
IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025 817

Quality Scores Compression of Genomic Sequencing
Data: A Comprehensive Review and

Performance Evaluation
Yuansheng Liu , Tao Tang , Zexuan Zhu , Xiangxiang Zeng , Quan Zou , Senior Member, IEEE,

and Keqin Li , Fellow, IEEE

(Survey/Tutorial Paper)

Abstract—Advanced sequencing technologies have profoundly
revolutionized biology and produced vast amounts of raw se-
quencing data during the past decades. The enormous amount of
sequencing data proposed significant challenges of data storage
and transmission. Compressing a big file into a small file is an
encouraging method to tackle these challenges. Howver, it has been
found that traditional text data compression algorithms are not
well-suited for handing the vast sequencing datasets. Therefore,
several algorithms are designed specifically for the efficient com-
pression of sequencing data. Recently, considerable research has
been devoted to compressing quality scores stored in the FASTQ
format file, resulting in substantial advances in compression perfor-
mance. Despite these advances, there has been no systematic review
and evaluation of these algorithms or software. In this review,
we aim to conduct a broad review of the existing quality score
compression algorithms. We mainly discuss those algorithms from
two categories, i.e., lossless and lossy compression. Additionally,
we benchmark the compression performance of 12 tools using 14
real datasets. We anticipate that our review will provide practical
guidance for others seeking to design an appropriate algorithm for
compressing quality scores.

Received 10 October 2022; revised 29 May 2023; accepted 3 February 2025.
Date of publication 7 February 2025; date of current version 3 April 2025. This
work was supported in part by the National Natural Science Foundation of China
under Grant 62102140, Grant 62202236, Grant 62372159, Grant 62425204,
Grant 62122025, Grant U22A2037, Grant 62450002, Grant 62432011, and
Grant 62272151, in part by the Science and Technology Innovation Program
of Hunan Province under Grant 2022RC1100, and in part by Hunan Provincial
Natural Science Foundation of China under Grant 2021JJ10020. (Yuansheng
Liu and Tao Tang contributed equally to this work.) (Corresponding author:
Xiangxiang Zeng.)

Yuansheng Liu and Xiangxiang Zeng are with the College of Information
Science and Engineering, Hunan University, Changsha, Hunan 410082, China
(e-mail: yuanshengliu@hnu.edu.cn; xzeng@hnu.edu.cn).

Tao Tang is with the School of Mordern Posts, Nanjing University of Posts
and Telecommunications, Nanjing, Jiangsu 210049, China (e-mail: tangtao@
njupt.edu.cn).

Zexuan Zhu is with the College of Computer Science and Soft-
ware Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
zhuzx@szu.edu.cn).

Quan Zou is with the Institute of Fundamental and Frontier Sciences, Univer-
sity of Electronic Science and Technology of China, Chengdu 610054, China
(e-mail: zouquan@nclab.net).

Keqin Li is with the College of Information Science and Engineering, Hunan
University, Changsha, Hunan 410082, China, also with the National Supercom-
puting Center, Changsha, Hunan 410082, China, and also with the Department of
Computer Science, State University of NY, New Paltz, NY 12561 USA (e-mail:
lik@newpaltz.edu).

Digital Object Identifier 10.1109/TCBBIO.2025.3539629

Index Terms—Lossless compression, lossy compression, quality
scores compression, sequencing data compression.

I. INTRODUCTION

S EQUENCING technology has revolutionized biological
research, contributing significantly to the current genomic

revolution [1], [2]. The falling costs and the increased throughput
of sequencing (https://www.genome.gov/about-genomics/fact-
sheets/Sequencing-Human-Genome-cost) have driven world-
wide DNA sequencing companies to produce unprecedented
volumes of genomic data [3], [4]. For instance, the National In-
stitutes of Health’s Sequence Read Archive [5] and the European
Nucleotide Archive (ENA) [6] have accumulated approximately
ten quadrillion bases over the past years. The 100,000 Genomes
Project has already stored 21 PetaBytes of data. The NovaSeq
6000 sequencing system, new sequencing system, can generate
about 20 billion reads and FASTQ format files of up to 6
TeraByte within two days. Storing and sharing these large-scale
sequencing data with multiple institutions is essential for gaining
deeper insights into genomic structures, functions, and evolu-
tions [7], [8]. Moreover, these sequencing data are uniquely
generated as the samples used for sequencing are not allowed for
resequencing. The ever-increasing amount of sequencing data
presents new challenges in data storage and transmission [9]. In
the past decade, the growth rate of sequencing data has exceeded
the drop rate of hardware prices. Furthermore, transmitting
large files takes longer time, leading to inefficient cooperation
in analysis and research. Therefore, an urgent need exists for
a sophisticated solution to reduce the cost of large-scale data
storage and transmission time [10], [11].

The FASTQ file format is commonly used to store the raw
sequencing data. Each entry in the FASTQ file comprises four
lines, which include identifies, nucleotide sequence, the symbol
‘+’, and the quality scores. An example of an entry is provided
in Fig. 1. To address the challenges associated with storing and
transmitting large amounts of sequencing data, traditional text
data compression tools are usually used to compress sequencing
data. For instance, gzip (https://www.gzip.org/) is used by the
ENA. However, these tools do not effectively exploit intrinsic
features such as repetitive subsequences and small alphabet size

2998-4165 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7680-3155
https://orcid.org/0000-0002-1207-4192
https://orcid.org/0000-0001-8479-6904
https://orcid.org/0000-0003-1081-7658
https://orcid.org/0000-0001-6406-1142
https://orcid.org/0000-0001-5224-4048
mailto:yuanshengliu@hnu.edu.cn
mailto:xzeng@hnu.edu.cn
mailto:tangtao@njupt.edu.cn
mailto:tangtao@njupt.edu.cn
mailto:zhuzx@szu.edu.cn
mailto:zouquan@nclab.net
mailto:lik@newpaltz.edu
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.gzip.org/


818 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025

Fig. 1. A real example of two entries in the FASTQ format file from the raw
sequencing file “SRR635193_1.fastq”. The first and fifth lines are the identifiers;
the second and sixth lines are the DNA sequence; and the fourth and eighth lines
are quality scores.

found in sequencing data, resulting in suboptimal compression
ratios [12], [13]. In contrast, several algorithms specially de-
signed for sequencing data have achieved high compression
ratios [8], [14], [15], [16]. For instance, while the file size of
“SRR5220205_1.fastq” is 41 GB, the gzip-compressed file size
downloaded from ENA is 9.1 GB. Furthermore, the state-of-
the-art tool SPRING [17] compressed it to 3.2 GB, offering
a much better compression ratio by utilizing repeat fragments
in short reads. As only one symbol is generally contained in
the third line, FASTQ file compression typically involves com-
pressing three distinct data streams [18]: identifiers, sequence,
and quality scores. Advanced technologies are proposed to
compress different parts of reads data, including tokenization
algorithms for identifiers [19], and reference-based and de novo
algorithms for reads sequence compression [17], [20], [21], [22].
Furthermore, over the past decade, more than 30 algorithms
have been proposed to compress quality scores, resulting in
significant improvements in compression performance [8], [23].
A timeline of these algorithms is depicted in Fig. 2. Despite
these advancements, there is still a lack of comparative analysis
of these algorithms. Therefore, this study aims to review and
evaluate these algorithms.

The quality score of sequencing data indicates the probability
that the nucleotide base it is related to has been incorrectly
identified during the sequencing process. This probability, de-
noted as P , is often converted into an integer Phred score, Q =
−10× log10 P . The Phred scores are stored in the FASTQ file as
ASCII alphabets within the range [33 : 73] or [64 : 104], which
are typically scaled by Q+ 33 or Q+ 64. Some sequencing
machines have introduced to reduce the resolution of the quality
scores. For example, the HiSeq X uses only eight available
quality scores, while the NovaSeq FASTQs have only four [21].
Lower Q scores indicate a higher probability of error, which can
negatively affect downstream analysis [24]. In a FASTQ format
file, as every nucleotide base has one quality score, the number of
quality scores is the same as the number of nucleotide bases in the
reads. However, compressing quality scores is more complicated
than compressing reads sequence due to their higher entropy and
larger alphabet [25]. Additionally, no reference sequence can be
used for quality score compression [26], making reference-based
compression algorithm unsuitable. As demonstrated in [27], the
size of gzip-compressed quality scores is four times larger than
that of the gzip-compressed reads.

In the field of compression, there are two categories of
methods: lossless and lossy. Lossless compression algorithm,
such as 7-zip (https://www.7-zip.org/) and bzip2 (http://www.

bzip.org/), are commonly used for text data compression. This
method produces a decompressed output that is identical to
the original data, preserving enough information to restore all
the compressed information. Lossless compression is widely
employed for genomic data compression including reads com-
pression [17], genome sequence compression [28], and quality
score compression [29].

In contrast, lossy compression scarifies part of the data to
achieve an outstanding compression ratio. In general, the com-
pressed file size of lossy compression method is significantly
smaller than that of using the lossless compression method.
However, the original data cannot be recovered exactly. Mul-
timedia data such as images and videos [30] are typically com-
pressed using lossy compression algorithms. However, lossy
compression is not suitable for nucleobases since they store
essential genetic information. Quality score, which indicate the
confidence level of each nucleobase, have a higher resolution
than necessary for downstream analysis. Hence, numerous lossy
compression methods have been developed to compress quality
scores of sequencing data. However, the loss of information
may affect downstream applications such as Single Nucleotide
Polymorphism (SNP) genotyping [24]. The impact of existing
lossy methods on downstream applications has been evaluated
in previous studies [31], [32].

This article introduces the compression of four different for-
mat files in genomic sequencing data and provides a comprehen-
sive survey of existing quality score compression algorithms.
Lossless and lossy compression algorithms for quality scores
are summarized, and the latter is clustered into different groups
based on their rationales and features. The compression perfor-
mance of these algorithms, including compression ratio, running
time, and memory usage, is evaluated using open source scripts
available at https://github.com/ttan6729/qsc-review.

II. GENOMIC SEQUENCING DATA COMPRESSION

Genomic sequencing data is typically stored in one of four file
formats, as illustrated in Fig. 3. In the next-generation sequenc-
ing technology [33], the outputs are millions of short fragments
having the same lengths about hundred bases. These fragments,
called reads, are generally considered to be irregularly sampled
substrings of the DNA sequence. Third-generation sequencing
method, on the other hand, generates fewer but longer reads,
ranging from 100 to 1000 bases in length. The raw sequencing
data is stored in the FASTQ format file [34].

To analyze the sequencing results, the reads in the FASTQ
file are aligned to the reference genome using tools such as
BWA-MEM [35] and Bowtie2 [36]. The alignment results are
then saved in the SAM (short for sequence alignment map)
format file [37]. Since SAM files can be very large, with a human
genome SAM file at 30× coverage taking up about 90 GB, the
binary BAM format file is preferred in downstream applications
as it is much smaller.

After alignment, variant calling is used to identify differences
between the reads and the reference genome [38], and the results
are stored in the VCF (short for variant call format) format
file [39]. A binary BCF format file, which is more effecient for

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 

https://www.7-zip.org/
http://www.bzip.org/
https://github.com/ttan6729/qsc-review


LIU et al.: QUALITY SCORES COMPRESSION OF GENOMIC SEQUENCING DATA: A COMPREHENSIVE REVIEW AND PERFORMANCE EVALUATION 819

Fig. 2. A time line of algorithms for quality score compression.

Fig. 3. The typical file formats used to store sequencing data. The raw data
sequenced from DNA is stored in the FASTQ format file. The aligned data is
stored in the SAM format file. The variants are stored in the VCF format file.
The assembled genome sequences are stored in the FASTA format file.

storage and querying, can also be used to store the information
in the VCF file.

Additionally, short reads can be assembled into the genome
sequences [40], which are saved in the FASTA format file. For
instance, it requires approximately 3 GB of storage to store 24
sequences of the human genome.

As alignment, variant calling, and assembly technologies
evolve, the above four format files are necessary for reanalyzing
genomic sequencing data. Therefore, there is a growing interest
in genomic sequencing data compression from these four file
formats.

A. Raw Sequencing Data Compression

The FASTQ format is the most commonly used format for
storing sequencing data, and many algorithms have been pro-
posed to compress FASTQ files over the past two decades [41].
DNA sequences and the quality scores contain the majority of
sequencing information, and therefore, most algorithms focused
on compressing these two parts. The de novo compression

algorithm attracts more attention for DNA sequence compres-
sion becasuse it has achieved better performance than the
reference-based compression algorithm [22]. Reordering reads
has significantly improved the compression ratio, and most of
prevalent algorithms specially designed for sequence compres-
sion are composed of read reordering and contig assembly [17],
[22], [42]. For instance, PgRC [43] assembles reads into a
pseudogenome and achieved the highest compression ratio on
all datasets. The most recent algorithm, Mstcom [44], stores
the minimum spanning tree over the reads overlap graph, and
uses multiple minimizers to search similar reads [45]. Mstcom
performs better than PgRC in terms of compression ratio, but
neither is capable of compressing the whole FASTQ file. In
practice, SPRING [17] and FaStore [21] are the most popular
tools as they have stable performance in speed, memory usage,
and compression ratio.

The third-generation sequencing technology produces long
reads, which has several advantages over short reads [46] and are
widely used in the analysis [47]. The tools designed specifically
for short reads cannot be directly applied to long reads due to in-
herent differences in their features, such as read length, sequenc-
ing depth, and error characteristics. For example, PgRC and
Minicom [22] can not compress reads having different lengths,
and only SPRING supports compression of long reads by storing
lengths of every read. Furthermore, some algorithms [48], [49]
are developed to compress FASTQ files generated by nanopore
sequencing. The reference-based tool, RENANO [50], achieved
the best compression ratio.

B. Aligned Sequencing Data Compression

Aligned sequencing data is stored in the SAM format file,
which is tab-delimited and was developed in the 1000 Genomes
Project. The SAM file contains of two parts: header and align-
ment. The alignment part consists of 11 mandatory fields and
some optional fields. Since the SAM file not only stores infor-
mation in FASTQ but also stores the alignment information, its
compression is more challenging. BAM is obtained by using

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



820 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025

general-purpose compression algorithms, but its compression
ratio can not resolve the major bottleneck. CRAM [51], [52] is a
reference-based compression algorithm that reduces the file size
by over 30% and is 1.8 times faster than BAM. Therefore, it has
become the preferred format for ENA submission. In the past
decade, several tools were developed to compress SAM file [27],
[53], [54], [55], with most of them focusing on improving the
compression performance for the SEQ and QUAL fields as
they take up most of the space in the whole file. For example,
GeneComp [54] and DeeZ [53] both use a reference genome to
boost the compression of DNA sequences.

As the file size of the SAM file is large, querying in the
compressed file without decompressing the whole compressed
file is of paramount importance. For instance, CSAM [27]
supports two random access operations in the compressed file.
Downstream applications can selectively extract data to save
resources.

C. Variants Compression

The data format downloaded from the 1000 Genomes Project
is VCF. This file format stores the genetic variants of a sample,
which are obtained by comparison to a reference genome. A VCF
file also consists of header and body parts. In the body section,
each row includes eight mandatory fields, as well as additional
fields. TGC [56] was the first tool designed to compress a collec-
tion of VCF files. Genozip [57] is the most recent and achieves
the best compression ratio on a VCF file when compared to
other existing tools. During downstream analyses, it is often
necessary to query all samples that have a common variant or all
variants of specific samples. Efficient querying of variants is of
utmost significance. However, TGC and genozip are not capable
of querying in their compressed representation. To overcome this
limitation, several compression algorithms have been proposed,
such as BGT [58], GTRAC [59], GTC [60], and GTShark [61],
which support random access. The compression ratio of GTC is
slightly worse than TGC, TGC and GTC achieved compression
sizes of 400 MB and 600 MB respectively, when compressing
the collection of 1000 Genomes Project. GTC offers a fast query
for variants. GTC offers a fast query for variants, which is critical
for downstream analyses.

D. Assembled Sequence Compression

With the rapid development of sequencing technology and
assembly algorithm, a large number of assembled genomes are
expected to be presented in the near future. Special algorithms
have been designed for genome compression, which can be clas-
sified into two categories: reference-free and reference-based
genome compression, based on whether a reference genome is
used or not.

Specialized DNA sequence compression tools have made
substantial improvement compared to general text compression
tools. These algorithms are divided into different types, such
as substitution-based method, including GenCompress [62],
DNACompress [63] and BioCompression [64] (see the reviews
in [12], [65]). These tools identify repeats in genome sequence
and make use of intrinsic features of genomic sequences.

Recently, neural network have been widely used in many fields of
bioinformatics [66], [67], [68], [69], [70], [71]. Neural networks
also have been applied in the compression of DNA sequences.
For instance, DeepDNA [72] uses neural networks to extract
features in genome sequence and to predict the next base,
while GeCo3 [73] employs a neural network to combine various
context models.

Reference-based genome compression algorithm always
achieve better compression ratios than reference-free algorithms
since they utilize a genome of the same species or variation data
as side information and only store the differences. This is based
on the assumption that two genomes of the same species are
very similar. For the human genome, only 1% of differences
are needed to store if given the reference genome. The first
reference-based algorithm is DNAZip [74], which compressed
the genome of James Watson [75] to a size of 4 MB. The genome
was further compressed into 2.5 MB [76]. However, they heavily
rely on SNP data, which can be challenging to obtain. In recent
years, several reference-based genome compression algorithms
that only use a reference genome have been proposed in recent
years. Notable examples GeCo [77], iDoComp [78], ERGC [79],
and HiRGC [80], which achieved great performance. The idea
of reference-based compression has also been applied in some
other data compression, such as trajectory data [81], [82], pub-
lic transit schedules [83]. The most recent tool, MemRGC,
has the best compression ratio on the benchmarking genomes
of various species. Its superior performance is contributed by
mutation-containing matches and k-mer sampling scheme [84].
More challenging work is to compress the genome data set [85].
In particular, the two-level encoding framework proposed by
GDC-2 [86] achieved a very high compression ratio and aws
further investigated in [87].

III. QUALITY SCORE COMPRESSION

A. Lossless Compression Algorithms

The use of lossless compression algorithm is widespread
across several fields. Traditional text data compression tools,
such as 7zip (www.7-zip.org) and bzip2, can compress quality
scores streams while achieving lossless compression. However,
these compression algorithms are unable to take advantage of
the special patterns in quality scores, thereby failling to satisfy
the compression ratio requirement for large-scale datasets. Con-
sequently, specific algorithms have been proposed to achieve a
higher compression ratio. We summarize these algorithms in
Table I.

Some patterns can be used in the uneven distribution of
quality score symbols lines. For example, Deorowicz and
Grabowski [88] analyzed the symbol distribution and proposed
the tool DSRC. They found that the distribution of score symbols
did not heavily rely on position, and the last quality symbol in
most of the lines is ‘#’. In addition, strong correlations were
observed between neighboring scores. DSRC employed suffix
extraction, run-length encoding and different order Huffman
encoding to compress quality scores according to different cases.
In the improved version DSRC2, two distinct methods are
proposed. The first method is similar to DSRC, using only the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 

www.7-zip.org


LIU et al.: QUALITY SCORES COMPRESSION OF GENOMIC SEQUENCING DATA: A COMPREHENSIVE REVIEW AND PERFORMANCE EVALUATION 821

TABLE I
DETAILS OF LOSSLESS COMPRESSION ALGORITHMS FOR QUALITY SCORES COMPRESSION

order-1 Huffman coding in two different cases. The second one
uses arithmetic coding to compress quality scores. Fu et al. [91]
aimed to modify the distribution of quality score symbols by
reordering the quality scores lines. They clustered similar quality
score lines into the same group and obtained the centroid of each
cluster by sampling part of quality score lines. To utilize the high
correlation among different quality score lines within a cluster,
they adopted a simple linear combination method to predict the
next line. Finally, the context mixing probabilistic modeling al-
gorithm ZPAQ (http://mattmahoney.net/dc/zpaq.html) was em-
ployed to compress each cluster. In the LCQS process [92],
quality score lines are partitioned into two groups by using
k-mer (k-length substring) of quality and their frequency, and
a k-mer frequency-based adaptive packing method is applied
to reduce content. The packed stream is then compressed by
ZPAQ. ACO [102] proposed a scanning order that traverses in an
adaptive direction by considering the content to visit the quality
score.

Some algorithms aim to map original quality scores to new
values with reduced entropy, such as the replacement-based
method. For instance, QScores-Archiver [29] aimed to reduce

the number of different quality score symbols by proposing
three lossless transformation strategies to modify the quality
scores to lower values. MMQSC [93] is a codebook-based
compression tool [103] that proposed a memetic algorithm to
optimize the construction of codebook that stores the Huffman
coded vector. Quality score is replaced by the index of their
most similar Huffman coded vector and their differences. It
aims to implement encoding of the most frequency occurring
short score substrings using the shorter code. First, Huffman
coding is used to encode raw quality scores, and the coding
bits are converted into readable ASCII characters. Then, an
evolutionary algorithm is used to optimize the construction of
the codebook. Finally, a matching algorithm using dynamic
programming is utilized to obtain exact information about
differences.

In contrast to distribution-based and replacement-based meth-
ods, AQUa [94] employs multiple encoding methods to com-
press various redundancy patterns among quality score lines.
Within each block, one of seven different coding tools is selected
based on . These tools are specially designed to accomplish this
task. To facilitate random access, FCLQC [104] splited the file

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 

http://mattmahoney.net/dc/zpaq.html


822 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025

Fig. 4. Illustration of four categories lossy compression algorithm. (a) Rebinning-based method. Original quality scores are changed to small number of new
scores. Some quality scores are combined into the same bin. (b) Context-base method. Neighboring values are used to predict the next one or calculate the difference
for next step. (c) Singular value decomposition (SVD)-based method. SVD is performed on the covariance matrix of quality score lines. (d) Base information-based
method. The quality score is determined on the prediction of the corresponding base. Also k-mers of reference genome are integrated in some methods.

into sub-files and utilizes an adaptive arithmetic coding method
to encode them.

Other tools such as ScaleQC [95], LEON [96], NGC [99],
and Fastqz and Fqzcomp [101], primarily concentrate on lossy
compression, but they also provide support for lossless quality
scores compression by using existing traditional text data com-
pression algorithms. For instance, NGC utilizes bzip2 in lossless
mode with the best compression parameter settings.

B. Lossy Compression algorithms

Given that downstream analysis typically does not require
the same resolution as raw quality scores, lossy compression
algorithms have become increasingly popular [31]. These algo-
rithms often achieve much higher compression ratio than lossless
alternatives, and can also improves the efficiency of downstream
analyses in some cases. The basic architectures of some methods
are illustrated in Fig. 4. Depending on the target file format of
the tools (i.e., FASTQ and SAM), we categorize the methods
into two types and introduce them separately.

1) Compression of Quality Scores in FASTQ File: The Phred
score is obtained by quantizing the original probability irre-
versibly. This quantization is equivalent to dividing the range
[0, 1] into a fixed number of bins with equal sizes. QScores-
Archiver [29] proposes three lossy binning transformation meth-
ods to rebin quality scores. In the UniBinning method, the
range [0, 1] is partitioned into a predefined number of bins. The
Truncating transformation combines some bins into a single
bin, where the values of quality score are considered to to α
if they are larger than α, which is the well-defined parameter.
The LogBinning method has a very similar idea to UniBinning,
but it employs the logarithms of the probabilities to obtain new
bins by regrouping the original bins.

Some algorithms leverage the strong correlations that exist
among adjacent quality values (i.e., neighboring quality values

are close to each other). The context of quality score is further ex-
ploited for modeling or prediction. For example, SlimGene [105]
encodes the differences of adjacent quality values using the
fixed-order Markov model, and the prediction result is encoded
by Huffman. QVZ [25], which is short for quality values zip,
first models the quality score using an order-1 Markov chain. It
then uses the transition probabilities to construct a codebook,
where the indexes are position and previous quantizers, and
the values are quantizers. A revised version of the Lloyd–Max
algorithm [106] is proposed to compute quantizers. All scores
are quantized sequentially, and each quantized value forms the
left context of the following quantizer. The quantized result is
further compressed by applying the adaptive arithmetic coding
method. Fqzcomp [101] mainly uses the public context model
(http://ctxmodel.net). Some contexts, such as the quality score
of the previous position and the maximum quality value of
two previous positions, are used to predict the i-th quality.
SCALCE [107] is a tool that mainly focuses on compressing
sequence data in the FASTQ file. It also proposed a lossy trans-
formation method to achieve the lossy compression of quality
scores. A frequency table is constructed using 1 million lines of
quality scores, and the local maximum of the table is found using
a greedy algorithm. The quality scores in the neighborhood of the
local maximum are reduced up to the defined error threshold.
ALL-CQS [108] is an improved method of PBlock [109]. It
constructs a difference matrix of contiguous quality score to
seize the locality information, rather than operating on the
initial quality score matrix. In the clustering stage of k-means
algorithm, it samples a minimal subset of quality score lines to
obtain the initialize centroid of the final clustering methods.

QualComp [110] and CROMqs [111] [112] are compres-
sion algorithms that rely on the singular value decomposition
(SVD) [113] of a quality score matrix. QualComp is a lossy
compression algorithm that allows users to set the compression
rate before compression. It uses the statistical data obtained

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 

http://ctxmodel.net


LIU et al.: QUALITY SCORES COMPRESSION OF GENOMIC SEQUENCING DATA: A COMPREHENSIVE REVIEW AND PERFORMANCE EVALUATION 823

from the quality scores. The mean and the covariance matrix are
empirically worked out from the set of quality score vectors. To
reduce the correlation between these vectors, SVD is performed
on the covariance matrix. The new quality score vector is then
created using the quality score vectors, mean matrix, and unitary
matrix. Finally, the normalized new quality score vector is
mapped to decision regions. The key innovation is that uses can
set the compression rate. CROMqs [111], [112] performs the
same SVD as QualComp, followed by an infinitesimal succes-
sive refinement lossy compressor [114] on the new quality scores
vectors. The encoding algorithm compresses the quality score
once with a relative high compression rate, and the decoding
algorithm can iteratively recover them according to the required
rate of users.

In the FASTQ file, base information is the most fundamental
information for downstream analysis. Base information is uti-
lized to assist the compression of quality score, with the aim
of achieving better compression performance and improving
the performance of downstream analysis. BEETL [115] intro-
duced the idea of smoothing quality scores by assuming that
a quality score can be disregarded or roughly compressed if
a nucleotide base can be estimated with high probability by
using the base context. Such predictions are made by using the
famous algorithm Burrows–Wheeler transform (BWT) [116]
and the popular data structure LCP (longest common prefix)
array [117]. LEON [96] introduced a simple replacing strategy:
if a nucleotide base is enveloped in some solid k-mers, it is
examined as error-free base. These high quality scores have
little effect on downstream analysis, so the corresponding quality
scores of error-free bases are modified to the high-quality value
(‘@’). The new data stream of quality scores after replacing is
then compressed by zlib.

External corpus is further used to improve the compression of
quality scores by incorporating base information. Quartz [118]
used individual sequences in the 1000 Genomes Project to build
a reference corpus, which is a frequency table of 32-mers. It
smooths quality score by assumping that a divergent base is
likely to be an SNP or sequencing error. It stores the original
quality scores that have a high probability of being a variant,
and other quality scores of high-confident bases are set to a
default value. GeneCodeq [119] leveraged the reference genome
to derive the codewords. The k-mer corpus generated from the
reference genome and Bayesian based noisy model are used to
estimates the posterior probability of sequencing errors. The
corresponding quality scores are then adjusted according to
the posterior probability. YALFF [120], [121] employed an
external corpus of k-mers to estimate the accuracy of bases
by distinguishing between correct bases and sequencing errors.
[122] to achieve efficient searching of k-mers. Similar to Quartz
and GeneCodeq, it searches and compares k-mers of reads in
the dictionary to compress quality values. But, YALFF requires
all k-mers related to the quality score under compression to be
discovered.

Other advanced methods are also applied in compression
algorithms. In Fastqz [101], high-quality values larger than 30
are encoded using specific byte codes. In slow mode, three
context models are further invented to model the previous

encoded bytes. QScomp [123] decomposes the quality score into
two values according to Elias gamma code. Then, the two data
streams are separately compressed by bzip2. Hernandez-Lopez’s
approach [124] uses HISAT2’s alignment data [125] to rebin
the quality score, mitigating the effect of sequence alignment.
ENANO [48] is a specialized tool developed for lossless com-
pression of nanopore sequencing FASTQ file. It employs the
specific context model [126] to determine the probability of
the quality scores distribution, which is then compressed by an
arithmetic encoder [127].

2) Compression of Quality Scores in SAM File: Several tools
utilize alignment data from mapped reads stored in the SAM
file to compress quality scores. NGC [99] uses a simple binning
strategy similar to the UniBinning of the QScores-Archiver. It
rebins the quality values of an interval to the representative value
(i.e., the minimum or maximum values) of that interval. Quality
values are divided into four categories according to sequence
alignment information, and different quantification schemes are
used for each category. CALQ [128] exploited alignment data
of aligned reads to estimate the unpredictability of the genotype
at each position in the genome sequence. Then, the allowable
level of distortion rate is determined. For each locus, CALQ
computed the genotype uncertainty and quantizer index. Finally,
the quality values are represented by the quantizer index, and
compressed by zero-order arithmetic coding. To minimize the
effects on downstream application, Crumble [129] first identifies
quality scores that are necessary for downstream analysis, after
which they are further compressed using PBlock [109].

Cánovas et al. [109] utilized localized properties of the quality
scores. They separate quality scores into blocks with variant
sizes. In each size, a representative value and its length are stored
using some measure criterion.

Morales’s method [130] proposed a dynamic binning scheme,
where quality scores is split into blocks. In each block, the
quality alphabet is split into five bins. In each bin, all these
quality alphabets are replaced by the most occurrences.

As only a part of symbols are used in the quality score part in a
FASTQ file, ScaleQC [95] constructed a lookup table to modify
the original quality scores into a continuous interval, with the
lookup table stored for decoding. The quality values at possible
variant locus are amplified by a pre-selected parameter. Bit-plane
is constructed by scanning from left bit (i.e., most significant
bit) to right of quality score value horizontally. Adaptive binary
arithmetic code [131] is used to compress the bit stream.

Although RQS [132] was implemented for the compression
of SAM file, it utilized base sequence information. In the first
stage, a dictionary is generated to store high-frequency k-mers,
and the quality scores of k-mers with a short Hamming distance
to the elements of dictionary are discarded. Only the low-
quality scores of k-mers very different from the dictionary are
stored.

IV. PERFORMANCE COMPARISON

A. Benchmarking Datasets

We conducted a comparison of the performance of 12 tools on
14 sequencing datasets that served as “benchmarking datasets”

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



824 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025

TABLE II
DETAILS OF BENCHMARKING DATASETS

(See Table II). These datasets include different species, such
as Homo sapiens, Mus musculus, Oryza sativa, Arabidopsis
thaliana, and Escherichia coli. The data were generated us-
ing a variety of sequencing technologies, including various
instrument models, library strategies and sources. These species
are widely used for evaluation the compression performance
in previous studies [23], [32], [99]. Specifically, the dataset
SRR032209 is often used as a benchmark in [29], [99], [110],
[133]. They are available on the website of ENA (https://www.
ebi.ac.uk/ena/browser/home) and NCBI (https://trace.ncbi.nlm.
nih.gov/).

B. Performance Metrics

The compression performance was evaluated using compres-
sion ratio, run-time (wall-clock) and peak memory usage of
compression and decompression procedures. The compression
ratio is defined as the number of bits per quality (bpq) used to

store those compressed scores, i.e.,

ratio =
Compressed size of quality scores

Number of quality score
.

The running time and peak memory consumption are acquired
by utilizing the Unix command “/usr/bin/time -v”. All tools are
executed on a computing server running Ubuntu 19.10 having
2.2 GHz Intel Xeon Silver 4210 CPU (10 cores) and 128 GB
RAM.

C. Performance Comparison of Lossless Compression Tools

Five tools, namely, AQUa, QScores-Archiver, LCQS, fastqz,
and SCALCE, were tested, and their performances of com-
pression and decompression are shown in Tables III and IV.
These tools compress only quality score part stored in the
FASTQ file. Among these tools, QScores-Archiver achieved a
stable compression ratio over 0.8 bpq but was much worse than

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 

https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://trace.ncbi.nlm.nih.gov/
https://trace.ncbi.nlm.nih.gov/


LIU et al.: QUALITY SCORES COMPRESSION OF GENOMIC SEQUENCING DATA: A COMPREHENSIVE REVIEW AND PERFORMANCE EVALUATION 825

TABLE III
COMPRESSION PERFORMANCE OF FIVE DIFFERENT LOSSLESS COMPRESSION TOOLS (COMPRESSION OF QUALITY SCORE PART)

TABLE IV
DECOMPRESSION PERFORMANCE OF FIVE LOSSLESS COMPRESSION TOOLS

TABLE V
COMPRESSION AND DECOMPRESSION PERFORMANCE OF TWO LOSSLESS COMPRESSION TOOLS (COMPRESSION OF FASTQ FILE)

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



826 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025

TABLE VI
COMPRESSION AND DECOMPRESSION PERFORMANCES OF FOUR LOSSY COMPRESSION TOOLS (COMPRESSION OF QUALITY SCORE PART)

other tools in compression ratio. For instance, on the dataset
SRR13575706_1, QScores-Archiver was 23 times worse than
the tool SCALCE. Fastqz and LCQS achieved similar compres-
sion ratio on the first three datasets, which were slightly higher
than AQUa. SCALCE obtained the best compression ratio in
dataset SRR13575706_1, its perforamnce is litter better than
other three tools. Fastqz had the best compression ratio on two
datasets and its compression ratio was only 0.02 bpq better than
SCALCE. LCQS achive the best compression performance on
SRR027520_1, SRR034940_1, SRR959239_1, SRR1770413,
SRR327342, SRR359032, ERR532393. However, a number of
its decompression process report invalid pointer error, poten-
tially rendering the corresponding compression ratio inaccurate.
The fastqz method encountered multiple instances of mismatch
between the recorded and actual base number during decompres-
sion. In compression procedure, QScores-Archiver consumed
more memory than AQUs and LCQS. Nothing that, the size of
128 GB RAM is not enough for QScores-Archiver to compress
the dataset SRR5220205_1. LCQS consumed memory ranging
from 3.0 GB to 9.3 GB. The memory usage by AQUa and fastqz
was very stable, and they used less than 1.5 GB in all cases.
SCALCE consumed more memory than AQUa and fastqz. In
terms of compression speed, QScores-Archiver was the fastest
tool. However, AQUa was much slower than other four tools.
Especially, AQUa spent more than one day compressing the
dataset SRR5220205_1. Fastqz and SCALCE spent less time

than the tool LCQS. In lossless mode, the QScores-Archiver
maps each quantized score to lower values and utilizes the
minimum number of bits to store them. Consequently, it achieves
a fast speed but a low compression ratio during the compression
process. On the other hand, SCALCE constructs a frequency
table for a selected subset of quality scores and then determines
the mapping strategy for all quality scores by computing the
local maxima of the table. This approach takes into account the
characteristics of to-be-compressed data and achieves a balance
between compression ratio and speed.

In decompression process, QScores-Archiver and LCQS
spent more memory than other tools. AQUa, fastqz, and
SCALCE were more fragile than other tools. For instance, LCQS
consumed memory one order of magnitude larger than SCALCE
in decompression. SCALCE was the fastest tool in decompres-
sion. In the decompression speed, LCQS and fastqz were worse
than AQUa and SCALCE. In practice, SCALCE was better than
other tools when lossless compression of quality scores was
needed. Noting that, SCALCE can not preserve the order of
reads.

The tools LEON and DSRC2 compress the whole FASTQ
file, and their compression/decompression results are depicted
in Table V. For the tool DSRC2, two modes, namely, q0 and q2,
are tested. DSRC2 using q2 was always better than using q0 in
compression ratio except the result of SRR027520_1. And
DSRC (q2) consumes three times more memory than

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: QUALITY SCORES COMPRESSION OF GENOMIC SEQUENCING DATA: A COMPREHENSIVE REVIEW AND PERFORMANCE EVALUATION 827

TABLE VII
COMPRESSION AND DECOMPRESSION PERFORMANCE OF FOUR LOSSY COMPRESSION TOOLS (COMPRESSION OF FSATQ FILE).

DSRC (q0). DSRC2 (q2) achieved the best compres-
sion ratio on four datasets (SRR032209, SRR5220205_1,
SRR027520_1,SRR034940_1), and LEON performs better than
DSRC2 on the other 10 datasets. Especially, on the dataset
SRR13575706_1, the compressed file by LEON was only half
the size of the compressed file by DSRC2. Under both modes,
DSRC2 was faster than LEON in compression/decompression
speeds on all datasets.

D. Performance Comparison of Lossy Compression Tools

Four tools, i.e., QScores-Archiver, fastqz, QVZ, and
SCALCE, are used to compress quality scores in FASTQ files.
Their compression ratio, running time and peak memory con-
sumption of compression and decompression process are pre-
sented in Table VI. We set ‘-q3’ and ‘-q5’ for the tool fastqz and
tested the tool SCALCE on the model ‘p30’. However, QScores-
Archiver, fastqz and QVZ can not complete the compression
process on some datasets. For the tool fastqz, its compression
ratio under ‘-e5’ is much better than ‘-e3’ setting. On the dataset
SRR032209, the lossy mode of SCALCE achieves about two
times better compression ratio than its lossless mode. However,
on three other datasets, both SCALCE models have the same
compression ratio. SCALCE achieves the highest compression
ratio on the dataset SRR13575706_1, it is also the only method
in Table VI that can process reads with inconsistent length. On

seven other datasets, QVZ achieves the best compression ratio,
and it performs stably on different datasets. QScore-Archiver is
the fastest tool, but it has the worst compression ratio.

QScores-Archiver consumes more memory than other tools
during compression and decompression. On the largest dataset
SRR5220205_1, QVZ consumes about 20 GB RAM, which is
one order of magnitude large than the memory usage of fastqz.
In decompression, QVZ uses less than 30 MB memory. The
compression speed of LEON is much slower than that of QVZ
and QScores-Archiver. QVZ employed a two-phase encoding
strategy in which the quality scores were initially encoded using
the mapping function generated by the Lloyd-Max quantizer.
Subsequently, an arithmetic encoder was applied to the resulting
data. This strategy combines the advantages of both encoding
algorithms and achieves the best performance in most cases.
Hence, we highly recommend choosing QVZ as the preferred
method for compressing quality scores in lossy mode.

Genie, fqzcomp, LEON and DSRC2 compress all the data
streams in a FASTQ file, their performance on the benchmarking
datasets are shown in Table VII. DSRC2 achieves the smallest
compressed file on the dataset SRR032209. On the other three
datasets, fqzcomp has much better compression ratios than
the tools genie and DSRC2. Fqzcomp and DSRC2 are much
faster than genie. Additionally, the memory usage of genie is
at least 50 times larger than fqzcomp and larger than DSRC2
from 2.7 to 9 times. In these four tools, DSRC2 outperforms

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



828 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025

the other in almost all of the metrics. However, an error is
obtained by fqzcomp on the dataset SRR13575706_1. LEON
is a good choice for compression the FASTQ file in terms for
compression ratio. DSRC2 achieves better compression speed
but worse compression ratio than LEON in most of the cases.

V. CONCLUSION AND DISCUSSION

Quality scores are the main part in raw sequencing data, and
compressing them poses a significant challenge. Accordingly,
tremendous research efforts have been exerted into proposing
high-performance algorithms to compress quality scores. This
review provides a comprehensive overview of all existing quality
score compression methods. In addition, we have performed
benchmarking evaluation of the available tools developed for
quality score compression on six datasets. We hope that this
comprehensive review will offer useful guidance for developing
innovative and more powerful compression methods.

Our systematic assessment of the compression tools for qual-
ity scores in sequencing data highlights both the advantages
and limitations of these compression algorithms across various
datasets. We discuss the challenges and future works from the
following three perspectives.

Unavailability on Some Datasets: In benchmarking, some
tools are unable to work well on some datasets. For in-
stance, fqzcomp generates an error when compressing the file
“SRR13575706_1.fastq”. More serious, more than five tools,
including some tools that only compress quality score part, fail
to compress two sequencing datasets. It is hard to see their perfor-
mance on various sequencing data. One of the main reasons for
these errors is the inability to handle reads with unequal lengths.
Developing tools that can work well on different FASTQ files
is argued to address the challenges of big sequencing data. For
tools that only compress quality score part, they should be easy
to be integrated into those sequence compression tools [22],
[42], [43].

Unstable Compression Ratio: We found that the compres-
sion ratios vary across different datasets. For example, LEON
achieves the best compression on the dataset SRR13575706_1,
which is more than twice as good as DSRC2 (See Table VII).
However, on the dataset SRR5330305_1, the compression ratio
of fqzcomp (q3) is 1.5 times better than LEON. In the future, we
may try to employ novel technologies such as the error-bounded
lossy [134] to design algorithm for quality score compression.

Not Lossless: By examining the decompression results, we
observed that some tools, e.g., fqzcomp, cannot achieve lossless
compression, i.e., the decompression result is not identical to
the original one. Noting that, some of tools alter the reads order.
Some analysis demonstrated that the order affects the result
of downstream [21], [135]. More serious, some lossy results
are not caused by the order of reads. Therefore, comprehensive
verification for lossless compression is required.

There are additional tests that can be conducted for deeper
insight into the compression of quality scores. First, the effect of
lost quality scores on downstream analysis is worth investigating
on more datasets [31], [118], [136]. Second, tools designed
for compressing long reads need to be evaluated. Lastly, the
compression tools for SAM format files can be tested on various

dataset. In addition, several considerations should be taken into
account when developing compression tools for quality scores.
First, given the increasing size of sequencing data, efficient data
structure are essential to reduce the computation time and mem-
ory usage during compression process. Second, the new tools
should incorporate a mode that can handle reads with varying
length. Lastly, the integration of sequence data and quality score
compression is of utmost importance, as both components are
integral to accurate data interpretation and downstream analyses.

REFERENCES

[1] E. R. Mardis, “The impact of next-generation sequencing technology on
genetics,” Trends Genet., vol. 24, no. 3, pp. 133–141, 2008.

[2] S. E. Levy and R. M. Myers, “Advancements in next-generation sequenc-
ing,” Annu. Rev. Genomic. Hum. Genet., vol. 17, pp. 95–115, 2016.

[3] J. Zhang, R. Chiodini, A. Badr, and G. Zhang, “The impact of next-
generation sequencing on genomics,” J. Genet. Genomic., vol. 38, no. 3,
pp. 95–109, 2011.

[4] Z. D. Stephens et al., “Big data: Astronomical or genomical?,” PLoS
Biol., vol. 13, no. 7, 2015, Art. no. e1002195.

[5] R. Leinonen, H. Sugawara, M. Shumway, and I. N. S. D. Collaboration,
“The sequence read archive,” Nucleic Acids Res., vol. 39, no. suppl_1,
pp. D19–D21, 2010.

[6] R. Leinonen et al., “The European nucleotide archive,” Nucleic Acids
Res., vol. 39, no. suppl_1, pp. D28–D31, 2010.

[7] S. Goodwin, J. D. McPherson, and W. R. McCombie, “Coming of
age: Ten years of next-generation sequencing technologies,” Nature Rev.
Genet., vol. 17, no. 6, 2016, Art. no. 333.

[8] M. Hernaez, D. Pavlichin, T. Weissman, and I. Ochoa, “Genomic data
compression,” Annu. Rev. Biomed. Data Sci., vol. 2, pp. 19–37, 2019.

[9] M. Arita, I. Karsch-Mizrachi, and G. Cochrane, “The international nu-
cleotide sequence database collaboration,” Nucleic Acids Res., vol. 49,
no. D1, pp. D121–D124, 2021.

[10] A. Nibali and Z. He, “Trajic: An effective compression system for trajec-
tory data,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 11, pp. 3138–3151,
Nov. 2015.

[11] X. Yang, B. Wang, K. Yang, C. Liu, and B. Zheng, “A novel representation
and compression for queries on trajectories in road networks,” IEEE
Trans. Knowl. Data Eng., vol. 30, no. 4, pp. 613–629, Apr. 2018.

[12] M. Hosseini, D. Pratas, and A. J. Pinho, “A survey on data compression
methods for biological sequences,” Information, vol. 7, no. 4, 2016,
Art. no. 56.

[13] Z. Zhu, Y. Zhang, Z. Ji, S. He, and X. Yang, “High-throughput DNA
sequence data compression,” Brief. Bioinf., vol. 16, no. 1, pp. 1–15, 2015.

[14] Z. Zhu, J. Zhou, Z. Ji, and Y.-H. Shi, “DNA sequence compression using
adaptive particle swarm optimization-based memetic algorithm,” IEEE
Trans. Evol. Comput., vol. 15, no. 5, pp. 643–658, Oct. 2011.

[15] J. R. Almeida, A. J. Pinho, J. L. Oliveira, O. Fajarda, and D. Pratas,
“GTO: A toolkit to unify pipelines in genomic and proteomic research,”
SoftwareX, vol. 12, 2020, Art. no. 100535.

[16] V. V. Cogo, J. Paulo, and A. Bessani, “GenoDedup: Similarity-based
deduplication and delta-encoding for genome sequencing data,” IEEE
Trans. Comput., vol. 70, no. 5, pp. 669–681, May 2021.

[17] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez, and T. Weissman,
“SPRING: A next-generation compressor for FASTQ data,” Bioinfor-
matics, vol. 35, no. 15, pp. 2674–2676, 2019.

[18] Ł. Roguski and S. Deorowicz, “DSRC 2—Industry-oriented compression
of FASTQ files,” Bioinformatics, vol. 30, no. 15, pp. 2213–2215, 2014.

[19] Z.-A. Huang, Z. Wen, Q. Deng, Y. Chu, Y. Sun, and Z. Zhu, “LW-FQZip
2: A parallelized reference-based compression of FASTQ files,” BMC
Bioinf., vol. 18, no. 1, pp. 1–8, 2017.

[20] Y. Zhang, L. Li, Y. Yang, X. Yang, S. He, and Z. Zhu, “Light-weight
reference-based compression of FASTQ data,” BMC Bioinf., vol. 16,
no. 1, pp. 1–8, 2015.

[21] Ł. Roguski, I. Ochoa, M. Hernaez, and S. Deorowicz, “FaStore: A space-
saving solution for raw sequencing data,” Bioinformatics, vol. 34, no. 16,
pp. 2748–2756, 2018.

[22] Y. Liu, Z. Yu, M. E. Dinger, and J. Li, “Index suffix–prefix overlaps
by (w, k)-minimizer to generate long contigs for reads compression,”
Bioinformatics, vol. 35, no. 12, pp. 2066–2074, 2019.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: QUALITY SCORES COMPRESSION OF GENOMIC SEQUENCING DATA: A COMPREHENSIVE REVIEW AND PERFORMANCE EVALUATION 829

[23] I. Numanagi ć et al. “Comparison of high-throughput sequencing data
compression tools,” Nature Methods, vol. 13, no. 12, pp. 1005–1008,
2016.

[24] M. A. DePristo et al., “A framework for variation discovery and genotyp-
ing using next-generation DNA sequencing data,” Nature Genet., vol. 43,
no. 5, 2011, Art. no. 491.

[25] G. Malysa, M. Hernaez, I. Ochoa, M. Rao, K. Ganesan, and T. Weissman,
“QVZ: Lossy compression of quality values,” Bioinformatics, vol. 31,
no. 19, pp. 3122–3129, 2015.

[26] D. Pavlichin, T. Weissman, and G. Mably, “The quest to save genomics:
Unless researchers solve the looming data compression problem, biomed-
ical science could stagnate,” IEEE Spectr., vol. 55, no. 9, pp. 27–31,
Sep. 2018.

[27] R. Cánovas, A. Moffat, and A. Turpin, “CSAM: Compressed sam format,”
Bioinformatics, vol. 32, no. 24, pp. 3709–3716, 2016.

[28] Y. Liu, L. Wong, and J. Li, “Allowing mutations in maximal matches
boosts genome compression performance,” Bioinformatics, vol. 36,
no. 18, pp. 4675–4681, 2020.

[29] R. Wan, V. N. Anh, and K. Asai, “Transformations for the compression
of FASTQ quality scores of next-generation sequencing data,” Bioinfor-
matics, vol. 28, no. 5, pp. 628–635, 2012.

[30] M. Abedi, B. Sun, and Z. Zheng, “A sinusoidal-hyperbolic family of
transforms with potential applications in compressive sensing,” IEEE
Trans. Image Process., vol. 28, no. 7, pp. 3571–3583, Jul. 2019.

[31] I. Ochoa, M. Hernaez, R. Goldfeder, T. Weissman, and E. Ashley, “Effect
of lossy compression of quality scores on variant calling,” Brief. Bioinf.,
vol. 18, no. 2, pp. 183–194, 2017.

[32] R. Yu, W. Yang, and S. Wang, “Performance evaluation of lossy quality
compression algorithms for RNA-seq data,” BMC Bioinf., vol. 21, no. 1,
pp. 1–15, 2020.

[33] M. P. Cox, D. A. Peterson, and P. J. Biggs, “SolexaQA: At-a-glance
quality assessment of Illumina second-generation sequencing data,” BMC
Bioinf., vol. 11, no. 1, pp. 1–6, 2010.

[34] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The
Sanger FASTQ file format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants,” Nucleic Acids Res., vol. 38, no. 6,
pp. 1767–1771, 2010.

[35] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” 2013, arXiv:1303.3997.

[36] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, 2012.

[37] H. Li et al., “The sequence alignment/map format and SAMtools,”
Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[38] D. C. Koboldt, “Best practices for variant calling in clinical sequencing,”
Genome Med., vol. 12, no. 1, pp. 1–13, 2020.

[39] P. Danecek et al., “The variant call format and VCFtools,” Bioinformatics,
vol. 27, no. 15, pp. 2156–2158, 2011.

[40] M. C. Schatz, A. L. Delcher, and S. L. Salzberg, “Assembly of large
genomes using second-generation sequencing,” Genome Res., vol. 20,
no. 9, pp. 1165–1173, 2010.

[41] S. Vargas-Pérez and F. Saeed, “A hybrid MPI-OpenMP strategy to
speedup the compression of big next-generation sequencing datasets,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 10, pp. 2760–2769,
Oct. 2017.

[42] S. Chandak, K. Tatwawadi, and T. Weissman, “Compression of genomic
sequencing reads via hash-based reordering: Algorithm and analysis,”
Bioinformatics, vol. 34, no. 4, pp. 558–567, 2018.

[43] T. M. Kowalski and S. Grabowski, “PgRC: Pseudogenome-based read
compressor,” Bioinformatics, vol. 36, no. 7, pp. 2082–2089, 2020.

[44] Y. Liu and J. Li, “Hamming-shifting graph of genomic short reads: Ef-
ficient construction and its application for compression,” PLoS Comput.
Biol., vol. 17, no. 7, 2021, Art. no. e1009229.

[45] Y. Liu, X. Zhang, Q. Zou, and X. Zeng, “Minirmd: Accurate and fast
duplicate removal tool for short reads via multiple minimizers,” Bioin-
formatics, vol. 37, no. 11, pp. 1604–1606, 2021.

[46] D. J. Burgess, “Next regeneration sequencing for reference genomes,”
Nature Rev. Genet., vol. 19, no. 3, pp. 125–125, 2018.

[47] S. L. Amarasinghe, S. Su, X. Dong, L. Zappia, M. E. Ritchie, and
Q. Gouil, “Opportunities and challenges in long-read sequencing data
analysis,” Genome Biol., vol. 21, no. 1, pp. 1–16, 2020.

[48] G. Dufort YÁlvarez, G. Seroussi, P. Smircich, J. Sotelo, I. Ochoa, and Á.
Martín, “ENANO: Encoder for NANOpore FASTQ files,” Bioinformat-
ics, vol. 36, no. 16, pp. 4506–4507, 2020.

[49] G. D. y Álvarez, G. Seroussi, P. Smircich, J. Sotelo, I. Ochoa, and Á.
Martín, “Compression of nanopore FASTQ files,” in Proc. Int. Work-
Conf. Bioinf. Biomed. Eng., Springer, 2019, pp. 36–47.

[50] G. Seroussi et al., “RENANO: A REference-based compressor for
NANOpore FASTQ files,” Bioinformatics, vol. 37, pp. 4862–4864, 2021.

[51] J. K. Bonfield, “The Scramble conversion tool,” Bioinformatics, vol. 30,
no. 19, 2014, Art. no. 2818.

[52] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney, “Efficient
storage of high throughput DNA sequencing data using reference-based
compression,” Genome Res., vol. 21, no. 5, pp. 734–740, 2011.

[53] F. Hach, I. Numanagic, and S. C. Sahinalp, “DeeZ: Reference-based
compression by local assembly,” Nature Methods, vol. 11, no. 11,
pp. 1082–1084, 2014.

[54] R. Long, M. Hernaez, I. Ochoa, and T. Weissman, “GeneComp, a new
reference-based compressor for SAM files,” in Proc. 2017 Data Com-
pression Conf., 2017, pp. 330–339.

[55] I. Ochoa, H. Li, F. Baumgarte, C. Hergenrother, J. Voges, and M. Hernaez,
“AliCo: A new efficient representation for SAM files,” in Proc. 2019 Data
Compression Conf., 2019, pp. 93–102.

[56] S. Deorowicz, A. Danek, and S. Grabowski, “Genome compression: A
novel approach for large collections,” Bioinformatics, vol. 29, no. 20,
pp. 2572–2578, 2013.

[57] D. Lan, R. Tobler, Y. Souilmi, and B. Llamas, “genozip: A fast and
efficient compression tool for VCF files,” Bioinformatics, vol. 36, no. 13,
pp. 4091–4092, 2020.

[58] H. Li, “BGT: Efficient and flexible genotype query across many samples,”
Bioinformatics, vol. 32, no. 4, pp. 590–592, 2016.

[59] K. Tatwawadi, M. Hernaez, I. Ochoa, and T. Weissman, “GTRAC: Fast
retrieval from compressed collections of genomic variants,” Bioinformat-
ics, vol. 32, no. 17, pp. i479–i486, 2016.

[60] A. Danek and S. Deorowicz, “GTC: How to maintain huge genotype
collections in a compressed form,” Bioinformatics, vol. 34, no. 11,
pp. 1834–1840, 2018.

[61] S. Deorowicz and A. Danek, “GTShark: Genotype compression in large
projects,” Bioinformatics, vol. 35, no. 22, pp. 4791–4793, 2019.

[62] X. Chen, S. Kwong, and M. Li, “A compression algorithm for DNA
sequences,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 4, pp. 61–66,
Jul./Aug. 2001.

[63] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: Fast and ef-
fective DNA sequence compression,” Bioinformatics, vol. 18, no. 12,
pp. 1696–1698, 2002.

[64] S. Grumbach and F. Tahi, “Compression of DNA sequences,” in Proc.
IEEE Data Compression Conf., 1993, pp. 340–350.

[65] N. S. Bakr et al., “DNA lossless compression algorithms,” Amer. J. Bioinf.
Res., vol. 3, no. 3, pp. 72–81, 2013.

[66] B. Song, F. Li, Y. Liu, and X. Zeng, “Deep learning methods for biomed-
ical named entity recognition: A survey and qualitative comparison,”
Brief. Bioinf., vol. 22, 2021, Art. no. bbab282.

[67] X. Yang et al., “Modality-DTA: Multimodality fusion strategy for drug-
target affinity prediction,” IEEE/ACM Trans. Comput. Biol. Bioinf.,
vol. 20, no. 2, pp. 1200–1210, Mar./Apr. 2023.

[68] B. Song, X. Luo, X. Luo, Y. Liu, Z. Niu, and X. Zeng, “Learning spatial
structures of proteins improves protein–protein interaction prediction,”
Brief. Bioinf., vol. 23, no. 2, 2022, Art. no. bbab558.

[69] X. Zeng, X. Tu, Y. Liu, X. Fu, and Y. Su, “Toward better drug discovery
with knowledge graph,” Curr. Opin. Struct. Biol., vol. 72, pp. 114–126,
2022.

[70] J. Dong, M. Zhao, Y. Liu, Y. Su, and X. Zeng, “Deep learning in ret-
rosynthesis planning: Datasets, models and tools,” Brief. Bioinf., vol. 23,
no. 1, 2022, Art. no. bbab391.

[71] T. Tang et al., “Machine learning on protein–protein interaction predic-
tion: Models, challenges and trends,” Brief. Bioinf., vol. 24, no. 2, 2023,
Art. no. bbad076.

[72] R. Wang et al., “DeepDNA: A hybrid convolutional and recurrent neural
network for compressing human mitochondrial genomes,” in Proc. 2018
IEEE Int. Conf. Bioinf. Biomed., 2018, pp. 270–274.

[73] M. Silva, D. Pratas, and A. J. Pinho, “Efficient DNA sequence com-
pression with neural networks,” GigaScience, vol. 9, no. 11, 2020,
Art. no. giaa119.

[74] S. Christley, Y. Lu, C. Li, and X. Xie, “Human genomes as email
attachments,” Bioinformatics, vol. 25, no. 2, pp. 274–275, 2009.

[75] D. A. Wheeler et al., “The complete genome of an individual by massively
parallel DNA sequencing,” Nature, vol. 452, no. 7189, pp. 872–876,
2008.

[76] D. S. Pavlichin, T. Weissman, and G. Yona, “The human genome contracts
again,” Bioinformatics, vol. 29, no. 17, pp. 2199–2202, 2013.

[77] D. Pratas, A. J. Pinho, and P. J. Ferreira, “Efficient compression of
genomic sequences,” in Proc. IEEE 2016 Data Compression Conf., 2016,
pp. 231–240.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



830 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 22, NO. 2, MARCH/APRIL 2025

[78] I. Ochoa, M. Hernaez, and T. Weissman, “iDoComp: A compres-
sion scheme for assembled genomes,” Bioinformatics, vol. 31, no. 5,
pp. 626–633, 2015.

[79] S. Saha and S. Rajasekaran, “ERGC: An efficient referential genome
compression algorithm,” Bioinformatics, vol. 31, no. 21, pp. 3468–3475,
2015.

[80] Y. Liu, H. Peng, L. Wong, and J. Li, “High-speed and high-ratio referential
genome compression,” Bioinformatics, vol. 33, no. 21, pp. 3364–3372,
2017.

[81] S. Wandelt and X. Sun, “Efficient compression of 4D-trajectory data in
air traffic management,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2,
pp. 844–853, Apr. 2015.

[82] K. Zheng, Y. Zhao, D. Lian, B. Zheng, G. Liu, and X. Zhou,
“Reference-based framework for spatio-temporal trajectory compression
and query processing,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 11,
pp. 2227–2240, Nov. 2020.

[83] S. Wandelt, X. Sun, and Y. Zhu, “Lossless compression of public
transit schedules,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 11,
pp. 3075–3086, Nov. 2016.

[84] Y. Liu, L. Y. Zhang, and J. Li, “Fast detection of maximal exact matches
via fixed sampling of query K-mers and Bloom filtering of index K-
mers,” Bioinformatics, vol. 35, no. 22, pp. 4560–4567, 2019.

[85] S. Deorowicz and S. Grabowski, “Robust relative compression of
genomes with random access,” Bioinformatics, vol. 27, no. 21,
pp. 2979–2986, 2011.

[86] S. Deorowicz, A. Danek, and M. Niemiec, “GDC 2: Compression of large
collections of genomes,” Sci. Rep., vol. 5, no. 1, pp. 1–12, 2015.

[87] T. Tang, Y. Liu, B. Zhang, B. Su, and J. Li, “Sketch distance-based
clustering of chromosomes for large genome database compression,”
BMC Genomic., vol. 20, no. 10, pp. 1–9, 2019.

[88] S. Deorowicz and S. Grabowski, “Compression of DNA sequence reads
in FASTQ format,” Bioinformatics, vol. 27, no. 6, pp. 860–862, 2011.

[89] W. Tembe, J. Lowey, and E. Suh, “G-SQZ: Compact encoding of
genomic sequence and quality data,” Bioinformatics, vol. 26, no. 17,
pp. 2192–2194, 2010.

[90] M. Howison, “High-throughput compression of FASTQ data with
SeqDB,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 10, no. 1,
pp. 213–218, Jan. 2013.

[91] J. Fu, Y. Ma, and S. Dong, “A lossless FASTQ Quality Scores
file compression algorithm based on linear combination predic-
tion,” in Proc. 2016 IEEE Int. Conf. Bioinf. Biomed., 2016,
pp. 1894–1896.

[92] J. Fu, B. Ke, and S. Dong, “LCQS: An efficient lossless compression
tool of quality scores with random access functionality,” BMC Bioinf.,
vol. 21, no. 1, pp. 1–12, 2020.

[93] J. Zhou, Z. Ji, Z. Zhu, and S. He, “Compression of next-generation se-
quencing quality scores using memetic algorithm,” BMC Bioinf., vol. 15,
no. 15, pp. 1–7, 2014.

[94] T. Paridaens, G. Van Wallendael, W. De Neve, and P. Lambert, “AQUa: An
adaptive framework for compression of sequencing quality scores with
random access functionality,” Bioinformatics, vol. 34, no. 3, pp. 425–433,
2018.

[95] R. Yu and W. Yang, “ScaleQC: A scalable lossy to lossless solution for
NGS data compression,” Bioinformatics, vol. 36, no. 17, pp. 4551–4559,
2020.

[96] G. Benoit et al., “Reference-free compression of high throughput se-
quencing data with a probabilistic de Bruijn graph,” BMC Bioinf., vol. 16,
no. 1, pp. 1–14, 2015.

[97] R. Patro and C. Kingsford, “Data-dependent bucketing improves
reference-free compression of sequencing reads,” Bioinformatics, vol. 31,
no. 17, pp. 2770–2777, 2015.

[98] S. Grabowski, S. Deorowicz, and Ł. Roguski, “Disk-based compres-
sion of data from genome sequencing,” Bioinformatics, vol. 31, no. 9,
pp. 1389–1395, 2015.

[99] N. Popitsch and A. von Haeseler, “NGC: Lossless and lossy compression
of aligned high-throughput sequencing data,” Nucleic Acids Res., vol. 41,
no. 1, pp. e27–e27, 2013.

[100] Goby. [Online]. Available: https://github.com/CampagneLaboratory/
goby

[101] J. K. Bonfield and M. V. Mahoney, “Compression of FASTQ and SAM
format sequencing data,” PLoS One, vol. 8, no. 3, 2013, Art. no. e59190.

[102] Y. Niu, M. Ma, F. Li, X. Liu, and G. Shi, “ACO: Lossless quality score
compression based on adaptive coding order,” BMC Bioinf., vol. 23, no. 1,
pp. 1–14, 2022.

[103] J. Ziv and A. Lempel, “A universal algorithm for sequential data compres-
sion,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343, May 1977.

[104] M. Cho and A. No, “FCLQC: Fast and concurrent lossless quality scores
compressor,” BMC Bioinf., vol. 22, no. 1, pp. 1–14, 2021.

[105] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, and G. Vargh-
ese, “Compressing genomic sequence fragments using SlimGene,”
in Proc. Annu. Int. Conf. Res. Comput. Mol. Biol., Springer, 2010,
pp. 310–324.

[106] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.

[107] F. Hach, I. Numanagić, C. Alkan, and S. C. Sahinalp, “SCALCE: Boost-
ing sequence compression algorithms using locally consistent encoding,”
Bioinformatics, vol. 28, no. 23, pp. 3051–3057, 2012.

[108] J. Fu and S. Dong, “All-CQS: Adaptive locality-based lossy compression
of quality scores,” in Proc. 2017 IEEE Int. Conf. Bioinf. Biomed., 2017,
pp. 353–359.

[109] R. Cánovas, A. Moffat, and A. Turpin, “Lossy compression of quality
scores in genomic data,” Bioinformatics, vol. 30, no. 15, pp. 2130–2136,
2014.

[110] I. Ochoa, H. Asnani, D. Bharadia, M. Chowdhury, T. Weissman, and G.
Yona, “QualComp: A new lossy compressor for quality scores based on
rate distortion theory,” BMC Bioinf., vol. 14, no. 1, pp. 1–16, 2013.

[111] I. Ochoa, A. No, M. Hernaez, and T. Weissman, “CROMqs: An infinites-
imal successive refinement lossy compressor for the quality scores,” in
Proc. 2016 IEEE Inf. Theory Workshop, 2016, pp. 121–125.

[112] A. No, M. Hernaez, and I. Ochoa, “CROMqs: An infinitesimal successive
refinement lossy compressor for the quality scores,” J. Bioinf. Comput.
Biol., vol. 18, pp. 2050031–2050031, 2020.

[113] W. Wang, C. Chen, W. Yao, K. Sun, W. Qiu, and Y. Liu, “Synchrophasor
data compression under disturbance conditions via cross-entropy-based
singular value decomposition,” IEEE Trans. Ind. Informat., vol. 17, no. 4,
pp. 2716–2726, Apr. 2021.

[114] A. No and T. Weissman, “Rateless lossy compression via the extremes,”
IEEE Trans. Inf. Theory, vol. 62, no. 10, pp. 5484–5495, Oct. 2016.

[115] L. Janin, G. Rosone, and A. J. Cox, “Adaptive reference-free compression
of sequence quality scores,” Bioinformatics, vol. 30, no. 1, pp. 24–30,
2014.

[116] M. Burrows and D. Wheeler, “A block-sorting lossless data compres-
sion algorithm,” in Digital SRC Research Report. Princeton, NJ, USA:
Citeseer, 1994.

[117] U. Manber and G. Myers, “Suffix arrays: A new method for on-line string
searches,” SIAM J. Comput., vol. 22, no. 5, pp. 935–948, 1993.

[118] Y. W. Yu, D. Yorukoglu, J. Peng, and B. Berger, “Quality score compres-
sion improves genotyping accuracy,” Nature Biotechnol., vol. 33, no. 3,
pp. 240–243, 2015.

[119] D. L. Greenfield, O. Stegle, and A. Rrustemi, “GeneCodeq: Quality score
compression and improved genotyping using a Bayesian framework,”
Bioinformatics, vol. 32, no. 20, pp. 3124–3132, 2016.

[120] Y. Shibuya and M. Comin, “Better quality score compression through
sequence-based quality smoothing,” BMC Bioinf., vol. 20, no. 9, pp. 1–11,
2019.

[121] Y. Shibuya and M. Comin, “Indexing k-mers in linear space for quality
value compression,” J. Bioinf. Comput. Biol., vol. 17, no. 05, 2019,
Art. no. 1940011.

[122] P. Ferragina and G. Manzini, “Indexing compressed text,” J. ACM, vol. 52,
no. 4, pp. 552–581, 2005.

[123] J. Voges, A. Fotouhi, J. Ostermann, and M. O. Külekci, “A two-level
scheme for quality score compression,” J. Comput. Biol., vol. 25, no. 10,
pp. 1141–1151, 2018.

[124] A. A. Hernandez-Lopez, C. Alberti, and M. Mattavelli, “Toward a dy-
namic threshold for quality score distortion in reference-based align-
ment,” J. Comput. Biol., vol. 27, no. 2, pp. 288–300, 2020.

[125] D. Kim, J. M. Paggi, C. Park, C. Bennett, and S. L. Salzberg, “Graph-
based genome alignment and genotyping with HISAT2 and HISAT-
genotype,” Nature Biotechnol., vol. 37, no. 8, pp. 907–915, 2019.

[126] J. Rissanen, “A universal data compression system,” IEEE Trans. Inf.
Theory, vol. 29, no. 5, pp. 656–664, Sep. 1983.

[127] J. J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM
J. Res. Develop., vol. 20, no. 3, pp. 198–203, 1976.

[128] J. Voges, J. Ostermann, and M. Hernaez, “CALQ: Compression of quality
values of aligned sequencing data,” Bioinformatics, vol. 34, no. 10,
pp. 1650–1658, 2018.

[129] J. K. Bonfield, S. A. McCarthy, and R. Durbin, “Crumble: Reference free
lossy compression of sequence quality values,” Bioinformatics, vol. 35,
no. 2, pp. 337–339, 2019.

[130] V. S. Morales and S. Houghten, “Lossy compression of quality values in
sequencing data,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 18, no. 5,
pp. 1958–1969, Sep./Oct. 2021.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/CampagneLaboratory/goby
https://github.com/CampagneLaboratory/goby


LIU et al.: QUALITY SCORES COMPRESSION OF GENOMIC SEQUENCING DATA: A COMPREHENSIVE REVIEW AND PERFORMANCE EVALUATION 831

[131] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[132] Y. W. Yu, D. Yorukoglu, and B. Berger, “Traversing the k-mer landscape
of NGS read datasets for quality score sparsification,” in Proc. Int. Conf.
Res. Comput. Mol. Biol., Springer, 2014, pp. 385–399.

[133] P. Li, X. Jiang, S. Wang, J. Kim, H. Xiong, and L. Ohno-Machado,
“HUGO: Hierarchical mUlti-reference Genome cOmpression for aligned
reads,” J. Amer. Med. Inform. Assoc., vol. 21, no. 2, pp. 363–373, 2014.

[134] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in Proc. 2016 IEEE Int. Parallel Distrib. Process. Symp., 2016,
pp. 730–739.

[135] C. Firtina and C. Alkan, “On genomic repeats and reproducibility,”
Bioinformatics, vol. 32, no. 15, pp. 2243–2247, 2016.

[136] M. Rivara-Espasandín et al., “Nanopore quality score resolution can be
reduced with little effect on downstream analysis,” Bioinf. Adv., vol. 2,
no. 1, 2022, Art. no. vbac054.

Yuansheng Liu received the bachelor’s and master’s
degrees in computer science from Xiangtan Univer-
sity, China, in 2012 and 2015, respectively and the
PhD degree from the University of Technology Syd-
ney, Australia, in 2019. He is currently an associate
professor with the College of Information Science and
Engineering, Hunan University, China. In 2020, he
was postdoctoral research fellow with the University
of Technology Sydney. His current research interests
is bioinformatics.

Tao Tang received the BS degree from the University
of Sydney in 2017, and the PhD degree in computer
science from the University of Sydney in 2021. His
main research interests include bioinformatics, com-
putational biology, data mining and parallel comput-
ing.

Zexuan Zhu received the BS degree in computer sci-
ence and technology from Fudan University, Shang-
hai, China, in 2003, and the PhD degree in computer
engineering from Nanyang Technological Univer-
sity, Singapore, in 2008. He is currently a professor
with the College of Computer Science and Soft-
ware Engineering, Shenzhen University, China. His
research interests include computational intelligence
and bioinformatics. He is an associate editor of IEEE
Transactions on Evolutionary Computation and IEEE
transactions on Emerging Topics in Computational

Intelligence. He is also the chair of the IEEE CIS Emergent Technologies Task
Force on Memetic Computing.

Xiangxiang Zeng received the BS degree in automa-
tion from Hunan University, Changsha, China, in
2005, and the PhD degree in system engineering from
the Huazhong University of Science and Technology,
Wuhan, China, in 2011. Before joining Hunan Uni-
versity in 2019, he was with Department of Computer
Science in Xiamen University. In 2019, He is a Yuelu
distinguished professor with the College of Informa-
tion Science and Engineering, Hunan University. His
main research interests include membrane computing
and bioinformatics.

Quan Zou (Senior Member, IEEE) received the BSc,
MSc, and the PhD degrees in computer science from
the Harbin Institute of Technology, China, in 2004,
2007, and 2009, respectively. He worked with Xi-
amen University and Tianjin University from 2009
to 2018 as an assistant professor, associate profes-
sor, and professor. He is currently a professor with
the Institute of Fundamental and Frontier Sciences,
University of Electronic Science and Technology of
China. His research is in the areas of bioinformatics,
machine learning, and parallel computing. Several

related works have been published by Science, Briefings in Bioinformatics,
Bioinformatics, IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, etc. Google scholar showed that his more than 100 papers have been
cited more than 10,000 times. He is the editor-in-chief of Current Bioinformatics,
associate editor of IEEE Access, and an editorial board member of Computers
in Biology and Medicine, Genes, Scientific Reports, etc. He was selected as one
of the Clarivate Analytics Highly Cited Researchers, in 2018, 2019, and 2020.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science. His current research
interests include parallel computing and high per-
formance computing, distributed computing, energy-
efficient computing and communication, heteroge-
neous computing systems, cloud computing, Big
Data computing, CPU-GPU hybrid and cooperative
computing, multicore computing, storage and file
systems, wireless communication networks, sensor
networks, peer-to-peer file sharing systems, mobile
computing, service computing, Internet of Things,

and cyber-physical systems. He has published more than 630 journal articles,
book chapters, and refereed conference papers, and has received several best
paper awards. He is currently serving or has served on the editorial boards of
the IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions
on Computers, IEEE Transactions on Cloud Computing, IEEE Transactions on
Services Computing, and IEEE Transactions on Sustainable Computing.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:32:58 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


