
Journal of Systems Architecture 168 (2025) 103566

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Trajectory design for data collection under insufficient UAV energy: A staged

actor–critic reinforcement learning approach
Jing Mei a , Yuejia Zhang a , Zhao Tong a ,∗,1, Keqin Li b,c ,2

a College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
b College of Information Science and Engineering, Hunan University and National Supercomputing Center in Changsha, 410082, Hunan, China
c Department of Computer Science, State University of New York, 12561, NY, New Paltz, USA

A R T I C L E I N F O

Keywords:
Data collection
DRL
Energy efficiency
Fixed-wing UAV
Staged actor–critic based reinforcement
learning (S-ACL)

 A B S T R A C T

Fixed-wing unmanned aerial vehicles (UAVs) offer distinct advantages for large-scale environmental sensor
data collection. In forest and marine scenarios, UAVs typically depart from a fixed location, collecting data
along a route, and return. Unlike existing work aiming to minimizing energy consumption on data collection
task, this study focus on the scenario where a UAV’s initial energy may not be sufficient to visit all sensor
nodes. We aim to maximize data collection under insufficient battery energy while make a safety return. To
solve this, we adopt the twin delayed deep deterministic policy gradient (TD3) algorithm with three designed
reward functions, and introduce a stage-based safe action algorithm, termed Staged Safe-Action TD3 (SS-
TD3). An energy consumption model incorporating acceleration and a segmented time model are used to
enhance exploration efficiency. To tackle sparse binary rewards and the suboptimal convergence of complex
reward function in reinforcement learning, a staged training approach, Staged Actor–Critic based reinforcement
Learning (S-ACL) is proposed, as the one of the fundamental component of SS-TD3. Experimental results show
that SS-TD3 achieves the best energy efficiency compared to baselines, while S-ACL significantly improves
policy performance in complex reward environments.
1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have attracted
widespread attention as flying wireless communication platforms due
to the high mobility and flexible deployment capabilities [1,2]. In cel-
lular applications, UAVs have been utilized as temporary base stations
to rapidly restore service during natural disasters [3] and to offload
data during special events or high-traffic periods [4]. In the context of
the Internet of Things (IoT) and wireless sensor networks (WSNs), UAVs
also serve as mobile aggregators, enabling efficient data collection from
ground-based sensor devices [5].

Since UAVs are fully controllable and capable of operating at the air,
they can be dispatched to perform specialized missions in remote and
challenging regions, such as forests, plateaus, polar areas, oceans, and
deserts. These regions are often characterized by harsh environmental
conditions, vast geographic coverage, and prohibitively high costs for
establishing reliable ground-based communication infrastructure. Wire-

∗ Corresponding author.
E-mail addresses: jingmei@hunnu.edu.cn (J. Mei), 202320294086@hunnu.edu.cn (Y. Zhang), tongzhao@hunnu.edu.cn (Z. Tong), lik@newpaltz.edu (K. Li).

1 Member, IEEE.
2 Fellow, IEEE.

less sensors (SNs) are commonly deployed there for purposes such as
meteorological monitoring, structural health monitoring of buildings,
and environmental and ecological monitoring. These sensors typically
operate on a periodic or event-triggered basis, collecting data at fixed
intervals or in response to specific events. These sensors are often
sparsely distributed in the monitored area and are characterized by
relatively low generated data volume, high latency tolerance, and
extreme energy efficiency [6].

Given the agility, on-demand deployment capabilities, low-altitude
operation, and the ability to establish reliable communication links
with ground sensors, UAVs are extensively used for data collection
tasks, as the preferred solution in many remote monitoring and data
gathering scenarios [7–9].

1.1. Related works

Despite of the advantages, the limited battery capacity of UAVs
poses significant challenges to practical applications. In remote regions,
https://doi.org/10.1016/j.sysarc.2025.103566
Received 11 April 2025; Received in revised form 8 July 2025; Accepted 22 Augus
vailable online 15 September 2025
383-7621/© 2025 Elsevier B.V. All rights are reserved, including those for text and
t 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0000-0002-6258-0114
https://orcid.org/0009-0007-9352-4821
https://orcid.org/0000-0002-8624-6364
https://orcid.org/0000-0001-5224-4048
mailto:jingmei@hunnu.edu.cn
mailto:202320294086@hunnu.edu.cn
mailto:tongzhao@hunnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2025.103566
https://doi.org/10.1016/j.sysarc.2025.103566

J. Mei et al.

Journal of Systems Architecture 168 (2025) 103566
UAVs assigned to collect sensor data must return to areas with reliable
network infrastructure. The long-distance round trips required for such
missions consume a substantial amount of battery energy. Furthermore,
UAVs must also be retrieved after completing the tasks. Consequently,
efficient utilization of UAV battery energy necessitates careful trajec-
tory optimization or deployment planning. Sun et al. [10] applied the
deep deterministic policy gradient (DDPG) algorithm to optimize UAV
trajectories, maximizing data collection while minimizing flight energy
consumption. Fang et al. [11] reduced the total energy consumption of
the offloading system by jointly optimizing the task offloading decision,
3D deployment of two-tier UAVs, the elevation angle of the bottom
UAV. Kang et al. [12] employed UAVs for multi-hop routing in IoT
systems to aggregate and collect data, achieving optimized total system
energy consumption.

While the studies just mentioned and [13,14] directly or indirectly
improved UAV flight energy efficiency, they did not account for scenar-
ios involving insufficient energy or the optimization of energy required
for the return trip. Xiuwen et al. [15] introduce the unmanned ground
vehicle as a charging platform for the UAV assisted IoT networks,
optimize the cooperative trajectories and enabling the UAV to take off
and land on the UGV at appropriate times. Mekala et al. [16] maximize
the data collection and reduce the AoI of collected data under the
energy consumption constraint of UAVs in the context of urban flood
monitoring. However, our research is a bit more challenge. The SNs are
self-sustaining, and the UAV dones’t have sufficient battery energy to
perform the usual energy optimization, which maximize the total data
collection objective at first, and optimize energy consumption next.

In remote regions characterized by large geographic coverage, de-
ploying multiple UAVs performing data collection tasks is a common
approach. Studies such as [10,12] explored the use of multiple UAVs for
data collection. However, these methods require addressing challenges
such as collision avoidance and other additional factors, resulting in
complex trajectory planning and high deployment difficulties.

An alternative strategy is to establish multiple operational docks,
with each dock responsible for a specific area. UAVs can then be
deployed on demand to collect data within the assigned areas before
returning to the respective dock for recharging or further deployment.
Guo et al. [17] investigated UAV-assisted downlink wireless networks
with fixed charging stations, optimizing charging service time alloca-
tion, flight trajectories, and transmission power allocation to maximize
user data rates. Li et al. [18] optimized UAV flight distances and mini-
mized task completion times. A V-shaped trajectory in large-scale areas
is proposed by taking into account that UAVs can continue collecting
data while flying away from SNs during hovering-based data collection.

During each flight, the maximum available energy of a fully charged
UAV is generally a constant, while the minimum energy required to
cover a target area remains uncertain. This study focuses on data
collection tasks performed by a single UAV within a predefined target
area. Specifically, we aim to design UAV trajectories that adapt to
energy constraints, optimizing energy efficiency under conditions of
insufficient energy availability.

Existing research predominantly considers two types of UAVs: rot-
ary-wing UAVs and fixed-wing UAVs. Most of the aforementioned stud-
ies focus on the former. Compared to rotary-wing UAVs with hovering
ability, fixed-wing UAVs offer greater payload capacity, higher speeds,
and longer operational lifespans. They are more appropriate for long-
distance missions or applications involving remote WSNs from this
perspective, and is often given priority selection in such scenarios [19–
21]. Also hybrid-wing UAV combine the advantages of both rotary-
wing and fixed-wing, but is relatively expensive [22]. In this study, we
focus on the use of fixed-wing UAVs for round-trip data collection in
remote region, aiming to address the challenges of optimizing energy
efficiency in such scenarios.

Due to the sparse distribution of SNs, applying DRL in such a
sparse reward environment often encounter the suboptimal perfor-
2
mance, which require additional approach to address [23–25]. Heuris-
tic algorithms are generally less impacted by the sparsity of SNs and are
therefore widely applied to UAV trajectory planning tasks in remote
areas [18,19]. However, as trajectory guidance methods, their solu-
tion lie on discrete space. In contrast, intelligent agents trained using
reinforcement learning (RL) can continuously and adaptively adjust
UAV motion strategies, adapt to continuous space, enabling obstacle
avoidance [26] and mitigating the effects of noise interference. DRL,
with its ability to leverage artificial neural networks for solving high-
dimensional or continuous action space problems, has been proposed as
an effective method for addressing trajectory optimization challenges in
UAV communication [27].

1.2. Motivation

Although reinforcement learning-based intelligent agents bring UAVs
adequate adaptive machine intelligence. Applying RL in scenarios
characterized by energy insufficiency where return-to-base operations
are prioritized and sparse distributions of SNs in remote areas presents
substantial challenges. First, the use of discrete-time models and binary
reward functions often leads to sparse rewards, making it difficult for
the agent to learn effectively. Second, insufficient energy causes many
initial training episodes to fail in completing return-to-base operations,
resulting in low sample efficiency during training. Furthermore, in
training adaptive return-to-base strategies, the absence of reliable met-
rics to clearly differentiate between outbound and return stages creates
ambiguity in determining the optimal solution. In summary, sparse
reward and energy constraints significantly hinder the convergence of
RL training.

There are some ways to deal with these challenges. While re-
ward sparsity can be mitigated through reward shaping, previous ex-
periments [26,28] indicate that shaped rewards often hinder explo-
ration and conflict with the optimization objectives, degrading train-
ing performance. Hindsight Experience Replay (HER), proposed by
Rent et al. [28], addresses sparse rewards without requiring domain
knowledge. Zheng et al. [29] employed Bayesian optimization, which
improves sample efficiency. However, HER relies on the environment
providing clear goal information, which is unsuitable for scenario of
complex goals in our study, and Bayesian optimization introduces sig-
nificant computational overhead. We would prefer a simple approach
if possible.

In this study, the DRL-based trajectory design problem is investi-
gated for UAV data collection task under insufficient battery energy
with safety return constraint in remote regions. First, we construct a
UAV-assisted sensor data collection system. Second, we formulate the
trajectory design problem as a data collection maximization problem.
The optimization goal is to jointly maximize the amount of data col-
lected and the remaining energy after the UAV returns. Finally, we
convert the problem into a Markov Decision Process (MDP) and define
the state space, action and reward function. However, it is hard to
avoid potential side effects in a complex reward function with reward
shaping. To resolve this, S-ACL is proposed as a simple yet effective
method to overcome training convergence difficulties and reduce side
effects. Based on S-ACL and TD3, combined with a well-designed 3-
stage training and safe action exploration, we propose SS-TD3 to solve
the trajectory design problem and conducted three group of experi-
ments to verify the performance of SS-TD3, the necessity of utilizing
S-ACL, and the performance of S-ACL on gym environment respectively.

To the best of our knowledge, no existing research has addressed
the comprehensive optimization of data collection tasks using reinforce-
ment learning in scenarios characterized by insufficient energy and
sparse rewards. This work seeks to fill that gap by focusing on such
challenging scenarios. In addressing the key issues of this study, our
primary contributions are summarized as follows.

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
Fig. 1. Typical power required curve vs speed [30].

1.3. Contribution

(1) This study addresses the problem of optimizing UAV trajectory
planning for data collection tasks in continuous space, taking
into account the restrictions of UAV return and insufficient bat-
tery energy. A DRL algorithm, SS-TD3, is proposed to facilitate
efficient task execution and energy conservation in UAVs.

(2) S-ACL is proposed as the foundation framework for SS-TD3.
This method enhances the performance of Actor–Critic-based
RL algorithms by allowing greater flexibility in the design of
the reward function, exploration methods, and the parameters
through staged training.

(3) Time model is improved in simulation experiments by replacing
the discrete-time model with a segmented continuous-time cal-
culation, which significantly narrows the policy space, enhances
exploration efficiency, and mitigates reward sparsity, improving
the adaptability of DRL algorithms.

2. System model

In this work, we consider a UAV-assisted sensor data collection
system. The system comprises M wireless, low-power, self-sustaining
SNs, denoted as 𝑚 ∈  = {𝑚1, 𝑚2,… , 𝑚𝑀}, which are randomly
distributed within the target area of size W × L 𝑚2. The position of a
sensor node 𝑚 is represented as 𝐿𝑚 = [𝑥𝑚, 𝑦𝑚].

2.1. Time model

The UAV, labeled as 𝑘, begins its operation at the dock, with an
initial position of 𝐿𝑘(0) = 𝐿d = [𝑥d, 𝑦d], travels to the target area to
collect data from the sensors, and subsequently returns to the dock.

The total time for the UAV’s journey from departure to return is
T. At time 𝑡, where 0 ≤ 𝑡 ≤ 𝑇 , the horizontal projection of the UAV’s
position is denoted as 𝐿𝑘(𝑡) = [𝑥𝑘(𝑡), 𝑦𝑘(𝑡)], and its battery energy is
𝐸𝑘(𝑡).

To facilitate decision-making during the UAV’s flight, the contin-
uous time period T is divided into 𝑁 segments. The time 𝑡𝑛, where
𝑛 ∈  = {0, 1,… , 𝑁}, marks the end of the 𝑛th segment. For brevity,
the UAV’s position at the 𝑛th step is denoted as 𝐿𝑘[𝑛] = 𝐿𝑘(𝑡𝑛), where
𝑛 ∈ {0, 1,… , 𝑁}.

The UAV’s flight trajectory during the mission is denoted as 𝑟𝑎𝑗 =
{

𝑇raj[1], 𝑇raj[2],… , 𝑇raj[𝑁]
}

, for all 𝑛 > 0, where each segment is defined
as 𝑇raj[𝑛] = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐿𝑘[𝑛 − 1]𝐿𝑘[𝑛].

To increase the endurance and enhance energy efficiency, the UAV
is programmed to fly at an optimal cruising speed 𝜈 for each trajectory
segment 𝑇raj[𝑛], which ensures minimal energy consumption [31]. The
parameter 𝛼 represents the horizontal direction of the UAV in the xy-
plane relative to the 𝑥-axis. The relationship between the UAV’s flight
energy consumption and speed is depicted in Fig. 1.

When transitioning from one trajectory segment 𝑇raj[𝑛] to the next
𝑇raj[𝑛 + 1](∀𝑛, 0 < 𝑛 < 𝑁), the UAV executes a uniformly accelerated
circular turn with a fixed angular velocity 𝜔. For simplicity, the du-
ration of the turning maneuver is considered negligible compared to
3
Fig. 2. Sharpen UAV steering trajectory.

the overall flight time. To focus on the primary research objectives, the
turning trajectory is sharpened, as shown in Fig. 2.

The horizontal direction 𝛼[𝑛] is defined as 𝛼(𝑡𝑛), with the initializa-
tion 𝛼[0] = 𝛼[1]. The UAV’s velocity for trajectory segment 𝑇raj[𝑛] is
given by
𝑉𝑘[𝑛] = [𝜈 cos 𝛼[𝑛], 𝜈 sin 𝛼[𝑛]] . (1)

2.2. Communication model

The SNs are assumed to be equipped with omnidirectional antennas,
while the UAV is equipped with a miniature base station and an
adaptive array antenna. This configuration enables the UAV to simul-
taneously receive signals from multiple directions using beamforming
technology. The UAV operates at a horizontal plane at a stable height
𝐻 above the SNs. It is assumed that the SNs are positioned at ground
level, ignoring height differences caused by environmental factors, such
as SNs positioned on trees in forests or floating on the ocean surface
in marine scenarios. In practice, the flight altitude 𝐻 is set as the
minimum height necessary to adapt to the terrain or avoid obstacles,
minimizing the need for frequent altitude changes. Although this goes
beyond our current consideration, we recognize that for environments
with significant obstacles or complex terrain, or when dealing with
particularly large amounts of data, the approach of fixing the UAV
altitude plane may not be adequate. This could miss the opportunity
to significantly improve communication conditions while spending rel-
atively less energy to do maneuvering, thus resulting a suboptimal
solution.

Due to the low data generation rate of small SNs, the accumulated
data volume 𝑤𝑚 of each SN is considered constant during the UAV’s
mission, where 0 ≤ 𝑤𝑚 ≤ 𝑤max,∀𝑚 ∈ .

The UAV can activate SNs and establish network connections from
a considerable distance. However, to ensure adequate communication
quality, data transmission occurs only when the distance between the
UAV’s projection point and an SN is less than 𝑅. The set of SNs meeting
this condition at time 𝑡 is denoted as ′(𝑡) ⊆, satisfying
𝑑𝑚(𝑡) = |𝐿𝑘(𝑡) − 𝐿𝑚| ≤ 𝑅,𝑚 ∈ ′(𝑡). (2)

Furthermore, since UAV flight at a relative low speed, the Doppler
effect caused by the UAV mobility is assumed to be well estimated
and then compensated at the receiver [32,33]. According to actual
experimental reports, UAVs can establish line-of-sight (LoS) links with
ground SNs at sufficiently high altitudes, and typically experience rich
scattering as well as small-scale fading [34,35]. Along the UAV trajec-
tory, the LoS probability in a local region generally is not identical to
that averaged over the whole area of interest. Therefore, we formulate
channel as Rician fading model. Since time-varying elevation angle
caused by UAV mobility exponentially affect the reflection, scattering,
and obstruction [36], such an elevation angle-dependent Rician fading
model is more practical than the conventional simplified LoS model.
The channel between UAV and SN m is described as |ℎ (𝑡)|2 =

√

𝛽 (𝑡) ⋅
𝑚 𝑚

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
𝑔𝑚(𝑡) [37], where 𝛽𝑚(𝑡) = 𝛽0𝑑−𝑎𝑚 (𝑡) is the large-scale average channel
power gain that takes into account signal attenuation, including path
loss and shadowing. 𝑎 denote the path loss exponent. 𝛽0 is the average
channel power gain at the reference distance 𝑑0 = 1 𝑚. The small-scale
fading coefficient is adopted as follows

𝑔𝑚(𝑡) =

√

𝐾𝑚(𝑡)
𝐾𝑚(𝑡) + 1

ð +

√

1
𝐾𝑚(𝑡) + 1

ð̃, (3)

where ð and ð̃ are the deterministic LoS channel component with
|ð| = 1 and the random scattering component, which is a zero-mean
unit variance Circularly Symmetric Complex Gaussian (CSCG) random
variable, respectively. Among them, 𝐾𝑚(𝑡) = 𝐴1 exp(𝐴2𝜃𝑚(𝑡)) denote
the Rician factor [37], where 𝜃𝑚(𝑡) is the elevation angle given by
𝜃𝑚(𝑡) = arctan(𝐻

𝑑𝑚(𝑡)
), and 𝐴1, 𝐴2 are constant coefficients depending

on the Rician factor 𝐾𝑚(𝑡) of specific environment, which satisfies
𝐾𝑚𝑖𝑛 ≤ 𝐾𝑚(𝑡) ≤ 𝐾𝑚𝑎𝑥 [38]. 𝑃𝑡𝑟𝑎𝑛 is the transmission power of SN. 𝜎2 is
the received noise power, and the total bandwidth is 𝐵. At the same
moment 𝑡, orthogonal frequency division multiplexing technology is
applied on UAVs for 𝐽 (𝑡) SNs to evenly distribute bandwidth to provide
data collection services. Considering the data transmission of UAV SN
𝑚 at time 𝑡, the maximum achievable rate is

𝑟𝑚(𝑡) =
𝐵
𝐽 (𝑡)

log2

(

1 +
𝑃𝑡𝑟𝑎𝑛|ℎ𝑚(𝑡)|

2

𝜎2

)

. (4)

On trajectory 𝑇𝑡𝑟𝑎𝑗 [𝑛], the amount of data collected by the UAV is
represented as

𝑐[𝑛] =
∑

𝑚∈𝑀 ′
𝑚𝑖𝑛

{

∑

𝑗∈ [𝑛]
∫

𝑡𝑚,𝑗 [𝑛]

0
𝑟𝑚(𝑡)d𝑡, 𝑤𝑚

}

, (5)

where 𝑡𝑚,𝑗 [𝑛] indicates the maximum communication duration while the
UAV is communicating with sensor node 𝑚 and the number of shared
bandwidth satisfies 𝐽 (𝑡) = 𝑗, and  [𝑛] = {𝐽 (𝑡) ∣ 𝑡𝑛−1 < 𝑡 < 𝑡𝑛} represents
the time data from 𝑡[𝑛−1] to 𝑡[𝑛]. Formal expressions can be perplexing,
but in practice, programming implementation is relatively easy. We
record the process required to calculate 𝑡𝑚,𝑗 [𝑛] and 𝐽 (𝑡) in Appendix
A.

2.3. Energy model

The initial energy of the UAV is Ê𝑘. During flight, the UAV must
overcome air resistance and gravity, and additional thrust is required
for acceleration. The instantaneous power consumption for propul-
sion [39] is given by

𝑃𝑘(𝑡) = 𝛾1 ‖𝑉 (𝑡)‖3 +
𝛾2

‖𝑉 (𝑡)‖

(

1 +
‖𝜓(𝑡)‖2

𝑔2

)

, (6)

where 𝜓(𝑡) denote the centrifugal acceleration of the UAV, 𝑔 denote the
gravitational acceleration with a nominal value of 9.8 m∕s2, and 𝛾1, 𝛾2
are internal fixed parameters such as the weight of the UAV, wing area,
and air density [40,41]. For the trajectory 𝑇𝑡𝑟𝑎𝑗 [𝑛], the UAV turning time
is: 𝑡𝜓 = (𝛼[𝑛] − 𝛼[𝑛− 1])𝜔−1. The energy consumption of the UAV along
the flight trajectory is expressed as:

𝐸𝑡[𝑛] = 𝑃𝑘

(

‖𝑇raj[𝑛]‖
𝜈

− 𝑡𝜓
)

(𝑡𝑛−1 − 𝑡𝜓) + 𝑡𝜓𝑃𝑘𝑡𝑛−1. (7)

The UAV uses a fixed angular velocity for turning, as 𝑡𝑛−1 represents
the moment when the UAV is considered to have completed a uniformly
accelerated turn. Since the speed remains 𝜈, during the turning time 𝑡𝜓 ,
the tangential acceleration 𝑎∥ = 0, 𝑎⊥ = 𝑎̄, thus the average acceleration
is given as follows

‖𝜓(𝑛)‖ = 1
𝑡𝜓

‖𝑉 [𝑛] − 𝑉 [𝑛 − 1]‖

= 𝜈
𝑡𝜓

√

2 − 2 cos(𝛼[𝑛] − 𝛼[𝑛 − 1]). (8)
4
Basing on Eq. (8), the minimum reserved return energy consumption
is calculated based on the current position of the UAV, which is the
energy consumed for a straight-line return to the dock:

𝜂(𝑡) =
𝐿𝑘(𝑡) − 𝐿d

𝜈
(

𝛾1𝜈
3 + 𝛾2𝜈−1

)

. (9)

We consider that the necessary condition for the UAV to safely
return is 𝐸𝑘(𝑡) ≥ 𝜂(𝑡) + 𝜏, where 𝜏 is the constant for the measure-
ment error of the bottom battery energy and the additional reserved
energy consumption for emergency landing. Considering that the com-
munication data volume is not large and the communication energy
consumption is relatively small compared to the UAV propulsion power
consumption, ignoring communication energy consumption does not
affect the optimization goal of jointly optimize data collection and
energy saving. Therefore, the remaining energy consumption at the end
is
𝐸𝑘(𝑇) = 𝐸𝑘(𝑡𝑁) = Ê𝑘 −

∑

𝑛∈
𝐸𝑡[𝑛]. (10)

2.4. Problem formulation

Since UAV can recharge after returning to the dock, consuming
full battery energy has little meaning, except for increasing the risk of
accidents and reducing battery life. Our objective is to jointly optimize
data collection and remaining energy while ensuring the UAV return to
the dock safely. This is formulated as a weighted maximization problem

max
𝑥𝑘 ,𝑦𝑘

𝜆1
𝑁
∑

𝑛=1
𝑐[𝑛] + 𝜆2𝐸𝑘(𝑡𝑁) (11)

𝑠.𝑡. 𝐸𝑘(𝑡) ≥ 𝜂(𝑡) + 𝜏, 0 ≤ 𝑡 ≤ T (11a)

𝐿𝑘(0) = 𝑃d (11b)

‖𝐿𝑘[𝑁] − 𝑃d‖ ≤ 𝜖 (11c)
∑

𝑛∈
𝐸𝑡[𝑛] ≤ Ê𝑘 − 𝜏 (11d)

0 ≤ 𝑥𝑘(𝑡) ≤ W, 0 ≤ 𝑡 ≤ T (11e)

0 ≤ 𝑦𝑘(𝑡) ≤ L, 0 ≤ 𝑡 ≤ T (11f)

where (11a) denotes the UAV’s energy must always exceed the reserved
energy level 𝜂(𝑡) + 𝜏 to ensure safe return. (11b) denotes UAV’s initial
position is fixed at the docking center 𝑃d. (11c) represents UAV must
return to within a radius 𝜖 of 𝑃d. (11d) represents the total energy
consumed must not exceed the available energy minus the reserved
energy 𝜏.

An additional initial condition constraint ensures that the problem
is situated in an energy-limited practical application scenario is list at
following

𝑠.𝑡. Ê𝑘 < 𝑃𝑘
1
𝜈

𝑀̃
∑

𝑖<M, 𝑗=𝑖+1
‖𝐿𝑚𝑖 − 𝐿𝑚𝑗 ‖, (11g)

where 𝑀̃ is a sorted list of SNs based on their nearest-neighbor dis-
tances from the origin. This constraint implies that the UAV’s initial
energy is insufficient for greedy, straight-line traversal of all SNs, and
this may result in the UAV not being able to collect all the data from
the SNs even under the optimal trajectory, highlighting the complexity
of the solution space.

The positive constants 𝜆1 and 𝜆2 balance the dimensional differences
between data collection and energy conservation. Adjusting the ratio
allows the optimization to prioritize either maximizing collected data
or conserving energy.

To evaluate algorithm performance, we use an explicit metric that
highlights the trade-off between data collection and energy efficiency.
The energy efficiency of data collection is defined as

𝐷eff i =
∑𝑁
𝑛=1 𝑐[𝑛]

∑ ⋅
𝐸[𝑛] − 𝜏 . (12)
𝑚∈𝑤𝑚 Ê𝑘 − 𝜏

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
If a single UAV mission collects data from all sensor nodes (SNs)
and returns to dock using all available energy, the efficiency 𝐷eff i
would reach 100%. As the denominators are constant and 𝜆1, 𝜆2 > 0,
maximizing 𝐷eff i is equivalent to solving the optimization problem. In
addition, we define the energy efficiency of flight distance as:

𝐹eff i =
(𝛾1𝜈3 + 𝛾2𝜈−1)𝑓dist (𝑡𝑛)

𝜈(Ê𝑘 − 𝐸[𝑛])
, (13)

where 𝑓dist (𝑡𝑛) denotes the total flight distance during the UAV’s mis-
sion. In our scenario, 𝐹eff i = 100% corresponds to a UAV flying at a
constant velocity along a straight trajectory without acceleration, with
all consumed energy used solely for steady-state flight.

Noting that constraint (11d) represents a long-term cumulative
variable linked to the UAV’s trajectory, while constraints (11b) and
(11c) impose restrictions on the UAV’s starting and ending positions,
plus (11g) causing uncertainty to flight duration T. To determine
the UAV’s position at each step, the entire flight process must be
accounted. Additionally, constraint (11g) implicitly requires solving
for a binary variable set to identify SNs that are skipped. The op-
timal solution is therefore dependent on the spatial distribution of
the SNs. The nonlinearity of constraint (11a) makes the problem non-
smooth and non-differentiable, posing further challenges for traditional
optimization algorithms.

Furthermore, solving the problem involves large-scale multivariable
optimization, which increases the risk of the search process becoming
trapped in local minima. This complexity makes traditional algorithms
unsuitable for addressing dynamic optimization problems like (11).
DRL, on the other hand, has proven to be an effective tool for solving
complex control problems in high-dimensional continuous spaces [27].
To address the challenges of this problem, we propose SS-TD3, a
DRL-based approach tailored for this scenario.

3. MDP formulation and design overview

Since the UAV’s position at step 𝑛 + 1 depends only on the states
of SNs and itself at step 𝑛, the UAV can be modeled as an agent,
and the next target flight position is applied as action to its current
state, triggering the environment to transition into the next state. As
a result, the flight process of UAV can be treated as MDP with 𝑁
steps. However, designing an effective reward function to facilitate
DRL training poses significant challenges due to the problem’s specific
constraints. This section reformulates the coupled constrained problem
(11) as an MDP, addressing the reward function design challenges and
progressively introducing the adopted reward function while explaining
the motivation for incorporating S-ACL.

The MDP is represented as <  ,,, , >, where  and  denote
the state and action spaces,  represents the state transition probability
matrix, and  is the reward function. These elements are defined as
follows

(a) State: At the 𝑛th time step, the state 𝑠𝑛 comprises the following:
(1) The UAV’s 2D coordinates within the operating region: 𝐿𝑘[𝑛] =

[𝑥𝑘(𝑡𝑛), 𝑦𝑘(𝑡𝑛)].
(2) The relative coordinate offset of the UAV from the dock:

𝐿𝑘,d[𝑛] = 𝐿d − 𝐿𝑘[𝑛].
(3) The UAV’s remaining usable energy: 𝐸′

𝑘(𝑡𝑛) = 𝐸𝑘(𝑡𝑛) − 𝜂(𝑡𝑛) − 𝜏,
excluding reserved energy for return and emergency use.

(4) Task completion rate: 𝜓(𝑡𝑛) = 𝐶[𝑛](
∑

𝑚∈ 𝑤̂𝑚)−1, where 𝑤̂𝑚 is
the initial data size of SN 𝑚.

(5) The collectible data volumes of SNs: 𝑊 (𝑡𝑛) = {𝑤𝑚(𝑡𝑛) ∣ ∀𝑚 ∈
}.

(6) The coordinate offsets of SNs relative to the UAV: 𝐿𝑚,𝑘[𝑛] =
{𝐿𝑚 − 𝐿𝑘[𝑛] ∣ ∀𝑚 ∈ }.

Thus, the complete state at the 𝑛th time step is represented as
𝑠𝑛 = {𝐿𝑘[𝑛], 𝐿𝑘,d[𝑛], 𝐸′

𝑘(𝑡𝑛), 𝜓(𝑡𝑛),𝑊 (𝑡𝑛), 𝐿𝑚,𝑘[𝑛]}.
(b) Action: To mitigate nonlinear complexities, the action 𝑎𝑛 is

derived from arctan
(𝑑𝑦
𝑑𝑥

)

, other than the direction indicator 𝛼[𝑛] ∈
(0, 2𝜋). Instead, it includes:
5
(1) Horizontal flight component: 𝑑𝑥[𝑛] ∈ [−1, 1].
(2) Vertical flight component: 𝑑𝑦[𝑛] ∈ [−1, 1].
(3) Flight duration in the current direction: 𝑡𝑓 [𝑛] ∈ (0, 1], which

will be scaled appropriately based on min{W,L}.
(c) Reward: The reward function plays a critical role in applying

DRL algorithms. To streamline the discussion, we define the relevant
rewarding factor and auxiliary functions as follows:

(1) 𝜇𝑐 ∈ (0, 1]: Rewarding for collecting data.
(2) 𝜇𝑒 ∈ (0, 1]: Rewarding for remaining energy when return.
(3) 𝜇𝑢 ∈ (0, 1]: Rewarding for consuming energy.
(4) 𝑝𝑒 > 0: Penalty for violating energy constraint.
The less-than-or-equal comparison function, which defined as:

Low(𝑥, 𝑦) =

{

1, if 𝑥 ≤ 𝑦,
0, otherwise.

Additionally, the function In(𝐿) determines whether a location 𝐿
falls within the UAV’s forward exploration field of view 𝛺. By com-
puting the boundaries of this field and substituting 𝐿 into the respec-
tive inequality constraints, its status can be established. For brevity,
implementation details are omitted here:

In(𝐿) =

{

1, if location 𝐿 lies within the field of view 𝛺
0, otherwise.

The goal of the reward design is to maximize data collection while
minimizing energy consumption, and the initial binary reward function
is constructed as follows
𝑅3(𝑛) = 𝜇𝑐𝑐[𝑛] (14)

+ 𝜇𝑒𝐸𝑘(𝑡𝑛) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖)

− 𝑝𝑒(1 − 𝜙(𝑡𝑛)) ⋅ Low(𝐸𝑘(𝑡𝑛), 𝜂(𝑡𝑛)).

The reward function 𝑅3(𝑛) consist of three parts: a reward for data
collection, a reward for remaining energy when return constraints are
met and a penalty for energy constraint violations.

Nevertheless, in the specific context of this work, the second part
leads to a local optimum solution. Besides, 𝑅3(𝑛) suffers from reward
sparsity, leading to inefficient UAV exploration, such as hovering in
areas without active SNs. This inefficiency significantly reduces sample
efficiency and prolongs training times. Practical experiments reveal
challenges in convergence in Section 5.3. Due to above reason, we
applied reward shaping and proposed an improved reward function

𝑅4(𝑛) = 𝑅3(𝑛) (15)
+ 𝜇𝑢(Ê𝑘 − 𝐸𝑘(𝑡𝑛)) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖)

+
∑

𝑚∈
In(𝐿𝑚)𝜇𝑐𝑤𝑚(‖𝐿𝑚,𝑘[𝑛]‖ + 𝑅)−1

+ In(𝐿d)

√

max{‖𝐿𝑘,𝑑 [𝑛]‖ − ‖𝐿𝑘,𝑑 [𝑛 − 1]‖, 0}
‖𝐿𝑘,𝑑 [𝑛]‖ + ‖𝑇raj[𝑛]‖(𝑡𝑛 − 𝑡𝑛−1)−1

.

Basing on 𝑅3(𝑛), three new parts was introduced to enhance 𝑅4(𝑛).
The first part encourages UAV to consume energy. Following two parts
incentive UAV to move toward SN nodes and approaching the dock
more rapidly. These improvements enhancing data collection and en-
suring successful returns. However, performance remains suboptimal,
as the experiment in Section 5.3 shows.

Further analysis revealed conflicts among reward components due
to energy constraints (11g). Maximizing data collection conflicts with
the energy required for returning, leading to suboptimal exploration.
Adjusting reward factors, such as 𝜇𝑒 and 𝑝𝑒, biases the UAV toward
returns, reducing exploration. Neither removing penalties nor using
constant return rewards resolved these issues.

To address this, we decompose the reward function into three
progressive components and propose a staged training method to uti-
lize them. This approach innovatively smooths policy transitions and
improves convergence. The method presented in Section 4 integrates

J. Mei et al.

 I

 I

Journal of Systems Architecture 168 (2025) 103566
𝑅1(𝑛), 𝑅2(𝑛) and 𝑅3(𝑛) with the TD3 algorithm to achieve effective
results.

𝑅1(𝑛) = 𝑅3(𝑛) (16)
+ 𝜇𝑢(Ê𝑘 − 𝐸𝑘(𝑡𝑛)) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖)

− 𝜇𝑒𝐸𝑘(𝑡𝑛) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖).

Compared to 𝑅3(𝑛), the reward 𝑅1(𝑛) of 1st stage removes the
remaining energy reward from returns, prioritizing exploration over
energy conservation. This lays the foundation for subsequent energy-
saving optimization.

𝑅2(𝑛) = 𝑅3(𝑛) (17)
+ 𝜇𝑢(Ê𝑘 − 𝐸𝑘(𝑛)) ⋅ Low(‖𝐿𝑘,𝑑 [𝑁]‖, 𝜖).

The reward 𝑅2(𝑛) of 2nd stage eliminates guiding rewards to reduce
side effects. With 𝑅1(𝑛) as a foundation, 𝑅2(𝑛) encourage saving battery
energy and improves UAV performance.

Finally, the simplified binary reward 𝑅3(𝑛) balances data collec-
tion and return priorities, while reducing side effects, which achieves
effective training and performance.

Algorithm 1 S-ACL Algorithm
nput: 𝐾,𝜑𝑘, 𝜌𝑘, 𝑅𝑘(𝑠, 𝑎), 𝐴̃𝑘, 𝑁𝑘, 𝛾𝑘, 𝛼𝑘, Actor network 𝜋𝜃 , Critic network

𝑄𝜙
1: for 𝑘 = 1 to 𝐾 do
2: Apply Xavier distribution on 𝜃𝑘, 𝜙𝑘
3: Clear replay buffer 𝑅
4: if 𝑘 > 1 then
5: 𝜃𝑘−1, 𝜙𝑘−1 ← Load(𝑓𝜃,𝜙)
6: 𝜙𝑘 ← (1 − 𝜌𝑘)𝜙𝑘 + 𝜌𝑘𝜙𝑘−1
7: 𝜃𝑘 ← 𝜃𝑘−1
8: end if
9: Initialize environment with reward 𝑅𝑘(𝑠, 𝑎) as 𝐸𝑛𝑣
10: for 𝑒 = 1 to 𝑁𝑘 do
11: 𝑠 ← 𝑠0 Obtain initial state by resetting 𝐸𝑛𝑣
12: Set count 𝑛← 0, terminated flag 𝐷 ← 0
13: repeat
14: Select action 𝑎← 𝐴𝑘(𝜋𝜃 , 𝑒,…)
15: Interact (𝑠′, 𝑎, 𝑟, 𝑑) ← 𝐸𝑛𝑣(𝑎)
16: Store transition (𝑠, 𝑎, 𝑟, 𝑑) into 𝑅
17: 𝑠← 𝑠′, 𝐷 ← 𝑑
18: if update available then
19: Sample mini-batch as (𝑠̄, 𝑎̄, 𝑟̄, 𝑠̄′) from 𝑅
20: 𝛿𝜙 ← Loss(𝑟̄ + 𝛾𝑘𝑄𝜙(𝑠̄′, 𝑎̄), 𝑄𝜙(𝑠̄, 𝑎̄))
21: 𝜙← 𝜙 + 𝛼𝑘∇𝜙(𝛿𝜙)
22: 𝑛← 𝑛 + 1
23: if 𝑛 > 𝜑𝑘 then
24: ∇𝜃𝐽 (𝜃) ← ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡) ⋅ 𝐺(𝛿𝜙, 𝜋𝜃 , 𝜋old, 𝑠𝑡, 𝑎𝑡)
25: 𝜃 ← 𝜃 + 𝛼𝑘∇𝜃𝐽 (𝜃)
26: end if
27: end if
28: until 𝐷 == 1
29: end for
30: 𝑓𝜃,𝜙 ← Store(𝜃𝑘, 𝜙𝑘)
31: end for

4. Proposed scheme

In this section, we introduce the S-ACL and SS-TD3 algorithms.
The SS-TD3 algorithm, designed to enhance convergence through im-
proved exploration techniques, is applied in conjunction with the S-ACL
method to maximize data collection efficiency while ensuring the UAV
returns successfully.
6
4.1. S-ACL

To make reinforcement learning methods more effective in solving
the problem outlined in this paper and to enhance agent performance,
we propose the Staged Actor–Critic based reinforcement Learning (S-
ACL) method, which is built upon the AC reinforcement learning frame-
work. The pseudocode is provided in Algorithm 1. The method utilizes
the Critic network to take both state and action as inputs, leveraging the
strengths of AC algorithms. By maintaining a consistent state space, the
parameters of the Actor network, which are responsible for generating
effective policies, can be reused. This allows for incremental training
in the existing solution space, thus providing flexibility in defining
the reward function and exploration strategy. Specifically, the complex
reward function can be splitted according to a progressive objective,
combining different training parameters and exploration strategies in
multiple stages (see Fig. 3).

Algorithm 2 SS-TD3 Algorithm
nput: 𝜑𝑘, 𝜌𝑘, 𝑅1(𝑛), 𝑅2(𝑛), 𝑅3(𝑛), 𝛾𝑘, 𝛼𝑘, Gaussian noise 𝜎𝑘, 𝑘 ∈ {1, 2, 3}
1: 𝐴̃1 and 𝐴̃2: Random exploration with 𝜁 (𝑡), 𝐴̃3: 𝜖 − 𝐺𝑟𝑒𝑒𝑑𝑦 with
exploration probability 𝜖(𝑡)

2: for 𝑘 = 1 to 3 do
3: Initialize critic networks 𝑄𝜙1 , 𝑄𝜙2 , actor network 𝜋𝜃
4: Apply Xavier distribution on 𝜙1, 𝜙2, 𝜃
5: if 𝑘 > 1 then
6: 𝜃′, 𝜙′

1, 𝜙
′
2 ← Load(𝑓𝜃,𝜙)

7: 𝜙𝑖 ← (1 − 𝜌𝑘)𝜙𝑖 + 𝜌𝑘𝜙′
𝑖−1, 𝑖 = 1, 2

8: 𝜃 ← 𝜃′

9: end if
10: Initialize: 𝑄′

𝜙1
← 𝑄𝜙1 , 𝑄′

𝜙2
← 𝑄𝜙2 , 𝜋′𝜙 ← 𝜋𝜙

11: Clear replay buffer 𝑅
12: Initialize environment with reward 𝑅𝑘(𝑠, 𝑎) as 𝐸𝑛𝑣
13: for 𝑒 = 1 to 𝑁𝑘 do
14: 𝑠0 ← Reset environment to obtain initial state
15: Set count 𝑛← 0, terminated flag 𝐷 ← 0
16: repeat
17: repeat
18: Select action 𝑎(𝑡) ← 𝐴𝑘(𝜋𝜃 , 𝑒,…)
19: until 𝜁 (𝑡) = 1 and 𝑎(𝑡) satisfies (11a)
20: Interact (𝑠′, 𝑎, 𝑟, 𝑑) ← 𝐸𝑛𝑣(𝑎)
21: Store transition (𝑠, 𝑎, 𝑟, 𝑑) into 𝑅
22: 𝑠 ← 𝑠′, 𝐷 ← 𝑑
23: if update available then
24: Sample mini-batch (𝑠̄, 𝑎̄, 𝑟̄, 𝑠̄′) from 𝑅
25: 𝑎̂← 𝜋′𝜙(𝑠

′) + 𝜎 ⋅ clip(𝑎𝑙𝑜𝑤, 𝑎ℎ𝑖𝑔ℎ)
26: 𝑦← 𝑟̄ + (1 − 𝑑)𝛾𝑘min𝑖=1,2{𝑄𝜙′𝑖 (𝑠̄

′, 𝑎̂)}
27: 𝛿𝜙 ←𝑀𝑆𝐸(𝑦,𝑄𝜙(𝑠̄, 𝑎̄))
28: 𝜙← 𝜙 + 𝛼𝑘∇𝜙(𝛿𝜙)
29: if 𝑛 > 𝜑𝑘 then
30: ∇𝜃𝐽 (𝜃) ← ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡) ⋅𝑄𝜙(𝑠𝑡, 𝑎)

|

|

|𝑎=𝜋𝜃 (𝑠𝑡)
31: 𝜃 ← 𝜃 + 𝛼𝑘∇𝜃𝐽 (𝜃)
32: end if
33: 𝜙′

𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙′
𝑖 , 𝑖 = 1, 2

34: 𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′, 𝑛← 𝑛 + 1
35: end if
36: until 𝐷 == 1
37: end for
38: 𝑓𝜃,𝜙 ← Store(𝜙1, 𝜙2, 𝜃)
39: end for

Moreover, since each new stage refreshes the replay buffer with
experiences from the previous stage’s more effective policy network,
low-quality samples are filtered out, leading to more efficient sam-
ple usage and improved training performance. The S-ACL method is

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
Fig. 3. SS-TD3 Illustration.
inherently suitable for a variety of AC-based reinforcement learning
algorithms, such as A2C, DDPG, and PPO. By carefully selecting reward
functions that are well-aligned with the problem’s objectives, the orig-
inal complexity is reduced, thereby enabling better alignment of the
reinforcement learning agent’s training goals and enhancing its overall
performance.

For the S-ACL training over 𝐾 stages, 𝑘 ∈  = 1, 2,… , 𝐾, we prepare
𝐾 reward functions 𝑅𝑘(𝑠, 𝑎) and exploration strategies 𝐴𝑘, with each
stage training for 𝑁𝑘 episodes, setting the Actor network update delay
𝜑𝑘, and the Critic parameter inheritance rate 𝜌𝑘 ∈ (0, 1).

Different AC type algorithms implement the update factor 𝐺(⋅) for
the Critic’s output in different ways. In A2C and its derivatives, this
is represented as 𝐺𝐴2𝐶 = 𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡), where 𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡) is the advantage
function. For DDPG, it is 𝐺DDPG = ∇𝑎𝑄𝜙(𝑠𝑡, 𝑎)

|

|

|

𝑎 = 𝜋𝜃(𝑠𝑡); for SAC, it
is 𝐺SAC = ∇𝑎𝑄(𝑠𝑡, 𝑎)

|

|

|

𝑎 = 𝜋𝜃(𝑠𝑡) + 𝛼∇𝜃(𝜋𝜃); and for PPO, it is 𝐺PPO =
min

(

𝜌 ⋅𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡), clip(𝜌, 1 − 𝜖, 1 + 𝜖) ⋅𝐴𝑑𝑣(𝑠𝑡, 𝑎𝑡)
)

. In general, we express
this as 𝐺(𝛿𝜙, 𝜋𝜃 , 𝜋old, 𝑠𝑡, 𝑎𝑡), and the original algorithm implementations
should be followed during use. Due to this non-invasive nature, S-ACL
provides an easy-to-implement training method.

The Actor network training delay typically accounts for about 10%
of the total training time for each stage. The parameter 𝜑𝑘 should be
set based on practical considerations, such as when the Critic network
loss is relatively stable. This parameter also serves as the pretraining
time for the Critic. In stages that reuse the Actor network parameters,
the proportion of randomly generated actions during interaction with
the environment should not be excessively high. Instead, noise-based
exploration is recommended.

The Store and Load functions refer to storing and loading model
parameters from the file 𝑓𝜃,𝜙. After completing training in each stage
and saving the parameters, training can be paused, which is beneficial
for practical use. This step is optional, and after training each stage, a
copy of the Actor network is created. Before starting each new stage,
Critic network parameters are reset either randomly using the Xavier
method or by resetting (1 − 𝜌𝑘) of the parameters. The entire process
continues through all stages. When using the Polyak method to inherit
part of the Critic parameters from the previous stage, setting 𝜌𝑘 = 0.3
can help reduce the pretraining time for the Critic. However, 𝜌𝑘 should
not be set too high, as this can lead to difficulties in eliminating side
effects.

4.2. SS-TD3

To planning the UAV trajectory for problem (11), we introduce
the SS-TD3 algorithm, which combines the TD3 algorithm with the
previously discussed S-ACL method.
7
As its name implies, SS-TD3 leverages TD3 [27], a state-of-the-
art AC algorithm for continuous control tasks, as the foundation for
our design. The pseudocode for SS-TD3 is presented in Algorithm 2.
The Staged-Safe-action-TD3 (SS-TD3) algorithm integrates three-stage
training approach from S-ACL with the TD3 reinforcement learning
algorithm, incorporating a safety-focused exploration strategy.

In the first stage, we apply a relatively high Gaussian noise 𝜎1 =
 (0, 0.4) along with an 𝜖-Greedy random exploration strategy. The
reward function 𝑅1(𝑛) is selected to maximize the UAV’s exploration of
the target area, while simultaneously guiding it to return and approach
SNs for data collection. In the second stage, the Gaussian noise is
reduced to 𝜎2 =  (0, 0.25), and the safe exploration strategy is main-
tained to allow the UAV to learn the return path. The reward function
𝑅2(𝑛) is chosen to eliminate the guiding reward and optimizes the
UAV’s strategy to balance exploration with battery energy conservation.
In the final stage, moderate Gaussian noise 𝜎3 =  (0, 0.3) is applied,
and noise decay is introduced to facilitate the observation of final
training outcomes in the last episodes. The reward function 𝑅3(𝑛) is
applied to focus on optimizing the problem (11) during training and
aims to minimize the side effects of the reward function.

By structuring the training in this way, SS-TD3 efficiently combines
exploration and safety, allowing for optimal trajectory planning and
energy efficiency in UAV operations.

5. Experiments

To evaluate the performance of the SS-TD3 algorithm, we conducted
a comparative experiments involving the proposed SS-TD3 and imple-
mented baseline methods, listed as below. Further, Section 5.3 and
Section 5.4 conducted another two experiments to demonstrate the
necessity of applying S-ACL and the performance of S-ACL.

5.1. Simulation settings

1. Greedy Search (GS): The GS algorithm is employed to determine
a trajectory that guarantees a successful return, after which it
attempts to enhance data collection by optimizing the insertion
of discarded nodes along the path.

2. Ant Colony Optimization (ACO): The classic original ACO algo-
rithm is utilized to find the shortest path to visit SNs nodes based
on pheromone trails, with no assurance of ensuring a successful
return.

3. Constraint Ant Colony Optimization (CACO): This algorithm
is a modified version of the original ACO algorith, incorporating
pheromone-based adaptations to meet energy consumption and
return constraints. The ants search for the shortest path while

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
Table 1
Simulation parameters.
 Parameters Value
 bandwidth (𝐵) [42] 10 MHz
 noise power (𝜎2) [43] −110 dBm
 UAV height (𝐻) [44] 120 m
 proportion parameter (𝛾1) 9.26 × 10−4
 proportion parameter (𝛾2) 2250
 channel gain at unit distance (𝛽0) −50 dB
 power efficient speed (𝜈) 36.72 KM/H
 transmission radius (𝑅) [44] 60 m
 UAV battery energy (Ê𝑘) 120,000 J
 reserved battery energy (𝜏) 20,000 J
 actor delay of 2nd stage (𝜙2) 3 × 103
 actor delay of 3rd stage (𝜙3) 4 × 103
 inherit rate of 2nd 3rd stage (𝜌2 , 𝜌3) 0.2
 replay buffer size 1 × 105
 polak factor for target network 0.002
 ant numbers 20
 heuristic algorithm iterations 500
 pheromone decay 0.95

considering the available remaining energy. If the remaining
energy is insufficient for return, the exploration of the path is
terminated. The pheromone release rate is influenced by the
variance in data volumes at SNs nodes, and path optimization
is performed accordingly. These improvements, compared to the
basic ACO algorithm, significantly enhance both the reliability of
return and the efficiency of data collection.

To maintain focus on the primary research objectives, the details of
the implemented baseline algorithm are presented in Appendix B.

The GS algorithm outputs a trajectory directly after searching. The
heuristic algorithm provides a converged trajectory after a sufficient
number of iterations. In contrast, the result of the SS-TD3 algorithm
is a trained reinforcement learning model. We use the trained model
to interact with the environment in the evaluation mode, recording
the results of each interaction. The baseline algorithm’s trajectory is
converted into a series of actions, with the corresponding interaction
results with the environment recorded.

During each simulation, four algorithms are executed simultane-
ously, and testing is conducted in 11 randomly generated environ-
ments. A total of 20 SNs are randomly generated with a minimum
inter-node distance in each environment. The total data volume of SNs
in each environment is constant and is randomly partitioned among
all SNs using an integer random method. To ensure fairness, the initial
environment is replicated for each group of algorithms. The baseline
algorithm’s trajectory, after sufficient convergence, and the evaluation
of the SS-TD3 model are repeated 300 times across all random envi-
ronments. Table 2 records the remaining battery energy, return to base
(converted to 0/1 to averaged as back ratio), total flight distance and
data ratio result in each group when the evaluation finish. In the end,
the outputs are averaged to obtain the final results, which are presented
in Fig. 8.

In the SS-TD3 algorithm, certain parameters differ across the three
training stages. The learning rates for the Critic are set to: 0.001, 0.001,
0.0001, and the discount factors are: 0.975, 0.99, 0.968. The learning rate
of the Actor is always 0.1 times that of the Critic. We adopt the network
with 512 × 512 Multi-Layer Perceptron (MLP) architecture and ReLU
activation. The number of training episodes for the three stages are set
to: 8000, 6000, 5000, and the corresponding training curves are shown
in Fig. 4 and Fig. 5. For the ACO and CACO algorithms, the distance
index is twice the pheromone index, and the weight index for node
data volume is set to a reasonable value. All other key parameters are
listed in Table 1, with the remaining parameters set to optimal values
as determined by the experiments. These parameters are not further
elaborated here.
8
Fig. 4. 1st stage of SS-TD3.

Fig. 5. 2nd stage of SS-TD3.

Fig. 6. 3rd stage of SS-TD3.

5.2. SS-TD3 performance

Fig. 4 and Fig. 5 present the training curves for the first and second
stage of SS-TD3. The segmented time model ensures the effectiveness
of the baseline exploration strategy, maintaining a certain level of
exploration efficiency. Additionally, with the aid of a safe exploration
strategy, random exploration can still yield some rewards. As indicated
by reward 𝑅(1), the majority of the initial rewards are related to the
energy consumption during the return trip. This significantly motivates
further exploration. While the average reward shows only a slight
increase, the maximum reward reaches values exceeding 200. In the
second stage of training, the underlying S-ACL method successfully in-
herits the strategic advantages from the first stage, leading to a further
improvement in the reward and bringing the average reward closer
to the peak. Due to the substantial reward loss resulting from UAV
return failures, the actual reward curve depicted in light blue, exhibits
considerable fluctuations during training. However, these fluctuations

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
Fig. 7. Captured example trajectory at SS-TD3 3rd stage.
Fig. 8. SS-TD3 vs baselines.

become more stable over time and gradually decrease as the training
converges.

Fig. 6 illustrates the final stage of training, where the Actor net-
work’s initial policy already shows strong performance. As the noise
and safe random exploration strategies diminish, the mean of the
reward curve begins to rise and ultimately reaches its optimal value
toward the end. Notably, some episodes in the early stages of training
achieve exceptionally high rewards. Given the influence of initial noise
on the network’s actions and the role of the safe exploration strategy
in ensuring successful return, it is reasonable for some episodes to
yield such high rewards. As the exploration factor gradually decays to
zero over time, maintaining a stable return and reward values requires
the agent to rely on its own learned behaviors. The steady increase
in the reward curve indicates that the agent has learned the optimal
trajectory, achieving successful returns while also maintaining a high
data collection rate.

Fig. 7 depicts a trajectory diagram for an episode near the end
of the final stage of training in the SS-TD3 algorithm. In this study’s
scenario, the overhead does not stem from data transmission. There-
fore, the UAV’s trajectory optimization strategy should fit the positions
of specific SNs using linear regression. It must also ensure that the
communication time aligns with the data volume within the effective
transmission range of SNs with high data loads. Without designing a
specific reward function for this characteristic of the optimal trajectory,
the DRL neural network automatically captures this feature through
gradient optimization in high-dimensional space.

Additionally, due to the introduction of random noise during train-
ing, the UAV initially missed SN numbered 18 and subsequently devi-
ated from its intended path. However, as illustrated in the figure, the
UAV, guided by the reinforcement learning agent, adaptively corrected
its trajectory. The ability to resist certain noise disturbances is one of
the reasons we favor reinforcement learning for training the agent.

Fig. 8(a) illustrates that the ACO algorithm achieves the highest
energy efficiency among all baselines at the maximum data collection
9
Fig. 9. S-TD3 with binary reward.

rate. However, it fails to guarantee reliable return to the base. The data
collection rate of the GS algorithm is limited to 88%. Among the base-
lines, the CACO algorithm emerges as the best in meeting operational
requirements while maintaining balanced overall performance.

Fig. 8(b) depicts a comparison between the SS-TD3 algorithm and
the CACO algorithm. Both achieve a 100% return rate and demon-
strate comparable performance in terms of average data collection rate
and flight energy consumption. Benefiting from its significantly higher
residual energy, SS-TD3 outperforms the CACO algorithm and other
baseline methods in energy efficiency.

5.3. Necessity of S-ACL

Based on the S-ACL method, SS-TD3 introduces two additional
training stages. To highlight the necessity of using the S-ACL method,
we illustrate the performance of the Safe-action-TD3 (S-TD3) algorithm,
which does not incorporate S-ACL, within the environment Env.01. We
record the data ratio in training along with the gained reward. Training
runs on both binary reward function 𝑅3(𝑛) and complex reward func-
tion 𝑅4(𝑛) with reward shaping. Both variants were trained for 15,000
episodes, with the training results presented in Fig. 9 and Fig. 10.

Fig. 9 illustrates that with sufficient training episodes, the average
reward curve for the binary reward function 𝑅3(𝑛) stabilizes around
70, with the maximum stable reward not exceeding 80. The average
data collection rate was below 20%, and the training performance
was nearly unsuccessful. We infer that more than half of the rewards
stem from remaining energy consumption, which led the agent to
forgo the pursuit of data collection rewards and become trapped in a
local optimum. Additionally, the sparsity of the binary reward function
exacerbates this issue.

Fig. 10 demonstrates that with adequate training, the reward func-
tion 𝑅 (𝑛) yields an average data collection rate of approximately 80%,
4

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
Table 2
Numerical results of SS-TD3,GS,ACO,CACO.
 𝐸[𝑁] (𝐽) ↑ Successful return 𝑓𝑑𝑖𝑠𝑡(𝑡𝑛) ↓ Data ratio↑
 SS-TD3 GS ACO CACO SS-TD3 GS ACO CACO SS-TD3 GS ACO CACO SS-TD3 GS ACO CACO
 Env.01 33836.5 20569.0 23061.0 22168.9 true true false true 2531.7 2893.0 2750.1 2971.4 0.925 0.693 0.829 0.884
 Env.02 36581.2 24056.6 31058.7 23487.1 true true true true 2490.9 2775.9 2619.4 2911.2 1.0 1.0 1.0 0.930
 Env.03 30224.0 26552.1 28345.3 22409.6 true true true true 2617.4 2633.9 2625.7 2915.3 0.981 0.906 1.0 0.968
 Env.04 34996.5 20984.6 24206.9 20754.1 true true true true 2497.7 2767.5 2825.9 2946.0 0.941 0.825 1.0 0.941
 Env.05 39440.1 23821.3 21835.8 21128.5 true true false true 2422.5 2891.9 2759.2 2945.2 0.979 0.802 1.0 0.987
 Env.06 32935.5 31040.1 20282.2 20676.2 true true false true 2542.6 2436.0 2768.4 2958.6 0.947 0.967 1.0 0.967
 Env.07 37316.0 22677.3 28799.3 20519.8 true true true true 2507.9 2754.4 2672.9 2856.6 0.917 1.0 1.0 0.974
 Env.08 39664.9 20289.1 30919.6 29557.4 true true true true 2454.9 2907.9 2658.6 2773.0 0.974 0.924 1.0 0.974
 Env.09 37722.2 22877.8 23183.7 21548.8 true true true true 2402.6 2870.6 2758.0 2784.0 0.967 1.0 1.0 0.967
 Env.10 37513.2 32109.0 28011.9 23163.3 true true true true 2412.6 2505.7 2662.5 2936.8 0.968 0.800 1.0 0.968
 Env.11 36501.0 20457.1 24025.6 23596.1 true true true true 2553.9 2908.4 2812.5 2860.7 0.949 0.791 1.0 0.968
Fig. 10. S-TD3 with reward shaping.

and with further training episodes, the peak reward can reach 250,
which is higher than the results from the first stage of SS-TD3. Based on
our domain knowledge, using 𝑅4(𝑛) provides a significant performance
improvement over 𝑅3(𝑛), but it still falls short of the average data
collection rate of 95.94% achieved by SS-TD3 with three-stage training.
As discussed in Section 3, the design of shaped rewards can sometimes
conflict with the final objective and introduce unintended side effects.
Although the complex function with shaped reward we developed
has undergone several experimental refinements and is quite effective,
designing a perfect reward function remains challenging. Such side
effects are difficult to avoid in complex environments, and achieving
an ideal reward function is generally a challenging task.

5.4. S-ACL performance

Further, we verify the effectiveness of the S-ACL method using
the external standard environment LunarLander-v3 from the OpenAI
Gym library,3 as shown in Fig. 11. The goal of the LunarLander-
v3 environment is to control a lander with jet engine switches and
directional controls to achieve a safe soft landing using its two land-
ing legs. This environment is a classic rocket trajectory optimization
problem. We choose it due to its sufficient complexity which shares
many similarities with our environment. The requirements for a soft
landing and return at the final step are comparable, with success and
failure being rewarded in completely different ways. Activating the jet
engines consumes energy, and saving energy leads to higher scores.
However, this environment does not impose a total energy limit, and
there is no optimization objective along the trajectory, making agent
training easier than in the data collection environment studied in this

3 The source code of lunarlander environment we used for experime-
nts(v1.0.0 release): https://github.com/Farama-Foundation/Gymnasium/blob
/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/luna
r_lander.py
10
Fig. 11. Gym LunarLander-v3 Environment Illustrator.

paper. This convenience makes it ideal for testing the S-ACL method.
It should be noted, however, that the S-ACL method will perform well
in more complex environments.

The Gym documentation4 states that an episode is considered suc-
cessfully solved if the total reward exceeds 200. The detailed rewards
consist of the items listed below.
1. ± as the lander is closer/further to the landing pad.
2. ± as the lander is moving slower/faster.
3. is decreased the more the lander is tilted.
4. +10 for each leg that is in contact with the ground.
5. −0.03 each frame a side engine is firing.
6. −0.3 each frame the main engine is firing.
7. -100/+100 for crashing/landing safely.
We grouped experiments based on different discount factors and

trained the original DDPG algorithm for timesteps=6e5. DDPG, based
on the AC framework, is an effective method for solving continuous
control tasks [45]. Compared to TD3, DDPG has a simpler structure
and faster training speed, making it the preferred choice for test-
ing the effectiveness of the S-ACL algorithm in the LunarLander-v3
environment.

After basic tuning of other hyperparameters, we explored the opti-
mal discount factor. To eliminate human error, all groups were trained
in identical environments with the same random seed, differing only in
the discount factor. Training was recorded by completed episodes, with
the cumulative reward per episode representing the episode’s return.
Returns and average losses were recorded, and the results were plotted
in Fig. 12.

In Fig. 12, different discount factors have a significant impact on
training performance. For gamma=0.97 and gamma=0.98, the agent’s
learning appears relatively stable. However, while gamma=0.97 yields
only a few episodes with rewards exceeding 200, the majority of results

4 Document online: https://gymnasium.farama.org/v1.0.0/environments/
box2d/lunar_lander/

https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/196625488fc3fafef74cd97ace58ef625a41ad8c/gymnasium/envs/box2d/lunar_lander.py
https://gymnasium.farama.org/v1.0.0/environments/box2d/lunar_lander/
https://gymnasium.farama.org/v1.0.0/environments/box2d/lunar_lander/

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
Fig. 12. DDPG training under different discount factor gamma.
are unsatisfactory. In contrast, gamma=0.98 achieves better perfor-
mance in most episodes. The loss for gamma=0.97 remains stable but
corresponds to mediocre overall training outcomes. For gamma=0.99,
the loss oscillates significantly, resulting in unstable training perfor-
mance within the given timesteps. Further increasing the discount
factor to gamma=0.995 leads to enormous losses and nearly complete
training failure.

The large number of steps per episode in the LunarLander-v3 en-
vironment magnifies the impact of the discount factor on the agent’s
long-term vision. It is worth noting that the total number of episodes
trained varies across different discount factors due to the Gym’s proto-
col truncating episode over 1,000 steps. This truncation occurs when
the agent over-controls the lander, causing it to hover for too long,
exhaust its fuel, and fail to land, ultimately leading to poor returns.

The gamma=0.98 group completes the highest number of episodes
with the same total timesteps and achieves the best average returns.
Therefore, we selected the gamma=0.98 group as the baseline model
for validating the performance of the S-ACL algorithm.

Next, we evaluated the performance of the S-ACL algorithm. We
conducted two-stage training with DDPG, naming the combined al-
gorithm S-DDPG. Specifically, we used the gamma=0.98 model di-
rectly as the first stage of S-DDPG. The second stage parameters were
set as 𝜙 = 1𝑒5 and 𝜌 = 0.3, with the discount factor modified to
gamma=0.995. Other hyperparameters and training settings for the
second stage remained consistent with the original DDPG group.

It is important to note that in the LunarLander-v3 environment,
the first three components of the reward system act as guiding re-
wards, helping the agent balance the lander’s posture and approach
the landing point to accelerate convergence. However, these rewards
can sometimes cause the lander to hover in the air for an extended
period. In the second stage, we removed these guiding rewards, re-
ducing the maximum total reward by 200 points and mitigating the
side effects caused by guiding rewards. This adjustment supplemented
the 2nd stage training to produce the S-DDPG model. Both the S-DDPG
and original DDPG models were evaluated over 1,000 episodes with
identical initial environments and random seeds, and the results are
shown in Fig. 13.

The results show that S-DDPG improves the average return by
approximately 10% compared to DDPG and increases the landing suc-
cess rate to 97.0%. However, the average return in successful landing
episodes shows minimal improvement. This is because S-DDPG primar-
ily optimizes situations where DDPG struggles to achieve successful
11
Fig. 13. DDPG vs S-DDPG on LunarLander-v3.

landings, while its energy optimization effects are less evident for al-
ready successful landing scenarios. Observations indicate that episodes
with difficult landings often involve significant initial velocity offsets
and may exceed 500 steps. Even when landing succeeds, it requires
considerable energy consumption, resulting in low or even negative re-
turns. For situations where landing is straightforward, S-DDPG reduces
the frequency of engine activation, optimizing energy consumption;
otherwise, the average return for successful landings would have de-
creased. Overall, it can be concluded that S-DDPG improves landing
success rates without compromising landing performance.

The step count per episode in the LunarLander-v3 environment can
reach 1,000. By combining the moderate discount factor gamma=0.98
and the long-term discount factor gamma=0.995 in two-stage training
and leveraging reward shaping for initial training, the results demon-
strate that the S-ACL method significantly enhances performance. This
two-stage training approach balances the agent’s long-term vision while
avoiding issues such as the severe loss oscillations or gradient explo-
sions, seen in Fig. 12(3) and Fig. 12(4) when using large discount
factors from the start. It also mitigates the side effects of reward
shaping, facilitating smoother training.

6. Conclusion

In this paper, we propose SS-TD3, a DRL-based algorithm designed
to generate energy-efficient flight trajectories for data collection tasks

J. Mei et al.

Journal of Systems Architecture 168 (2025) 103566
under insufficient energy and return to base constraints. SS-TD3 aims
to maximize data collection while ensuring return-to-base capability,
intelligently generating the UAV’s motion strategy to optimize energy
use. As the fundamental training framework of SS-TD3, the S-ACL
algorithm leverages the actor–critic framework by decoupling the re-
ward function, exploration strategy, and parameter configuration. This
staged decomposition simplifies training in complex adversarial envi-
ronments while preserving agent performance. Numerical results show
that SS-TD3 significantly outperforms baseline methods in energy effi-
ciency. Moreover, S-ACL enhances training effectiveness. Future work
will explore applying S-ACL in more realistic scenarios with practical
motion UAV constraints across different sensor network scales.

CRediT authorship contribution statement

Jing Mei: Writing – original draft, Methodology, Conceptualiza-
tion. Yuejia Zhang: Software, Methodology, Investigation. Zhao Tong:
Writing – review & editing, Data curation. Keqin Li: Validation, Super-
vision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Education Department of Hunan
Province (Grant No. LXBZZ2024086).

Appendix A. Connection time

The flight time corresponding to the chord length formed by the in-
tersection of the UAV trajectory 𝑇raj[𝑛] with the circular communication
range of SN 𝑚 is defined as the maximum connection time 𝑡𝑚[𝑛]. This
value serves as a direct intermediate variable for calculating 𝑡𝑚,𝑗 [𝑛].

The connection time refers to the sum of flight times over the chord
when the UAV passes through the user’s circular communication range.

Algorithm 3  [𝑡] at connection time
Input: 𝑇 = {(𝑡𝑀,𝑖, 𝑡𝑁,𝑖), 𝑖 ∈ }. results  ← []
1: 𝑇with_index ← {(𝑡𝑀,𝑖, 𝑡𝑁,𝑖, 𝑖) ∣ 𝑖 ∈ }
2: 𝑇sorted ← sort(𝑇with_index, key = 𝑡𝑀,𝑖)
3:  ← [𝑡𝑀,𝑖, 𝑡𝑁,𝑖 ∣ 𝑖 ∈ ]
4:  ← unique(sort())
5: for all (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) ∈  do
6: counter 𝑗 ← 0
7:  ← {}
8: for all 𝜏𝑖 ∈ 𝑇sorted do
9: if 𝑡𝑀,𝑖 ≤ start and 𝑡𝑁,𝑖 ≥ end then
10: 𝑗 ← 𝑗 + 1
11: add 𝑖 into indices
12: end if
13: end for
14: append (𝑟𝑎𝑛𝑔𝑒 = (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑), 𝑗,) into 
15: end for

Given the UAV trajectory segment 𝐿 with endpoints 𝐿1(𝑥0, 𝑦0) and
𝐿2(𝑥1, 𝑦1), where (𝑥1 − 𝑥0) ⋅ (𝑦1 − 𝑦0) ≠ 0, and the communication radius
𝑅 of SN 𝑚 at 𝑃𝑚(𝑥𝑝, 𝑦𝑝), the line equation for 𝐿 in the coordinate system
is expressed as: 𝐿 ∶ 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. The parametric equation of 𝐿
is given as follows, where 𝑡𝑃 is the parameter corresponding to a point
𝑃 on 𝐿 ∶ (𝑥 − 𝑥 , 𝑦 − 𝑦) = 𝑡 ⋅ 𝑛̄ , where, the coefficients are defined
0 0 𝐴𝐵

12
as 𝐴 = 𝑦1 − 𝑦0, 𝐵 = −(𝑥1 − 𝑥0), and 𝐶 = 𝑥1𝑦0 − 𝑥0𝑦1, while the direction
vector 𝑛̄𝐴𝐵 is: 𝑛̄𝐴𝐵 = (𝑥1 − 𝑥0, 𝑦1 − 𝑦0).

The objective is to calculate the chord length within the communi-
cation range of the SN, 𝑀𝑁 , which is given by:

𝑀𝑁 =

{

0 if 𝑑 = 0
(|𝑡𝑀 − 𝑡𝑁 |) ⋅ ‖𝑛̄𝐴𝐵‖ if 𝑑 > 0.

where the perpendicular distance 𝑑 from the center of the circle
𝑃𝑚(𝑥𝑝, 𝑦𝑝) to the line 𝐿 is: 𝑑 = 𝐿𝑃 = |𝐴𝑥𝑝+𝐵𝑦𝑝+𝐶|

√

𝐴2+𝐵2
.

The line 𝐿 intersects the circle centered at 𝑃𝑚(𝑥𝑝, 𝑦𝑝) with radius 𝑅,
forming a chord 𝑀𝑁 , where the endpoints 𝑀(𝑥𝑀 , 𝑦𝑀) and 𝑁(𝑥𝑁 , 𝑦𝑁)
are given by:
(𝑥𝑀 , 𝑦𝑀) = (𝑥′, 𝑦′) + 𝜆(−𝐵,𝐴)

(𝑥𝑁 , 𝑦𝑁) = (𝑥′, 𝑦′) − 𝜆(−𝐵,𝐴),

where, 𝜆 =
√

𝑅2−𝑑2
√

𝐴2+𝐵2
 and (𝑥′, 𝑦′) is the projection of point 𝑃𝑚(𝑥𝑝, 𝑦𝑝) onto

the line 𝐿:

(𝑥′, 𝑦′) = (𝑥𝑝, 𝑦𝑝) −
(𝐴𝑥𝑝 + 𝐵𝑦𝑝 + 𝐶)

𝐴2 + 𝐵2
(𝐴,𝐵).

Thus, the maximum connection time is calculated as 𝑡𝑚[𝑛] = |𝑀𝑁| ⋅
𝜈−1. Additionally, the time intervals (𝑡𝑀,𝑚, 𝑡𝑁,𝑚), for all 𝑚 ∈ ′, are
determined, allowing for the computation of the starting connection
time points  [𝑡]. The pseudocode for this calculation is provided in
Algorithm 3.

Appendix B. Baseline algorithm

Algorithm 4 Greedy Search Algorithm (GS)
Input: Position of SNs 𝐋 = {𝐿𝑚|𝑚 ∈ }, UAV total energy 𝐸full
Output: Optimized route 𝑟
1: Calculate distance matrix 𝐃 using 𝐋
2: Initialize route 𝑟 = [0] (starting from dock)
3: Nodes to select 𝑁𝑠 = {0, 1,… ,𝑀}, nodes to discard 𝑁𝑑 = ∅
4: Available energy 𝐸 = 𝐸full, flying direction 𝛼 = 𝛼0
5: while 𝑁𝑠 ≠ ∅ do
6: Sort 𝑁𝑠 by row denoting distances from the current position
𝐷[𝑟[−1]], yielding 𝑛̃𝑠

7: if a node in 𝑁𝑠 can be visited and return within available energy
then

8: Obtain the index of node 𝑛̄ and compute energy cost 𝐸𝑛 using
𝛼 via Eq. (9)

9: Update direction 𝛼 and available energy 𝐸 ← 𝐸 − 𝐸𝑛
10: Add node 𝑛̄ to route 𝑟
11: Remove node 𝑛̄ from 𝑁𝑠
12: else
13: Remove a node 𝑛𝑑 ∈ 𝑟 such that its sum distance to other

nodes in 𝑟 is maximum
14: Add node 𝑛𝑑 to 𝑁𝑑
15: end if
16: end while
17: for node 𝑛 ∈ 𝑁𝑑 do
18: Try to insert 𝑛 into an adjacent position in 𝑟 if round-trip energy

constraint is satisfied
19: end for

Existing studies rarely consider both node weights and return con-
straints simultaneously, and in this work, the flight energy consumption
is related to the flight direction. It is difficult to find algorithms com-
patible with the existing energy consumption models. Alternatively, we
designed two algorithms, GS and CACO, demonstrated in Algorithm 4
and Algorithm 5, as benchmarks to evaluate the performance of SS-
TD3. The former is based on greedy routing and brute-force search,

J. Mei et al.

 I

Journal of Systems Architecture 168 (2025) 103566
Algorithm 5 Constraint Ant Colony Optimization (CACO)
nput: SNs positions 𝐋, SNs data 𝐖, energy 𝐸, initial direction 𝜃0, best
path count 𝑛, Optimal path 𝐩∗

Output: optimal path 𝐩∗
1: Initialize all paths 𝐏 ← ∅
2: Normalize 𝐋, 𝐖 to range [0, 1]
3: Compute distance matrix 𝐃[𝑖, 𝑗] for all 𝑖, 𝑗 using 𝐋
4: Initialize pheromone matrix 𝚽 ← 1

𝑁
5: for each iteration 𝑡 = 1 to T do
6: 𝐏 ← ∅
7: for each ant 𝑘 = 1 to 𝑀 do
8: Initialize path 𝑟 ← [], energy 𝐸, direction 𝜃 ← 𝜃0
9: while 𝐸 satisfies constraint (11a) do
10: Select next node 𝑗∗ based on

𝑃 (𝑗|𝑖) =
𝛷[𝑖, 𝑗]𝛼(𝜂[𝑖, 𝑗])𝛽

∑

𝑘∉visited𝛷[𝑖, 𝑘]𝛼(𝜂[𝑖, 𝑘])𝛽

11: Compute 𝜂[𝑖, 𝑗] = 1
𝐃[𝑖,𝑗] + 𝛾

𝐖[𝑗]
max𝐖

12: Calculate energy consumption 𝑒𝑖𝑗 by Eq. (7)
13: 𝐸 ← 𝐸 − 𝑒𝑖𝑗 , 𝜃 ← 𝜃𝑖𝑗
14: Append 𝑗∗ to path 𝑟
15: end while
16: Add path 𝑟 to 𝐏
17: end for
18: Spread pheromone on best 𝑛 paths in 𝐏

𝛷[𝑖, 𝑗] ← 𝛷[𝑖, 𝑗] +
𝑊total
𝐃[𝑖, 𝑗]

19: Update 𝐩∗ if a better path exists in 𝐏
20: Apply pheromone decay: 𝚽 ← 𝚽 ⋅ 𝜌
21: end for

while the latter is inspired by the pheromone mechanism of ACO
algorithms and offers superior theoretical performance.

The GS algorithm consists of two stages. In the first stage, the UAV
greedily flies to the nearest unvisited SN node from the current set
of unvisited SNs. If visiting the selected SN would prevent the UAV
from returning, the node is abandoned and added to a discard list. The
UAV then re-selects greedily until all nodes have been attempted. In
the second stage, the nodes in the discard list are sorted based on the
sum of their distances to all other nodes. Each node in the discard list
is iterated through, and the algorithm attempts to insert the node into
the UAV’s current trajectory between every pair of consecutive visited
nodes. For each insertion, it tests whether the UAV can still return.
If feasible, the node is inserted; otherwise, it remains discarded. This
process continues until the discard list is fully traversed. Note that both
stages are necessary: the first stage ensures a trajectory that guarantees
return, while the second stage optimizes the trajectory to maximize
data collection.

In CACO algorithm, ants select nodes based on pheromone levels
and the data volume differences among selectable nodes. If the next
step in the route would prevent the ant from returning, the route is
terminated, ensuring that the pheromones always include the path back
to the starting point. During the reinforcement of pheromones on the
optimal path, adjustments are made to the pheromone levels along
the path based on the current route and distances. Compared to the
standard ACO algorithm, these modifications significantly enhance the
return probability and data collection rate.

Data availability

Data will be made available on request.
13
References

[1] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, M. Debbah, A tutorial on UAVs for
wireless networks: Applications, challenges, and open problems, IEEE Commun.
Surv. Tutor. 21 (3) (2019) 2334–2360, http://dx.doi.org/10.1109/COMST.2019.
2902862.

[2] Y. Zeng, R. Zhang, T.J. Lim, Wireless communications with unmanned aerial
vehicles: Opportunities and challenges, IEEE Commun. Mag. 54 (5) (2016) 36–42,
http://dx.doi.org/10.1109/MCOM.2016.7470933.

[3] M. Erdelj, E. Natalizio, K.R. Chowdhury, I.F. Akyildiz, Help from the sky:
Leveraging UAVs for disaster management, IEEE Pervasive Comput. 16 (1) (2017)
24–32, http://dx.doi.org/10.1109/MPRV.2017.11.

[4] F. Cheng, S. Zhang, Z. Li, Y. Chen, N. Zhao, F.R. Yu, V.C. Leung, UAV trajectory
optimization for data offloading at the edge of multiple cells, IEEE Trans.
Veh. Technol. 67 (7) (2018) 6732–6736, http://dx.doi.org/10.1109/TVT.2018.
2811942.

[5] N.H. Motlagh, M. Bagaa, T. Taleb, UAV-based IoT platform: A crowd surveillance
use case, IEEE Commun. Mag. 55 (2) (2017) 128–134, http://dx.doi.org/10.
1109/MCOM.2017.1600587CM.

[6] L.M. Borges, F.J. Velez, A.S. Lebres, Survey on the characterization and classi-
fication of wireless sensor network applications, IEEE Commun. Surv. Tutor. 16
(4) (2014) 1860–1890, http://dx.doi.org/10.1109/COMST.2014.2320073.

[7] A.S. Ali, A.A. Al-Habob, L. Bariah, O.A. Dobre, S. Muhaidat, Deep reinforce-
ment learning for energy-efficient data dissemination through UAV networks,
IEEE Open J. Commun. Soc. (2024) http://dx.doi.org/10.1109/OJCOMS.2024.
3398718.

[8] J. Li, G. Sun, S. Liang, Y. Wang, A. Wang, Multi-objective uplink data transmis-
sion optimization for edge computing in UAV-assistant mobile wireless sensor
networks, J. Syst. Archit. 132 (2022) 102744, http://dx.doi.org/10.1016/j.sysarc.
2022.102744.

[9] J. Guo, H. Wang, W. Liu, G. Huang, J. Gui, S. Zhang, A lightweight verifiable
trust based data collection approach for sensor–cloud systems, J. Syst. Archit.
119 (2021) 102219, http://dx.doi.org/10.1016/j.sysarc.2021.102219.

[10] W. Sun, Z. Bai, J. Shi, Z. Li, DDPG-based multi-UAV trajectory optimization
for wsn’s data collection, in: 2023 IEEE 11th International Conference on
Information, Communication and Networks, ICICN, IEEE, 2023, pp. 241–247,
http://dx.doi.org/10.1109/ICICN59530.2023.10393176.

[11] Y. Fang, Z. Kuang, H. Wang, S. Lin, A. Liu, Minimizing energy consumption of
collaborative deployment and task offloading in two-tier UAV edge computing
networks, J. Syst. Archit. 167 (2025) 103511.

[12] M. Kang, S.-W. Jeon, Energy-efficient data aggregation and collection for multi-
UAV-enabled IoT networks, IEEE Wirel. Commun. Lett. (2024) http://dx.doi.org/
10.1109/LWC.2024.3355934.

[13] P. Wang, Z. Yan, G. Han, H. Yang, Y. Zhao, C. Lin, N. Wang, Q. Zhang, A2E2:
Aerial-assisted energy-efficient edge sensing in intelligent public transportation
systems, J. Syst. Archit. 129 (2022) 102617.

[14] L. Zhang, R. Tan, Y. Zhang, J. Peng, J. Liu, K. Li, UAV-assisted dependency-aware
computation offloading in device–edge–cloud collaborative computing based on
improved actor–critic DRL, J. Syst. Archit. 154 (2024) 103215.

[15] X. Fu, C. Deng, A. Guerrieri, Low-AoI data collection in integrated UAV-UGV-
assisted IoT systems based on deep reinforcement learning, Comput. Netw. 259
(2025) 111044, http://dx.doi.org/10.1016/j.comnet.2025.111044.

[16] M.R. Raju, S.K. Mothku, M.K. Somesula, S. Chebrolu, Age and energy aware data
collection scheme for urban flood monitoring in UAV-assisted wireless sensor
networks, Ad Hoc Netw. 168 (2025) 103704, http://dx.doi.org/10.1016/j.adhoc.
2024.103704.

[17] Y. Guo, S. Yin, J. Hao, Resource allocation and 3D trajectory design in wireless
networks assisted by rechargeable UAV, IEEE Wirel. Commun. Lett. 8 (3) (2019)
781–784, http://dx.doi.org/10.1109/LWC.2019.2892721.

[18] M. Li, S. He, H. Li, Minimizing mission completion time of UAVs by jointly
optimizing the flight and data collection trajectory in UAV-enabled WSNs, IEEE
Internet Things J. 9 (15) (2022) 13498–13510, http://dx.doi.org/10.1109/JIOT.
2022.3142764.

[19] H. Zhang, L. Dou, B. Xin, J. Chen, M. Gan, Y. Ding, Data collection task planning
of a fixed-wing unmanned aerial vehicle in forest fire monitoring, IEEE Access
9 (2021) 109847–109864, http://dx.doi.org/10.1109/ACCESS.2021.3102317.

[20] X. Zhang, S. Zhao, Y. Wang, X. Wang, X. Song, X. Li, J. Li, 3D trajectory
optimization for UAV-assisted hybrid FSO/RF network with moving obstacles,
IEEE Trans. Aerosp. Electron. Syst. (2024) http://dx.doi.org/10.1109/TAES.2024.
3462685.

[21] J.-R. Cao, W. Wang, N. Xu, W.-T. Su, L.-X. Xing, J.-T. Su, Robust energy
efficiency optimization strategy for emergency communication based on fixed-
wing UAV, J. Comput. Sci. Tech. 35 (2024) 37–57, http://dx.doi.org/10.53106/
199115992024043502003.

[22] P. Ramesh, J.M.L. Jeyan, Comparative analysis of fixed-wing, rotary-wing and
hybrid mini unmanned aircraft systems (UAS) from the applications perspective,
INCAS Bull. 14 (1) (2022) 137–151, http://dx.doi.org/10.13111/2066-8201.
2022.14.1.12.

http://dx.doi.org/10.1109/COMST.2019.2902862
http://dx.doi.org/10.1109/COMST.2019.2902862
http://dx.doi.org/10.1109/COMST.2019.2902862
http://dx.doi.org/10.1109/MCOM.2016.7470933
http://dx.doi.org/10.1109/MPRV.2017.11
http://dx.doi.org/10.1109/TVT.2018.2811942
http://dx.doi.org/10.1109/TVT.2018.2811942
http://dx.doi.org/10.1109/TVT.2018.2811942
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1109/COMST.2014.2320073
http://dx.doi.org/10.1109/OJCOMS.2024.3398718
http://dx.doi.org/10.1109/OJCOMS.2024.3398718
http://dx.doi.org/10.1109/OJCOMS.2024.3398718
http://dx.doi.org/10.1016/j.sysarc.2022.102744
http://dx.doi.org/10.1016/j.sysarc.2022.102744
http://dx.doi.org/10.1016/j.sysarc.2022.102744
http://dx.doi.org/10.1016/j.sysarc.2021.102219
http://dx.doi.org/10.1109/ICICN59530.2023.10393176
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb11
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb11
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb11
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb11
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb11
http://dx.doi.org/10.1109/LWC.2024.3355934
http://dx.doi.org/10.1109/LWC.2024.3355934
http://dx.doi.org/10.1109/LWC.2024.3355934
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb13
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb13
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb13
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb13
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb13
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb14
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb14
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb14
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb14
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb14
http://dx.doi.org/10.1016/j.comnet.2025.111044
http://dx.doi.org/10.1016/j.adhoc.2024.103704
http://dx.doi.org/10.1016/j.adhoc.2024.103704
http://dx.doi.org/10.1016/j.adhoc.2024.103704
http://dx.doi.org/10.1109/LWC.2019.2892721
http://dx.doi.org/10.1109/JIOT.2022.3142764
http://dx.doi.org/10.1109/JIOT.2022.3142764
http://dx.doi.org/10.1109/JIOT.2022.3142764
http://dx.doi.org/10.1109/ACCESS.2021.3102317
http://dx.doi.org/10.1109/TAES.2024.3462685
http://dx.doi.org/10.1109/TAES.2024.3462685
http://dx.doi.org/10.1109/TAES.2024.3462685
http://dx.doi.org/10.53106/199115992024043502003
http://dx.doi.org/10.53106/199115992024043502003
http://dx.doi.org/10.53106/199115992024043502003
http://dx.doi.org/10.13111/2066-8201.2022.14.1.12
http://dx.doi.org/10.13111/2066-8201.2022.14.1.12
http://dx.doi.org/10.13111/2066-8201.2022.14.1.12

J. Mei et al. Journal of Systems Architecture 168 (2025) 103566
[23] Y. Zhu, B. Yang, M. Liu, Z. Li, UAV trajectory optimization for large-scale and
low-power data collection: An attention-reinforced learning scheme, IEEE Trans.
Wirel. Commun. (2023) http://dx.doi.org/10.1109/TWC.2023.3304900.

[24] B. Yang, Y. Yu, X. Hao, P.L. Yeoh, J. Zhang, L. Guo, Y. Li, OH-DRL: An AoI-
Guaranteed energy-efficient approach for UAV-assisted IoT data collection, IEEE
Trans. Wirel. Commun. (2025) http://dx.doi.org/10.1109/TWC.2025.3545451,
1–1.

[25] C.-W. Fu, M.-L. Ku, Y.-J. Chen, T.Q. Quek, UAV trajectory, user association
and power control for multi-uav enabled energy harvesting communications:
offline design and online reinforcement learning, IEEE Internet Things J. (2023)
http://dx.doi.org/10.1109/JIOT.2023.3325841.

[26] C. Wang, J. Wang, J. Wang, X. Zhang, Deep-reinforcement-learning-based au-
tonomous UAV navigation with sparse rewards, IEEE Internet Things J. 7 (7)
(2020) 6180–6190, http://dx.doi.org/10.1109/JIOT.2020.2973193.

[27] S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in
actor-critic methods, in: International Conference on Machine Learning, PMLR,
2018, pp. 1587–1596, http://dx.doi.org/10.48550/arXiv.1802.09477.

[28] J. Ren, Y. Zhang, Y. Zeng, Y. Lan, Data-efficient deep reinforcement learn-
ing method toward scaling continuous robotic task with sparse rewards, in:
2021 IEEE International Conference on Real-Time Computing and Robotics,
RCAR, IEEE, 2021, pp. 1425–1431, http://dx.doi.org/10.1109/RCAR52367.2021.
9517647.

[29] L. Zheng, Y. Li, Y. Wang, G. Bai, H. He, E. Dong, Uncertainty in Bayesian
reinforcement learning for robot manipulation tasks with sparse rewards, in:
2023 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE,
2023, pp. 1–6, http://dx.doi.org/10.1109/ROBIO58561.2023.10354785.

[30] E.M. Greitzer, Z.S. Spakovszky, I.A. Waitz, Thermodynamics & propulsion, 16.
Unified, 2002, Available online at http://web.mit.edu/16.unified/www/FALL/
thermodynamics/notes/notes.html.

[31] Y. Zeng, R. Zhang, Energy-efficient UAV communication with trajectory opti-
mization, IEEE Trans. Wirel. Commun. 16 (6) (2017) 3747–3760, http://dx.doi.
org/10.1109/TWC.2017.2688328.

[32] L.C. Gimenez, M.C. Cascino, M. Stefan, K.I. Pedersen, A.F. Cattoni, Mobility
performance in slow- and high-speed LTE real scenarios, in: 2016 IEEE 83rd
Vehicular Technology Conference, VTC Spring, 2016, pp. 1–5, http://dx.doi.org/
10.1109/VTCSpring.2016.7504347.

[33] S. Benouadah, L. Mishra, N. Kaabouch, Doppler shift effect on bandwidth
availability for UAV communications, in: 2024 Integrated Communications,
Navigation and Surveillance Conference, ICNS, IEEE, 2024, pp. 1–6.

[34] L. Wang, B. Li, UAV-enabled reliable mobile relaying under the time-varying
rician fading channel, Alex. Eng. J. 64 (2023) 771–783, http://dx.doi.org/10.
1016/j.aej.2022.10.049.

[35] W. Khawaja, I. Guvenc, D.W. Matolak, U.-C. Fiebig, N. Schneckenburger, A
survey of air-to-ground propagation channel modeling for unmanned aerial
vehicles, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2361–2391, http://dx.doi.
org/10.1109/COMST.2019.2915069.

[36] S. Shimamoto, et al., Channel characterization and performance evaluation of
mobile communication employing stratospheric platforms, IEICE Trans. Commun.
89 (3) (2006) 937–944, http://dx.doi.org/10.1093/ietcom/e89-b.3.937.

[37] C. You, R. Zhang, 3D trajectory optimization in rician fading for UAV-enabled
data harvesting, IEEE Trans. Wirel. Commun. 18 (6) (2019) 3192–3207, http:
//dx.doi.org/10.1109/TWC.2019.2911939.

[38] Y. Lyu, W. Wang, P. Chen, Fixed-wing UAV based air-to-ground channel mea-
surement and modeling at 2.7GHz in rural environment, IEEE Trans. Antennas
and Propagation (2024) http://dx.doi.org/10.1109/TAP.2024.3428337, 1–1.

[39] X. Huang, X. Yang, Q. Chen, J. Zhang, Task offloading optimization for UAV-
assisted fog-enabled internet of things networks, IEEE Internet Things J. 9 (2)
(2022) 1082–1094, http://dx.doi.org/10.1109/JIOT.2021.3078904.

[40] S. Jeong, O. Simeone, J. Kang, Mobile edge computing via a UAV-mounted
cloudlet: Optimization of bit allocation and path planning, IEEE Trans.
Veh. Technol. 67 (3) (2018) 2049–2063, http://dx.doi.org/10.1109/TVT.2017.
2706308.

[41] M. Xu, Z. Zhao, M. Peng, Z. Ding, T.Q.S. Quek, W. Bai, Performance analysis
of computation offloading in fog-radio access networks, in: ICC 2019 - 2019
IEEE International Conference on Communications, ICC, 2019, pp. 1–6, http:
//dx.doi.org/10.1109/ICC.2019.8761061.

[42] Y. Wang, W. Fang, Y. Ding, N. Xiong, Computation offloading optimization
for UAV-assisted mobile edge computing: a deep deterministic policy gradient
approach, Wirel. Netw. 27 (4) (2021) 2991–3006, http://dx.doi.org/10.1007/
s11276-021-02632-z.

[43] K. Khac Nguyen, T.Q. Duong, T. Do-Duy, H. Claussen, 3D UAV trajectory
and data collection optimisation via deep reinforcement learning, 2021, http:
//dx.doi.org/10.1109/TCOMM.2022.3148364, ArXiv E-Prints, arXiv–2106.

[44] C. Zhao, J. Liu, M. Sheng, W. Teng, Y. Zheng, J. Li, Multi-UAV trajectory
planning for energy-efficient content coverage: A decentralized learning-based
approach, IEEE J. Sel. Areas Commun. 39 (10) (2021) 3193–3207, http://dx.
doi.org/10.1109/JSAC.2021.3088669.

[45] T. Lillicrap, Continuous control with deep reinforcement learning, 2015, http:
//dx.doi.org/10.48550/arXiv.1509.02971, arXiv preprint arXiv:1509.02971.
14
Jing Mei received the Ph.D. degree in computer science
from Hunan University, China, in 2015. She is currently an
associate professor in the College of Information Science and
Engineering in Hunan Normal University. Her research in-
terests include cloud computing, fog computing and mobile
edge computing, high performance computing, task schedul-
ing and resource management, etc. She has published more
than 30 research articles in international conference and
journals, such as IEEE Transactions on Computers, IEEE
Transactions on Parallel and Distributed System,IEEE Transac-
tions on Service Computing, Cluster Computing,Journal of Grid
Computing, Journal of Supercomputing.

Yuejia Zhang received the B.S. degree in computer sci-
ence and technology from JiangXi University of Science
and Technology, Ganzhou, China, in 2023. He is currently
pursuing the M.S. degree at the College of Information Sci-
ence and Engineering, Hunan Normal University, Changsha,
China. His research interests focus on UAV-assisted sensor
networks and deep reinforcement learning.

Zhao Tong is currently an professor with Hunan Normal
University. He was a visiting scholar at the Georgia State
University during 2017-2018. He has author or coauthored
more than 50 papers in peer-reviewed international journals
and conferences, such as IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Services Comput-
ing, IEEE Transactions on Network and Service Management,
IEEE Transactions on Vehicular Technology, etc. His research
interests include AI computing, parallel and distributed
computing systems, and resource management. He is a
senior member of the IEEE and CCF.

Keqin Li is a SUNY Distinguished Professor of Computer
Science with the State University of New York. He is
also a National Distinguished Professor with Hunan Uni-
versity, China. His current research interests include cloud
computing, fog computing and mobile edge computing,
energy-efficient computing and communication, embed-
ded systems and cyber–physical systems, heterogeneous
computing systems, big data computing, high-performance
computing, CPU–GPU hybrid and cooperative computing,
computer architectures and systems, computer networking,
machine learning, intelligent and soft computing. He has
authored or co-authored over 850 journal articles, book
chapters, and refereed conference papers, and has received
several best paper awards. He holds over 70 patents an-
nounced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top 5
most influential scientists in parallel and distributed com-
puting in terms of both single-year impact and career-long
impact based on a composite indicator of Scopus citation
database. He has chaired many international conferences.
He is currently an associate editor of the ACM Comput-
ing Surveys and the CCF Transactions on High Performance
Computing. He has served on the editorial boards of the
IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud
Computing, the IEEE Transactions on Services Computing, and
the IEEE Transactions on Sustainable Computing. He is an
IEEE Fellow and an AAIA Fellow. He is also a Member
of Academia Europaea (Academician of the Academy of
Europe).

http://dx.doi.org/10.1109/TWC.2023.3304900
http://dx.doi.org/10.1109/TWC.2025.3545451
http://dx.doi.org/10.1109/JIOT.2023.3325841
http://dx.doi.org/10.1109/JIOT.2020.2973193
http://dx.doi.org/10.48550/arXiv.1802.09477
http://dx.doi.org/10.1109/RCAR52367.2021.9517647
http://dx.doi.org/10.1109/RCAR52367.2021.9517647
http://dx.doi.org/10.1109/RCAR52367.2021.9517647
http://dx.doi.org/10.1109/ROBIO58561.2023.10354785
http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/notes.html
http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/notes.html
http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/notes.html
http://dx.doi.org/10.1109/TWC.2017.2688328
http://dx.doi.org/10.1109/TWC.2017.2688328
http://dx.doi.org/10.1109/TWC.2017.2688328
http://dx.doi.org/10.1109/VTCSpring.2016.7504347
http://dx.doi.org/10.1109/VTCSpring.2016.7504347
http://dx.doi.org/10.1109/VTCSpring.2016.7504347
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb33
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb33
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb33
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb33
http://refhub.elsevier.com/S1383-7621(25)00238-3/sb33
http://dx.doi.org/10.1016/j.aej.2022.10.049
http://dx.doi.org/10.1016/j.aej.2022.10.049
http://dx.doi.org/10.1016/j.aej.2022.10.049
http://dx.doi.org/10.1109/COMST.2019.2915069
http://dx.doi.org/10.1109/COMST.2019.2915069
http://dx.doi.org/10.1109/COMST.2019.2915069
http://dx.doi.org/10.1093/ietcom/e89-b.3.937
http://dx.doi.org/10.1109/TWC.2019.2911939
http://dx.doi.org/10.1109/TWC.2019.2911939
http://dx.doi.org/10.1109/TWC.2019.2911939
http://dx.doi.org/10.1109/TAP.2024.3428337
http://dx.doi.org/10.1109/JIOT.2021.3078904
http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.1109/ICC.2019.8761061
http://dx.doi.org/10.1109/ICC.2019.8761061
http://dx.doi.org/10.1109/ICC.2019.8761061
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1007/s11276-021-02632-z
http://dx.doi.org/10.1109/TCOMM.2022.3148364
http://dx.doi.org/10.1109/TCOMM.2022.3148364
http://dx.doi.org/10.1109/TCOMM.2022.3148364
http://dx.doi.org/10.1109/JSAC.2021.3088669
http://dx.doi.org/10.1109/JSAC.2021.3088669
http://dx.doi.org/10.1109/JSAC.2021.3088669
http://dx.doi.org/10.48550/arXiv.1509.02971
http://dx.doi.org/10.48550/arXiv.1509.02971
http://dx.doi.org/10.48550/arXiv.1509.02971
http://arxiv.org/abs/1509.02971

	Trajectory design for data collection under insufficient UAV energy: A staged actor–critic reinforcement learning approach
	Introduction
	Related Works
	Motivation
	Contribution

	SYSTEM MODEL
	Time Model
	Communication Model
	Energy Model
	Problem Formulation

	MDP Formulation and Design Overview
	PROPOSED SCHEME
	S-ACL
	SS-TD3

	EXPERIMENTS
	Simulation Settings
	SS-TD3 Performance
	Necessity of S-ACL
	S-ACL Performance

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. CONNECTION TIME
	Appendix B. BASELINE ALGORITHM
	Data availability
	References

