
Journal of Parallel and Distributed Computing 158 (2021) 126–137

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Performance analysis and optimization for SpMV based on aligned

storage formats on an ARM processor ✩

Yufeng Zhang a,b, Wangdong Yang a,b,∗, Kenli Li a,b, Dahai Tang a,b, Keqin Li a,b,c

a College of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China
b The National Supercomputing Center in Changsha, Changsha, Hunan 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 December 2020
Received in revised form 10 July 2021
Accepted 5 August 2021
Available online 18 August 2021

Keywords:
ARM
NEON
SIMD
SpMV
Storage formats

Sparse matrix-vector multiplication (SpMV) has always been a hot topic of research for scientific
computing and big data processing, but the sparsity and discontinuity of the nonzero elements in a
sparse matrix lead to the memory bottleneck of SpMV. In this paper, we propose aligned CSR (ACSR)
and aligned ELL (AELL) formats and a parallel SpMV algorithm to utilize NEON SIMD registers on
ARM processors. We analyze the impact of SIMD instruction latency, cache access, and cache misses
on SpMV with different formats. In the experiments, our SpMV algorithm based on ACSR achieves
1.18x and 1.56x speedup over SpMV based on CSR and SpMV in PETSc, respectively, and AELL achieves
1.21x speedup over ELL. The deviations between the theoretical results and experimental results in the
instruction latency and cache access are 10.26% and 10.51% in ACSR and 5.68% and 2.91% in AELL,
respectively.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

Sparse matrix-vector multiplication (SpMV) is one of the core
subroutines in numerical computation. The solution of large-scale
linear equations is one of the major applications, and an ex-
act solution is usually accessed by an iterative method. SpMV,
a key step in solving systems of linear equations, may be per-
formed thousands of times in the solution process. However, the
complexity of the associated hardware and the load imbalance
caused by the sparsity of sparse matrices can lead to memory
bottlenecks, making it challenging to optimize the SpMV perfor-
mance.

✩ The research was partially funded by the National Key R&D Program of China
(grant nos. 2018YFB0204302), Scientific Challenges Special Subject (grant nos.
TZZT2019-B2.1), the Key Program of National Natural Science Foundation of China
(grant no. 92055213), and the National Natural Science Foundation of China (grant
nos. 61872127 and 61751204).

* Corresponding author at: College of Information Science and Engineering, Hu-
nan University, Changsha, Hunan 410082, China.

E-mail address: yangwangdong@163.com (W. Yang).
https://doi.org/10.1016/j.jpdc.2021.08.002
0743-7315/© 2021 Elsevier Inc. All rights reserved.
SpMV computes �y as given by

�y = A�x + �b, (1)

where A is a fixed sparse matrix in the iterative method. To im-
prove the utilization of processors when calculating SpMV, the
zero elements of A should be ignored in the calculation. Therefore,
many sparse matrix storage formats are delivered, which reflect
the distribution characteristics of nonzero elements in a sparse
matrix. Some of these formats are suitable for the structural char-
acteristics of the computing platform. Although researchers have
performed many studies on SpMV, most of them are aimed at the
x86 multicore platform or other accelerators, and little work has
addressed ARM processors for SpMV.

ARMv8-A is an architecture for high-performance computing in-
troduced by ARM. An increasing number of researchers have been
drawn to the ARMv8-A architecture, as it supports 64-bit instruc-
tion sets, improving the double-precision floating-point arithmetic
capability, and supporting single instruction multiple data (SIMD)
operations via NEON, which is a SIMD instruction extension ar-
chitecture of ARM. In addition, with the advent of the intelligent
era, ARM processors have been widely used in mobile devices
with their small size, low energy consumption, low cost, and good
performance. Moreover, in the latest global supercomputer list re-

https://doi.org/10.1016/j.jpdc.2021.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.08.002&domain=pdf
mailto:yangwangdong@163.com
https://doi.org/10.1016/j.jpdc.2021.08.002

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
leased in November 2020, Fugaku with a 48-core A64FX SOC based
on ARMv8-A retains the title, which is the first system supported
by ARM processors to top the list.

1.2. Our contributions

In this paper, we

• propose the aligned storage formats ACSR and AELL, which
are suitable for NEON in double-precision calculations on ARM
processors.

• put forward a parallel SpMV algorithm based on ACSR and
AELL formats.

• evaluate the performance of our ACSR and AELL formats and
compare them with the CSR and ELL formats, and PETSc on
Kunpeng 920 processors.

Our aligned compressed storage formats can improve the per-
formance of SpMV with NEON on the ARMv8-A platform, and the
acceleration of SpMV based on ACSR and AELL compared with
general CSR and ELL is obtained from theoretical analysis and ex-
perimental verification.

First, we present the aligned storage formats ACSR and AELL
based on the CSR and ELL formats, which align the SIMD reg-
isters of ARM processors. Second, we demonstrate four parallel
algorithms of SpMV with NEON acceleration. Third, we conduct a
performance analysis for the impact of two aligned formats, two
general formats, and the difference between them on the execu-
tion latency of SIMD instructions, the cache access, and the cache
misses. Fourth, we select 20 sparse matrices from the SuiteSparse
Matrix Collection for experiments, which come from a wide range
of practical application scenarios. Moreover, we examine the cal-
culation performance of SpMV based on CSR and ELL with NEON
and compare the SpMV based on ACSR and AELL with NEON accel-
erated SpMV in CSR, ELL, and SpMV in PETSc. Finally, we compare
and analyze the experimental results with our performance analy-
sis results. For the 20 matrices, the average performance improve-
ments of NEON accelerated SpMV reach 19.91% in CSR and 19.15%
in ELL. For the use of NEON, compared to ELL, AELL achieves an
average performance improvement of 20.54%, 34.10%, and 28.85%
in estimating time, cache access, and cache misses in double pre-
cision, respectively, while those of ACSR are 18.17%, 18.59%, and
18.00% compared to those of CSR. In addition, the average acceler-
ation is 56.46% higher for SpMV based on ACSR than for SpMV in
PETSc.

The experiment shows that our ACSR and AELL storage formats
are well suited for NEON SIMD operations on ARM processors.

2. Related work

2.1. Compressed storage formats for sparse matrices

In general, to enhance the performance, the operations of zero
elements in a sparse matrix must be reduced. Therefore, a sparse
matrix can be compressed to store the nonzero elements, such as
the original coordinate (COO) format and the compressed sparse
column/row (CSC/CSR) [19]. Although these formats are widely
used, they may not be adaptable enough for some special sparse
matrices. Therefore, some storage formats for the specific sparse
matrices have been introduced. For example, the diagonal (DIA)
[14] format stores only the nonzero elements of a sparse matrix
diagonally, and the ellpack (ELL) [5] format is suitable for the ma-
trix with relatively uniform rows of nonzero elements. Designing
a storage format aimed at the hardware features of a specific pro-
cessor can maximize the performance [1]. Examples include the
127
Fig. 1. ARMv8-A architecture.

hybrid ELL/COO (HYB) [3], the sliced ellpack (SELL-C-σ) [13], com-
pressed sparse row 5 (CSR5) [10], the blocked stored format mixed
CSR and ELL (BCE) [21] and so on. All of the above formats are in
full use as massive parallel computing features of the GPU or the
SIMD device of the x86 CPU.

Nevertheless, the scale of the sparse matrix obtained from prac-
tical applications is getting increasingly large, which may preclude
obtaining the results immediately. As a consequence, matrix parti-
tioning has become a valuable approach that ensures all elements
in a block can be efficiently calculated immediately [12]. Karaka-
sis et al. [7] compared the performance of several blocked storage
formats. The blocked compressed sparse row (BCSR) [5] was used
to exploit the computational performance of dense subblocks in a
sparse matrix. Subsequently, Vuduc et al. [18] optimized the BCSR
format to the unaligned block compressed sparse row (UBCSR) for-
mat and developed a better performance of dense subblocks of
different sizes. In addition, to explore the substructures in a sparse
matrix, the compressed sparse extended (CSX) [8] storage format
was proposed to compress the index arrays.

2.2. ARMv8-A architecture

For far too long, mobile devices have been equipped with ARM
cores because of the low price, high performance, and low power
consumption [4]. With the debut of the ARMv8-A architecture,
ARM has become a key research object for solving energy con-
sumption in high-performance computing. Moreover, compared to
the previous ARM architecture, 64-bit ARMv8-A benefits from in-
creased support of double-precision and SIMD operations [9], mak-
ing it more compelling [2,6,11,17].

Many companies worldwide have purchased an ARMv8-A li-
cense and have developed their cores based on ARM. Examples
include the United States companies Cavium and Qualcomm, the
Japanese company Fujistu, the Chinese companies Huawei and
Phytium, etc. All of these companies have already released several
server-level chips based on the ARMv8-A architecture shown in
Fig. 1. Furthermore, there are four supercomputers equipped with

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137

Fig. 2. NEON SIMD registers.
ARM processors in the latest TOP500. Fugaku with 48-core A64FX
SOC produced by Fujistu [22] tops the list among them.

3. Sparse matrix compression and NEON technology

In this section, we introduce two general formats, CSR and ELL,
which our aligned formats are based on. Because our algorithms
are designed to deliver the performance of NEON on ARM proces-
sors, we provide a brief illustration of NEON in Section 3.2.

3.1. General storage formats for sparse matrices

To show the general storage formats visually, we assume that
there is a sparse matrix

A =

⎛
⎜⎜⎝

a b 0 0 0
0 0 c 0 0
d 0 0 0 e
0 f g 0 0

⎞
⎟⎟⎠ . (2)

Then, we define three parameters, namely, M is the number of
rows, N is the number of columns, and NNZ is the number of
nonzero elements in the sparse matrix A.

3.1.1. Compressed sparse rows (CSR)
CSR, the most commonly used storage format, is not sensitive to

the characteristics of a matrix. This format stores the nonzero ele-
ments in rows and stores the row information of the sparse matrix
by indexing the first nonzero element of each row. Therefore, the
CSR format employs two arrays of length “NNZ” to store all of the
nonzero elements and the corresponding column index of nonzero
elements, and another array of length “M + 1” is used to store the
row index. Therefore, the sparse matrix A can be represented by
CSR as

values = (
a b c d e f g

)
,

columns = (
0 1 2 0 4 1 2

)
,

row_ptr = (
0 2 3 5 7

)
.

In addition, the memory space for the CSR format in double-
precision SC S R is given by

SC S R = NNZ × (4 + 8) + (M + 1) × 4

= 12NNZ + 4 (M + 1) .
(3)

3.1.2. Ellpack (ELL)
In ELL format, a sparse matrix is compressed into two smaller

dense matrices that contain the filled nonzero elements and the
corresponding column indices. Assume that the maximum number
of nonzero elements in a row in the sparse matrix is “k”, so the
size of two dense matrices is “N × k”. Moreover, the vacant places
128
Fig. 3. Double-precision floating-point SIMD operation.

should be filled with zeros in the dense matrices. Thus, the sparse
matrix A can be shown in ELL as

E LL_values =

⎛
⎜⎜⎝

a b
c 0
d e
f g

⎞
⎟⎟⎠ , E LL_columns =

⎛
⎜⎜⎝

0 1
2 0
0 4
1 2

⎞
⎟⎟⎠ .

The size of the ELL in the memory in double precision is

S E LL = M × K × (4 + 8)

= 12M K .
(4)

3.2. NEON technology

As an extended architecture of ARM, NEON offers 128-bit SIMD
operations. For ARMv8-A, there are 32 128-bit NEON SIMD vec-
tor registers that support multiple data types and up to 64-bit
double-precision floating-point precision as shown in Fig. 2. More-
over, using the NEON SIMD registers allows users to process data
efficiently and minimize memory access.

When using NEON to accelerate SpMV, the vector x needs to
be loaded into NEON SIMD registers one after another because of
the discontinuity of column indices in CSR and ELL formats. In con-
trast, while applying the ACSR and AELL formats in SpMV, an SIMD
register can be filled immediately both in sparse matrix A and in
dense vector x.

For example, V0.2D, V1.2D, and V2.2D in Fig. 3 represent three
SIMD registers, where “2D” means that a register stores a 2 × 64-
bit vector. Suppose V1 stores the value of a sparse matrix A and
V2 stores the value of the vector x in general SpMV. Therefore, the
value of the vector should be assigned to the components of V2 se-
quentially in scalar form. Subsequently, the SIMD operator simulta-
neously calculates two multiplication steps (V 1.2D[0] × V 2.2D[0],
V 1.2D[1] × V 2.2D[1]) and stores the result in register V0.2D.

4. Aligned compressed storage formats

When using the SIMD units for vector calculation, several con-
secutive elements are usually immediately loaded into the vector

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
Fig. 4. ACSR format.

Fig. 5. AELL format.

registers in the form of vectors. However, in SpMV, since the dis-
tribution of nonzero elements is discontinuous as a whole, the
constituent of the corresponding vector x can only be loaded to the
vector register sequentially [20]. The increase in load steps for the
vector registers leads to the efficiency of the SIMD unit degrada-
tion. Therefore, to improve the utilization of SIMD units, we design
the aligned compressed storage formats ACSR and AELL for sparse
matrices to fit the ARM advanced SIMD architecture. After the
compression of a sparse matrix, if the column indices of two ad-
jacent nonzero elements are also adjacent, the corresponding two
elements in the vector multiplied by the two nonzero elements are
adjacent when calculating the SpMV. If the column indices of the
two nonzero elements are not adjacent, the corresponding two el-
ements in the vector are also not adjacent. If the distance between
the two nonadjacent elements exceeds the width of the cache line,
it is impossible to load two elements into a vector register at one
time. If the deviation between the column indices of the two is
less than 8, we consider that they lie on the same cache line and
insert zeros before the current nonzero element. If not, zeros are
inserted after the current nonzero element, which guarantees that
the filling operation does not cause redundant cross-cache lines as
much as access permits.

The matrix A in Section 3 is an example to be used for ACSR
and AELL storage formats as follows.

4.1. Aligned CSR (ACSR)

As shown in Fig. 4, there are three arrays in ACSR.
The v_values stores the vector values (including the filled zero

elements) by rows, v_columns stores the first column index of each
vector, and v_rowptr stores the first index of v_columns of each
row. Assuming that the zero filling rate is “F R” (0 ≤ F R ≤ 1), there
are NNZ × (1 + F R) elements in ACSR, and the storage space size
of the sparse matrix compressed by the ACSR format is

S AC S R = NNZ × (1 + F R) × (8 + 4/2) + (M + 1) × 4

= 10NNZ (1 + F R) + 4 (M + 1) .
(5)

According to the calculation formulas (3) (5) of the occupation
space, we can conclude that the ACSR format needs more space
than CSR while F R > 0.2.

4.2. Aligned ELL (AELL)

Similar to ELL, AELL uses two matrices to store the vectors
in Fig. 5. The values of vectors are stored in AE LL_values, and
129
Table 1
NEON SIMD operations for 64-bit double-precision floating-point operation.

Function Meaning

float64 × 2_t vector Declare a vector of size 64 × 2
vdupq_n_f64(0.0) Initialize the vector
vld1q_lane_f64(x+j,0) Take x[j] to the 0th lane of vector register
vld1q_f64(x+j) Take two elements from x[j] to vector register
vmlaq_f64(temp,v_A,v_x) Execute vector operation: temp+ = v_A × v_x
vget_lane_f64(temp,0) Get the 0th component of the vector temp

AE LL_columns stores the index of each vector. We set the num-
ber of vectors of each row as V K in the two matrices of AELL so
that the space occupied by AELL is

S AE LL = V K × M × (2 × 8 + 4)

= 20M V K .
(6)

Equally, we can find that the AELL formats occupy more space,
while V K ≥ 0.6K by Eqs. (4) and (6).

5. Parallel algorithms of SpMV

In the experiments in this paper, we use the NEON intrinsics
provided by ARM to achieve NEON acceleration. The functions are
shown in Table 1, where the letter “q” in the operation instruction
indicates the use of 128-bit vector registers.

Algorithms 1 and 2 are the SpMV algorithms based on CSR and
ELL formats with NEON acceleration, respectively, as we can only
put x into the vector registers individually.

Algorithm 1 The kernel function of CSR SpMV with NEON.
Require: The vector x, row number of sparse matrix rownum and the arrays in CSR

format (values, columns, rowptr)
Ensure: The result vector y

1: f loat64 × 2_t matrix;
2: f loat64 × 2_t vector;
3: f loat64 × 2_t temp y ;
4: temp y = vdupq_n_ f 64(0.0);
5: for i = 0 to rownum − 1 do
6: for j = rowptr[i]; j < rowptr[i + 1]; j+ = 2 do
7: matrix = vld1q_ f 64(values + j);
8: vector = vld1q_lane_ f 64(x + columns[j]);
9: vector = vld1q_lane_ f 64(x + columns[j + 1]);

10: temp y = vmlaq_ f 64(temp y , matrix, vector);
11: end for
12: y[i] + = vget_lane_ f 64(temp y , 0)

13: + vget_lane_ f 64(temp y , 1);
14: end for

Algorithm 2 The kernel function of ELL SpMV with NEON.
Require: The vector x, row number of sparse matrix rownum and data in ELL format

(K , E LL_columns, E LL_values)
Ensure: The result vector y

1: f loat64 × 2_t matrix;
2: f loat64 × 2_t vector;
3: f loat64 × 2_t temp y ;
4: temp y = vdupq_n_ f 64(0.0);
5: for i = 0; rownum − 1 do
6: for j = i × K ; j < (i + 1) × K ; j+ = 2 do
7: matrix = vld1q_ f 64(E LL_values + j);
8: vector = vld1q_lane_ f 64(x + E LL_columns[j]);
9: vector = vld1q_lane_ f 64(x + E LL_columns[j + 1]);

10: temp y = vmlaq_ f 64(temp y , matrix, vector);
11: end for
12: y[i] + = vget_lane_ f 64(temp y , 0)

13: + vget_lane_ f 64(temp y , 1);
14: end for

As shown in the Algorithms 3 and 4, x can be continuously
stored in the vector registers when performing SpMV in ACSR and

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
AELL formats. In addition, note that the length of x is columns + 1,
as we need to add a zero element at the end of x, which may
cause access overflow in error.

Algorithm 3 Kernel function of ACSR SpMV with NEON.
Require: The vector x, row number of sparse matrix rownum and arrays in ACSR

format (v_values, v_columns, v_rowptr)
Ensure: The result vector y

1: f loat64 × 2_t matrix;
2: f loat64 × 2_t vector;
3: f loat64 × 2_t temp y ;
4: temp y = vdupq_n_ f 64(0.0);
5: for i = 0 to rownum − 1 do
6: for j = rowptr[i] to v_rowptr[i + 1] − 1 do
7: matrix = vld1q_ f 64(v_values + j × 2);
8: vector = vld1q_ f 64(x + v_columns[j]);
9: temp y = vmlaq_ f 64(temp y , matrix, vector);

10: end for
11: y[i] + = vget_lane_ f 64(temp y , 0)

12: + vget_lane_ f 64(temp y , 1);
13: end for

Algorithm 4 The kernel function of AELL SpMV with NEON.
Require: The vector x, row number of sparse matrix rownum and data in AELL for-

mat (V K , AE LL_values, AE LL_columns)
Ensure: The result vector y

1: f loat64 × 2_t matrix;
2: f loat64 × 2_t vector;
3: f loat64 × 2_t temp y ;
4: temp y = vdupq_n_ f 64(0.0);
5: for i = 0 to rownum − 1 do
6: for j = i × V K to (i + 1) × V K do
7: matrix = vld1q_ f 64(AE LL_values + j × 2);
8: vector = vld1q_ f 64(x + AE LL_columns[j]);
9: temp y = vmlaq_ f 64(temp y , matrix, vector);

10: end for
11: y[i] + = vget_lane_ f 64(temp y , 0)

12: + vget_lane_ f 64(temp y , 1);
13: end for

6. Performance analysis

Although our ACSR and AELL formats are filled with zeros based
on the CSR and ELL formats that increase the amount of calcula-
tion, this can improve the efficiency of memory access by loading
a vector to the vector register in one step. Therefore, with different
filling rates, the performance of SpMV may have varying degrees of
fluctuation. In this part, we analyze the execution latency of NEON
SIMD instruction, the impact of cache access, and the cache miss
in SpMV based on different compressed storage formats.

6.1. SpMV performance analysis for ARMv8 architecture

To perform performance analysis, some variables are shown in
Table 2.

Table 2
Variables for analyzing.

Variable Meaning

T The computation time of SpMV
L The execution time of instructions
A The data access time
Li The register fetch instruction latency
Ci The calculation instruction latency
ACnum The number of cache access
ACt The latency of cache access
missnum The times of cache misses
AMt The latency of memory access
130
Table 3
Latency of main instructions in SpMV.

Function Instruction Latency

LDR 4
vld1q_lane_f64(x + j,0) LD1 5
vld1q_f64(x + j) LD1 5
vmlaq_f64(temp,v A ,vx) FMLA 7(3)

For a computing program, the computing scale depends mainly
on the number of instructions and the amount of data to be ac-
cessed. For an SpMV computation, the number of instructions is
determined by the number of nonzero elements in the sparse
matrix, and the amount of data accessed is related to the stor-
age format of the sparse matrix and the access method of a
right vector. However, different storage formats may have differ-
ent proportions of zero elements filling and additional auxiliary
data storage, resulting in different data access. Therefore, the ac-
tual running performance of a parallel program is related not only
to the calculation scale of the program itself but also to the proces-
sor’s instruction execution cycle, parallel execution of instructions,
utilization efficiency of cache data, number of reads and writes
of memory data, bandwidth utilization, and utilization rate of all
computing cores of the processor, etc. To reduce the execution cy-
cle of instructions, the instructions with a short execution cycle
can be chosen. In addition, we can distribute the instructions to
different computing cores for parallel execution. This can also im-
prove the data amount of instructions by pipeline and SIMD. The
performance of SpMV serial operation on the ARMv8 processor can
be described by

T = f (L, A) , (7)

where L and A are the instruction execution time and data access
time, respectively. The performance T of a program is positively
correlated with the number of instructions and the number of data
accesses. Thus, the function f is an increasing function. L is deter-
mined by the total number of instructions and the instruction la-
tency of the processor. For a program, the execution latency mainly
includes the latency of register loading and calculator operation.
For the ARMv8 processor, the register loading includes data loading
of a general register and vector loading of a vector register. Cal-
culation instructions include general calculation instructions and
vector calculation instructions. Thus, the execution latency time L
can be calculated by

L = Lin + Lis + Cin + Cis, (8)

where Lin , Lis , Cin , and Cis are the latency of general register
loading, vector register loading, general calculation instructions,
and vector calculation instructions, respectively. There are mainly
addition and multiplication steps for SpMV, and the number of
operating instructions is related to the nonzero elements of the
sparse matrix. The number of multiplication and addition steps
are NNZ and NNZ − M , respectively. Therefore, the total number
of instructions for SpMV operation is determined according to the
sparse matrix. However, the calculation time can be reduced by
choosing instructions with short execution delay and using more
instruction units simultaneously. Table 3 shows the clock cycles of
different computing instructions on the ARMv8 processor. Instruc-
tion pipelining and SIMD technology can improve the concurrent
operation of multiple instructions, which leads to the improvement
of the throughput of instruction execution. For example, if the
length of the vector arithmetic unit is M bytes and the floating-
point number is 4 bytes, M/4 floating-point numbers can be cal-
culated in a vector operation. In this way, it is equivalent to the

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
SpMV requirement to calculate NNZ multiplication steps to per-
form NNZ/(M/4) vector multiplication steps. If the data access is
limited to the cache data read by the instruction execution and
the memory access caused by cache miss, A can be calculated by

A = ACnum × ACt + Missnum × AMt, (9)

where ACnum , ACt , Missnum , and AMt are the number of accesses
to the cache, the delay of cache access, the number of cache
misses, and the delay of memory access, respectively. For the pro-
cessor, the latency of accessing the cache and memory is fixed.
Therefore, to improve the performance of data access, the program
should reduce the number of cache accesses and the cache miss
rate.

6.2. The execution latency of instructions

According to the execution latency described in the ARM official
document, the minimum latency can be obtained by analyzing an
operation dependent on an instruction in the described group. We
analyze the difference of ASIMD instructions latency between the
SpMV based on ACSR and AELL formats as well as CSR and ELL
formats.

The main latency of instructions is shown in Table 3. The
column indices of nonzero elements are loaded into the nor-
mal register by “LDR”, and a 64-bit number or a 128-bit vector
is loaded into the vector register by “LD1”, which uses function
vld1q_lane_f64(x + j,0) or vld1q_f64(x + j). Two vectors are multi-
plied and added to the third vector to be evaluated by “FMLA”, the
function vmlaq_f64(temp,v A ,vx) that evaluates

temp ← temp + v A × vx.

In addition, for “FMLA”, the number 3 in brackets in Table 3
indicates that the calculation result can be applied after only three
cycles when the calculation is complete.

For SpMV using double precision, the column index of each
nonzero element must be loaded into the normal register to
perform an addressing instruction to obtain the corresponding
element in the vector x. Therefore, it is necessary to execute
the “LDR” instruction NNZ times. Moreover, in CSR formats, the
nonzero elements can be loaded in vector, and there are NNZ

2
“LD1” instructions because the 128-bit vector register can load two
nonzero elements at a time. However, the elements in vector x
can be loaded only sequentially because the two nonzero elements
loaded into the 128-bit vector register may not be continuous,
which causes the discontinuity of the corresponding two elements
in the vector x. Therefore, there are NNZ “LD1” instructions for
loading x into the vector register sequentially. Two nonzero ele-
ments in a row of the sparse matrix can multiply by two corre-
sponding elements in vector x, and the results of two multipli-
cation steps may be added to the corresponding elements of the
result vector by the “FMLA” instruction at the same time. There-
fore, there are NNZ

4 “FMLA” instructions for SpMV because there
are two ASIMD units on a Cortex-A72 processor, which is used by
the tested computer in the paper. According to Eq. (8), we have

LC S R = NNZ × 4 + NNZ

2
× 5 + NNZ × 5 + NNZ

4
× (7 + 3)

= 14NNZ.

(10)

There are NNZ′
2 elements to be stored in ACSR format, which in-

clude zero elements filled by the alignment operation. Therefore, it
is necessary to execute the “LDR” instruction NNZ′ times. However,
in ACSR format, the two nonzero elements loaded into the vector
131
register are continuous, so the corresponding two elements of x
can also be loaded into a vector register because the corresponding
two elements in the vector x are continuous. Therefore, there are
NNZ′

2 × 2 “LD1” instructions for ACSR format. Because the ARMv8
pipeline has two ASIMD units, two vectors can be calculated in
one calculation instruction, so there are NNZ′

4 “FMLA” instructions
for SpMV, and the latency of instructions in ACSR can be given by

L AC S R = NNZ′

2
× 4 + NNZ′

2
× 5 × 2 + NNZ′

4
× (7 + 3)

= 19

2
NNZ (1 + F R) .

(11)

A sparse matrix is stored in two M × K dense matrices in ELL
format, where one of the dense matrices stores the values, and the
other stores the column indices of the nonzero elements. There-
fore, there are M × K “LDR” instructions to load column indices to
the general register, and M×K

2 “LD1” instructions to load the values
matrices to the vector register. However, the elements in vector x
can only be loaded sequentially because the two nonzero elements
loaded into the 128-bit vector register may not continuously cause
the discontinuity of the corresponding two elements in the vector
x. Therefore, there are M × K “LD1” instructions for loading x into
the vector register sequentially. Finally, there are M×K

2 “FMLA” in-
structions for SpMV as with the CSR format. Because the ARMv8
pipeline has two ASIMD units, the execution latency of the “FMLA”
is

M×K
2 ×(7+3)

2 ; then, we have

LE LL = M × K × 4 + M × K

2
× 5 + M × K × 5 +

M×K
2 × (7 + 3)

2
= 14M K .

(12)

For the AELL format, there are M × V K “LDR” instructions to
load the column indices to the general register. Due to the align-
ment operations, every two nonzero elements loaded into the vec-
tor register are continuous. Therefore, a row of data is divided V K

times and loaded into the vector register, and there are M × V K

“LD1” instructions to load the value matrix. The corresponding two
elements of x can also be loaded into a vector register because
the corresponding two elements in the vector x are continuous.
Therefore, there are M × V K × 2 “LD1” instructions for AELL for-
mat. Finally, there are M×V K

2 “FMLA” instructions for SpMV as with
ELL format, and we have

L AE LL = M × V K × 4 + M × V K × 2 × 5 + M × V K

2
× (7 + 3)

= 19M V K .

(13)

As a result, we can obtain the latency of ASIMD instructions of
SpMV in different formats.

Using the above formulas to analyze the performance of SpMV
operation based on different storage formats, we can obtain the
following propositions.

Proposition 1. When F R < 9
19 in ACSR, the number of cycles spent in

SpMV based on the ACSR format is less than that in the CSR format.

Proof. With the increase in zero paddings, the amount of redun-
dant data that needs to be read into the vector register increases,
increasing the number of “LD1” and “FMLA” instructions. F R is the
fill ratio of zero elements. Eqs. (10) and (11) represent the clock

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
cycles of all operation instructions of SpMV using CSR and ACSR
formats, respectively. The upper bound of F R can be obtained by

LR AC S R = L AC S R − LC S R

LC S R

= 19NNZ

2

(
F R − 9

19

)
,

(14)

which calculates the difference between Eqs. (10) and (11).
To make the performance of SpMV based on the ACSR format

not lower than that of SpMV based on the CSR format, LR AC S R

should be less than or equal to 0, so we can determine the range
of F R as

LR AC S R ≤ 0;
19NNZ

2

(
F R − 9

19

)
≤ 0;

F R ≤ 9

19
. �

Proposition 2. When V K < 14K
19 in AELL, the number of cycles spent in

SpMV based on the AELL format is less than that of the ELL format.

Proof. The storage space of the sparse matrix with ELL format
depends on the row with the most nonzero elements. With the
increase in zero padding, the number of redundant data points
that need to be read into the vector register increases, increas-
ing the number of “LD1” and “FMLA” instructions. V K is the width
of the row with zero paddings. Eqs. (12) and (13) represent the
clock cycles of all operation instructions of SpMV using ELL and
AELL formats, respectively. The upper bound of V K is obtained by

LR AE LL = L AE LL − LE LL

LE LL

= 19N

(
V K − 14

19
K

)
,

(15)

which calculates the difference between Eqs. (12) and (13).
To make the performance of SpMV based on AELL format not

lower than that of SpMV based on ELL format, LR AE LL should be
less than or equal to 0, so we can determine the range of V K as

LR AE LL ≤ 0;
19N

(
V K − 14

19
K

)
≤ 0;

V K ≤ 14

19
K . �

Through these formulas, we can obtain a general trend of the
cycles changing with the zero element filling rate during the SpMV
calculation based on ACSR and AELL.

6.3. Cache access times

Taking CSR and ACSR as an example, SpMV based on these two
formats is required to access the row offsets 2M times to deter-
mine the nonzero elements corresponding to each row. Then, in
the calculation process, the nonzero elements are accessed in vec-
tor form for NNZ

2 and NNZ′
2 times in CSR and ACSR, respectively. The

column indices are all ordinary accesses, which are NNZ′ and NNZ′
2

times. However, the access to the vector x is fundamentally differ-
ent in the load mode with the vector register; this access needs
NNZ times in CSR, but only NNZ′

times in ACSR because it accesses
2

132
x consecutively after aligning the data to the vector register. Fi-
nally, the results must be stored in a vector y M times. Thus, we
can obtain the number of cache accesses AC S R and A AC S R as

AC S R = 2M + NNZ

2
+ NNZ + NNZ + M

= 3M + 5

2
NNZ,

(16)

and

A AC S R = 2M + NNZ′

2
+ NNZ′

2
+ NNZ′

2
+ M

= 3M + 3

2
NNZ (1 + F R) .

(17)

For SpMV using ELL format, the value matrix can be accessed
in vector form, but the column index matrix, the vector x, and the
result vector y can only be accessed sequentially. Therefore, the
access cache times of SpMV using ELL format AE LL are calculated
by

AE LL = M × K

2
+ M × K + M × K + M

= 5

2
M K + M.

(18)

However, for SpMV using AELL format, the value matrix, the
column index matrix, and x can be vectors. Therefore, the access
cache times of SpMV using AELL format are A AE LL , given by

A AE LL = 3M V K + M. (19)

Then, we can obtain the ratio of the reduction in cache access
in our ACSR and AELL formats compared with the CSR and ELL
formats, respectively:

AR AC S R = A AC S R − AC S R

AC S R

= 3NNZ

2

(
F R − 2

3

)
,

(20)

AR AE LL = A AE LL − AE LL

AE LL

= 3M

(
V K − 5

6
K

)
.

(21)

Thus, we can use the above formulas to analyze the times of
cache access of SpMV operation in different storage formats and
obtain the following propositions.

Proposition 3. When F R < 2
3 of ACSR, the number of cache access in

SpMV based on ACSR format is less than in CSR format.

Proof. With the increase in zero paddings, although more time is
needed to access the nonzero elements, every two elements in x
can be read in a vector continuously with ACSR format, which is
fewer than in CSR format. F R is the fill ratio of zeros. Equation
(20) represents the reduction in cache access in ACSR compared
with CSR.

To make the performance of SpMV based on the ACSR format
not lower than that of SpMV based on the CSR format, AR AC S R

should be less than or equal to 0, so the upper bound of F R can
be obtained by

AR AC S R ≤ 0;
3NNZ

2

(
F R − 2

3

)
≤ 0;

F R ≤ 2
. �
3

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
Proposition 4. When V K < 5
6 K in AELL, the number of cache access in

SpMV based on the AELL format is less than that based on the ELL format.

Proof. The times of cache access depend on the data size and the
access mode. AELL has a larger matrix to store the values than
ELL, which leads to more cache accesses. However, in the column
index matrix, this number may decrease, and the load of x is now
continuous. V K is the width of the row with zero paddings.

To make the times of cache access of SpMV based on AELL for-
mat not lower than that of SpMV based on ELL format, according
to Equation (21), AR AE LL should be less than or equal to 0, so the
upper bound of V K is given by

AR AE LL ≤ 0;
3M

(
V K − 5

6
K

)
≤ 0;

V K ≤ 5

6
K . �

Thus, according to these formulas, we can find a general trend
of the times of cache access with the zero element filling rate dur-
ing SpMV calculation based on ACSR and AELL.

6.4. Cache miss times

As described in the previous part of this paper, SpMV using
NEON acceleration can operate two vectors in a calculation in-
struction. It is necessary to access the cache ten times for nonzero
elements in SpMV based on CSR and ELL formats and to include
the nonzero elements in vector form only twice, the column index
four times, and the vector x four times as well. However, we need
only six times using ACSR and AELL formats in which values and
x are accessed in vector form only twice, and the column index
needs only the starting column index of two vectors.

In every calculation, in the worst case, four x values loaded in
CSR and ELL may be distributed in four cache lines, while there are
only two cache lines in ACSR and AELL. Our experiment is carried
out on Kunpeng 920 with 4 cache lines of size 64 B at one set in
the L1 cache. Therefore, during the calculation process, the CSR and
ELL formats may have cache line conflicts and may be replaced for
access to the cache 6 times in the worst case, while only 4 times
for the ACSR and AELL formats. For this cause, we can infer that
compared with SpMV based on CSR and ELL, the ACSR and AELL
formats may reduce the probability of cache conflict and cause a
decrease in cache misses [16,23].

7. Experimentals

7.1. Experiment platform

Our experiment is based on Kunpeng 920 produced by Huawei.
Kunpeng 920 supports multiple parallel instructions based on
ARMv8.2 architecture equipped with two floating-point units
(FPUs). As shown in Table 4, the peak performance of Kunpeng
920 in double-precision floating-point computation achieves 665.6
Gflops. Moreover, Kunpeng 920 supports eight channels of mem-
ory, but only four channels are used in our experiment.

We have examined the effect on the performance of nonuni-
form memory access (NUMA) architecture on Kunpeng 920. Failure
to consider NUMA may cause crossnode access to memory due
to OS process switching, which will cause greater delays. More-
over, in this case, the experimental results are inaccurate. There-
fore, to obtain a stable and reliable result in the experiment, we
bind the threads and data through the tool for NUMA called “nu-
mactl”, which can guarantee a thread to access the memory on a
133
Table 4
Experiment environment.

Processor Kunpeng 920

Architecture ARMv8.2
Frequency 2.6 GHz
Cores 64
L1 cache 64 kB L1l and 64 kB L1d
L2 cache 512 kB private per core
L3 cache 64 MB shared for all
Memory 4 × 2666 DDR4
OS Centos 7.8
Linux kernel 4.18.0
Compiler gcc 4.8.5
NUMA nodes with 32 cores

fixed node. Moreover, we use the perf tool on Linux to obtain the
cycles, cache references, and cache misses in the calculation pro-
cess.

Although the Algorithms 1 - 4 show the SpMV algorithms with
NEON SIMD acceleration in single-threaded, they are also suit-
able for multi-threaded parallelism. All experimental procedures
are implemented in C language with openMP and “-O2” complier
option.

Since the non-zero elements of each row in the ACSR format
are not uniform, and the operating system may schedule threads
to ensure load balancing when using openMP automatic paral-
lelism, which impact is not easy to predict in performance eval-
uation. In the experiments, all experiments choose the number of
threads when the performance is optimal. And for the compari-
son experiment of each sparse matrix, the final number of threads
executed is the same, which significantly reduces the impact of
multi-threading on performance evaluation.

7.2. Experiment data

In this experiment, we selected 20 sparse matrices from the
SuiteSparse Matrix Collection. They are all collected from a wide
range of applications and are listed in Table 5, where “sparse
matrix” is the name of the sparse matrices; “rows”, “columns”,
“N N Z ”, and “K ” indicate the rows, columns, number of nonzero
elements of the sparse matrices, and threshold “K ” in ELL, respec-
tively.

8. Experimental results

The experimental results are divided into three parts:

• The acceleration of SpMV in CSR and ELL formats with NEON.
• The analysis of experimental data.
• Performance comparison of ACSR and AELL with CSR, ELL, and

PETSc.

8.1. NEON acceleration for CSR and ELL

Fig. 6 shows the performance improvements of SpMV in origi-
nal CSR and ELL formats after using NEON. The ordinate represents
the relative performance improvements of NEON.

Through this experiment, we find that the performance of
SpMV using NEON can achieve 19.91% and 19.15% improvements
in CSR and ELL, respectively.

However, for some sparse matrices, we may find that the ef-
fect of NEON acceleration is not obvious. Combining the instruction
delay in Table 3 and the number of nonzero elements in sparse
matrices, we can infer that the access to the vector x is still not
continuous. Because the number of accesses has not decreased
but the instruction delay has increased, and because there is still

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137

Table 5
Sparse matrices in the experiment.

sparse matrix rows columns NNZ K F R AC S R V K F R AE LL

bbmat 38744 38744 1771722 126 24.16% 80 26.98%
car4 16384 33052 63724 111 56.32% 62 11.71%
cavity08 1182 1182 32747 62 2.20% 31 0.00%
Chebyshev2 2053 2053 18447 2053 55.50% 1027 0.05%
Chevron1 37365 37365 330633 9 33.34% 6 33.33%
EPA 4772 4772 8965 175 54.20% 95 8.57%
FEM_3D_thermal 17880 17880 430740 27 26.62% 18 33.33%
hangGlider_3 10260 10260 49201 4558 53.45% 2280 0.04%
hvdc1 24842 24842 159981 181 4.45% 100 10.50%
iprob 3001 3001 9000 3000 66.64% 1500 0.00%
lhr71 70304 70304 1528092 63 14.14% 32 1.59%
model4 1337 4962 45753 493 13.33% 248 0.61%
mycielskian10 767 767 22196 383 56.85% 192 0.26%
OPF_10000 43887 43887 255799 64 13.65% 32 0.00%
reorientation_1 677 677 3861 394 64.83% 197 0.00%
rosen10 2056 6152 64192 3886 6.51% 1996 2.73%
TSOPF_RS_b2383 38120 38120 16171169 983 0.90% 493 0.31%
viscorocks 37762 37762 1162244 42 0.00% 21 0.00%
water_tank 60740 60740 2035281 63 30.99% 36 14.29%
xenon1 48600 48600 1181120 27 27.37% 18 33.33%
Fig. 6. Performance improvements of NEON in CSR and ELL formats. (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this
article.)

waiting time for the NEON operation instruction itself, an increas-
ing amount of data may lead to excessively high memory access
instruction delays that reduce the performance of SpMV. For exam-
ple, “bbmat” and “FEM_3D_thermal” in ELL and “TSOPF_RS_b2383”
in both CSR and ELL. Moreover, the SpMV based on CSR and ELL
with NEON may cause more cache misses because it needs extra
two times of cache access.

In further experiments, the SpMV based on CSR and ELL are all
accelerated by NEON.

8.2. Analysis of experimental data

In this part of the experiment, we obtain the cycles, cache ref-
erences, and cache misses of SpMV for different formats through
the perf performance profiling tool.

The ratios of the number of zero elements filled in ACSR and
AELL based on the CSR and ELL are shown in Table 5.

8.2.1. Reduction in the execution latency of SIMD instructions
According to the formulas in Section 6 and the filling rates in

Table 5, we can obtain the theoretical analysis results. In Figs. 7
and 8, we can find the reported improvement of the instruction
latency and the actual improvement cycles.
134
Fig. 7. Reduction in cycles of ACSR.

Fig. 8. Reduction in cycles of AELL.

The experimental results are consistent with our theoretical
analysis. According to the chart, it can reduce cycles by 7.30% on
average in ACSR compared with CSR, and the AELL value is 21.08%
less than that of ELL.

However, there is a 10.26% average difference for ACSR and
10.51% for AELL between the theoretical and experimental re-

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
sults because we analyze only the main instructions. In the actual
implementation process, we directly use the encapsulated NEON
functions to use SIMD technology, but there are still some un-
known instructions. Therefore, if the filling rate of ACSR theoreti-
cally reaches approximately 47%, an adverse effect arises, and there
are some matrices whose filling rate reaches more than 56%, such
as “iprob”, “mycielskian10”, and “reorientation_1” in the experi-
ment too. Moreover, due to load unbalancing, the OS scheduling
of threads may cause additional overhead in parallel SpMV calcu-
lations based on ACSR format.

For example, the distribution of nonzero elements in “TSOPF_
RS_b2383” is too scattered, which may increase the number of
memory accesses for ACSR and AELL. In the parallel SpMV cal-
culation of some matrices in CSR format, the main performance
depends on the long rows with the maximum non-zero elements.
Although the instruction clock cycle of the serial calculation is
theoretically increased compared to the CSR format, the opposite
of the theory may occur in the parallel calculation for the zero-
element filling rate of long rows in ACSR format may be zero.
Such as “car4”, “Chebyshev2”, “hangGlider_3”, and “EPA”. The av-
erage length of their non-zero rows is hundreds or thousands of
times different from their long rows, while the zero filling rate
of long rows is almost zero. Therefore, the experimental results
of these sparse matrices disagreed with the theoretical analysis in
Fig. 7.

8.2.2. Cache improvements
We analyze the impact of cache access on the performance

of SpMV for ACSR and AELL formats through the results given in
Figs. 9, 10, and 11.

Fig. 9. Reduction in the cache references of ACSR.

Fig. 10. Reduction in the cache references of AELL.
135
Fig. 11. Reduction in the cache misses of ACSR and AELL.

Figs. 9 and 10 present the number of cache access events re-
duced by ACSR and AELL formats, which is respectively 18.59% and
34.10% compared with those of CSR and ELL, and the deviation be-
tween the theoretical value and the actual value is 5.68% for ACSR
and 2.91% for AELL.

Although the impact of cache access for ACSR and AELL formats
is consistent with the theoretical analysis, there are still large de-
viations in the experimental results of a few matrices in ACSR. By
analyzing the distribution of the nonzero elements in these matri-
ces and comparing it with AELL, the reason for the large deviation
may be the unbalanced load during the calculation, such as “bb-
mat” and “TSOPF_RS_b2383”.

In addition, we find that the ACSR and AELL formats can reduce
the cache hit conflicts in a single calculation. As shown in Fig. 11,
ACSR and AELL can reduce the number of cache misses of SpMV
by 28.85% and 18.00%, respectively.

The ACSR and AELL formats can reduce the probability of cache
conflict in each calculation process because the added zero ele-
ments and the previous nonzero elements usually remain on the
same cache line. However, there are vectors across cache lines due
to cache conflict. Therefore, when a sparse matrix has a relatively
concentrated distribution of nonzero elements, the filling of zero
in AELL format may cause the extra cache misses [15]. For ex-
ample, “Chevron1” is a diagonal sparse matrix, and all nonzero
elements are gathered on the diagonal line. Therefore, there are
fewer nonzero elements across the cache line, such that the extra
filling of zeros leads to more cache misses.

8.3. Performance of ACSR and AELL

In this part of the experiment, we compare the calculation time
of SpMV using ACSR and AELL formats using CSR and ELL acceler-
ated by NEON. We find that the ACSR format is the best in most
cases. Fig. 12 records the performance improvements of SpMV
based on ACSR compared with SpMV in CSR format and PETSc and
makes a comparison between AELL and ELL on Kunpeng920 pro-
cessor. At the same time, Fig. 13 shows the experimental results
on FT2000+ processor to verify the performance improvements of
our aligned storage formats.

The final experimental results are consistent with the analy-
sis in Section 6. In this experiment, we find that SpMV in ACSR
and AELL formats can achieve better performance than in the CSR
and ELL formats. Compared with CSR and PETSc, ACSR can achieve
an average performance improvement of 18.17% and 56.46%, and
AELL achieves an average performance improvement of 20.54%
over ELL on Kunpeng920 processor, while the average performance
improvements are 24.83%, 61.14%, and 22.55% on FT2000+ proces-
sor.

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
Fig. 12. Performance improvements of ACSR and AELL on Kunpeng920 processor.

Fig. 13. Performance improvements of ACSR and AELL on FT2000+ processor.

However, the sparse matrix “car4” is a diagonal matrix with
local continuity and the filling rate in ACSR reached 56.32%. The
calculations of SpMV based on ACSR show almost no improvement
in instruction latency, cache access and cache misses compared
with SpMV using CSR.

9. Conclusions

In this paper, we propose two aligned storage formats, ACSR
and AELL, which focus on the 128-bit SIMD operator to parallel
optimize SpMV in double precision on ARM processors. Then, we
analyze the improvement of ACSR and AELL formats in terms of
the instruction delay, cache access, and cache miss that the devia-
tions from the experimental results are 10.26%, 10.51% and 5.68%,
2.91% in execution latency of instructions and cache references,
respectively. Moreover, as the experimental results show, SpMV
based on ACSR can achieve an average improvement in the ex-
ecutive latency of instructions, cache references, cache misses, and
calculation time of 7.3%, 18.59%, 28.85%, and 18.17%, respectively,
compared with SpMV in CSR formats; the corresponding AELL pa-
rameters are 21.08%, 34.10%, 18.00%, and 20.54% higher than those
of ELL. In addition, we choose PETSc for comparison and find that
SpMV based on ACSR exhibits a 56.46% performance improvement
compared to PETSc. In the future, we plan to consider more in-
struction types, and prefect the cache performance in performance
analytical models of SpMV on ARM processors to predict more ac-
curately and achieve better performance optimization.

CRediT authorship contribution statement

Yufeng Zhang: Conceptualization, Investigation, Methodology,
Software, Validation, Writing – original draft. Wangdong Yang:
136
Conceptualization, Methodology, Project administration, Resources,
Writing – original draft. Kenli Li: Supervision. Dahai Tang: Soft-
ware, Validation. Keqin Li: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] N. Abubaker, K. Akbudak, C. Aykanat, Spatiotemporal graph and hypergraph
partitioning models for sparse matrix-vector multiplication on many-core ar-
chitectures, IEEE Trans. Parallel Distrib. Syst. 30 (2) (2018) 445–458.

[2] R.V. Aroca, L.M.G. Gonçalves, Towards green data centers: a comparison of x86
and ARM architectures power efficiency, J. Parallel Distrib. Comput. 72 (12)
(2012) 1770–1780.

[3] N. Bell, M. Garland, Implementing sparse matrix-vector multiplication on
throughput-oriented processors, in: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009, pp. 1–11.

[4] E. Blem, J. Menon, T. Vijayaraghavan, K. Sankaralingam, ISA wars: understand-
ing the relevance of ISA being RISC or CISC to performance, power, and energy
on modern architectures, ACM Trans. Comput. Syst. 33 (1) (2015) 1–34.

[5] E.-J. Im, K. Yelick, R. Vuduc, Sparsity: optimization framework for sparse matrix
kernels, Int. J. High Perform. Comput. Appl. 18 (1) (2004) 135–158.

[6] M. Jarus, S. Varrette, A. Oleksiak, P. Bouvry, Performance evaluation and energy
efficiency of high-density HPC platforms based on Intel, AMD and ARM proces-
sors, in: European Conference on Energy Efficiency in Large Scale Distributed
Systems, Springer, 2013, pp. 182–200.

[7] V. Karakasis, G. Goumas, N. Koziris, A comparative study of blocking stor-
age methods for sparse matrices on multicore architectures, in: 2009 Inter-
national Conference on Computational Science and Engineering, vol. 1, IEEE,
2009, pp. 247–256.

[8] K. Kourtis, V. Karakasis, G. Goumas, N. Koziris, CSX: an extended compression
format for SpMV on shared memory systems, ACM SIGPLAN Not. 46 (8) (2011)
247–256.

[9] M.A. Laurenzano, A. Tiwari, A. Cauble-Chantrenne, A. Jundt, W.A. Ward, R.
Campbell, L. Carrington, Characterization and bottleneck analysis of a 64-bit
ARMv8 platform, in: 2016 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), IEEE, 2016, pp. 36–45.

[10] W. Liu, B. Vinter, CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication, in: Proceedings of the 29th ACM on International
Conference on Supercomputing, 2015, pp. 339–350.

[11] N. Liu, B. Zang, H. Chen, No barrier in the road: a comprehensive study and
optimization of ARM barriers, in: Proceedings of the 25th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2020, pp. 348–361.

[12] D. Merrill, M. Garland, Merge-based sparse matrix-vector multiplication
(SpMV) using the CSR storage format, ACM SIGPLAN Not. 51 (8) (2016) 1–2.

[13] A. Monakov, A. Lokhmotov, A. Avetisyan, Automatically tuning sparse matrix-
vector multiplication for GPU architectures, in: International Conference on
High-Performance Embedded Architectures and Compilers, Springer, 2010,
pp. 111–125.

[14] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations.
[15] J.M. Sabarimuthu, T. Venkatesh, Analytical miss rate calculation of L2 cache

from the RD profile of L1 cache, IEEE Trans. Comput. 67 (1) (2017) 9–15.
[16] D. Shen, M. Chabbi, X. Liu, An evaluation of vectorization and cache reuse

tradeoffs on modern CPUs, in: Proceedings of the 9th International Workshop
on Programming Models and Applications for Multicores and Manycores, 2018,
pp. 21–30.

[17] S. Streit, F. De Santis, Post-quantum key exchange on ARMv8-A: a new hope
for neon made simple, IEEE Trans. Comput. 67 (11) (2017) 1651–1662.

[18] R.W. Vuduc, H.-J. Moon, Fast sparse matrix-vector multiplication by exploit-
ing variable block structure, in: International Conference on High Performance
Computing and Communications, Springer, 2005, pp. 807–816.

[19] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, Optimization of
sparse matrix-vector multiplication on emerging multicore platforms, in: SC’07:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, IEEE, 2007,
pp. 1–12.

[20] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, L. Zhang, CVR: efficient vector-
ization of SpMV on x86 processors, in: Proceedings of the 2018 International
Symposium on Code Generation and Optimization, 2018, pp. 149–162.

[21] W. Yang, K. Li, K. Li, A parallel computing method using blocked format with
optimal partitioning for SpMV on GPU, J. Comput. Syst. Sci. 92 (2018) 152–170.

[22] T. Yoshida, Fujitsu high performance CPU for the post-K computer, in: Hot
Chips, vol. 30, 2018.

[23] Z. Zhang, H. Wang, S. Han, W.J. Dally, SpArch: efficient architecture for sparse
matrix multiplication, in: 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), IEEE, 2020, pp. 261–274.

http://refhub.elsevier.com/S0743-7315(21)00168-4/bibCC61B6F6834958C8FE54AD23A00B4A33s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibCC61B6F6834958C8FE54AD23A00B4A33s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibCC61B6F6834958C8FE54AD23A00B4A33s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibE593254583BFA9921C61D09E1451645As1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibE593254583BFA9921C61D09E1451645As1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibE593254583BFA9921C61D09E1451645As1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3B2E79DD53CBC8A49430AD38F24D5B65s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3B2E79DD53CBC8A49430AD38F24D5B65s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3B2E79DD53CBC8A49430AD38F24D5B65s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3EBF82E6F62850C8BD511B4581C42A5Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3EBF82E6F62850C8BD511B4581C42A5Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3EBF82E6F62850C8BD511B4581C42A5Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib32720874A503F2380BD743654DBE8E1Bs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib32720874A503F2380BD743654DBE8E1Bs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib4A9BB2789EEE66DCBFF1C58083A55F48s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib4A9BB2789EEE66DCBFF1C58083A55F48s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib4A9BB2789EEE66DCBFF1C58083A55F48s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib4A9BB2789EEE66DCBFF1C58083A55F48s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibC9D690489D4456583E35A513A58433D8s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibC9D690489D4456583E35A513A58433D8s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibC9D690489D4456583E35A513A58433D8s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibC9D690489D4456583E35A513A58433D8s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib710B7A92B8A15BB403C62EA96060A6C2s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib710B7A92B8A15BB403C62EA96060A6C2s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib710B7A92B8A15BB403C62EA96060A6C2s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibBFCC865CD679E18D52F6DE42034AC395s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibBFCC865CD679E18D52F6DE42034AC395s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibBFCC865CD679E18D52F6DE42034AC395s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibBFCC865CD679E18D52F6DE42034AC395s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib2EE3BAE2B31FABCA75D6E38801571345s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib2EE3BAE2B31FABCA75D6E38801571345s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib2EE3BAE2B31FABCA75D6E38801571345s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib08FE91F57DE90C37523CD6EE3935EF13s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib08FE91F57DE90C37523CD6EE3935EF13s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib08FE91F57DE90C37523CD6EE3935EF13s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibF93A3799F3384BF82F551B11D5411D50s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibF93A3799F3384BF82F551B11D5411D50s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib18FE92C104D4B939ADEF1FD59489F52Fs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib18FE92C104D4B939ADEF1FD59489F52Fs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib18FE92C104D4B939ADEF1FD59489F52Fs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib18FE92C104D4B939ADEF1FD59489F52Fs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib136492B0DDC495F963304200C21F169Fs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib136492B0DDC495F963304200C21F169Fs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibB65E918C1FFB55BF60F2A8C73D08859Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibB65E918C1FFB55BF60F2A8C73D08859Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibB65E918C1FFB55BF60F2A8C73D08859Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibB65E918C1FFB55BF60F2A8C73D08859Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3164C14C479539AD22DC2C6C5A04EAD6s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib3164C14C479539AD22DC2C6C5A04EAD6s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib83EC20EC38D8E0A9B37A7577E3424440s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib83EC20EC38D8E0A9B37A7577E3424440s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib83EC20EC38D8E0A9B37A7577E3424440s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib44E7CDC8F1386A1820B02F504F38317Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib44E7CDC8F1386A1820B02F504F38317Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib44E7CDC8F1386A1820B02F504F38317Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib44E7CDC8F1386A1820B02F504F38317Ds1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibD1B7D14878E1973BA1C9F1E16897C4BAs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibD1B7D14878E1973BA1C9F1E16897C4BAs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibD1B7D14878E1973BA1C9F1E16897C4BAs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib75C322D0370B2299B7C1EE06A7C178CEs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib75C322D0370B2299B7C1EE06A7C178CEs1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibF71F90AEC8877C1EBA7A186F2B987873s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bibF71F90AEC8877C1EBA7A186F2B987873s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib67472A6E4559C4DAC59FBAA8A40AF1A2s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib67472A6E4559C4DAC59FBAA8A40AF1A2s1
http://refhub.elsevier.com/S0743-7315(21)00168-4/bib67472A6E4559C4DAC59FBAA8A40AF1A2s1

Y. Zhang, W. Yang, K. Li et al. Journal of Parallel and Distributed Computing 158 (2021) 126–137
Yufeng Zhang received M.S. degree in computer
science and technology from Hunan University, China,
in 2021, and the B.S. degree in information and com-
puting science from Hunan University, China, in 2018.
His research interests include parallel algorithms,
high-performance computing, and computer architec-
tures.

Wangdong Yang received the Ph.D. degree in
computer science from Hunan University, China, and
the M.S. degree in computer science from Central
South University, China. He is a professor of computer
science and technology at Hunan University, China.
His research interests include modeling and program-
ming for heterogeneous computing systems, parallel
and distributed computing, and numerical computa-
tion. He has published more than 60 papers in Inter-

national conferences and journals. He is currently served on the editorial
boards of IEEE Internet of Things Journal.

Kenli Li received the Ph.D. degree in computer sci-
ence from Huazhong University of Science and Tech-
nology, China, in 2003, and the M.S. degree in mathe-
matics from Central South University, China, in 2000.
He was a visiting scholar at University of Illinois at
Urbana-Champaign from 2004 to 2005. He is a full
professor of computer science and technology at Hu-
nan University. The main research fields are parallel
and distributed processing, supercomputing and cloud

computing, high-performance computing for big data and artificial in-
telligence, etc. He has published more than 300 papers in international
conferences and journals. He is currently served on the editorial boards of
IEEE Transactions on Computers. He is an outstanding member of CCF and
a member of the IEEE.

Dahai Tang was born in 1996. He is a second-
year doctoral student at Hunan University, China. His
research interests include parallel computing and op-
erating system.

Keqin Li is a SUNY Distinguished Professor of com-
puter science with the State University of New York.
He is also a National Distinguished Professor with Hu-
nan University, China. His current research interests
include cloud computing, fog computing and mobile
edge computing, energy-efficient computing and com-
munication, embedded systems and cyber-physical
systems, heterogeneous computing systems, big data
computing, high-performance computing, CPU-GPU

hybrid and cooperative computing, computer architectures and systems,
computer networking, machine learning, intelligent and soft computing.
He has authored or coauthored more than 780 journal articles, book chap-
ters, and refereed conference papers, and has received several best paper
awards. He holds over 60 patents announced or authorized by the Chinese
National Intellectual Property Administration. He is among the world’s
top 10 most influential scientists in distributed computing based on a
composite indicator of Scopus citation database. He has chaired many in-
ternational conferences. He is currently an associate editor of the ACM
Computing Surveys and the CCF Transactions on High Performance Com-
puting. He has served on the editorial boards of the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on Computers, the
IEEE Transactions on Cloud Computing, the IEEE Transactions on Services
Computing, and the IEEE Transactions on Sustainable Computing. He is an
IEEE Fellow.
137

	Performance analysis and optimization for SpMV based on aligned storage formats on an ARM processor
	1 Introduction
	1.1 Motivation
	1.2 Our contributions

	2 Related work
	2.1 Compressed storage formats for sparse matrices
	2.2 ARMv8-A architecture

	3 Sparse matrix compression and NEON technology
	3.1 General storage formats for sparse matrices
	3.1.1 Compressed sparse rows (CSR)
	3.1.2 Ellpack (ELL)

	3.2 NEON technology

	4 Aligned compressed storage formats
	4.1 Aligned CSR (ACSR)
	4.2 Aligned ELL (AELL)

	5 Parallel algorithms of SpMV
	6 Performance analysis
	6.1 SpMV performance analysis for ARMv8 architecture
	6.2 The execution latency of instructions
	6.3 Cache access times
	6.4 Cache miss times

	7 Experimentals
	7.1 Experiment platform
	7.2 Experiment data

	8 Experimental results
	8.1 NEON acceleration for CSR and ELL
	8.2 Analysis of experimental data
	8.2.1 Reduction in the execution latency of SIMD instructions
	8.2.2 Cache improvements

	8.3 Performance of ACSR and AELL

	9 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

