. Arpaci-Dusseau, D.T. Wu, and D.E.
Culler, “Architectural Requirements and Scalability of the NAS
Parallel Benchmarks,” Proc. ACM/IEEE Conf. Supercomputing,
p. 41, 1999.

[12] D. Tsafrir, Y. Etsion, and D.G. Feitelson, “Backfilling Using
System-Generated Predictions Rather than User Runtime
Estimates,” IEEE Trans. Parallel and Distributed Systems, vol. 18,
no. 6, pp. 789-803, June 2007.

980 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

[13] R. Kurian, P. Balaji, and P. Sadayappan, “Opportune Job Shred-
ding: An Effective Approach for Scheduling Parameter Sweep
Applications,” Proc. Los Alamos Computer Science Inst. Symp., 2003.

[14] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan,
“Scheduling Of Parallel Jobs in a Heterogeneous Multi-Site Envi-
ronment,” Proc. Ninth Workshop Job Scheduling Strategies for Parallel
Processing, pp. 87-104, 2003.

[15] E. Shmueli and D.G. Feitelson, “On Simulation and Design Of
Parallel-Systems Schedulers: Are We Doing the Right Thing?”
IEEE Trans. Parallel and Distributed Systems, vol. 20, no. 7,
pp. 983-996, July 2009.

[16] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.
Goldberg, “Quincy: Fair Scheduling for Distributed Computing
Clusters,” Proc. ACM SIGOPS 22nd Symp. Operating Systems Princi-
ples, pp. 261-276, 2009.

[17] L. Mann, “Queue Culture: The Waiting Line as a Social System,”
The Am. J. Sociology, vol. 75, no. 3, pp. 340-354, 1969.

[18] R.C. Larson, “Perspectives on Queues: Social Justice and the Psy-
chology Of Queueing,” Operations Research, vol. 35, no. 6, pp. 895-
905, 1987.

[19] B. Avi-Itzhak, E. Brosh, and H. Levy, “SQF: A Slowdown Queue-
ing Fairness Measure,” Performance Evaluation, vol. 64, no. 9,
pp. 1121-1136, 2007.

[20] J. Ngubiri and M. van Vliet, “Characteristics of Fairness Metrics
and Their Effect on Perceived Scheduler Effectiveness,” Int’l J.
Computers & Applications, vol. 32, no. 2, p. 188, 2010.

[21] S. Agarwal, R. Garg, M.S. Gupta, and J.E. Moreira, “Adaptive
Incremental Checkpointing for Massively Parallel Systems,” Proc.
18th Ann. Int’l Conf. Supercomputing, pp. 277-286, 2004.

[22] C.B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are User
Runtime Estimates Inherently Inaccurate?” Proc. 10th Workshop Job
Scheduling Strategies for Parallel Processing, pp. 253-263, 2005.

[23] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-Aware, Utility-
Based Job Scheduling on Blue Gene/P Systems,” Proc. IEEE Int’l
Conf. Cluster Computing, pp. 1-10, 2009.

[24] R. Susukita, H. Ando, M. Aoyagi, H. Honda, Y. Inadomi, K. Inoue,
S. Ishizuki, Y. Kimura, H. Komatsu, M. Kurokawa, K.J. Murakami,
H. Shibamura, S. Yamamura, and Y. Yu, “Performance Prediction
of Large-Scale Parallel System and Application Using Macro-
Level Simulation,” Proc. ACM/IEEE Conf. Supercomputing, p. 20,
2008.

[25] J.R. Lange, K. Pedretti, P. Dinda, P.G. Bridges, C. Bae, P. Soltero,
and A. Merritt, “Minimal-Overhead Virtualization of a Large
Scale Supercomputer,” ACM SIGPLAN Notices, vol. 46, no. 7,
pp. 169-180, 2011.

[26] S. Krishnaswamy, S.W. Loke, and A. Zaslavsky, “Estimating
Computation Times Of Data-Intensive Applications,” IEEE Dis-
tributed Systems Online, vol. 5, no. 4, Apr. 2004.

[27] S.R. Alam, J.A. Kuehn, R.F. Barrett, J.M. Larkin, M.R. Fahey, R.
Sankaran, and P.H. Worley, “Cray XT4: An Early Evaluation for
Petascale Scientific Simulation,” Proc. ACM/ IEEE Conf. Supercom-
puting, pp. 1-12, 2007.

[28] D. Zotkin and P.J. Keleher, “Job-Length Estimation and Perfor-
mance in Backfilling Schedulers,” Proc. Eighth IEEE Int’l Symp.
High Performance Distributed Computing, pp. 236-243, 1999.

[29] D. Tsafrir and D.G. Feitelson, “The Dynamics Of Backfilling: Solv-
ing the Mystery of Why Increased Inaccuracy May Help,” Proc.
IEEE Int’l Symp. Workload Characterization, pp. 131-141, 2006.

[30] D.G. Feitelson, Parallel Workloads Archive, http://www.cs. huji.
ac.il/labs/parallel/workload/, 2005.

[31] E. Yero and M. Henriques, “Contention-Sensitive Static Perfor-
mance Prediction for Parallel Distributed Applications,” Perfor-
mance Evaluation, vol. 63, no. 4, pp. 265-277, 2006.

Yulai Yuan received the PhD degree in com-
puter science from Tsinghua University in 2010.
He is currently a postdoctor in the Department of
Computer Science and Technology at Tsinghua
University, China. His research interests include
parallel and distributed systems, performance
modeling, prediction and optimation.

Yongwei Wu received the PhD degree in
applied mathematics from the Chinese Acad-
emy of Sciences in 2002. He is currently a full
professor of computer science and technology
at Tsinghua University of China. His research
interests include parallel and distributed proc-
essing, and cloud storage. He has published
more than 80 research publications and has
received two Best Paper Awards. He is currently
on the editorial board of the International Jour-
nal of Networked and Distributed Computing

and Communication of China Computer Federation. He is a member of
the IEEE.

Weimin Zheng received the BS and MS degrees
from the Department of Automatics, Tsinghua
University, in 1970 and 1982, respectively. He is
a full professor of computer science and technol-
ogy, Tsinghua University, China. He is currently
the director of the Chinese Computer Society.
His research interests include computer architec-
ture, operating systems, storage networks, and
distributed computing. He is a senior member of
the IEEE.

Keqin Li is a SUNY distinguished professor of
computer science in the State University of New
York. He is also an Intellectual Ventures
endowed visiting chair professor at the National
Laboratory for Information Science and Technol-
ogy, Tsinghua University, Beijing, China. His
research interests are mainly in design and anal-
ysis of algorithms, parallel and distributed com-
puting, and computer networking. He has
published more than 280 research articles. He is
currently or has served on the editorial board of

IEEE Transactions on Parallel and Distributed Systems, IEEE Transac-
tions on Computers, Journal of Parallel and Distributed Computing,
International Journal of Parallel, Emergent and Distributed Systems,
International Journal of High Performance Computing and Networking,
and Optimization Letters. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YUAN ET AL.: GUARANTEE STRICT FAIRNESS AND UTILIZE PREDICTION BETTER IN PARALLEL JOB SCHEDULING 981

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

