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Abstract
It is difficult to load large deep neural networks on resource-constrained devices. Channel
pruning can compress the model and effectively reduce the resource demand to solve this
problem. However, most channel pruning methods evaluate channels one-sidedly and some-
times remove important channels incorrectly. Thus, we propose a new multi-collaboration
channel pruning (MCCP) method by analyzing the input and output of the batch normaliza-
tion (BN) layer. The importance of the channel is evaluated by combining the weights of the
convolution layer and the two learnable parameters of the BN layer to achieve more reason-
able pruning. Besides, we impose polarization regularization on the scaling factors of neurons
to make them easier to distinguish between important and unimportant channels to minimize
the performance loss of the model after pruning.We confirm the effect of our method. MCCP
reduces the number of parameters of the YOLOv3 model by 95.9%, improves the inference
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speed by 3.8 times, compresses the model volume to 9.6MB, and has comparable recognition
accuracy.

Keywords Channel pruning · Model compression · Object detection

1 Introduction

Convolutional neural networks (CNNs) are developing rapidly and have made great achieve-
ments in the fields of computer vision, such as object detection [1–4], image classification
[5–7], semantic segmentation [8], and human pose estimation[9, 10]. However, with the
increasing complexity of the model, the demand for computing and storage resources is
getting higher and higher, and the requirements cannot be met on the resource-constrained
devices(drones, self-driving cars, etc.), so model deployment is difficult to complete. In
particular, edge computing [11] and autonomous driving [12] are developing rapidly and
becoming popular. These fields are characterized by lightweight and low latency.

To solve the above contradiction, many researchers use model compression to reduce
redundant network parameters, so as to save storage and computing resources and enable
them todeployon resource-constraineddevices. Typically, themethods ofmodel compression
include low-rank decomposition [13], weight quantization[14–17], knowledge distillation
[18] andpruning [19–23]. Low-rankdecomposition is basedon the information redundancyof
the convolution kernel matrix to sparse the convolution kernel matrix by merging dimensions
and imposing low-rank constraints. Weight quantization refers to the use of lower bit width
to represent typical 32-bit floating-point network parameters to achieve compression. But the
application scenarios of both are very limited. Knowledge distillation is to train a compact
neural network by extracting the knowledge of a trained large model, but generally requires
a professional artificial design of the student network. In contrast, pruning is simpler to
compress models and can greatly save storage space and computing costs.

Pruning includes unstructured pruning [19, 24] and structured pruning [20–23]. The gran-
ularity of unstructured pruning is finer. The subdivision of the network structure can be
accurate to any redundant parameters between neurons, such as a weight. Yet, such fine-
grained pruning usually leads to irregular network structure and discontinuous storage space,
and the acceleration effect is not obvious. Moreover, the application scope of unstructured
pruning is relatively small and usually requires the support of some specific software and
hardware. By contrast, the granularity of structured pruning is coarse, and the unit of pruning
is usually a channel. By deleting unimportant channels, the network structure has not been
changed, so we can more effectively use the existing framework to compress and accelerate
the model. The channel-level pruning methods can not only maintain the original model
structure but also reduce the number of model parameters, so as to achieve the effect of the
inference acceleration.

Most channel pruning methods choose one or two influencing factors that can determine
the performance of the model as the channel evaluation factors and then prune the corre-
sponding channel through the analysis of the evaluation factors. [25] proposed to calculate
the sum of the absolute values of all weights in the filter and then deleted the filter with a
smaller value. He believed that the smaller values of the filters, the weaker important they
are. [26] and [27] used L1 regularization to punish the scaling factors of the BN layer [28]
and deleted the corresponding channels with smaller scaling factors. [29] and [30] also con-
sidered another parameter of the BN layer. They believed that not only the scale factors but
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also the shift factors should be considered. [31] evaluated the importance of channels by
combining the weights of the convolution layer and the scaling factors of the BN layer.

The above-mentioned methods only consider a single or a combination of two influencing
factors to evaluate the importance of the channels, which may lead to the loss of some
important channels. When the compression ratio becomes high, it is difficult to restore the
lost performance even after fine-tuning. In this article, by analyzing the input and output
of the BN layer, we propose a new method to delete unimportant channels. This method
combines the weights of the convolution layer and the two learnable parameters of the BN
layer.

The main contributions of our work are as follows:

1. We comprehensively analyze the input and output of the BN layer, focusing on the
influencing factors before the activation function, and verify the influence of the weights
of the convolutional layer and the two learnable parameters of the BN layer on the output.

2. To weigh the effects of the three influencing factors, we propose a multi-collaboration
channel pruning method. We perform regularization penalties on the convolutional layer
and the BN layer. And we delete the channels by the weights and scaling factors, and
then retain the channels by the shift factors.

3. To achieve a better sparsity effect and make it easier for the parameters to distinguish
channels with lower importance, we use polarization regularization to punish the scaling
factors.

2 RelatedWork

According to whether it is hardware-friendly or the size of pruning granularity, we can divide
pruning into unstructured pruning and structured pruning. Unstructured pruning is mainly
deleting the connection weights of neurons. For example, [19] deleted connections with
a smaller connection weight norm between neurons. In order to avoid deleting important
connections, [32] and [33] restored some of the deleted connections after pruning. [34] used
quantization and Huffman coding to further compress after deleting redundant connections.
[35] used the concept of biological neural synapse and took the product of the scaling factors
and the Frobenius norms of the filter as the synaptic strength to indicate the importance of
connections between neurons. However, unstructured pruning will lead to network structure
being irregular and storage structure being discontinuous, whichmakes it difficult to optimize
storage space and runtime memory. And it needs specific hardware support, which adds
additional resource requirements.

The commonmethod of structured pruning is channel pruning. Because it does not require
specific hardware to support, it is more practical than unstructured pruning. According to the
design of the filter evaluation function, there are two ideas for pruning filters, one is based
on the inherent properties of CNN, and the other is to customize an evaluation factor.

Themethods based on the inherent properties of CNN use the inherent properties to prune,
such as activation value and weight. [36] believed that neurons with an activation value of
0 are redundant and deleted channels with an activation value of 0. [20] proposed to delete
the filter with a small L2 norm. [21] proposed to iteratively remove filters based on the
average activation value of all training set samples. [22] selected unimportant channels by
the first-order gradient.

The methods of custom evaluation factors mine attribute features and take some influenc-
ing factors as the evaluation factors of the channels through transformation. [37] proposed to
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remove filters based on the geometric median value in the layer. [35] obtained the importance
score of each feature through the feature selector and then obtained the importance score of
the channels through backpropagation to remove the low-scoring channels. [38] proved that
the corresponding feature maps generated by a single filter have the same average rank. They
believed that the filters with a lower-rank feature map have a small amount of information
and can be safely deleted. [39] introduced a new scaling factor parameter to learn the sparse
structure and removed the filter corresponding to the scaling factor of zero. [30] multiplied
the two learnable parameters of the BN layer and then deleted the redundant channels accord-
ing to the distribution of the scaling factors. But because the structure was changed and the
performance of the model was affected, the very deep neural network with many residual
structures [5] was not suitable.

Many of the above methods lack a comprehensive consideration of the channels, and it is
easy to losemore performance after pruning. Themethod of introducing additional evaluation
factors to select the redundant channel may change the original structure, thereby affecting
the performance of the model. The MCCP method we proposed considers both the BN layer
and the continuous convolutional layer. It combines three influencing factors to determine
whether the channels are important and does not affect the original structure, so as to achieve
a more reasonable pruning.

In addition to pruning, weight quantization, low-rank decomposition, and knowledge
distillation also can effectively compress the model, and there is no conflict between the
methods. These methods can be combined to achieve further compression. For example,
[34] use quantisation to achieve more after pruning. [24] used knowledge distillation to fine-
tune after pruning to restore the performance of the model. Our method can also be used in
combination with other compression methods.

3 Multi-Collaboration Channel Pruning

The key to channel pruning is how to find unimportant channels and delete them, so as
to effectively compress the model. Most channel pruning methods only consider a single
influencing factor or a combination of two influencing factors to determine whether the
channels are important. We believe that the above methods lack partial rationality and do
not fully consider the determinants of channel importance. In this section, we consider the
convolutional layer and the BN layer of the continuous structure of the network and then
analyze the input and output of the BN layer. Finally, we get three parameters that need to
be considered and then propose corresponding method.

3.1 Input and Output Analysis of the BN Layer

Most deep neural networks for image recognition are composed of continuous convolution
layers. The output of the convolution layer can be represented by Eq. (1):

Zl = XlWl + bl (1)

where index l denotes the l-th layer, Xl is the input(Xl ∈ R
Ml×Nl×nl , where Ml and Nl

denote the height and width of the input feature map, nl is the number of input channels),Wl

is the set of weights(Wl ∈ R
nl+1×nl×Kl×Gl , where Kl , Gl and nl are the width, height and

the number of input channels of the filter, and nl+1 is the number of output channels), bl is
the bias(bl ∈ R

nl+1 ), and Zl is the output feature map(Zl ∈ R
Ml+1×Nl+1×nl+1 ). It can be seen
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as nl feature maps and nl+1 filters to do convolution calculate, and then nl+1 output feature
maps can be obtained.

[25] believed that those filters with a smaller sum of absolute values are not important
and can be deleted. Even when the BN layer is not added to normalize the input value, the
output of the l-th layer is determined by Wl and bl in Eq. (1). [25] can effectively compress
the model, but it is not reasonable enough. To select important channels from all channels,
the weight Wl and the bias bl of the convolutional layer need to be considered at the same
time. At present, most large convolutional networks choose to add the BN layer to alleviate
model over-fitting. Therefore, we should also consider another structure the BN layer.

Generally, after adding the BN layer, we will discard the bias bl , and then the output of
the convolution layer is represented by Eq. (2):

Zl = XlWl (2)

The function of the BN layer [28] is to standardize the input values and reduce the differ-
ence of values to the same range. This makes each layer of the network more independent,
thereby alleviating the problem of disappearance gradients during the training process. The
conversion of the BN layer can be expressed by Eq. (3):

Yl = γl × Zl − μB√
σ 2
B + ε

+ βl = γl × XlWl − μB√
σ 2
B + ε

+ βl (3)

where μB and σ 2
B are the expectation and the variance of the input Xl respectively. ε is a

constant slightly greater than zero to ensure that the denominator is not zero.μB , σ 2
B and ε are

real numbers related to input Xl .βl is the shift factor of theBN layer (βl = [β1
l , β2

l , . . . , β
nl+1
l ],

it denotes the nl+1 channels of the l-th layer), γl is the scale factor of the BN layer (γl =
[γ 1

l , γ 2
l , . . . , γ

nl+1
l ]), β and γ provide the possibility of linearly transforming normalized

activations back to any scales, and Yl is the output of the l-th layer (Yl ∈ R
Ml+1×Nl+1×nl+1 ).

From Eq. (3), we can see that the output of the l-th layer is related to the convolutional
layer Wl , the BN layer γl , and the BN layer βl .

3.2 Channel Selection

In Eq. (3), γl , Wl , and βl are learnable parameters, and the performance of a trained model
is determined by these three learnable parameters. A set of γ , W , and β corresponds to a
channel, so we can use any one parameter in the set as an evaluation factor.When considering
the influence of the BN layer, most researchers use γl as the evaluation factor, such as [27]
and [26]. There is also a combination of Wl and γl as the evaluation factor of the channel,
such as [31]. These methods can effectively perform channel pruning, but they do not fully
consider what factors affect the output of the BN layer, which will cause important channels
to be deleted. The output of the BN layer is related to three learning parameters.

In the past, only the γ of the BN layer was used as the evaluation factor of the channel,
but when γl is very small, that is, when γl ≈ 0, Eq. (3) can be transformed into Eq. (4):

Yl ≈ βl (4)

At this time, the output of layer is determined by the shift factor βl . So, when γl is very
small but βl is very large, the influence of βl cannot be ignored. [29] analyzed the normalized
input data that obeyed the Gaussian distribution and found that different linear transfor-
mations of γ and β would severely affect the Gaussian distribution. Therefore, through the
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Fig. 1 Line chart of size
distribution of each parameter,
the horizontal axis is the order of
channels, the vertical axis is the
size of the value

comprehensive consideration of the three learnable parameters, the importance of the channel
can be evaluated more reasonably.

In Eq. (3), the output Yl of the BN layer is proportional to the product of γl and Wl , and
Yl is also proportional to βl . So, we set up the following equation and use the result of the
equation as the evaluation factor of the channel, and in order to match γl , we sum overWl to
reduce its dimension, as shown in Eq. (5):

Fi
l =| γ i

l | ∑nl
j=1

∑Kl
k=1

∑Gl
g=1 | Wi

l | +β i
l f or i = 1, 2, . . . , nl+1 (5)

We use their definitely worth to calculate the result, because positive numbers are always
larger than negative numbers, but negative numbers also play a role. And we sum it up
to turn W into a one-dimensional list so that W can be mutiplied by γ . In Eq. (5), Fl =
[γ 1

l W
1
l +β1

l , γ 2
l W

2
l +β2

l , . . . , γ
nl+1
l Wnl+1

l +β
nl+1
l ], Fl is a list that represents all the evaluation

factors for the l-th layer. But through experiments, we find the value of β is much larger than
the values of γ or W . For this reason, it is not advisable to directly add its value to the
equation. One solution is to impose a regularization penalty on β. But if β is also subject to a
regularization penalty, more performance will be lost. We randomly select a layer and show
its β, the product of γ and W , and the sum according to Eq. (5) in the Fig. 1. As can be seen
from the figure, if the evaluation factor is obtained according to Eq. (5), the selection right
of the channel is basically determined by the β. That is, the green line basically fits the blue
line, while the yellow line is difficult to work.

Therefore, after analysis, we believe that when most or all the channels in a layer need to
be deleted, we can approximately regard the γ and W of this layer as very small, which is
approximately zero. At this time, the output of this layer is mainly determined by the shift
factor β. Therefore, in Eq. (5), we first let βl=0, select the redundant channels by the product
of γ andW , and then use the layer pruning protection ratio to retain the channels with larger
β. The new evaluation factor equation is expressed by Eq. (6):

Fi
l =| γ i

l | ∑nl
j=1

∑Kl
k=1

∑Gl
g=1 | Wi

l | f or i = 1, 2, . . . , nl+1 (6)

3.3 Polarization Regularization

The analysis shows that the influencing factors of the output of the BN layer are the three
learnable parameters γ , W , and β. In order to reduce the performance loss after pruning,
we perform sparse training to make most of the learnable parameters of the model equal to
or close to zero. The general sparse training method is to use the L1-norm to penalize the
scaling factors of the BN layer to obtain sparse parameters, such as [27]. But L1 regularization
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lacks the ability to distinguish. After penalizing all parameters, the obtained parameters are
reduced continuously. So, we use the polarization regularization method proposed by [40]
to divide the scaling factors into two parts, one is close to zero, and the other is close to
a certain number greater than zero. Only delete the corresponding channels whose scaling
factors tends to zero, and the loss of the model is less. But the influence of the weights of
the convolutional layer is not considered in [40], and sparse training is not performed on it.
[31] considered the weights of convolution layer, but they used L1 regularization for sparse
training, which lacked the distinction of parameters. We consider two consecutive layers and
use polarization regularization to train the network. Our complete loss function is as follows:

Loss = L( f (X ,W ), Y ) + λ1R(W ) + λ2Rs(γ ) (7)

where,

R(W ) = ∑L
l=1‖Wl‖1 (8)

Rs(γ ) = ∑L
l=1

∑nl+1
i=1 t | γ i

l | − | γ i
l − γ l | , (t ∈ R, γ l = 1

nl+1

∑nl+1
i=1 γ i

l ) (9)

L( f (X ,W ), Y ) denotes the normal training loss of the data set X , Y is the label of sample
X ,W is the weight set of all convolutional layers, γ is the scaling factors set of all BN layers,
the subscript l indicates the l-th layer. R(W ) denotes the L1 regularization for the weights of
convolutional layers(Wl ∈ R

nl+1×nl×Kl×Gl , where Kl , Gl and nl are the width, height and
the number of input channels of the filter, and nl+1 is the number of output channels), and
Rs(γ ) denotes the polarization regularization is applied to the BN layer(γl ∈ R

nl+1 ). λ1 and
λ2 are penalty factors. γ l is the average value of the scaling factor of the l-th layer. t is a
hyperparameter of polarization regularization. It is used to adjust the size distribution of γ .
t is approximately proportional to the number of parts that tend to zero. The larger t is, the
more parameters tend to zero, but t is set too large will affect the accuracy [40].

The distribution of the scaling factor of theBN layer obtained after sparse trainingwith two
different regularization methods is shown in Fig. 2. When the pruning rate is 50%, the white
is the parameter distribution that is pruned, and the black is the parameter distribution that is
retained. It can be seen that the scaling factors obtained by L1 regularization has a continuous
distribution and lacks distinction. It is difficult to find a reasonable pruning threshold. The
performance loss of the model is great after pruning. The polarization regularization method
can delete the part that tends to zero, and the performance loss is less. The specific results of
the experiment are shown in Sect. 4.

3.4 Implementation of Channel Pruning

3.4.1 The Illustration Process

The channel pruning process of the MCCP method can be shown in Fig. 3. This is a process
of channel reduction. By deleting useless channels, the number of parameters and volume of
the model are reduced. The first three-dimensional image Xl denotes the input feature map of
the l-th layer. In the convolution layer, we use the cube to represent the filter, and each filter
corresponds to a channel. In the BN layer, we use a rectangle to represent the parameter γ or
β. A rectangle is a value of γ or a value of β, and a rectangle represents a channel. Sl in the
figure is all channels of the current layer. A rectangle represents a channel, yellow indicates
that the channel is unimportant and can be deleted, white indicates that the channel does
not need to be deleted, and orange indicates the newly determined reserved channel. Firstly,
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Fig. 2 The left image shows the scaling factors distribution under L1 regularization, and the right image shows
the scaling factors distribution under polarization regularization. The horizontal axis is the value of the scaling
factor and the vertical axis is the number of scaling factors

Fig. 3 The process of reducing the number of channels after channel pruning

calculate the weight of the convolution layer and the γ of the BN layer according to Eq. (6)
to obtain the list of evaluation factors for each channel. Select the deleted channel according
to the size of the evaluation factor. Then, select the important channels to be reserved through
β of BN layer, and finally get a list S

′
l with an identity, this list indicates which channel needs

to be deleted. The final three-dimensional image Xl+1 denotes the output feature map of the
l-th layer.

In Fig. 3, the input feature map of the four channels will output feature map with the
number of channels five after the convolution calculation of the five filters, but the feature
map with the number of channels three will be output through the channel pruning.

123



MCCP: Multi-Collaboration Channel Pruning for Model Compression

3.4.2 Algorithm Implementation

Based on the above work, we propose an algorithm as shown in Algorithm 1. Algorithm 1
is used to get a list of mask, this list indicates which channels in each layer need to be
removed. We use global_percent as the global pruning ratio and layer_keep as the layer-
level protection ratio to control the size of the pruning. In Algorithm 1, sort(x) is a sorting
algorithm, which sorts the numbers in x from small to large.

Algorithm 1MCCP algorithm
Input: Filter weight list of convolution layer, scale factor list γ of BN layer, shift factor list β of BN layer,

global_percent , layer_keep
Output: A list mask indicates whether the channels need to be deleted.
1: Obtain the evaluation factors of all channels F according to Eq. (6)
2: Calculate the global pruning threshold, sort F from small to large, and intercept the threshold thresh at

the corresponding position according to global percent.
3: Loop through each channel to determine whether it needs to be deleted
4: for l = 0 to L do
5: remain_channels = 0
6: for i = 0 to I do
7: if Sil ≤ thresh then

8: Sil = 0
9: else
10: Sil = 1
11: remain_channels + +
12: end if
13: end for
14: if remain_channels < layer_keep × I then
15: βl ←| β | of current layer
16: sorted_βl = sort(βl )
17: ḃ = sorted_βl [(1 − layer_keep) × I ]
18: for i = 0 to I do
19: if βi

l ≥ ḃ then

20: Sil = 1
21: end if
22: end for
23: end if
24: end for

Algorithm 1 first gets the evaluation factor list F(F ∈ R
n , n is the number of all channels

in the network) of all channels according to Eq. (6), then sorts F from small to large, and
intercepts the threshold thresh at the corresponding position according to global_percent .
Then it loops through the evaluation factors corresponding to each channel of each layer, and
compares it with the thresh. The channels that are smaller than the pruning threshold have
their Sil set to 0. S

i
l is the channel mask, Sil = 0 denotes that the i-th channel of the l-th layer

needs to be deleted, and Sil = 1 denotes that the channel is reserved. After traversing all
channels in a layer, calculate the number of reserved channels. If it is less than the maximum
number of pruned at the layer, set the Sil of those channels whose shift factor is greater
than the threshold ḃ to 1. The threshold ḃ is obtained by sorting all the shift factors of the
current layer from small to large and then intercepting it with layer_keep, which is similar
to obtaining thresh. Then continue to loop through the next layer until all layers have been
traversed.
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After executing Algorithm 1, the list mask can be obtained. This list contains the Sil of
each channel at each layer, which denotes whether each channel in a layer needs to be deleted.

4 Experiments and Analysis

We use a Linux server with Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz (48 CPUs), 32
GBRAM and four NVIDIAGTX2080Ti GPU cards for training models. The system version
is Ubuntu 18.04.5 LTS. All experiments are implemented on the Ubuntu 18.04.5 operating
system using the Pytorch 1.8.2 deep learning framework.

4.1 Dataset

To verify the effectiveness of the method, we conducted experiments on two datasets.

4.1.1 Pedestrian Detection Dataset

The dataset includes 3008 surveillance images taken by surveillance cameras at different
periods. The dataset includes 2402 training set images and 606 validation set images. The
images are manually marked into four classes (i.e., pedestrians, heads, motorcycles, and
bicycles).

4.1.2 Oxfordhand Dataset

The dataset includes 5628 images collected from various different public image data set
sources as listed in [41]. In each image, all the hands that can be perceived clearly by humans
are annotated. The dataset includes 4069 training set images , 821 test set images and 738
validation set images. The images are manually marked into one class (hand).

4.2 BenchmarkModel

4.2.1 Object Detection Algorithm

Object detection algorithms include two types: two-stage and one-stage object detection
algorithms. The two-stage methods first generate candidate boxes, and then classify them
through convolutional neural networks, including R-CNN [2] and R-FCN [3] and so on.
The one-stage methods do not need to generate candidate boxes, and directly convert the
problem of target boxes positioning into regression problems, mainly the YOLO series, such
as the representative works YOLOv3 [1] and YOLOv4 [42]. The two algorithms have their
advantages. The two-stage methods have advantages in detection accuracy and positioning
accuracy, and the one-stage methods have advantages in detection speed. Our detection task
has higher requirements for time delay, so we choose a one-stage target detection network.

4.2.2 Benchmark

We choose a one-stage algorithm, its typical representative YOLOv3, as the basic network
model, and three models of different sizes as the benchmark experiment. The sizes of the
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Fig. 4 The histogram of the scaling factor. The width, height, and depth of the histogram correspond to the
value of the scaling factor, the number of scaling factors, and the number of training times

three models are obtained by using the SlimYOLOv3 [26] to prune the YOLOv3model when
the global pruning rates are 50%, 90% and 95%.

4.3 Training

4.3.1 Normal Training

We train the YOLOv3 network on the two datasets following the default parameter settings
of Darknet. The input image size of our YOLOv3 network is 416×416. We use the SGD
optimizer to train and set the momentum to 0.9, the weight decay to 0.0005, max batches set
to 10000, and the initial value of the learning rate to 0.001.

4.3.2 Sparsity Training

When training sparsely on two datasets, our network input size is 416×416, SGD is used to
train all networks, momentum is set to 0.97, weight decay is set to 0.0004569, max epochs
is set to 200, and the initial value of the learning rate is set to 0.002324.

The effects of L1 regularization and polarization regularization can be visually represented
by the histogram of the evolution of the scaling factors distribution in the training process,
as shown in Fig. 4. The influence of the learning rate should be greater than that of the
hyperparameter, so the value of the hyperparameter should be set smaller than the learning
rate. In the experiment shown in the Fig. 4, the test dataset is pedestrian detection dataset. The
hyperparameters of the polarization regularizationmethodwe use are t = 2.0 andλ2 = 5e−4.
The penalty factor used by L1 regularization method is 5e−4. It can be seen from Fig. 4 that
the polarization regularization gradually distributes the scaling factors into two crests, one
crest pole is zero, and the other pole is a certain number greater than zero. This shows that
polarization regularization can push the scale factors to different extremes so that there is a
distinction between the scale factors, and so that it is easier to distinguish between reserved
channels and deleted channels.

4.4 Fine-tuning

If the channels are pruned too much, the performance of the model will be severely degraded,
and the distribution structure of the parameters of the model will also change. Fine-tuning
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can restore the performance of the model. The hyperparameters we use for fine-tuning are
the same as sparse training, but no regularization penalty is performed.

4.5 EvaluationMetrics

We use the following seven evaluation metrics(Precision, Recall, mAP, F1, Volume, Parame-
ters, Time) to evaluate the performance of the model. In object detection field, Precision and
Recall are related to Intersection over Union (IoU) and confidence threshold. IoU is the ratio
of the intersection and union of candidate bound and ground truth bound. The higher the
value, the higher the correlation. Confidence threshold is used to judge whether the object in
the boundary box is a positive sample or a negative sample. If it is greater than the confidence
threshold, it is a positive sample, and if it is less than the confidence threshold, it is a negative
sample. In our experiment, we set the IoU threshold to 0.5 and the confidence threshold to
0.001.

• Precision : Precision is the proportion of the number of correctly predicted samples to
the number of samples predicted to be true.

• Recall : Recall is the proportion of all positive samples that have been successfully
predicted.

• mAP : Average Precision(AP) is the detection accuracy of a single class. mAP is the
detection accuracy of all classes. AP is the quality of the model in single class and mAP
measures the quality of the learned model in all classes.

• F1 : F1 is obtained through precision and recall, which is the harmonic average of pre-
cision and recall. The higher the F1 value, the better the performance of the model.

• Volume : Volume size of the model. The smaller the volume size of the model, the more
suitable for deployment on resource constrained devices.

• Parameters: Number of parameters of the model. The less the parameters of the model,
the less the calculation times and the faster the recognition speed.

• Time : Time is the inference time of identifying classes on one picture. The faster the
speed, the less waiting time for detection. Because the time difference between before
and after pruning is very small when tested on 2080Ti, we test the inference time on the
more basic hardware Tesla k80.

4.6 Result and Analysis

Weuse themethod of SlimYOLOv3 to pruned on theYOLOv3model and obtain threemodels
(SlimYOLOv3-50, SlimYOLOv3-90, and SlimYOLOv3-95) as our benchmark. Thenwe use
theMCCPmethodweproposed to prune the network, getmodelswith the samemodel volume
and compare their evaluationmetrics. Using the slimyolov3method, after 50%, 90%and 95%
pruning, the compressedmodel volumes on the pedestrian detection dataset are 79MB, 27MB
and 13MB respectively, and on the oxfordhand dataset, the compressed model volumes are
75MB, 23MB and 12MB respectively.We compare the evaluationmetrics of the twomethods
under the condition of pruning the same volume. In addition, we slim the network model as
much as possible, so that the model can be deployed on resource-constrained devices. The
overall results of the experiment are shown in Tables 1 and 2.
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4.6.1 Performance Evaluation and Analysis of Different Pruning Ratios

After channel pruning, the original model is fully compressed. Compared with YOLOv3,
after using the SlimYOLOv3 for pruning, on the pedestrian detection dataset the parameters
of the three models are reduced by 66.6%, 88.8%, and 94.9% respectively, the model volume
are reduced by 66.6%, 88.7%, and 94.8% respectively, and the inference speed increased by
1.6, 2.6, and 3.5 times respectively. And on the oxfordhand dataset, the parameters of the
three models are reduced by 68.5%, 90.4%, and 95.1% respectively, the model volume are
reduced by 68.5%, 90.4%, and 95.0% respectively, and the inference speed increased by 1.7,
2.9, and 3.4 times respectively.

We use our method (MCCP) for pruning and obtain the same model volume. On the
pedestrian detection dataset, the parameters of the three prunedmodels are reduced by 66.7%,
88.7%, and 94.9% respectively. The model volume is reduced by 66.7%, 88.7%, and 94.9%
respectively. The inference speed is increased by 1.8, 2.5, and 3.5 times respectively. And
on the oxfordhand dataset, the parameters of the three pruned models are reduced by 68.1%,
90.7%, and 95.0% respectively. The model volume is reduced by 68.2%, 90.7%, and 94.9
respectively, and the inference speed increased by 1.9, 2.9, and 3.5 times respectively.

It can be seen from Table 1 that at any pruning rate, the mAP, precision, Recall and F1
obtained by the MCCP are higher than or equal to SlimYOLOv3. MCCP and SlimYOLOv3
have our own advantages in the recall and inference time. When the global pruning percent
is 50% and 95%, the mAP we get is significantly higher than SlimYOLOv3. Compared with
YOLOv4, our mAP is only slightly reduced, but the detection speed is 4.5 times faster than
YOLOv4. Finally, we tested the best pruning of the MCCP, and finally get Ours-best that can
get better evaluation metrics than SlimYOLOv3-95. Compared with the YOLOv3, Ours-best
has a volume reduction of 95.9%, a parameter reduction of 95.9%, and the inference speed
is increased by 3.8 times. The compression effect is obvious.

And it can be seen from Table 2 that at any pruning rate, the mAP and Recall obtained by
the MCCP are higher than SlimYOLOv3. Other evaluation metrics are basically equivalent.
The performance of a model is mainly determined by mAP and inference time. In high
compression ratio, We can compress the model to 12.00MB, improve the inference speed by
3.5 times, and the value of mAP decreases only slightly.

Combining the analysis above, the MCCP method proposed in this paper has a better
pruning effect than SlimYOLOv3.

4.6.2 Analysis of the Effect of Polarization Regularization

To prove the effect of polarization regularization(on pedestrian detection data), we use two
different regularization methods to punish the scaling factors of the BN layer. In this exper-
iment, the convolution layer weights are not regularized. After training 200 epochs, we get
the same model volume and compare each evaluation metrics after pruning. The penalty
factor used for L1 regularization is 1e−3, and the two hyperparameters used for polarization
regularization are t = 2.0, λ2 = 1e−3. The experimental results are in Figs. 5 and 6.

FromFigs. 5 and6,we can see that themodel trainedusingL1 regularization, the evaluation
metrics are lower than the corresponding evaluation metrics of the model obtained using the
polarization regularization method after pruning. And when the pruning rate is 75%, the
performance loss of the pruning model after L1 regularization training is great (the unfilled
bar graph). But the polarization regularization method can retain higher model performance
(the ‘/’ filled bar graph), and some performance metrics are significantly higher. This shows
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Fig. 5 When pruning ratio is 70%, the value of each evaluation metrics. The horizontal axis is evaluation
metrics, and the vertical axis is the value of each evaluation metrics

Fig. 6 When pruning ratio is 75%, the value of each evaluation metrics. The horizontal axis is evaluation
metrics, and the vertical axis is the value of each evaluation metrics

that polarization regularization has a better effect than L1 regularization, and it is easy to
separate the retention channels and the redundant channels.

4.6.3 Analysis of the Effect of Regularizing theWeights of the Convolutional Layer

To prove the effect of regularizing the weights of the convolutional layer(on pedestrian
detection data), we perform sparse training twice. In one experiment, the weights of the
convolutional layer are regularized, and the other experiment is not regularized. And then we
compress model to the same volume. The hyperparameters used in the former experiment are
t = 2.0, λ1 = 1e−4, λ2 = 1e−3. The hyperparameters used in the latter are t = 2.0, λ2 =
1e−3, the experimental results are shown in Fig. 7.
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Fig. 7 Regularization penalty and no penalty on the convolutional layer, the value of each evaluation metrics
after pruning. The horizontal axis is evaluation metrics, and the vertical axis is the value of each evaluation
metrics

In Fig. 7, when the pruning rate is 80%, the evaluation metrics of the model whose
convolutional layer weights are not regularized drop sharply after pruning (the ‘/’ filled bar
graph). The model whose convolutional layer weights are regularized have less performance
loss after pruning, and the evaluation metrics are relatively higher (the unfilled bar graph).
It shows that considering the continuous structure of the convolutional layer can be more
reasonable pruning.

4.6.4 Analysis of the Effect of the Shift Factors of the BN Layer

To prove the role of the shift factor(on pedestrian detection data), we conduct three experi-
ments: (1) The pruning ratio is 95% while retaining 1% of the corresponding channels with
the larger shift factors β. After pruning, fine-tune 50 epochs, as shown in Fig. 8 and In Fig. 9
(the ‘/’ filled bar graph); (2) The pruning ratio is 95%while retaining 1%of the corresponding
channels with the larger scaling factors γ . After the pruning, fine-tune 50 epochs, as shown
in Fig. 8 and In Fig. 9 (the unfilled bar graph); (3) The pruning ratio is 96% but no retention
measure. If all the layers need to be pruned, only one corresponding channel with the largest
γ is retained. In order to maintain the same pruning ratio as the previous two experiments,
we appropriately increased the pruning rate to ensure that the final pruning volume is the
same as the previous two pruning. After pruning, we also fine-tuned 50 epochs, as shown in
Figs. 8 and 9 (the ‘X’ filled bar graph).

In high-ratio pruning, the amount of model parameters is drastically reduced, and the
performance of the model is severely degraded. It must be fine-tuned to restore performance.
From Fig. 8, the evaluation metrics of the model without retention measures are slightly
higher than the models with the layer retention measure after pruning. But it can be seen
from Fig. 9, after fine-tuning, the model that retains the corresponding channels with the
larger shift factors β whose evaluation metrics are higher than others. It shows that retaining
the corresponding channels with the larger shift factors β enables the model to have a better
recovery ability, and it can be restored to a higher performance after fine-tuning.
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Fig. 8 After pruning, the value of each evaluation metrics using different retention measues. The horizontal
axis is evaluation metrics, and the vertical axis is the value of each evaluation metrics

Fig. 9 After fine-tune,the value of each evaluation metrics using different retention measues. The horizontal
axis is evaluation metrics, and the vertical axis is the value of each evaluation metrics

5 Conclusion

In this paper, we propose a new channel pruning method Multi-Collaboration Channel Prun-
ing (MCCP) to compress the network model. The originality of the MCCP is to consider
the weights of the convolutional layer and the two learnable parameters of the BN layer at
the same time. A more comprehensive judgment of the importance of channels. Through
the comparison of experimental results, we verify the necessity of considering these three
influencing factors. Also, compared with other state-of-the-art solutions, we can get higher
detection accuracy under the same pruning rate. What’s more, we use polarization regular-
ization instead of L1 regularization, which makes it easier to distinguish the importance of
model parameters. The experimental results also prove its effect. In future work, we will
further compress the model in combination with other compression methods.
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