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 A B S T R A C T

Fixed-wing unmanned aerial vehicles (UAVs) offer distinct advantages for large-scale environmental sensor 
data collection. In forest and marine scenarios, UAVs typically depart from a fixed location, collecting data 
along a route, and return. Unlike existing work aiming to minimizing energy consumption on data collection 
task, this study focus on the scenario where a UAV’s initial energy may not be sufficient to visit all sensor 
nodes. We aim to maximize data collection under insufficient battery energy while make a safety return. To 
solve this, we adopt the twin delayed deep deterministic policy gradient (TD3) algorithm with three designed 
reward functions, and introduce a stage-based safe action algorithm, termed Staged Safe-Action TD3 (SS-
TD3). An energy consumption model incorporating acceleration and a segmented time model are used to 
enhance exploration efficiency. To tackle sparse binary rewards and the suboptimal convergence of complex 
reward function in reinforcement learning, a staged training approach, Staged Actor–Critic based reinforcement 
Learning (S-ACL) is proposed, as the one of the fundamental component of SS-TD3. Experimental results show 
that SS-TD3 achieves the best energy efficiency compared to baselines, while S-ACL significantly improves 
policy performance in complex reward environments.
1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have attracted 
widespread attention as flying wireless communication platforms due 
to the high mobility and flexible deployment capabilities [1,2]. In cel-
lular applications, UAVs have been utilized as temporary base stations 
to rapidly restore service during natural disasters [3] and to offload 
data during special events or high-traffic periods [4]. In the context of 
the Internet of Things (IoT) and wireless sensor networks (WSNs), UAVs 
also serve as mobile aggregators, enabling efficient data collection from 
ground-based sensor devices [5].

Since UAVs are fully controllable and capable of operating at the air, 
they can be dispatched to perform specialized missions in remote and 
challenging regions, such as forests, plateaus, polar areas, oceans, and 
deserts. These regions are often characterized by harsh environmental 
conditions, vast geographic coverage, and prohibitively high costs for 
establishing reliable ground-based communication infrastructure. Wire-

∗ Corresponding author.
E-mail addresses: jingmei@hunnu.edu.cn (J. Mei), 202320294086@hunnu.edu.cn (Y. Zhang), tongzhao@hunnu.edu.cn (Z. Tong), lik@newpaltz.edu (K. Li).

1 Member, IEEE.
2 Fellow, IEEE.

less sensors (SNs) are commonly deployed there for purposes such as 
meteorological monitoring, structural health monitoring of buildings, 
and environmental and ecological monitoring. These sensors typically 
operate on a periodic or event-triggered basis, collecting data at fixed 
intervals or in response to specific events. These sensors are often 
sparsely distributed in the monitored area and are characterized by 
relatively low generated data volume, high latency tolerance, and 
extreme energy efficiency [6].

Given the agility, on-demand deployment capabilities, low-altitude 
operation, and the ability to establish reliable communication links 
with ground sensors, UAVs are extensively used for data collection 
tasks, as the preferred solution in many remote monitoring and data 
gathering scenarios [7–9].

1.1. Related works

Despite of the advantages, the limited battery capacity of UAVs 
poses significant challenges to practical applications. In remote regions, 
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UAVs assigned to collect sensor data must return to areas with reliable 
network infrastructure. The long-distance round trips required for such 
missions consume a substantial amount of battery energy. Furthermore, 
UAVs must also be retrieved after completing the tasks. Consequently, 
efficient utilization of UAV battery energy necessitates careful trajec-
tory optimization or deployment planning. Sun et al. [10] applied the 
deep deterministic policy gradient (DDPG) algorithm to optimize UAV 
trajectories, maximizing data collection while minimizing flight energy 
consumption. Fang et al. [11] reduced the total energy consumption of 
the offloading system by jointly optimizing the task offloading decision, 
3D deployment of two-tier UAVs, the elevation angle of the bottom 
UAV. Kang et al. [12] employed UAVs for multi-hop routing in IoT 
systems to aggregate and collect data, achieving optimized total system 
energy consumption.

While the studies just mentioned and [13,14] directly or indirectly 
improved UAV flight energy efficiency, they did not account for scenar-
ios involving insufficient energy or the optimization of energy required 
for the return trip. Xiuwen et al. [15] introduce the unmanned ground 
vehicle as a charging platform for the UAV assisted IoT networks, 
optimize the cooperative trajectories and enabling the UAV to take off 
and land on the UGV at appropriate times. Mekala et al. [16] maximize 
the data collection and reduce the AoI of collected data under the 
energy consumption constraint of UAVs in the context of urban flood 
monitoring. However, our research is a bit more challenge. The SNs are 
self-sustaining, and the UAV dones’t have sufficient battery energy to 
perform the usual energy optimization, which maximize the total data 
collection objective at first, and optimize energy consumption next.

In remote regions characterized by large geographic coverage, de-
ploying multiple UAVs performing data collection tasks is a common 
approach. Studies such as [10,12] explored the use of multiple UAVs for 
data collection. However, these methods require addressing challenges 
such as collision avoidance and other additional factors, resulting in 
complex trajectory planning and high deployment difficulties.

An alternative strategy is to establish multiple operational docks, 
with each dock responsible for a specific area. UAVs can then be 
deployed on demand to collect data within the assigned areas before 
returning to the respective dock for recharging or further deployment. 
Guo et al. [17] investigated UAV-assisted downlink wireless networks 
with fixed charging stations, optimizing charging service time alloca-
tion, flight trajectories, and transmission power allocation to maximize 
user data rates. Li et al. [18] optimized UAV flight distances and mini-
mized task completion times. A V-shaped trajectory in large-scale areas 
is proposed by taking into account that UAVs can continue collecting 
data while flying away from SNs during hovering-based data collection.

During each flight, the maximum available energy of a fully charged 
UAV is generally a constant, while the minimum energy required to 
cover a target area remains uncertain. This study focuses on data 
collection tasks performed by a single UAV within a predefined target 
area. Specifically, we aim to design UAV trajectories that adapt to 
energy constraints, optimizing energy efficiency under conditions of 
insufficient energy availability.

Existing research predominantly considers two types of UAVs: rot-
ary-wing UAVs and fixed-wing UAVs. Most of the aforementioned stud-
ies focus on the former. Compared to rotary-wing UAVs with hovering 
ability, fixed-wing UAVs offer greater payload capacity, higher speeds, 
and longer operational lifespans. They are more appropriate for long-
distance missions or applications involving remote WSNs from this 
perspective, and is often given priority selection in such scenarios [19–
21]. Also hybrid-wing UAV combine the advantages of both rotary-
wing and fixed-wing, but is relatively expensive [22]. In this study, we 
focus on the use of fixed-wing UAVs for round-trip data collection in 
remote region, aiming to address the challenges of optimizing energy 
efficiency in such scenarios.

Due to the sparse distribution of SNs, applying DRL in such a 
sparse reward environment often encounter the suboptimal perfor-
2 
mance, which require additional approach to address [23–25]. Heuris-
tic algorithms are generally less impacted by the sparsity of SNs and are 
therefore widely applied to UAV trajectory planning tasks in remote 
areas [18,19]. However, as trajectory guidance methods, their solu-
tion lie on discrete space. In contrast, intelligent agents trained using 
reinforcement learning (RL) can continuously and adaptively adjust 
UAV motion strategies, adapt to continuous space, enabling obstacle 
avoidance [26] and mitigating the effects of noise interference. DRL, 
with its ability to leverage artificial neural networks for solving high-
dimensional or continuous action space problems, has been proposed as 
an effective method for addressing trajectory optimization challenges in 
UAV communication [27].

1.2. Motivation

Although reinforcement learning-based intelligent agents bring UAVs
adequate adaptive machine intelligence. Applying RL in scenarios 
characterized by energy insufficiency where return-to-base operations 
are prioritized and sparse distributions of SNs in remote areas presents 
substantial challenges. First, the use of discrete-time models and binary 
reward functions often leads to sparse rewards, making it difficult for 
the agent to learn effectively. Second, insufficient energy causes many 
initial training episodes to fail in completing return-to-base operations, 
resulting in low sample efficiency during training. Furthermore, in 
training adaptive return-to-base strategies, the absence of reliable met-
rics to clearly differentiate between outbound and return stages creates 
ambiguity in determining the optimal solution. In summary, sparse 
reward and energy constraints significantly hinder the convergence of 
RL training.

There are some ways to deal with these challenges. While re-
ward sparsity can be mitigated through reward shaping, previous ex-
periments [26,28] indicate that shaped rewards often hinder explo-
ration and conflict with the optimization objectives, degrading train-
ing performance. Hindsight Experience Replay (HER), proposed by 
Rent et al. [28], addresses sparse rewards without requiring domain 
knowledge. Zheng et al. [29] employed Bayesian optimization, which 
improves sample efficiency. However, HER relies on the environment 
providing clear goal information, which is unsuitable for scenario of 
complex goals in our study, and Bayesian optimization introduces sig-
nificant computational overhead. We would prefer a simple approach 
if possible.

In this study, the DRL-based trajectory design problem is investi-
gated for UAV data collection task under insufficient battery energy 
with safety return constraint in remote regions. First, we construct a 
UAV-assisted sensor data collection system. Second, we formulate the 
trajectory design problem as a data collection maximization problem. 
The optimization goal is to jointly maximize the amount of data col-
lected and the remaining energy after the UAV returns. Finally, we 
convert the problem into a Markov Decision Process (MDP) and define 
the state space, action and reward function. However, it is hard to 
avoid potential side effects in a complex reward function with reward 
shaping. To resolve this, S-ACL is proposed as a simple yet effective 
method to overcome training convergence difficulties and reduce side 
effects. Based on S-ACL and TD3, combined with a well-designed 3-
stage training and safe action exploration, we propose SS-TD3 to solve 
the trajectory design problem and conducted three group of experi-
ments to verify the performance of SS-TD3, the necessity of utilizing 
S-ACL, and the performance of S-ACL on gym environment respectively.

To the best of our knowledge, no existing research has addressed 
the comprehensive optimization of data collection tasks using reinforce-
ment learning in scenarios characterized by insufficient energy and 
sparse rewards. This work seeks to fill that gap by focusing on such 
challenging scenarios. In addressing the key issues of this study, our 
primary contributions are summarized as follows.
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Fig. 1. Typical power required curve vs speed [30].

1.3. Contribution

(1) This study addresses the problem of optimizing UAV trajectory 
planning for data collection tasks in continuous space, taking 
into account the restrictions of UAV return and insufficient bat-
tery energy. A DRL algorithm, SS-TD3, is proposed to facilitate 
efficient task execution and energy conservation in UAVs.

(2) S-ACL is proposed as the foundation framework for SS-TD3. 
This method enhances the performance of Actor–Critic-based 
RL algorithms by allowing greater flexibility in the design of 
the reward function, exploration methods, and the parameters 
through staged training.

(3) Time model is improved in simulation experiments by replacing 
the discrete-time model with a segmented continuous-time cal-
culation, which significantly narrows the policy space, enhances 
exploration efficiency, and mitigates reward sparsity, improving 
the adaptability of DRL algorithms. 

2. System model

In this work, we consider a UAV-assisted sensor data collection 
system. The system comprises M wireless, low-power, self-sustaining 
SNs, denoted as 𝑚 ∈  = {𝑚1, 𝑚2,… , 𝑚𝑀}, which are randomly 
distributed within the target area of size W × L 𝑚2. The position of a 
sensor node 𝑚 is represented as 𝐿𝑚 = [𝑥𝑚, 𝑦𝑚].

2.1. Time model

The UAV, labeled as 𝑘, begins its operation at the dock, with an 
initial position of 𝐿𝑘(0) = 𝐿d = [𝑥d, 𝑦d], travels to the target area to 
collect data from the sensors, and subsequently returns to the dock.

The total time for the UAV’s journey from departure to return is 
T. At time 𝑡, where 0 ≤ 𝑡 ≤ 𝑇 , the horizontal projection of the UAV’s 
position is denoted as 𝐿𝑘(𝑡) = [𝑥𝑘(𝑡), 𝑦𝑘(𝑡)], and its battery energy is 
𝐸𝑘(𝑡).

To facilitate decision-making during the UAV’s flight, the contin-
uous time period T is divided into 𝑁 segments. The time 𝑡𝑛, where 
𝑛 ∈  = {0, 1,… , 𝑁}, marks the end of the 𝑛th segment. For brevity, 
the UAV’s position at the 𝑛th step is denoted as 𝐿𝑘[𝑛] = 𝐿𝑘(𝑡𝑛), where 
𝑛 ∈ {0, 1,… , 𝑁}.

The UAV’s flight trajectory during the mission is denoted as 𝑟𝑎𝑗 =
{

𝑇raj[1], 𝑇raj[2],… , 𝑇raj[𝑁]
}

, for all 𝑛 > 0, where each segment is defined 
as 𝑇raj[𝑛] = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐿𝑘[𝑛 − 1]𝐿𝑘[𝑛].

To increase the endurance and enhance energy efficiency, the UAV 
is programmed to fly at an optimal cruising speed 𝜈 for each trajectory 
segment 𝑇raj[𝑛], which ensures minimal energy consumption [31]. The 
parameter 𝛼 represents the horizontal direction of the UAV in the xy-
plane relative to the 𝑥-axis. The relationship between the UAV’s flight 
energy consumption and speed is depicted in Fig.  1.

When transitioning from one trajectory segment 𝑇raj[𝑛] to the next 
𝑇raj[𝑛 + 1](∀𝑛, 0 < 𝑛 < 𝑁), the UAV executes a uniformly accelerated 
circular turn with a fixed angular velocity 𝜔. For simplicity, the du-
ration of the turning maneuver is considered negligible compared to 
3 
Fig. 2. Sharpen UAV steering trajectory.

the overall flight time. To focus on the primary research objectives, the 
turning trajectory is sharpened, as shown in Fig.  2.

The horizontal direction 𝛼[𝑛] is defined as 𝛼(𝑡𝑛), with the initializa-
tion 𝛼[0] = 𝛼[1]. The UAV’s velocity for trajectory segment 𝑇raj[𝑛] is 
given by 
𝑉𝑘[𝑛] = [𝜈 cos 𝛼[𝑛], 𝜈 sin 𝛼[𝑛]] . (1)

2.2. Communication model

The SNs are assumed to be equipped with omnidirectional antennas, 
while the UAV is equipped with a miniature base station and an 
adaptive array antenna. This configuration enables the UAV to simul-
taneously receive signals from multiple directions using beamforming 
technology. The UAV operates at a horizontal plane at a stable height 
𝐻 above the SNs. It is assumed that the SNs are positioned at ground 
level, ignoring height differences caused by environmental factors, such 
as SNs positioned on trees in forests or floating on the ocean surface 
in marine scenarios. In practice, the flight altitude 𝐻 is set as the 
minimum height necessary to adapt to the terrain or avoid obstacles, 
minimizing the need for frequent altitude changes. Although this goes 
beyond our current consideration, we recognize that for environments 
with significant obstacles or complex terrain, or when dealing with 
particularly large amounts of data, the approach of fixing the UAV 
altitude plane may not be adequate. This could miss the opportunity 
to significantly improve communication conditions while spending rel-
atively less energy to do maneuvering, thus resulting a suboptimal 
solution.

Due to the low data generation rate of small SNs, the accumulated 
data volume 𝑤𝑚 of each SN is considered constant during the UAV’s 
mission, where 0 ≤ 𝑤𝑚 ≤ 𝑤max,∀𝑚 ∈ .

The UAV can activate SNs and establish network connections from 
a considerable distance. However, to ensure adequate communication 
quality, data transmission occurs only when the distance between the 
UAV’s projection point and an SN is less than 𝑅. The set of SNs meeting 
this condition at time 𝑡 is denoted as ′(𝑡) ⊆, satisfying 
𝑑𝑚(𝑡) = |𝐿𝑘(𝑡) − 𝐿𝑚| ≤ 𝑅,𝑚 ∈ ′(𝑡). (2)

Furthermore, since UAV flight at a relative low speed, the Doppler 
effect caused by the UAV mobility is assumed to be well estimated 
and then compensated at the receiver [32,33]. According to actual 
experimental reports, UAVs can establish line-of-sight (LoS) links with 
ground SNs at sufficiently high altitudes, and typically experience rich 
scattering as well as small-scale fading [34,35]. Along the UAV trajec-
tory, the LoS probability in a local region generally is not identical to 
that averaged over the whole area of interest. Therefore, we formulate 
channel as Rician fading model. Since time-varying elevation angle 
caused by UAV mobility exponentially affect the reflection, scattering, 
and obstruction [36], such an elevation angle-dependent Rician fading 
model is more practical than the conventional simplified LoS model. 
The channel between UAV and SN m is described as |ℎ (𝑡)|2 =

√

𝛽 (𝑡) ⋅
𝑚 𝑚
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𝑔𝑚(𝑡) [37], where 𝛽𝑚(𝑡) = 𝛽0𝑑−𝑎𝑚 (𝑡) is the large-scale average channel 
power gain that takes into account signal attenuation, including path 
loss and shadowing. 𝑎 denote the path loss exponent. 𝛽0 is the average 
channel power gain at the reference distance 𝑑0 = 1 𝑚. The small-scale 
fading coefficient is adopted as follows 

𝑔𝑚(𝑡) =

√

𝐾𝑚(𝑡)
𝐾𝑚(𝑡) + 1

ð +

√

1
𝐾𝑚(𝑡) + 1

ð̃, (3)

where ð and ð̃ are the deterministic LoS channel component with 
|ð| = 1 and the random scattering component, which is a zero-mean 
unit variance Circularly Symmetric Complex Gaussian (CSCG) random 
variable, respectively. Among them, 𝐾𝑚(𝑡) = 𝐴1 exp(𝐴2𝜃𝑚(𝑡)) denote 
the Rician factor [37], where 𝜃𝑚(𝑡) is the elevation angle given by 
𝜃𝑚(𝑡) = arctan( 𝐻

𝑑𝑚(𝑡)
), and 𝐴1, 𝐴2 are constant coefficients depending 

on the Rician factor 𝐾𝑚(𝑡) of specific environment, which satisfies 
𝐾𝑚𝑖𝑛 ≤ 𝐾𝑚(𝑡) ≤ 𝐾𝑚𝑎𝑥 [38]. 𝑃𝑡𝑟𝑎𝑛 is the transmission power of SN. 𝜎2 is 
the received noise power, and the total bandwidth is 𝐵. At the same 
moment 𝑡, orthogonal frequency division multiplexing technology is 
applied on UAVs for 𝐽 (𝑡) SNs to evenly distribute bandwidth to provide 
data collection services. Considering the data transmission of UAV SN 
𝑚 at time 𝑡, the maximum achievable rate is 

𝑟𝑚(𝑡) =
𝐵
𝐽 (𝑡)

log2

(

1 +
𝑃𝑡𝑟𝑎𝑛|ℎ𝑚(𝑡)|

2

𝜎2

)

. (4)

On trajectory 𝑇𝑡𝑟𝑎𝑗 [𝑛], the amount of data collected by the UAV is 
represented as 

𝑐[𝑛] =
∑

𝑚∈𝑀 ′
𝑚𝑖𝑛

{

∑

𝑗∈ [𝑛]
∫

𝑡𝑚,𝑗 [𝑛]

0
𝑟𝑚(𝑡)d𝑡, 𝑤𝑚

}

, (5)

where 𝑡𝑚,𝑗 [𝑛] indicates the maximum communication duration while the 
UAV is communicating with sensor node 𝑚 and the number of shared 
bandwidth satisfies 𝐽 (𝑡) = 𝑗, and  [𝑛] = {𝐽 (𝑡) ∣ 𝑡𝑛−1 < 𝑡 < 𝑡𝑛} represents 
the time data from 𝑡[𝑛−1] to 𝑡[𝑛]. Formal expressions can be perplexing, 
but in practice, programming implementation is relatively easy. We 
record the process required to calculate 𝑡𝑚,𝑗 [𝑛] and 𝐽 (𝑡) in Appendix 
A.

2.3. Energy model

The initial energy of the UAV is Ê𝑘. During flight, the UAV must 
overcome air resistance and gravity, and additional thrust is required 
for acceleration. The instantaneous power consumption for propul-
sion [39] is given by 

𝑃𝑘(𝑡) = 𝛾1 ‖𝑉 (𝑡)‖3 +
𝛾2

‖𝑉 (𝑡)‖

(

1 +
‖𝜓(𝑡)‖2

𝑔2

)

, (6)

where 𝜓(𝑡) denote the centrifugal acceleration of the UAV, 𝑔 denote the 
gravitational acceleration with a nominal value of 9.8 m∕s2, and 𝛾1, 𝛾2
are internal fixed parameters such as the weight of the UAV, wing area, 
and air density [40,41]. For the trajectory 𝑇𝑡𝑟𝑎𝑗 [𝑛], the UAV turning time 
is: 𝑡𝜓 = (𝛼[𝑛] − 𝛼[𝑛− 1])𝜔−1. The energy consumption of the UAV along 
the flight trajectory is expressed as: 

𝐸𝑡[𝑛] = 𝑃𝑘

(

‖𝑇raj[𝑛]‖
𝜈

− 𝑡𝜓
)

(𝑡𝑛−1 − 𝑡𝜓 ) + 𝑡𝜓𝑃𝑘𝑡𝑛−1. (7)

The UAV uses a fixed angular velocity for turning, as 𝑡𝑛−1 represents 
the moment when the UAV is considered to have completed a uniformly 
accelerated turn. Since the speed remains 𝜈, during the turning time 𝑡𝜓 , 
the tangential acceleration 𝑎∥ = 0, 𝑎⊥ = 𝑎̄, thus the average acceleration 
is given as follows

‖𝜓(𝑛)‖ = 1
𝑡𝜓

‖𝑉 [𝑛] − 𝑉 [𝑛 − 1]‖

= 𝜈
𝑡𝜓

√

2 − 2 cos(𝛼[𝑛] − 𝛼[𝑛 − 1]). (8)
4 
Basing on Eq. (8), the minimum reserved return energy consumption 
is calculated based on the current position of the UAV, which is the 
energy consumed for a straight-line return to the dock: 

𝜂(𝑡) =
𝐿𝑘(𝑡) − 𝐿d

𝜈
(

𝛾1𝜈
3 + 𝛾2𝜈−1

)

. (9)

We consider that the necessary condition for the UAV to safely 
return is 𝐸𝑘(𝑡) ≥ 𝜂(𝑡) + 𝜏, where 𝜏 is the constant for the measure-
ment error of the bottom battery energy and the additional reserved 
energy consumption for emergency landing. Considering that the com-
munication data volume is not large and the communication energy 
consumption is relatively small compared to the UAV propulsion power 
consumption, ignoring communication energy consumption does not 
affect the optimization goal of jointly optimize data collection and 
energy saving. Therefore, the remaining energy consumption at the end 
is 
𝐸𝑘(𝑇 ) = 𝐸𝑘(𝑡𝑁 ) = Ê𝑘 −

∑

𝑛∈
𝐸𝑡[𝑛]. (10)

2.4. Problem formulation

Since UAV can recharge after returning to the dock, consuming 
full battery energy has little meaning, except for increasing the risk of 
accidents and reducing battery life. Our objective is to jointly optimize 
data collection and remaining energy while ensuring the UAV return to 
the dock safely. This is formulated as a weighted maximization problem 

max
𝑥𝑘 ,𝑦𝑘

𝜆1
𝑁
∑

𝑛=1
𝑐[𝑛] + 𝜆2𝐸𝑘(𝑡𝑁 ) (11)

𝑠.𝑡. 𝐸𝑘(𝑡) ≥ 𝜂(𝑡) + 𝜏, 0 ≤ 𝑡 ≤ T (11a)

𝐿𝑘(0) = 𝑃d (11b)

‖𝐿𝑘[𝑁] − 𝑃d‖ ≤ 𝜖 (11c)
∑

𝑛∈
𝐸𝑡[𝑛] ≤ Ê𝑘 − 𝜏 (11d)

0 ≤ 𝑥𝑘(𝑡) ≤ W, 0 ≤ 𝑡 ≤ T (11e)

0 ≤ 𝑦𝑘(𝑡) ≤ L, 0 ≤ 𝑡 ≤ T (11f)

where (11a) denotes the UAV’s energy must always exceed the reserved 
energy level 𝜂(𝑡) + 𝜏 to ensure safe return. (11b) denotes UAV’s initial 
position is fixed at the docking center 𝑃d. (11c) represents UAV must 
return to within a radius 𝜖 of 𝑃d. (11d) represents the total energy 
consumed must not exceed the available energy minus the reserved 
energy 𝜏.

An additional initial condition constraint ensures that the problem 
is situated in an energy-limited practical application scenario is list at 
following 

𝑠.𝑡. Ê𝑘 < 𝑃𝑘
1
𝜈

𝑀̃
∑

𝑖<M, 𝑗=𝑖+1
‖𝐿𝑚𝑖 − 𝐿𝑚𝑗 ‖, (11g)

where 𝑀̃ is a sorted list of SNs based on their nearest-neighbor dis-
tances from the origin. This constraint implies that the UAV’s initial 
energy is insufficient for greedy, straight-line traversal of all SNs, and 
this may result in the UAV not being able to collect all the data from 
the SNs even under the optimal trajectory, highlighting the complexity 
of the solution space.

The positive constants 𝜆1 and 𝜆2 balance the dimensional differences 
between data collection and energy conservation. Adjusting the ratio 
allows the optimization to prioritize either maximizing collected data 
or conserving energy.

To evaluate algorithm performance, we use an explicit metric that 
highlights the trade-off between data collection and energy efficiency. 
The energy efficiency of data collection is defined as 

𝐷eff i =
∑𝑁
𝑛=1 𝑐[𝑛]

∑ ⋅
𝐸[𝑛] − 𝜏 . (12)
𝑚∈𝑤𝑚 Ê𝑘 − 𝜏
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If a single UAV mission collects data from all sensor nodes (SNs) 
and returns to dock using all available energy, the efficiency 𝐷eff i
would reach 100%. As the denominators are constant and 𝜆1, 𝜆2 > 0, 
maximizing 𝐷eff i is equivalent to solving the optimization problem. In 
addition, we define the energy efficiency of flight distance as: 

𝐹eff i =
(𝛾1𝜈3 + 𝛾2𝜈−1)𝑓dist (𝑡𝑛)

𝜈(Ê𝑘 − 𝐸[𝑛])
, (13)

where 𝑓dist (𝑡𝑛) denotes the total flight distance during the UAV’s mis-
sion. In our scenario, 𝐹eff i = 100% corresponds to a UAV flying at a 
constant velocity along a straight trajectory without acceleration, with 
all consumed energy used solely for steady-state flight.

Noting that constraint (11d) represents a long-term cumulative 
variable linked to the UAV’s trajectory, while constraints (11b) and 
(11c) impose restrictions on the UAV’s starting and ending positions, 
plus (11g) causing uncertainty to flight duration T. To determine 
the UAV’s position at each step, the entire flight process must be 
accounted. Additionally, constraint (11g) implicitly requires solving 
for a binary variable set to identify SNs that are skipped. The op-
timal solution is therefore dependent on the spatial distribution of 
the SNs. The nonlinearity of constraint (11a) makes the problem non-
smooth and non-differentiable, posing further challenges for traditional 
optimization algorithms.

Furthermore, solving the problem involves large-scale multivariable 
optimization, which increases the risk of the search process becoming 
trapped in local minima. This complexity makes traditional algorithms 
unsuitable for addressing dynamic optimization problems like (11). 
DRL, on the other hand, has proven to be an effective tool for solving 
complex control problems in high-dimensional continuous spaces [27]. 
To address the challenges of this problem, we propose SS-TD3, a 
DRL-based approach tailored for this scenario.

3. MDP formulation and design overview

Since the UAV’s position at step 𝑛 + 1 depends only on the states 
of SNs and itself at step 𝑛, the UAV can be modeled as an agent, 
and the next target flight position is applied as action to its current 
state, triggering the environment to transition into the next state. As 
a result, the flight process of UAV can be treated as MDP with 𝑁
steps. However, designing an effective reward function to facilitate 
DRL training poses significant challenges due to the problem’s specific 
constraints. This section reformulates the coupled constrained problem 
(11) as an MDP, addressing the reward function design challenges and 
progressively introducing the adopted reward function while explaining 
the motivation for incorporating S-ACL.

The MDP is represented as <  ,,, , >, where  and  denote 
the state and action spaces,  represents the state transition probability 
matrix, and  is the reward function. These elements are defined as 
follows

(a) State: At the 𝑛th time step, the state 𝑠𝑛 comprises the following:
(1) The UAV’s 2D coordinates within the operating region: 𝐿𝑘[𝑛] =

[𝑥𝑘(𝑡𝑛), 𝑦𝑘(𝑡𝑛)].
(2) The relative coordinate offset of the UAV from the dock: 

𝐿𝑘,d[𝑛] = 𝐿d − 𝐿𝑘[𝑛].
(3) The UAV’s remaining usable energy: 𝐸′

𝑘(𝑡𝑛) = 𝐸𝑘(𝑡𝑛) − 𝜂(𝑡𝑛) − 𝜏, 
excluding reserved energy for return and emergency use.

(4) Task completion rate: 𝜓(𝑡𝑛) = 𝐶[𝑛](
∑

𝑚∈ 𝑤̂𝑚)−1, where 𝑤̂𝑚 is 
the initial data size of SN 𝑚.

(5) The collectible data volumes of SNs: 𝑊 (𝑡𝑛) = {𝑤𝑚(𝑡𝑛) ∣ ∀𝑚 ∈
}.

(6) The coordinate offsets of SNs relative to the UAV: 𝐿𝑚,𝑘[𝑛] =
{𝐿𝑚 − 𝐿𝑘[𝑛] ∣ ∀𝑚 ∈ }.

Thus, the complete state at the 𝑛th time step is represented as 
𝑠𝑛 = {𝐿𝑘[𝑛], 𝐿𝑘,d[𝑛], 𝐸′

𝑘(𝑡𝑛), 𝜓(𝑡𝑛),𝑊 (𝑡𝑛), 𝐿𝑚,𝑘[𝑛]}.
(b) Action: To mitigate nonlinear complexities, the action 𝑎𝑛 is 

derived from arctan
( 𝑑𝑦
𝑑𝑥

)

, other than the direction indicator 𝛼[𝑛] ∈
(0, 2𝜋). Instead, it includes:
5 
(1) Horizontal flight component: 𝑑𝑥[𝑛] ∈ [−1, 1].
(2) Vertical flight component: 𝑑𝑦[𝑛] ∈ [−1, 1].
(3) Flight duration in the current direction: 𝑡𝑓 [𝑛] ∈ (0, 1], which 

will be scaled appropriately based on min{W,L}.
(c) Reward: The reward function plays a critical role in applying 

DRL algorithms. To streamline the discussion, we define the relevant 
rewarding factor and auxiliary functions as follows:

(1) 𝜇𝑐 ∈ (0, 1]: Rewarding for collecting data.
(2) 𝜇𝑒 ∈ (0, 1]: Rewarding for remaining energy when return.
(3) 𝜇𝑢 ∈ (0, 1]: Rewarding for consuming energy.
(4) 𝑝𝑒 > 0: Penalty for violating energy constraint.
The less-than-or-equal comparison function, which defined as:

Low(𝑥, 𝑦) =

{

1, if 𝑥 ≤ 𝑦,
0, otherwise.

Additionally, the function In(𝐿) determines whether a location 𝐿
falls within the UAV’s forward exploration field of view 𝛺. By com-
puting the boundaries of this field and substituting 𝐿 into the respec-
tive inequality constraints, its status can be established. For brevity, 
implementation details are omitted here:

In(𝐿) =

{

1, if location 𝐿 lies within the field of view 𝛺
0, otherwise.

The goal of the reward design is to maximize data collection while 
minimizing energy consumption, and the initial binary reward function 
is constructed as follows
𝑅3(𝑛) = 𝜇𝑐𝑐[𝑛] (14)

+ 𝜇𝑒𝐸𝑘(𝑡𝑛) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖)

− 𝑝𝑒(1 − 𝜙(𝑡𝑛)) ⋅ Low(𝐸𝑘(𝑡𝑛), 𝜂(𝑡𝑛)).

The reward function 𝑅3(𝑛) consist of three parts: a reward for data 
collection, a reward for remaining energy when return constraints are 
met and a penalty for energy constraint violations.

Nevertheless, in the specific context of this work, the second part 
leads to a local optimum solution. Besides, 𝑅3(𝑛) suffers from reward 
sparsity, leading to inefficient UAV exploration, such as hovering in 
areas without active SNs. This inefficiency significantly reduces sample 
efficiency and prolongs training times. Practical experiments reveal 
challenges in convergence in Section 5.3. Due to above reason, we 
applied reward shaping and proposed an improved reward function

𝑅4(𝑛) = 𝑅3(𝑛) (15)
+ 𝜇𝑢(Ê𝑘 − 𝐸𝑘(𝑡𝑛)) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖)

+
∑

𝑚∈
In(𝐿𝑚)𝜇𝑐𝑤𝑚(‖𝐿𝑚,𝑘[𝑛]‖ + 𝑅)−1

+ In(𝐿d)

√

max{‖𝐿𝑘,𝑑 [𝑛]‖ − ‖𝐿𝑘,𝑑 [𝑛 − 1]‖, 0}
‖𝐿𝑘,𝑑 [𝑛]‖ + ‖𝑇raj[𝑛]‖(𝑡𝑛 − 𝑡𝑛−1)−1

.

Basing on 𝑅3(𝑛), three new parts was introduced to enhance 𝑅4(𝑛). 
The first part encourages UAV to consume energy. Following two parts 
incentive UAV to move toward SN nodes and approaching the dock 
more rapidly. These improvements enhancing data collection and en-
suring successful returns. However, performance remains suboptimal, 
as the experiment in Section 5.3 shows.

Further analysis revealed conflicts among reward components due 
to energy constraints (11g). Maximizing data collection conflicts with 
the energy required for returning, leading to suboptimal exploration. 
Adjusting reward factors, such as 𝜇𝑒 and 𝑝𝑒, biases the UAV toward 
returns, reducing exploration. Neither removing penalties nor using 
constant return rewards resolved these issues.

To address this, we decompose the reward function into three 
progressive components and propose a staged training method to uti-
lize them. This approach innovatively smooths policy transitions and 
improves convergence. The method presented in Section 4 integrates 
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𝑅1(𝑛), 𝑅2(𝑛) and 𝑅3(𝑛) with the TD3 algorithm to achieve effective 
results.

𝑅1(𝑛) = 𝑅3(𝑛) (16)
+ 𝜇𝑢(Ê𝑘 − 𝐸𝑘(𝑡𝑛)) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖)

− 𝜇𝑒𝐸𝑘(𝑡𝑛) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖).

Compared to 𝑅3(𝑛), the reward 𝑅1(𝑛) of 1st stage removes the 
remaining energy reward from returns, prioritizing exploration over 
energy conservation. This lays the foundation for subsequent energy-
saving optimization.

𝑅2(𝑛) = 𝑅3(𝑛) (17)
+ 𝜇𝑢(Ê𝑘 − 𝐸𝑘(𝑛)) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖).

The reward 𝑅2(𝑛) of 2nd stage eliminates guiding rewards to reduce 
side effects. With 𝑅1(𝑛) as a foundation, 𝑅2(𝑛) encourage saving battery 
energy and improves UAV performance.

Finally, the simplified binary reward 𝑅3(𝑛) balances data collec-
tion and return priorities, while reducing side effects, which achieves 
effective training and performance.

Algorithm 1 S-ACL Algorithm
nput: 𝐾,𝜑𝑘, 𝜌𝑘, 𝑅𝑘(𝑠, 𝑎), 𝐴̃𝑘, 𝑁𝑘, 𝛾𝑘, 𝛼𝑘, Actor network 𝜋𝜃 , Critic network 

𝑄𝜙
1: for 𝑘 = 1 to 𝐾 do
2:  Apply Xavier distribution on 𝜃𝑘, 𝜙𝑘
3:  Clear replay buffer 𝑅
4:  if 𝑘 > 1 then
5:  𝜃𝑘−1, 𝜙𝑘−1 ← Load(𝑓𝜃,𝜙)
6:  𝜙𝑘 ← (1 − 𝜌𝑘)𝜙𝑘 + 𝜌𝑘𝜙𝑘−1
7:  𝜃𝑘 ← 𝜃𝑘−1
8:  end if
9:  Initialize environment with reward 𝑅𝑘(𝑠, 𝑎) as 𝐸𝑛𝑣
10:  for 𝑒 = 1 to 𝑁𝑘 do
11:  𝑠 ← 𝑠0 Obtain initial state by resetting 𝐸𝑛𝑣
12:  Set count 𝑛← 0, terminated flag 𝐷 ← 0
13:  repeat
14:  Select action 𝑎← 𝐴𝑘(𝜋𝜃 , 𝑒,…)
15:  Interact (𝑠′, 𝑎, 𝑟, 𝑑) ← 𝐸𝑛𝑣(𝑎)
16:  Store transition (𝑠, 𝑎, 𝑟, 𝑑) into 𝑅
17:  𝑠← 𝑠′, 𝐷 ← 𝑑
18:  if update available then
19:  Sample mini-batch as (𝑠̄, 𝑎̄, 𝑟̄, 𝑠̄′) from 𝑅
20:  𝛿𝜙 ← Loss(𝑟̄ + 𝛾𝑘𝑄𝜙(𝑠̄′, 𝑎̄), 𝑄𝜙(𝑠̄, 𝑎̄))
21:  𝜙← 𝜙 + 𝛼𝑘∇𝜙(𝛿𝜙)
22:  𝑛← 𝑛 + 1
23:  if 𝑛 > 𝜑𝑘 then
24:  ∇𝜃𝐽 (𝜃) ← ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡) ⋅ 𝐺(𝛿𝜙, 𝜋𝜃 , 𝜋old, 𝑠𝑡, 𝑎𝑡)
25:  𝜃 ← 𝜃 + 𝛼𝑘∇𝜃𝐽 (𝜃)
26:  end if
27:  end if
28:  until 𝐷 == 1
29:  end for
30:  𝑓𝜃,𝜙 ← Store(𝜃𝑘, 𝜙𝑘)
31: end for

4. Proposed scheme

In this section, we introduce the S-ACL and SS-TD3 algorithms. 
The SS-TD3 algorithm, designed to enhance convergence through im-
proved exploration techniques, is applied in conjunction with the S-ACL 
method to maximize data collection efficiency while ensuring the UAV 
returns successfully.
6 
4.1. S-ACL

To make reinforcement learning methods more effective in solving 
the problem outlined in this paper and to enhance agent performance, 
we propose the Staged Actor–Critic based reinforcement Learning (S-
ACL) method, which is built upon the AC reinforcement learning frame-
work. The pseudocode is provided in Algorithm 1. The method utilizes 
the Critic network to take both state and action as inputs, leveraging the 
strengths of AC algorithms. By maintaining a consistent state space, the 
parameters of the Actor network, which are responsible for generating 
effective policies, can be reused. This allows for incremental training 
in the existing solution space, thus providing flexibility in defining 
the reward function and exploration strategy. Specifically, the complex 
reward function can be splitted according to a progressive objective, 
combining different training parameters and exploration strategies in 
multiple stages (see Fig.  3).

Algorithm 2 SS-TD3 Algorithm
nput: 𝜑𝑘, 𝜌𝑘, 𝑅1(𝑛), 𝑅2(𝑛), 𝑅3(𝑛), 𝛾𝑘, 𝛼𝑘,  Gaussian noise 𝜎𝑘, 𝑘 ∈ {1, 2, 3}
1: 𝐴̃1 and 𝐴̃2: Random exploration with 𝜁 (𝑡), 𝐴̃3: 𝜖 − 𝐺𝑟𝑒𝑒𝑑𝑦 with 
exploration probability 𝜖(𝑡)

2: for 𝑘 = 1 to 3 do
3:  Initialize critic networks 𝑄𝜙1 , 𝑄𝜙2 , actor network 𝜋𝜃
4:  Apply Xavier distribution on 𝜙1, 𝜙2, 𝜃
5:  if 𝑘 > 1 then
6:  𝜃′, 𝜙′

1, 𝜙
′
2 ← Load(𝑓𝜃,𝜙)

7:  𝜙𝑖 ← (1 − 𝜌𝑘)𝜙𝑖 + 𝜌𝑘𝜙′
𝑖−1, 𝑖 = 1, 2

8:  𝜃 ← 𝜃′

9:  end if
10:  Initialize: 𝑄′

𝜙1
← 𝑄𝜙1 , 𝑄′

𝜙2
← 𝑄𝜙2 , 𝜋′𝜙 ← 𝜋𝜙

11:  Clear replay buffer 𝑅
12:  Initialize environment with reward 𝑅𝑘(𝑠, 𝑎) as 𝐸𝑛𝑣
13:  for 𝑒 = 1 to 𝑁𝑘 do
14:  𝑠0 ← Reset environment to obtain initial state
15:  Set count 𝑛← 0, terminated flag 𝐷 ← 0
16:  repeat
17:  repeat
18:  Select action 𝑎(𝑡) ← 𝐴𝑘(𝜋𝜃 , 𝑒,…)
19:  until 𝜁 (𝑡) = 1 and 𝑎(𝑡) satisfies (11a)
20:  Interact (𝑠′, 𝑎, 𝑟, 𝑑) ← 𝐸𝑛𝑣(𝑎)
21:  Store transition (𝑠, 𝑎, 𝑟, 𝑑) into 𝑅
22:  𝑠 ← 𝑠′, 𝐷 ← 𝑑
23:  if update available then
24:  Sample mini-batch (𝑠̄, 𝑎̄, 𝑟̄, 𝑠̄′) from 𝑅
25:  𝑎̂← 𝜋′𝜙(𝑠

′) + 𝜎 ⋅ clip(𝑎𝑙𝑜𝑤, 𝑎ℎ𝑖𝑔ℎ)
26:  𝑦← 𝑟̄ + (1 − 𝑑)𝛾𝑘min𝑖=1,2{𝑄𝜙′𝑖 (𝑠̄

′, 𝑎̂)}
27:  𝛿𝜙 ←𝑀𝑆𝐸(𝑦,𝑄𝜙(𝑠̄, 𝑎̄))
28:  𝜙← 𝜙 + 𝛼𝑘∇𝜙(𝛿𝜙)
29:  if 𝑛 > 𝜑𝑘 then
30:  ∇𝜃𝐽 (𝜃) ← ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡) ⋅𝑄𝜙(𝑠𝑡, 𝑎)

|

|

|𝑎=𝜋𝜃 (𝑠𝑡)
31:  𝜃 ← 𝜃 + 𝛼𝑘∇𝜃𝐽 (𝜃)
32:  end if
33:  𝜙′

𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙′
𝑖 , 𝑖 = 1, 2

34:  𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′, 𝑛← 𝑛 + 1
35:  end if
36:  until 𝐷 == 1
37:  end for
38:  𝑓𝜃,𝜙 ← Store(𝜙1, 𝜙2, 𝜃)
39: end for

Moreover, since each new stage refreshes the replay buffer with 
experiences from the previous stage’s more effective policy network, 
low-quality samples are filtered out, leading to more efficient sam-
ple usage and improved training performance. The S-ACL method is 
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Fig. 3. SS-TD3 Illustration.
inherently suitable for a variety of AC-based reinforcement learning 
algorithms, such as A2C, DDPG, and PPO. By carefully selecting reward 
functions that are well-aligned with the problem’s objectives, the orig-
inal complexity is reduced, thereby enabling better alignment of the 
reinforcement learning agent’s training goals and enhancing its overall 
performance.

For the S-ACL training over 𝐾 stages, 𝑘 ∈  = 1, 2,… , 𝐾, we prepare 
𝐾 reward functions 𝑅𝑘(𝑠, 𝑎) and exploration strategies 𝐴𝑘, with each 
stage training for 𝑁𝑘 episodes, setting the Actor network update delay 
𝜑𝑘, and the Critic parameter inheritance rate 𝜌𝑘 ∈ (0, 1).

Different AC type algorithms implement the update factor 𝐺(⋅) for 
the Critic’s output in different ways. In A2C and its derivatives, this 
is represented as 𝐺𝐴2𝐶 = 𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡), where 𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡) is the advantage 
function. For DDPG, it is 𝐺DDPG = ∇𝑎𝑄𝜙(𝑠𝑡, 𝑎)

|

|

|

𝑎 = 𝜋𝜃(𝑠𝑡); for SAC, it 
is 𝐺SAC = ∇𝑎𝑄(𝑠𝑡, 𝑎)

|

|

|

𝑎 = 𝜋𝜃(𝑠𝑡) + 𝛼∇𝜃(𝜋𝜃); and for PPO, it is 𝐺PPO =
min

(

𝜌 ⋅𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡), clip(𝜌, 1 − 𝜖, 1 + 𝜖) ⋅𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡)
)

. In general, we express 
this as 𝐺(𝛿𝜙, 𝜋𝜃 , 𝜋old, 𝑠𝑡, 𝑎𝑡), and the original algorithm implementations 
should be followed during use. Due to this non-invasive nature, S-ACL 
provides an easy-to-implement training method.

The Actor network training delay typically accounts for about 10% 
of the total training time for each stage. The parameter 𝜑𝑘 should be 
set based on practical considerations, such as when the Critic network 
loss is relatively stable. This parameter also serves as the pretraining 
time for the Critic. In stages that reuse the Actor network parameters, 
the proportion of randomly generated actions during interaction with 
the environment should not be excessively high. Instead, noise-based 
exploration is recommended.

The Store and Load functions refer to storing and loading model 
parameters from the file 𝑓𝜃,𝜙. After completing training in each stage 
and saving the parameters, training can be paused, which is beneficial 
for practical use. This step is optional, and after training each stage, a 
copy of the Actor network is created. Before starting each new stage, 
Critic network parameters are reset either randomly using the Xavier
method or by resetting (1 − 𝜌𝑘) of the parameters. The entire process 
continues through all stages. When using the Polyak method to inherit 
part of the Critic parameters from the previous stage, setting 𝜌𝑘 = 0.3
can help reduce the pretraining time for the Critic. However, 𝜌𝑘 should 
not be set too high, as this can lead to difficulties in eliminating side 
effects.

4.2. SS-TD3

To planning the UAV trajectory for problem (11), we introduce 
the SS-TD3 algorithm, which combines the TD3 algorithm with the 
previously discussed S-ACL method.
7 
As its name implies, SS-TD3 leverages TD3 [27], a state-of-the-
art AC algorithm for continuous control tasks, as the foundation for 
our design. The pseudocode for SS-TD3 is presented in Algorithm 2. 
The Staged-Safe-action-TD3 (SS-TD3) algorithm integrates three-stage 
training approach from S-ACL with the TD3 reinforcement learning 
algorithm, incorporating a safety-focused exploration strategy.

In the first stage, we apply a relatively high Gaussian noise 𝜎1 =
 (0, 0.4) along with an 𝜖-Greedy random exploration strategy. The 
reward function 𝑅1(𝑛) is selected to maximize the UAV’s exploration of 
the target area, while simultaneously guiding it to return and approach 
SNs for data collection. In the second stage, the Gaussian noise is 
reduced to 𝜎2 =  (0, 0.25), and the safe exploration strategy is main-
tained to allow the UAV to learn the return path. The reward function 
𝑅2(𝑛) is chosen to eliminate the guiding reward and optimizes the 
UAV’s strategy to balance exploration with battery energy conservation. 
In the final stage, moderate Gaussian noise 𝜎3 =  (0, 0.3) is applied, 
and noise decay is introduced to facilitate the observation of final 
training outcomes in the last episodes. The reward function 𝑅3(𝑛) is 
applied to focus on optimizing the problem (11) during training and 
aims to minimize the side effects of the reward function.

By structuring the training in this way, SS-TD3 efficiently combines 
exploration and safety, allowing for optimal trajectory planning and 
energy efficiency in UAV operations.

5. Experiments

To evaluate the performance of the SS-TD3 algorithm, we conducted 
a comparative experiments involving the proposed SS-TD3 and imple-
mented baseline methods, listed as below. Further, Section 5.3 and 
Section 5.4 conducted another two experiments to demonstrate the 
necessity of applying S-ACL and the performance of S-ACL.

5.1. Simulation settings

1. Greedy Search (GS): The GS algorithm is employed to determine 
a trajectory that guarantees a successful return, after which it 
attempts to enhance data collection by optimizing the insertion 
of discarded nodes along the path.

2. Ant Colony Optimization (ACO): The classic original ACO algo-
rithm is utilized to find the shortest path to visit SNs nodes based 
on pheromone trails, with no assurance of ensuring a successful 
return.

3. Constraint Ant Colony Optimization (CACO): This algorithm 
is a modified version of the original ACO algorith, incorporating 
pheromone-based adaptations to meet energy consumption and 
return constraints. The ants search for the shortest path while 
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Table 1
Simulation parameters.
 Parameters Value  
 bandwidth (𝐵) [42] 10 MHz  
 noise power (𝜎2) [43] −110 dBm  
 UAV height (𝐻) [44] 120 m  
 proportion parameter (𝛾1) 9.26 × 10−4  
 proportion parameter (𝛾2) 2250  
 channel gain at unit distance (𝛽0) −50 dB  
 power efficient speed (𝜈) 36.72 KM/H 
 transmission radius (𝑅) [44] 60 m  
 UAV battery energy (Ê𝑘) 120,000 J  
 reserved battery energy (𝜏) 20,000 J  
 actor delay of 2nd stage (𝜙2) 3 × 103  
 actor delay of 3rd stage (𝜙3) 4 × 103  
 inherit rate of 2nd 3rd stage (𝜌2 , 𝜌3) 0.2  
 replay buffer size 1 × 105  
 polak factor for target network 0.002  
 ant numbers 20  
 heuristic algorithm iterations 500  
 pheromone decay 0.95  

considering the available remaining energy. If the remaining 
energy is insufficient for return, the exploration of the path is 
terminated. The pheromone release rate is influenced by the 
variance in data volumes at SNs nodes, and path optimization 
is performed accordingly. These improvements, compared to the 
basic ACO algorithm, significantly enhance both the reliability of 
return and the efficiency of data collection.

To maintain focus on the primary research objectives, the details of 
the implemented baseline algorithm are presented in Appendix  B.

The GS algorithm outputs a trajectory directly after searching. The 
heuristic algorithm provides a converged trajectory after a sufficient 
number of iterations. In contrast, the result of the SS-TD3 algorithm 
is a trained reinforcement learning model. We use the trained model 
to interact with the environment in the evaluation mode, recording 
the results of each interaction. The baseline algorithm’s trajectory is 
converted into a series of actions, with the corresponding interaction 
results with the environment recorded.

During each simulation, four algorithms are executed simultane-
ously, and testing is conducted in 11 randomly generated environ-
ments. A total of 20 SNs are randomly generated with a minimum 
inter-node distance in each environment. The total data volume of SNs 
in each environment is constant and is randomly partitioned among 
all SNs using an integer random method. To ensure fairness, the initial 
environment is replicated for each group of algorithms. The baseline 
algorithm’s trajectory, after sufficient convergence, and the evaluation 
of the SS-TD3 model are repeated 300 times across all random envi-
ronments. Table  2 records the remaining battery energy, return to base 
(converted to 0/1 to averaged as back ratio), total flight distance and 
data ratio result in each group when the evaluation finish. In the end, 
the outputs are averaged to obtain the final results, which are presented 
in Fig.  8.

In the SS-TD3 algorithm, certain parameters differ across the three 
training stages. The learning rates for the Critic are set to: 0.001, 0.001,
0.0001, and the discount factors are: 0.975, 0.99, 0.968. The learning rate 
of the Actor is always 0.1 times that of the Critic. We adopt the network 
with 512 × 512 Multi-Layer Perceptron (MLP) architecture and ReLU 
activation. The number of training episodes for the three stages are set 
to: 8000, 6000, 5000, and the corresponding training curves are shown 
in Fig.  4 and Fig.  5. For the ACO and CACO algorithms, the distance 
index is twice the pheromone index, and the weight index for node 
data volume is set to a reasonable value. All other key parameters are 
listed in Table  1, with the remaining parameters set to optimal values 
as determined by the experiments. These parameters are not further 
elaborated here.
8 
Fig. 4. 1st stage of SS-TD3.

Fig. 5. 2nd stage of SS-TD3.

Fig. 6. 3rd stage of SS-TD3.

5.2. SS-TD3 performance

Fig.  4 and Fig.  5 present the training curves for the first and second 
stage of SS-TD3. The segmented time model ensures the effectiveness 
of the baseline exploration strategy, maintaining a certain level of 
exploration efficiency. Additionally, with the aid of a safe exploration 
strategy, random exploration can still yield some rewards. As indicated 
by reward 𝑅(1), the majority of the initial rewards are related to the 
energy consumption during the return trip. This significantly motivates 
further exploration. While the average reward shows only a slight 
increase, the maximum reward reaches values exceeding 200. In the 
second stage of training, the underlying S-ACL method successfully in-
herits the strategic advantages from the first stage, leading to a further 
improvement in the reward and bringing the average reward closer 
to the peak. Due to the substantial reward loss resulting from UAV 
return failures, the actual reward curve depicted in light blue, exhibits 
considerable fluctuations during training. However, these fluctuations 
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Fig. 7. Captured example trajectory at SS-TD3 3rd stage.
Fig. 8. SS-TD3 vs baselines.

become more stable over time and gradually decrease as the training 
converges.

Fig.  6 illustrates the final stage of training, where the Actor net-
work’s initial policy already shows strong performance. As the noise 
and safe random exploration strategies diminish, the mean of the 
reward curve begins to rise and ultimately reaches its optimal value 
toward the end. Notably, some episodes in the early stages of training 
achieve exceptionally high rewards. Given the influence of initial noise 
on the network’s actions and the role of the safe exploration strategy 
in ensuring successful return, it is reasonable for some episodes to 
yield such high rewards. As the exploration factor gradually decays to 
zero over time, maintaining a stable return and reward values requires 
the agent to rely on its own learned behaviors. The steady increase 
in the reward curve indicates that the agent has learned the optimal 
trajectory, achieving successful returns while also maintaining a high 
data collection rate.

Fig.  7 depicts a trajectory diagram for an episode near the end 
of the final stage of training in the SS-TD3 algorithm. In this study’s 
scenario, the overhead does not stem from data transmission. There-
fore, the UAV’s trajectory optimization strategy should fit the positions 
of specific SNs using linear regression. It must also ensure that the 
communication time aligns with the data volume within the effective 
transmission range of SNs with high data loads. Without designing a 
specific reward function for this characteristic of the optimal trajectory, 
the DRL neural network automatically captures this feature through 
gradient optimization in high-dimensional space.

Additionally, due to the introduction of random noise during train-
ing, the UAV initially missed SN numbered 18 and subsequently devi-
ated from its intended path. However, as illustrated in the figure, the 
UAV, guided by the reinforcement learning agent, adaptively corrected 
its trajectory. The ability to resist certain noise disturbances is one of 
the reasons we favor reinforcement learning for training the agent.

Fig.  8(a) illustrates that the ACO algorithm achieves the highest 
energy efficiency among all baselines at the maximum data collection 
9 
Fig. 9. S-TD3 with binary reward.

rate. However, it fails to guarantee reliable return to the base. The data 
collection rate of the GS algorithm is limited to 88%. Among the base-
lines, the CACO algorithm emerges as the best in meeting operational 
requirements while maintaining balanced overall performance.

Fig.  8(b) depicts a comparison between the SS-TD3 algorithm and 
the CACO algorithm. Both achieve a 100% return rate and demon-
strate comparable performance in terms of average data collection rate 
and flight energy consumption. Benefiting from its significantly higher 
residual energy, SS-TD3 outperforms the CACO algorithm and other 
baseline methods in energy efficiency.

5.3. Necessity of S-ACL

Based on the S-ACL method, SS-TD3 introduces two additional 
training stages. To highlight the necessity of using the S-ACL method, 
we illustrate the performance of the Safe-action-TD3 (S-TD3) algorithm, 
which does not incorporate S-ACL, within the environment Env.01. We 
record the data ratio in training along with the gained reward. Training 
runs on both binary reward function 𝑅3(𝑛) and complex reward func-
tion 𝑅4(𝑛) with reward shaping. Both variants were trained for 15,000 
episodes, with the training results presented in Fig.  9 and Fig.  10.

Fig.  9 illustrates that with sufficient training episodes, the average 
reward curve for the binary reward function 𝑅3(𝑛) stabilizes around 
70, with the maximum stable reward not exceeding 80. The average 
data collection rate was below 20%, and the training performance 
was nearly unsuccessful. We infer that more than half of the rewards 
stem from remaining energy consumption, which led the agent to 
forgo the pursuit of data collection rewards and become trapped in a 
local optimum. Additionally, the sparsity of the binary reward function 
exacerbates this issue.

Fig.  10 demonstrates that with adequate training, the reward func-
tion 𝑅 (𝑛) yields an average data collection rate of approximately 80%, 
4
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Table 2
Numerical results of SS-TD3,GS,ACO,CACO.
 𝐸[𝑁] (𝐽 ) ↑ Successful return 𝑓𝑑𝑖𝑠𝑡(𝑡𝑛) ↓ Data ratio↑
 SS-TD3 GS ACO CACO SS-TD3 GS ACO CACO SS-TD3 GS ACO CACO SS-TD3 GS ACO CACO 
 Env.01 33836.5 20569.0 23061.0 22168.9 true true false true 2531.7 2893.0 2750.1 2971.4 0.925 0.693 0.829 0.884 
 Env.02 36581.2 24056.6 31058.7 23487.1 true true true true 2490.9 2775.9 2619.4 2911.2 1.0 1.0 1.0 0.930 
 Env.03 30224.0 26552.1 28345.3 22409.6 true true true true 2617.4 2633.9 2625.7 2915.3 0.981 0.906 1.0 0.968 
 Env.04 34996.5 20984.6 24206.9 20754.1 true true true true 2497.7 2767.5 2825.9 2946.0 0.941 0.825 1.0 0.941 
 Env.05 39440.1 23821.3 21835.8 21128.5 true true false true 2422.5 2891.9 2759.2 2945.2 0.979 0.802 1.0 0.987 
 Env.06 32935.5 31040.1 20282.2 20676.2 true true false true 2542.6 2436.0 2768.4 2958.6 0.947 0.967 1.0 0.967 
 Env.07 37316.0 22677.3 28799.3 20519.8 true true true true 2507.9 2754.4 2672.9 2856.6 0.917 1.0 1.0 0.974 
 Env.08 39664.9 20289.1 30919.6 29557.4 true true true true 2454.9 2907.9 2658.6 2773.0 0.974 0.924 1.0 0.974 
 Env.09 37722.2 22877.8 23183.7 21548.8 true true true true 2402.6 2870.6 2758.0 2784.0 0.967 1.0 1.0 0.967 
 Env.10 37513.2 32109.0 28011.9 23163.3 true true true true 2412.6 2505.7 2662.5 2936.8 0.968 0.800 1.0 0.968 
 Env.11 36501.0 20457.1 24025.6 23596.1 true true true true 2553.9 2908.4 2812.5 2860.7 0.949 0.791 1.0 0.968 
Fig. 10. S-TD3 with reward shaping.

and with further training episodes, the peak reward can reach 250, 
which is higher than the results from the first stage of SS-TD3. Based on 
our domain knowledge, using 𝑅4(𝑛) provides a significant performance 
improvement over 𝑅3(𝑛), but it still falls short of the average data 
collection rate of 95.94% achieved by SS-TD3 with three-stage training. 
As discussed in Section 3, the design of shaped rewards can sometimes 
conflict with the final objective and introduce unintended side effects. 
Although the complex function with shaped reward we developed 
has undergone several experimental refinements and is quite effective, 
designing a perfect reward function remains challenging. Such side 
effects are difficult to avoid in complex environments, and achieving 
an ideal reward function is generally a challenging task.

5.4. S-ACL performance

Further, we verify the effectiveness of the S-ACL method using 
the external standard environment LunarLander-v3 from the OpenAI 
Gym library,3 as shown in Fig.  11. The goal of the LunarLander-
v3 environment is to control a lander with jet engine switches and 
directional controls to achieve a safe soft landing using its two land-
ing legs. This environment is a classic rocket trajectory optimization 
problem. We choose it due to its sufficient complexity which shares 
many similarities with our environment. The requirements for a soft 
landing and return at the final step are comparable, with success and 
failure being rewarded in completely different ways. Activating the jet 
engines consumes energy, and saving energy leads to higher scores. 
However, this environment does not impose a total energy limit, and 
there is no optimization objective along the trajectory, making agent 
training easier than in the data collection environment studied in this 

3 The source code of lunarlander environment we used for experime-
nts(v1.0.0 release): https://github.com/Farama-Foundation/Gymnasium/blob
/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/luna
r_lander.py
10 
Fig. 11. Gym LunarLander-v3 Environment Illustrator.

paper. This convenience makes it ideal for testing the S-ACL method. 
It should be noted, however, that the S-ACL method will perform well 
in more complex environments.

The Gym documentation4 states that an episode is considered suc-
cessfully solved if the total reward exceeds 200. The detailed rewards 
consist of the items listed below.
1. ± as the lander is closer/further to the landing pad.
2. ± as the lander is moving slower/faster.
3. is decreased the more the lander is tilted.
4. +10 for each leg that is in contact with the ground.
5. −0.03 each frame a side engine is firing.
6. −0.3 each frame the main engine is firing.
7. -100/+100 for crashing/landing safely.
We grouped experiments based on different discount factors and 

trained the original DDPG algorithm for timesteps=6e5. DDPG, based 
on the AC framework, is an effective method for solving continuous 
control tasks [45]. Compared to TD3, DDPG has a simpler structure 
and faster training speed, making it the preferred choice for test-
ing the effectiveness of the S-ACL algorithm in the LunarLander-v3 
environment.

After basic tuning of other hyperparameters, we explored the opti-
mal discount factor. To eliminate human error, all groups were trained 
in identical environments with the same random seed, differing only in 
the discount factor. Training was recorded by completed episodes, with 
the cumulative reward per episode representing the episode’s return. 
Returns and average losses were recorded, and the results were plotted 
in Fig.  12.

In Fig.  12, different discount factors have a significant impact on 
training performance. For gamma=0.97 and gamma=0.98, the agent’s 
learning appears relatively stable. However, while gamma=0.97 yields 
only a few episodes with rewards exceeding 200, the majority of results 

4 Document online: https://gymnasium.farama.org/v1.0.0/environments/
box2d/lunar_lander/
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Fig. 12. DDPG training under different discount factor gamma.
are unsatisfactory. In contrast, gamma=0.98 achieves better perfor-
mance in most episodes. The loss for gamma=0.97 remains stable but 
corresponds to mediocre overall training outcomes. For gamma=0.99, 
the loss oscillates significantly, resulting in unstable training perfor-
mance within the given timesteps. Further increasing the discount 
factor to gamma=0.995 leads to enormous losses and nearly complete 
training failure.

The large number of steps per episode in the LunarLander-v3 en-
vironment magnifies the impact of the discount factor on the agent’s 
long-term vision. It is worth noting that the total number of episodes 
trained varies across different discount factors due to the Gym’s proto-
col truncating episode over 1,000 steps. This truncation occurs when 
the agent over-controls the lander, causing it to hover for too long, 
exhaust its fuel, and fail to land, ultimately leading to poor returns.

The gamma=0.98 group completes the highest number of episodes 
with the same total timesteps and achieves the best average returns. 
Therefore, we selected the gamma=0.98 group as the baseline model 
for validating the performance of the S-ACL algorithm.

Next, we evaluated the performance of the S-ACL algorithm. We 
conducted two-stage training with DDPG, naming the combined al-
gorithm S-DDPG. Specifically, we used the gamma=0.98 model di-
rectly as the first stage of S-DDPG. The second stage parameters were 
set as 𝜙 = 1𝑒5 and 𝜌 = 0.3, with the discount factor modified to 
gamma=0.995. Other hyperparameters and training settings for the 
second stage remained consistent with the original DDPG group.

It is important to note that in the LunarLander-v3 environment, 
the first three components of the reward system act as guiding re-
wards, helping the agent balance the lander’s posture and approach 
the landing point to accelerate convergence. However, these rewards 
can sometimes cause the lander to hover in the air for an extended 
period. In the second stage, we removed these guiding rewards, re-
ducing the maximum total reward by 200 points and mitigating the 
side effects caused by guiding rewards. This adjustment supplemented 
the 2nd stage training to produce the S-DDPG model. Both the S-DDPG 
and original DDPG models were evaluated over 1,000 episodes with 
identical initial environments and random seeds, and the results are 
shown in Fig.  13.

The results show that S-DDPG improves the average return by 
approximately 10% compared to DDPG and increases the landing suc-
cess rate to 97.0%. However, the average return in successful landing 
episodes shows minimal improvement. This is because S-DDPG primar-
ily optimizes situations where DDPG struggles to achieve successful 
11 
Fig. 13. DDPG vs S-DDPG on LunarLander-v3.

landings, while its energy optimization effects are less evident for al-
ready successful landing scenarios. Observations indicate that episodes 
with difficult landings often involve significant initial velocity offsets 
and may exceed 500 steps. Even when landing succeeds, it requires 
considerable energy consumption, resulting in low or even negative re-
turns. For situations where landing is straightforward, S-DDPG reduces 
the frequency of engine activation, optimizing energy consumption; 
otherwise, the average return for successful landings would have de-
creased. Overall, it can be concluded that S-DDPG improves landing 
success rates without compromising landing performance.

The step count per episode in the LunarLander-v3 environment can 
reach 1,000. By combining the moderate discount factor gamma=0.98 
and the long-term discount factor gamma=0.995 in two-stage training 
and leveraging reward shaping for initial training, the results demon-
strate that the S-ACL method significantly enhances performance. This 
two-stage training approach balances the agent’s long-term vision while 
avoiding issues such as the severe loss oscillations or gradient explo-
sions, seen in Fig.  12(3) and Fig.  12(4) when using large discount 
factors from the start. It also mitigates the side effects of reward 
shaping, facilitating smoother training.

6. Conclusion

In this paper, we propose SS-TD3, a DRL-based algorithm designed 
to generate energy-efficient flight trajectories for data collection tasks 
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under insufficient energy and return to base constraints. SS-TD3 aims 
to maximize data collection while ensuring return-to-base capability, 
intelligently generating the UAV’s motion strategy to optimize energy 
use. As the fundamental training framework of SS-TD3, the S-ACL 
algorithm leverages the actor–critic framework by decoupling the re-
ward function, exploration strategy, and parameter configuration. This 
staged decomposition simplifies training in complex adversarial envi-
ronments while preserving agent performance. Numerical results show 
that SS-TD3 significantly outperforms baseline methods in energy effi-
ciency. Moreover, S-ACL enhances training effectiveness. Future work 
will explore applying S-ACL in more realistic scenarios with practical 
motion UAV constraints across different sensor network scales.
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Appendix A. Connection time

The flight time corresponding to the chord length formed by the in-
tersection of the UAV trajectory 𝑇raj[𝑛] with the circular communication 
range of SN 𝑚 is defined as the maximum connection time 𝑡𝑚[𝑛]. This 
value serves as a direct intermediate variable for calculating 𝑡𝑚,𝑗 [𝑛].

The connection time refers to the sum of flight times over the chord 
when the UAV passes through the user’s circular communication range.

Algorithm 3  [𝑡] at connection time
Input: 𝑇 = {(𝑡𝑀,𝑖, 𝑡𝑁,𝑖), 𝑖 ∈ }. results  ← []
1: 𝑇with_index ← {(𝑡𝑀,𝑖, 𝑡𝑁,𝑖, 𝑖) ∣ 𝑖 ∈ }
2: 𝑇sorted ← sort(𝑇with_index, key = 𝑡𝑀,𝑖)
3:  ← [𝑡𝑀,𝑖, 𝑡𝑁,𝑖 ∣ 𝑖 ∈ ]
4:  ← unique(sort())
5: for all (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) ∈  do
6:  counter 𝑗 ← 0
7:   ← {}
8:  for all 𝜏𝑖 ∈ 𝑇sorted do
9:  if 𝑡𝑀,𝑖 ≤ start and 𝑡𝑁,𝑖 ≥ end then
10:  𝑗 ← 𝑗 + 1
11:  add 𝑖 into indices
12:  end if
13:  end for
14:  append (𝑟𝑎𝑛𝑔𝑒 = (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑), 𝑗,) into 
15: end for

Given the UAV trajectory segment 𝐿 with endpoints 𝐿1(𝑥0, 𝑦0) and 
𝐿2(𝑥1, 𝑦1), where (𝑥1 − 𝑥0) ⋅ (𝑦1 − 𝑦0) ≠ 0, and the communication radius 
𝑅 of SN 𝑚 at 𝑃𝑚(𝑥𝑝, 𝑦𝑝), the line equation for 𝐿 in the coordinate system 
is expressed as: 𝐿 ∶ 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. The parametric equation of 𝐿
is given as follows, where 𝑡𝑃  is the parameter corresponding to a point 
𝑃  on 𝐿 ∶ (𝑥 − 𝑥 , 𝑦 − 𝑦 ) = 𝑡 ⋅ 𝑛̄ , where, the coefficients are defined 
0 0 𝐴𝐵

12 
as 𝐴 = 𝑦1 − 𝑦0, 𝐵 = −(𝑥1 − 𝑥0), and 𝐶 = 𝑥1𝑦0 − 𝑥0𝑦1, while the direction 
vector 𝑛̄𝐴𝐵 is: 𝑛̄𝐴𝐵 = (𝑥1 − 𝑥0, 𝑦1 − 𝑦0).

The objective is to calculate the chord length within the communi-
cation range of the SN, 𝑀𝑁 , which is given by:

𝑀𝑁 =

{

0 if 𝑑 = 0
(|𝑡𝑀 − 𝑡𝑁 |) ⋅ ‖𝑛̄𝐴𝐵‖ if 𝑑 > 0.

where the perpendicular distance 𝑑 from the center of the circle 
𝑃𝑚(𝑥𝑝, 𝑦𝑝) to the line 𝐿 is: 𝑑 = 𝐿𝑃 = |𝐴𝑥𝑝+𝐵𝑦𝑝+𝐶|

√

𝐴2+𝐵2
.

The line 𝐿 intersects the circle centered at 𝑃𝑚(𝑥𝑝, 𝑦𝑝) with radius 𝑅, 
forming a chord 𝑀𝑁 , where the endpoints 𝑀(𝑥𝑀 , 𝑦𝑀 ) and 𝑁(𝑥𝑁 , 𝑦𝑁 )
are given by:
(𝑥𝑀 , 𝑦𝑀 ) = (𝑥′, 𝑦′) + 𝜆(−𝐵,𝐴)

(𝑥𝑁 , 𝑦𝑁 ) = (𝑥′, 𝑦′) − 𝜆(−𝐵,𝐴),

where, 𝜆 =
√

𝑅2−𝑑2
√

𝐴2+𝐵2
 and (𝑥′, 𝑦′) is the projection of point 𝑃𝑚(𝑥𝑝, 𝑦𝑝) onto 

the line 𝐿:

(𝑥′, 𝑦′) = (𝑥𝑝, 𝑦𝑝) −
(𝐴𝑥𝑝 + 𝐵𝑦𝑝 + 𝐶)

𝐴2 + 𝐵2
(𝐴,𝐵).

Thus, the maximum connection time is calculated as 𝑡𝑚[𝑛] = |𝑀𝑁| ⋅
𝜈−1. Additionally, the time intervals (𝑡𝑀,𝑚, 𝑡𝑁,𝑚), for all 𝑚 ∈ ′, are 
determined, allowing for the computation of the starting connection 
time points  [𝑡]. The pseudocode for this calculation is provided in 
Algorithm 3.

Appendix B. Baseline algorithm

Algorithm 4 Greedy Search Algorithm (GS)
Input: Position of SNs 𝐋 = {𝐿𝑚|𝑚 ∈ }, UAV total energy 𝐸full
Output: Optimized route 𝑟
1: Calculate distance matrix 𝐃 using 𝐋
2: Initialize route 𝑟 = [0] (starting from dock)
3: Nodes to select 𝑁𝑠 = {0, 1,… ,𝑀}, nodes to discard 𝑁𝑑 = ∅
4: Available energy 𝐸 = 𝐸full, flying direction 𝛼 = 𝛼0
5: while 𝑁𝑠 ≠ ∅ do
6:  Sort 𝑁𝑠 by row denoting distances from the current position 
𝐷[𝑟[−1]], yielding 𝑛̃𝑠

7:  if a node in 𝑁𝑠 can be visited and return within available energy
then

8:  Obtain the index of node 𝑛̄ and compute energy cost 𝐸𝑛 using 
𝛼 via Eq.  (9)

9:  Update direction 𝛼 and available energy 𝐸 ← 𝐸 − 𝐸𝑛
10:  Add node 𝑛̄ to route 𝑟
11:  Remove node 𝑛̄ from 𝑁𝑠
12:  else
13:  Remove a node 𝑛𝑑 ∈ 𝑟 such that its sum distance to other 

nodes in 𝑟 is maximum
14:  Add node 𝑛𝑑 to 𝑁𝑑
15:  end if
16: end while
17: for node 𝑛 ∈ 𝑁𝑑 do
18:  Try to insert 𝑛 into an adjacent position in 𝑟 if round-trip energy 

constraint is satisfied
19: end for

Existing studies rarely consider both node weights and return con-
straints simultaneously, and in this work, the flight energy consumption 
is related to the flight direction. It is difficult to find algorithms com-
patible with the existing energy consumption models. Alternatively, we 
designed two algorithms, GS and CACO, demonstrated in Algorithm 4 
and Algorithm 5, as benchmarks to evaluate the performance of SS-
TD3. The former is based on greedy routing and brute-force search, 
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Algorithm 5 Constraint Ant Colony Optimization (CACO)
nput: SNs positions 𝐋, SNs data 𝐖, energy 𝐸, initial direction 𝜃0, best 
path count 𝑛, Optimal path 𝐩∗

Output: optimal path 𝐩∗
1: Initialize all paths 𝐏 ← ∅
2: Normalize 𝐋, 𝐖 to range [0, 1]
3: Compute distance matrix 𝐃[𝑖, 𝑗] for all 𝑖, 𝑗 using 𝐋
4: Initialize pheromone matrix 𝚽 ← 1

𝑁
5: for each iteration 𝑡 = 1 to T do
6:  𝐏 ← ∅
7:  for each ant 𝑘 = 1 to 𝑀 do
8:  Initialize path 𝑟 ← [], energy 𝐸, direction 𝜃 ← 𝜃0
9:  while 𝐸 satisfies constraint (11a) do
10:  Select next node 𝑗∗ based on

𝑃 (𝑗|𝑖) =
𝛷[𝑖, 𝑗]𝛼(𝜂[𝑖, 𝑗])𝛽

∑

𝑘∉visited𝛷[𝑖, 𝑘]𝛼(𝜂[𝑖, 𝑘])𝛽

11:  Compute 𝜂[𝑖, 𝑗] = 1
𝐃[𝑖,𝑗] + 𝛾

𝐖[𝑗]
max𝐖

12:  Calculate energy consumption 𝑒𝑖𝑗 by Eq.  (7)
13:  𝐸 ← 𝐸 − 𝑒𝑖𝑗 , 𝜃 ← 𝜃𝑖𝑗
14:  Append 𝑗∗ to path 𝑟
15:  end while
16:  Add path 𝑟 to 𝐏
17:  end for
18:  Spread pheromone on best 𝑛 paths in 𝐏

𝛷[𝑖, 𝑗] ← 𝛷[𝑖, 𝑗] +
𝑊total
𝐃[𝑖, 𝑗]

19:  Update 𝐩∗ if a better path exists in 𝐏
20:  Apply pheromone decay: 𝚽 ← 𝚽 ⋅ 𝜌
21: end for

while the latter is inspired by the pheromone mechanism of ACO 
algorithms and offers superior theoretical performance.

The GS algorithm consists of two stages. In the first stage, the UAV 
greedily flies to the nearest unvisited SN node from the current set 
of unvisited SNs. If visiting the selected SN would prevent the UAV 
from returning, the node is abandoned and added to a discard list. The 
UAV then re-selects greedily until all nodes have been attempted. In 
the second stage, the nodes in the discard list are sorted based on the 
sum of their distances to all other nodes. Each node in the discard list 
is iterated through, and the algorithm attempts to insert the node into 
the UAV’s current trajectory between every pair of consecutive visited 
nodes. For each insertion, it tests whether the UAV can still return. 
If feasible, the node is inserted; otherwise, it remains discarded. This 
process continues until the discard list is fully traversed. Note that both 
stages are necessary: the first stage ensures a trajectory that guarantees 
return, while the second stage optimizes the trajectory to maximize 
data collection.

In CACO algorithm, ants select nodes based on pheromone levels 
and the data volume differences among selectable nodes. If the next 
step in the route would prevent the ant from returning, the route is 
terminated, ensuring that the pheromones always include the path back 
to the starting point. During the reinforcement of pheromones on the 
optimal path, adjustments are made to the pheromone levels along 
the path based on the current route and distances. Compared to the 
standard ACO algorithm, these modifications significantly enhance the 
return probability and data collection rate.

Data availability

Data will be made available on request.
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