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a b s t r a c t 

Sparse matrix-vector multiplication (SpMV) is one of the important subroutines in numer- 

ical linear algebras widely used in lots of large-scale applications. Accelerating SpMV on 

multicore and manycore architectures based on Compressed Sparse Row (CSR) format via 

row-wise parallelization is one of the most popular directions. However, there are three 

main challenges in optimizing parallel CSR-based SpMV: (a) limited local memory of each 

computing unit can be overwhelmed by assignments to long rows of large-scale sparse 

matrices; (b) irregular accesses to the input vector result in expensive memory access 

latency; (c) sparse data structure leads to low bandwidth usage. This paper proposes a 

two-phase large-scale SpMV, called tpSpMV , based on the memory structure and com- 

puting architecture of multicore and manycore architectures to alleviate the three main 

difficulties. First, we propose the two-phase parallel execution technique for tpSpMV that 

performs parallel CSR-based SpMV into two separate phases to overcome the computa- 

tional scale limitation. Second, we respectively propose the adaptive partitioning meth- 

ods and parallelization designs using the local memory caching technique for the two 

phases to exploit the architectural advantages of the high-performance computing plat- 

forms and alleviate the problem of high memory access latency. Third, we design several 

optimizations, such as data reduction, aligned memory accessing, and pipeline technique, 

to improve bandwidth usage and optimize tpSpMV ’s performance. Experimental results on 

SW26010 CPUs of the Sunway TaihuLight supercomputer prove that tpSpMV achieves up 

to 28.61 speedups and yields the performance improvement of 13.16% over the state-of- 

the-art work on average. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

In multicore and manycore era, many accelerators, such as Field Programmable Gate Array (FPGA) [1,2] , x86 CPU [3] , Intel

Xeon Phi [4] , SW26010 CPU [5,6] , and General Purpose Graphics Processing Unit (GPGPU) [7–10] , have been used widely in

various fields for its characteristics of high-performance computational capacity. However, the large number of computing

units posts a tricky challenge in meeting memory bandwidth requirements, especially for the memory-bound kernels such

as sparse matrix-vector multiplication (SpMV). 
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Fig. 1. A sparse matrix A . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SpMV is an elementary and indispensable operation in many large-scale applications, such as solving sparse linear sys-

tems [11–13] , electronic structure computations [14,15] , graph computations [16–18] , etc. It dominates the performance of

involved applications. SpMV’s expression is 

y = A × x, (1) 

where A is an input sparse matrix containing m rows, n columns, and nnz nonzeros, x is an input dense vector with n

elements, and y is a result vector with m elements. The sparsity of A gives rise to irregular data access patterns and difficulty

of exploiting data locality of SpMV. 

CSR (compressed sparse row) [19] is one of the most popular sparse matrix storage formats that compresses the storage

space. It uses three arrays to compress the sparse matrix A in Eq. (1) : an integer array “Pr [ m + 1] ” recording pointers to the

start and end positions of each row, an integer array “Col [ nnz ] ” recording column indices of nonzeros, and a floating-point

array “Val [ nnz ] ” recording numerical values of nonzeros. We take a sparse matrix A , as shown in Fig. 1 , as an example,

where m = 6 , n = 6 , and nnz = 18 . The three CSR arrays of A are presented as follows: 

• Pr [7] = { 0 , 4 , 4 , 9 , 13 , 15 , 18 } ; 
• Col [18] = { 0 , 1 , 3 , 4 , 0 , 2 , 3 , 4 , 5 , 0 , 3 , 4 , 5 , 3 , 4 , 0 , 2 , 3 } ; 
• Val [18] = { a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r} . 

Additionally, the implementations and performance of SpMV vary according to the input sparse matrix’s formats. The

algorithm of CSR-based SpMV is shown in Algorithm 1 . 

Algorithm 1 The CSR-based SpMV. 

Require: Three CSR arrays of A : Pr [ m + 1] , Col [ nnz ] , and Val [ nnz ] ; 

The array of x : x [ n ] ; 

The parameters of SpMV: m , n , and nnz . 

Ensure: The array of y : y [ m ] . 

1: for each row r i of A do 

2: for each nonzero a of the row r i do 

3: y [ i ] = y [ i ] + Val [ a ] × x [ Col [ a ]] ; 

4: end for 

5: end for 

6: return y [ m ] . 

Although CSR-based SpMV exposes straightforward row-wise parallelization, the performance of parallel CSR-based SpMV 

is mainly subject to data-dependent performance degradation caused by (a) the irregular row length of the input matrix

A, (b) irregular data access patterns of SpMV , and (c) sparse data structure . First, as for large-scale input sparse matrices,

there may be rows that are too long for the local memory of each computing core, resulting in the computational scale of

parallel CSR-based SpMV is limited by the long rows and limited local memory. Second, the irregular data access patterns of

SpMV result in inefficient memory accesses and large memory access latency on manycore architectures. Third, redundant

data swapping and uncoalesced data accesses due to the sparse data structure lead to low bandwidth usage of manycore

processors. 

As noted, this paper designs tpSpMV to alleviate the difficulties of optimizing parallel CSR-based SpMV on manycore

architectures. Our contributions mainly include: 

• We propose a two-phase parallel execution technique that separates the parallel CSR-based SpMV into two phases:

the partial CSR-based SpMV phase and accumulation phase, to alleviate the limitation of computing scale. 
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• We design the adaptive partitioning strategy and parallelization scheme for the two phases of tpSpMV by using local

memory caching technique to leverage hardware advantages and reduce memory access latency, respectively. 
• We further design several optimization techniques, i.e., data reduction, aligned memory accessing, and pipeline pro-

cessing, to improve bandwidth utilization and optimize communication of tpSpMV . 
• We evaluate tpSpMV on SW26010 CPU of the Sunway TaihuLight supercomputer [20] . The evaluation results prove

that tpSpMV achieves up to 28.61 speedups and yields the performance improvement of 13.16% over the state-of-the-

art work on average. 

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3 details the features of

SW26010 CPU. Section 4 presents parallelization design of tpSpMV . Section 5 demonstrates the communication optimization

for tpSpMV . Section 6 evaluates performance of tpSpMV . Section 7 finally concludes this paper and gives our future work. 

2. Related work 

SpMV’s performance in large-scale applications is limited arising from irregular row length and overloading datasets.

Therefore, some research works are explored to alleviate this constrain for SpMV acceleration. Sadi et al. [21] present an

algorithm co-optimized custom shared memory hardware accelerator for SpMV to overcome the problem of datasets ex-

ceeding the on-chip fast storage. Xiao et al. [22] design an auto-tuning four-way sparse matrix partitioning method based

on a statistical model of matrix structure description for SpMV to fit in the on-chip storage. Merrill and Garland [23] pro-

pose an equitable multi-partitioning for sparse matrices to ensure that each thread can handle its assignment. Greathouse

and Daga [24] design combination CSR-Adaptive SpMV that dynamically determines whether to execute a set of rows or

with the traditional CSR-based SpMV based on the row length of the input matrix. ahSpMV [25] chooses a proper threshold

for the hybrid (HYB) storage format based SpMV parallelization on heterogeneous manycore architectures to overcome the

problem of irregular row length of sparse matrices and achieve better SpMV performance. 

In addition, it has been widely observed that the irregularity of SpMV is a well-known challenge that limits SpMVâs par-

allelism. For this reason, a lot of works have been done to improve data locality and bandwidth utilization. Xie et al. [3] aim

at both vectorization efficiency and locality and low preprocessing overhead by presenting the compressed vectorization-

oriented sparse row (CVR) format for SpMV. Zhang et al. [26] devise Blocked Compressed Common Coordinate (BCCOO) for-

mat that reduces the memory footprint of SpMV to solve the bandwidth challenge, and use vertical partitioning strategy to

achieve better data locality. Liu and Vinter [27] propose CSR5 (Compressed Sparse Row 5) that is insensitive to the sparsity

structure of the input matrix on various parallel computing platforms. Ashari et al. [28] present an adaptive SpMV algorithm

that combines rows into groups and adjusts the requested resources based on the number of nonzeros in rows to improve

coalescing. BASMAT [29] optimizes SpMV by predicting the major performance bottleneck (bandwidth bound, memory la-

tency bound, or thread imbalance) of an input matrix according to its sparsity features. Karsavuran et al. [30] identify five

quality criteria that refer to the trade-off between the reuse of input matrices and parallel write. Elafrou et al. [31] propose

an SpMV optimizer that applies suitable optimizations to tackle the performance bottlenecks of the input matrix. Yang et al.

[32] partition sparse matrices using a probability mass function to obtain better data locality. 

3. Features of the SW26010 manycore architecture 

Fig. 2 shows the computing architecture and memory structure of SW26010 CPU. 

The computing architecture of SW26010 provides multi-level parallelism. Each SW26010 chip contains four core groups

(CGs), which provides the first level of parallelism. Moreover, one CG contains a management processing element (MPE)

core and 64 computing processing element (CPE) cores. The MPE performs not only computations but also pre-processing,

task assignment, etc. The 64 CPEs, arranged in 8 rows and 8 columns, perform parallel computing kernels, which provide

the second level of parallelism. In addition, each CPE has a 256-bit vector unit, which provides another level of parallelism.

Programmers can develop the first level of parallelism among CGs by utilizing Message Passing Interface (MPI). As for

developing the second level of parallelism among CPEs within a CG, the Sunway system provides a customized light-weight

library, named Athread . Therefore, a CG is an MPI process and a CPE is a thread. In addition, the vector unit of each CPE can

be utilized by vectorization, where the vectorization size is 4. 

As for the cache-less memory hierarchy of SW26010, the MPE and 64 CPEs of each CG can access an 8GB DDR3 memory.

An MPE has a 32KB L1 instruction cache and a 256KB L2 data cache. A CPE has a 64KB scratchpad memory, called local

data memory (LDM), rather than data caches. The difference between the scratchpad memory and data cache is that the

scratchpad memory is software-controlled, while the cache is hardware-controlled. 

There are two approaches for data swapping between the memory and LDM: one is efficiently performed by via Direct

Memory Access (DMA) and the other one is performed via Gload/Gstore with high latency. DMA prefers to transmit large

chunks of data, while Gload/Gstore is suitable to discretely access small data. 

Each CG has the peak performance of 765 GFlops and the maximum theoretical bandwidth of 34 GB/s. There are two

key points to fully leverage the computing resources of SW26010 CPUs: 

• CG and CPE : the multiple-level parallelism, i.e., the parallelism among CGs, the parallelism among CPEs within each

CG should be carefully developed for computing kernels. 
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Fig. 2. The architecture of the SW26010 CPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• LDM : the limited memory of LDM demands a delicate design to make full use of the advantages. 

4. Parallelization design of tpSpMV 

Define the input sparse matrix A of tpSpMV to be a CSR-stored sparse matrix containing m rows, n columns, and nnz

nonzeros. Define θ to be the number of CGs, and δ to be the number of CPEs of each CG. This paper proposes the par-

alleization design for tpSpMV on SW26010 CPUs that using the following techniques to optimize parallel CSR-based SpMV. 

Local memory caching. To support efficient memory access pattern, the input vector data of x is distributed and cached

in the local data memory, i.e., LDM on each CPE, so that each CPE performs calculations on all the cached data of x and

corresponding distributed data of the input matrix A , which improves the data locality and data transmission performance

between main memory and LDM. 

Two-phase parallel execution. To support tpSpMV for large-scale data, the sparse matrix A is blocked into fine-grained

submatrices, each of them has a suitable size for LDM. Therefore, based on the local memory caching of x , the results

obtained from CPEs may be not the final result y . This paper proposes two-phase parallel execution to execute parallel CSR-

based SpMV into two phases: (1) the parallel partial CSR-based SpMV phase; (2) the parallel accumulation phase. The first

phase executes the parallel CSR-based SpMV based on the fine-grained data partitioning, and the second phase executes

further accumulation to generate the final result. 

4.1. Parallel partial CSR-based SpMV phase 

4.1.1. The adaptive partitioning 

We design an adaptive partitioning strategy for the partial SpMV phase on the SW26010 architecture to fully leverage

the multiple-level parallelism and fully exploit the limited storage of LDM. 

There are three layers of the adaptive partitioning for the partial CSR-based SpMV phase: 

• Layer 1: 

To leverage the first level parallelism among θ CGs, A is partitioned by rows into θ blockA s based on the number of

rows and CGs. Each blockA contains m / θ rows and n columns of A . 

Each CG is assigned a blockA and the input vector x . The i th CG reads the � i ×m 

θ
� th row through the � (i +1) ×m 

θ
� th row

of A to load the blockA , where i ∈ { 0 , 1 , 2 , . . . , θ − 1 } . The results on each CG are θ segments, denoted as y ′ seg , and each

y ′ seg contains m / θ elements. 
• Layer 2: 

To leverage the second level parallelism among δ CPEs within each CG, the blockA on each CG is partitioned by

columns into δ tileA s based on the number of nonzeros and CPEs. Each tileA contains m / θ rows and n ′ columns. In

addition, each tileA on the CG has roughly equal number of nonzeros. 

x on each CG is correspondingly partitioned into δ segments, denoted as x seg . Each x seg contains n ′ elements. 

As shown in Fig. 3 , there is an array Pc [ δ + 1] on each CG that stores the positions of each tileA in blockA . Each

CPE of a CG is assigned a tileA and the corresponding x seg according to array Pc . The j th CPE of each CG reads the
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Fig. 3. Parallel partial CSR-based SpMV phase of tpSpMV on SW26010. 

 

 

 

 

 

 

 

 

 

Pc [ j] th column through the Pc [ j + 1] th column of blockA to load the tileA , where i ∈ { 0 , 1 , 2 , . . . , δ − 1 } . The result is a

segment, denoted as y ′ seg , which contains m / θ elements. Each CG will receive δ y ′ seg s from the δ CPEs, and the δ y ′ seg s

will be further accumulated to the y seg in the second phase. 
• Layer 3: 

To leverage the limited size of LDM, the tileA on each CPE is further divided by rows into m /( θ × ι) fine-grained

sliceA s. Each sliceA contains ι rows. 

The LDM of each CPE loads a sliceA ( ι rows) of the tileA each time and caches the x seg for computations. The result

each time on the CPE is a segment containing ι elements of the y ′ seg . 

More importantly, the total size of the sliceA , the x seg , and the result segment must adapt to LDM. 

4.1.2. The parallelization model 

Based on the adaptive partitioning method, we design the parallelization model for the partial CSR-based SpMV phase. 

All the sliceA s of the tileA on each CPE are multiplied by the corresponding x seg . According to the local memory caching

technique, therefore, each x seg is cached in the corresponding LDM via DMA at first. Each CPE executes m /( θ × ι) computing

rounds in total. Each computing round loads a sliceA into the LDM for performing computations with the cached x seg . There

are three steps of each computing round on each CPE, as follows: 

• Step 1: 

The CPE loads the three arrays of a sliceA into LDM via DMA; 
• Step 2: 

The CPE performs computations on the loaded sliceA and the cached x seg ; 
• Step 3: 

The CPE sends the result, a segment with ι elements of the y ′ seg , back to main memory via DMA. 

Fig. 3 presents an example of parallel partial SpMV phase of tpSpMV on SW26010. Algorithms 2 and 3 demonstrate the

parallel partial SpMV phase on SW26010, where Algorithm 2 describes tpSpMV on an MPE, and Algorithm 3 describes the

parallel partial CSR-based SpMV phase on a CPE. Algorithm 3 is called by Algorithm 2 . 
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Algorithm 2 tpSpMV on the MPE of each CG. 

Require: A , x , m , n , θ , and δ. 

Ensure: tileY . 

1: Read the blockA and x of the CG and hold it in the main memory; 

2: //initiate CPE threads of the CG 

3: athread_init(); 

4: //set the number of CPE threads engaged in the CG 

5: athread_set_num_threads( θ ); 

6: //call Algorithm 3 on the θ CPEs to perform the partial CSR-based SpMV part 

7: athread_spawn(); 

8: //deallocate the θ CPEs 

9: athread_join(); 

10: //invoke Algorithm 4 on the θ CPEs to perform the accumulation part 

11: athread_spawn(); 

12: //deallocate the θ CPEs 

13: athread_join(); 

14: //annull the θ CPEs 

15: athread_halt(); 

16: return tileY . 

Algorithm 3 The partial CSR-based SpMV phase of tpSpMV on a CPE. 

Require: m , n , θ , δ, and ι; 
Three CSR arrays of the blockA : Pr [ m/θ + 1] , Col [ nnz ] , and Val [ nnz ] ; 

The array of x : x [ n ] . 

Ensure: The array of y ′ seg : y’ seg [ m/θ ] . 

1: Allocate memory in LDM ( x seg [ n 
′ ] ) for the array of x seg on the CPE; 

2: //load the array of x seg in the LDM 

3: DMA _ get( x , n ′ , x seg ) ; 

4: for each sliceA in the tileA of the blockA do 

5: //load the CSR arrays of the sliceA in the LDM 

6: DMA _ get( Pr , ι, · · · ) ; 
7: Calculate the number of nonzeros of the sliceA ( nnz( sliceA )) according to Pr ; 

8: if nnz ( sliceA ) � = 0 then 

9: DMA _ get( Col , nnz ( sliceA ) , · · · ) ; 
10: DMA _ get( Val , nnz ( sliceA ) , · · · ) ; 
11: Perform SpMV on the sliceA and x seg , and the result is a segment with ι elements of the y ′ seg ; 

12: //return the result segment back to the main memory 

13: DMA _ put( · · · , ι, y’ seg ) ; 

14: end if 

15: end for 

16: return y’ seg [ m/θ ] . 

 

 

 

 

 

4.2. Parallel accumulation phase 

The result segments got from CPEs of each CG, i.e., δ y ′ seg s, should be further accumulated into the final result segment

of y , denoted ad y seg . In addition, the accumulation operations can be efficient using parallel techniques, which is what our

parallel accumulation phase of tpSpMV does. 

4.2.1. The adaptive partitioning 

We design the adaptive partitioning method for the parallel accumulation phase on SW26010 as well. There are δ result

segments, denoted as y ′ seg s, of the partial CSR-based SpMV phase on each CG, and there are θ × δ y ′ seg s in total. Before the

accumulation phase, we merge the δ y ′ seg s on each CG into a matrix blockY containing m / θ rows and δ columns. 

As for each CG, there are two main layers of the adaptive partitioning: 

• Layer 1: 

To leverage the parallelism among δ CPEs within the CG, the blockY is partitioned into δ tileY s by rows, where each

tileY contains m /( θ × δ) rows and δ columns. 
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Fig. 4. Parallel accumulation phase of tpSpMV on SW26010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each CPE is assigned a tileY . The j th CPE of each CG reads the � j×m 

θ×δ
� th row through the � (i +1) ×m 

θ×δ
� th row of the blockY

to load the tileY , where j ∈ { 0 , 1 , 2 , . . . , δ − 1 } . The accumulation result on all the δ columns of the tileY is a segment

of y seg , denoted as CPE_y seg , which contains m /( θ × δ) elements. 
• Layer 2: 

To leverage the limited size of LDM, the tileY on each CPE is further divided by rows into m /( θ × δ × ι) sliceY s. Each

sliceY contains ι rows and δ columns. 

Each CPE loads a sliceY ( ι rows) of the tileY each time. The accumulation result on all the δ columns of a sliceY is a

segment of CPE_y seg that contains ι elements. 

More importantly, the total size of each sliceY and the corresponding result segment must adapt to the LDM. 

4.2.2. The parallelization model 

Based on the adaptive partitioning method, we further design the parallelization model for the accumulation phase on

SW26010. 

Each CPE only loads a sliceY each time for computations. Therefore, each CPE executes m /( θ × δ × ι) computing rounds

in total. There are three steps of each computing round of the parallel accumulation phase, as follows: 

• Step 1: 

Each CPE loads a sliceY into the LDM via DMA; 
• Step 2: 

Each CPE performs accumulation operations on all the δ columns of the sliceA . The result is a segment of CPE_y seg ,

denoted as CPE_y ′ seg , which contains ι elements; 
• Step 3: 

Each CPE sends the result segment CPE_y ′ seg back to main memory via DMA. 

Fig. 4 presents an example of the parallel accumulation phase of tpSpMV on SW26010. Algorithms 2 and 4 describe

the parallel accumulation phase of tpSpMV on SW26010, where Algorithm 4 describes the parallel accumulation phase of

tpSpMV on a CPE. In addition, Algorithm 4 is called by Algorithm 2 . 

As for the parallel partial CSR-SpMV phase, the Layer 1 partitioning step decides the computational loads for accumu-

lation phase. To guarantee load balance for parallel accumulation phase, each blockA has m / θ rows. In addition, the Layer

2 partitioning step partitions blockA based on the number of nonzeros and CPEs to guarantee load balance among CPEs

within each CG. As for the parallel accumulation phase, each blockY is dense. Therefore, the Layer 1 partitioning step that

guarantees each tileY has m /( θ × δ) rows can ensure load balance among CPEs. 
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Algorithm 4 The accumulation phase of tpSpMV on a CPE. 

Require: m , n , θ , δ, and ι; 
The array of the blockY: blockY [ m × n/θ ] . 

Ensure: The array of CPE_y seg : CPE_y seg [ m/ (θ × δ)] . 

1: for each sliceY in the tileY of the blockY do 

2: //load the array of the sliceY in the LDM 

3: DMA _ get( blockY , ι × δ, · · · ) ; 
4: Perform accumulation on the δ columns of the sliceA , and the result is a segment with ι elements of the CPE_y seg ; 

5: //return the result segment back to the main memory 

6: DMA _ put( · · · , ι, CPE_y seg ) ; 

7: end for 

8: return CPE_y seg [ m/ (θ × δ)] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Communication optimization for tpSpMV 

The communication amount and communication overhead of tpSpMV increase as the data scale increases, resulting in

the communication overhead may become the main bottleneck of the whole kernel. The communication of our tpSpMV
corresponds to the intra-node communications on Sunway system, i.e., the data swapping between main memory and LDM.

Therefore, the emphasises of communication optimization are on reducing amount of transmission data and increasing the

transmission bandwidth of DMA on each CG. We propose the following schemes to optimize DMA transmission. 

5.1. Data reduction 

As shown in Fig. 3 , there are empty rows in A and empty columns in blockA s in tpSpMV . Empty rows of A result in

redundant transmission data of y ′ seg and the CSR array Pr in the partial CSR-based SpMV phase, and blockY s and CPE_y seg 

in the accumulation phase. Empty columns of blockA s result in redundant transmission data of x in the partial CSR-based

SpMV phase. 

Therefore, the data reduction technique eliminates the zeros in input matrix A to reduce the amount of transmission data.

Fig. 5 shows the partial CSR-based SpMV using data reduction technique. As shown in Fig. 5 , the data reduction technique

eliminates the empty rows of A before performing two-phase execution to reduce the redundant transmission data of y ′ seg 

and the CSR array Pr . In addition, the technique reduces the empty columns of blockA s and corresponding elements in x

after the Layer 1 partitioning to reduce the redundant transmission data of x . 

5.2. Aligned memory accessing 

The DMA transmission performance can be improved when each data transmission chunk is aligned to a 128-byte bound-

ary in main memory. Each DMA transmission accesses the memory that aligns to a 128-byte boundary. As for transferring a

128-byte data chunk, for example, two DMA transmissions are actually required for a total of 256 bytes if the data chunk is

not aligned to a 128-byte boundary in memory. However, only one DMA transmission is actually required for a total of 128

bytes if the data chunk is aligned to a 128-byte boundary in memory. 

The aligned memory accessing in the proposed large-scale SpMV is hard to guarantee due to the irregular positions of

nonzeros of sparse matrices. Therefore, we design the optimization technique that guarantees the aligned memory accessing

in large-scale SpMV. Define M i as the memory footprint of an integer and M f as the memory footprint of a floating-point

number on the platform. 

As for the partial CSR-based SpMV phase, each CPE accesses the three CSR arrays of a sliceA each time. Therefore, we

propose the padding technique that pads each sliceA with zeros to ensure that the number of nonzeros. The padded zeros

of each sliceA are a multiple of both 

128 
M i 

and 

128 
M f 

, which guarantee the aligned memory accessing to CSR arrays Col and Val .

In addition, there are ι integers of Pr transferred from main memory to LDM. To guarantee the aligned memory accessing

to Pr , we set the value of ι to be a multiple of 128 
M i 

. Moreover, there are ι floating-point numbers of y ′ seg transferred from

LDM to main memory. To guarantee the aligned memory accessing to y ′ seg , we set the value of ι to be a multiple of 128 
M f 

. 

As for the parallel accumulation phase, each CPE accesses a sliceY with ι × δ floating-point numbers each time. To

guarantee the aligned memory accessing to each blockY , we set the value of ι × δ to be a multiple of 128 
M f 

. In addition, each

CPE transfers ι floating-point numbers of CPE_y seg returned from LDM to main memory. Therefore, we set the value of ι to

be a multiple of 128 
M f 

to guarantee the aligned memory accessing to CPE_y seg . 
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Fig. 5. Data reduction technique for the partial CSR-SpMV phase on SW26010. 

 

 

 

 

 

 

 

 

5.3. Pipelining 

As for the partial CSR-SpMV phase, each CPE firstly caches the x seg in LDM, and then successively loads a sliceA ( step

1 ), executes computations ( step 2 ), and sends the y ′ seg back ( step 3 ). The three steps in each computing round are executed

in sequential. In addition, the partial CSR-SpMV phase is executed on each CPE till the CPE completes computations on the

entire tileA and sends the results back. As for the accumulation phase, each CPE successively loads a sliceY ( step 1 ), executes

computations ( step 2 ), and sends the CPE_y seg back ( step 3 ). The three steps in each computing round are executed in

sequential. In addition, the accumulation phase is executed on each CPE till the CPE completes computations on the entire

tileY and sends the results back. 

We use the pipeline technique to create parallelism among the data loading step ( step 1 ) in previous computing rounds,

computation execution step ( step 2 ) in current computing rounds, and results returning step ( step 3 ) in next computing

rounds. As shown in the timeline of Fig. 6 , the performance of tpSpMV can be improved using the pipeline technique. 
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Fig. 6. Pipeline technique. 

Fig. 7. Speedup of tpSpMV on a CG with 64 CPEs. 

 

 

 

 

 

 

 

 

 

 

 

6. Performance evaluation 

6.1. Experimental setup 

tpSpMV is implemented by C language. This paper tests tpSpMV on SW26010 CPUs of the Sunway TaihuLight super-

computer. The frequency of each MPE and CPE of an SW26010 CPU is 1.45GHz. We first test the scalability of tpSpMV on

CPEs within a single CG. Then, we test the scalability of tpSpMV on eight CGs. 

We choose 15 sparse matrices, as shown in Table 1 , that are frequently used in some related works [33] , where m in

Table 1 means the number of rows of the sparse matrix, n means the number of columns, and nnz means the number of

nonzeros. 

6.2. Experimental results and analysis 

Fig. 7 presents the speedups of tpSpMV achieved on a CG using 64 CPEs. The speedup is the ratio of tpSpMV ’s parallel

running time executed on 64 CPEs within a CG to the sequential running time executed on an MPE. On average, tpSpMV
achieves the speedup of 17.12 (min: 5.05, max: 28.61) on the 15 matrices on a CG using 64 CPEs, as shown in Fig. 7 .

We notice that tpSpMV obtains the lowest speedups on ex6 and cavity05 , the smallest matrices of all the test matrices,

indicating that tpSpMV performs better on large-scale matrices than small-scale matrices. 

Fig. 8 shows GFlops of tpSpMV achieved on a CG as the number of CPEs changes, where GFlops is calculated based

on the ratio of the double number of nonzeros of the sparse matrix to the execution time of tpSpMV . tpSpMV on a CG

achieves the highest GFlops when all the 64 CPEs are used. In addition, the growth rate of GFlops on a CG slows down as

the number of CPEs increases, since multiple CPEs working in the CG experience contention for computing resources. 
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Table 1 

The sparse matrices. 

Name m n nnz 

sme3Da 12504 12504 874887 

poisson3Da 13514 13514 352762 

2cubes_sphere 101492 101492 874378 

raefsky5 6316 6316 168658 

ut2010 115406 115406 111052 

twotone 120750 120750 1224224 

ex6 1651 1651 49533 

cavity05 1182 1182 32747 

g7jac140 41490 41490 565956 

fxm4_6 47185 22400 265442 

scsd8-2r 60550 8650 190210 

e18 38602 24617 156466 

scfxm1-2b 33047 19036 111052 

sctap1-2b 33858 15390 99454 

testbig 31223 17613 61639 

Fig. 8. Performance of tpSpMV on a CG varying the number of CPEs. 

 

 

 

 

Fig. 9 shows GFlops of tpSpMV achieved on the Sunway varying the number of CGs. The GFlops obtained by tpSpMV
improves with the increasing of the number of CGs. tpSpMV yields good scalability on eight CGs. Moreover, as the number

of CGs increases, blockA s become sparser and the number of empty rows and columns of blockA s increases, which leads to

the data reduction technique playing an increasingly important role in performance optimization of tpSpMV . Therefore, the

data reduction technique avoids the performance degradation caused by sparsity of sparse matrices. 
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Fig. 9. Scalability of tpSpMV on CGs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 presents performance of the three optimization techniques. We compare performance of tpSpMV with that with-

out optimization techniques. tpSpMV gains 6.29% (min: 3.57%, max: 9.57%) performance improvement on average by using

the proposed optimization techniques. Figs. 11 and 12 show the optimization effects for the partial SpMV phase and accumu-

lation phase, respectively. On average, by using optimizations, the partial SpMV phase and accumulation phase of tpSpMV
achieve performance improvements of 7.60% (min: 3.95%, max: 10.74%) and 3.98% (min: 2.11%, max: 6.90%), respectively. The

reason why the accumulation phase yields less performance improvements than the partial SpMV phase is that each blockY

is dense and the size of each sliceY is a multiple of 64 × M f when 64 CPEs are used in each CG, which causes that the

aligned memory accessing techniques yield no performance gain for the accumulation phase. 

We further present performance contributions to tpSpMV from each of the three optimization techniques, i.e., data re-

duction, aligned memory accessing, and pipelining, as shown in Fig. 13 . Label “tpSpMV Without Optimization” presents the

execution time of tpSpMV without any optimization. Label “Data Reduction” shows the execution time of tpSpMV using

the data reduction. Label “Aligned Memory Accessing” presents the execution time of tpSpMV using the data reduction and

aligned memory accessing techniques. Label “Pipelining” shows the execution time of tpSpMV using all the three techniques.

By comparing label “tpSpMV Without Optimization” and label “Data Reduction”, the optimization effect of data reduction is

0.31% on average (min: 0.00%, max: 4.63%). By comparing label “Data Reduction” and label “Aligned Memory Accessing”, the

optimization effect of align memory accessing is 3.21% on average (min: 1.48%, max: 5.50%). By comparing label “Aligned

Memory Accessing” and label “Pipelining”, the optimization effect of pipelining is 2.88% on average (min: 1.25%, max: 5.96%).

The data reduction optimization seems not effective, because all the tested sparse matrices except ut2010 have no empty

rows and columns, and tpSpMV gains performance improvement from data reduction only on ut2010 (4.63%). 
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Fig. 10. Effects of the communication optimization techniques for tpSpMV . 

Fig. 11. Optimization effects for the partial SpMV phase. 

 

 

 

 

 

Fig. 14 shows the proportion of execution time of the partial CSR-based SpMV phase and the accumulation phase in

tpSpMV on 64 CPEs within a CG. Label “Partial SpMV” represents the running time of the partial CSR-based SpMV phase,

and label “Accumulation” represents the running time of the accumulation phase. The parallel running time of the accu-

mulation phase is less than that of the partial CSR-based SpMV phase. According to the previous experimental analysis, the

computational data in the parallel accumulation phase is dense, which enables the parallel computing resources to be more

fully utilized. 
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Fig. 12. Optimization effects for the accumulation phase. 

Fig. 13. Performance contributions to tpSpMV from each of the three optimization techniques. 

 

 

 

Fig. 15 compares the performance of tpSpMV with the work reported in Ref. [34] . It is evident from the figure that our

tpSpMV outperforms than the work in [34] on a CG. tpSpMV achieves the performance improvement of 13.16% on average

(max: 21.63%, min: 7.58%). The reason is that the work in [34] does not consider load balancing among CPEs within a CG

for the parallel partial CSR-based SpMV phase and the communication optimization techniques. 
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Fig. 14. Performance of the parallel partial SpMV phase and the accumulation phase of tpSpMV on a CG. 

Fig. 15. GFlops comparison between tpSpMV and the work in Ref. [34] on a CG. 

 

 

 

 

 

 

 

7. Conclusions 

This paper proposes a high-performance and large-scale two-phase SpMV kernel, named as tpSpMV , on manycore archi-

tectures that alleviates three challenges of computational scale limitation, high memory access latency, and low bandwidth

usage. The proposed tpSpMV mainly includes two parts: the parallel partial CSR-based SpMV phase and the parallel accu-

mulation phase. We propose the adaptive partitioning methods and parallelization designs for the two parts to make full use

of computational resources, respectively. We further design communication optimization techniques for tpSpMV to enable

more efficient bandwidth usage. The performance evaluation of tpSpMV on SW26010 processors presents high efficiency

and fine scalability. 

As for the future work, we will optimize graph computations using sparse matrix algebra on high-performance comput-

ing platforms. 
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