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Abstract There are typically multiple heterogeneous serv-
ers providing various services in cloud computing. High
power consumption of these servers increases the cost of
running a data center. Thus, there is a problem of reduc-
ing the power cost with tolerable performance degradation.
In this paper, we optimize the performance and power con-
sumption tradeoff for multiple heterogeneous servers. We
consider the following problems: (1) optimal job schedul-
ing with fixed service rates; (2) joint optimal service speed
scaling and job scheduling. For problem (1), we present
the Karush-Kuhn-Tucker (KKT) conditions and provide
a closed-form solution. For problem (2), both continuous
speed scaling and discrete speed scaling are considered. In
discrete speed scaling, the feasible service rates are discrete
and bounded. We formulate the problem as an MINLP prob-
lem and propose a distributed algorithm by online value it-
eration, which has lower complexity than a centralized algo-
rithm. Our approach provides an analytical way to manage
the tradeoff between performance and power consumption.
The simulation results show the gain of using speed scal-
ing, and also prove the effectiveness and efficiency of the
proposed algorithms.
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1 Introduction

A typical data center in cloud computing contains tens of
thousands of servers. For instance, it is reported that Google
has more than 900,000 servers, and the company recently
revealed that a container data center holds more than 45,000
servers in a single facility built in 2005 [2]. With the rapid
growth of data centers in both quantity and scale, the energy
consumption for operating and cooling, directly related to
the quantity of hosted servers and their workload, is increas-
ing. It becomes a big challenge for data center owners, be-
cause of economical and environmental reasons [7, 11, 15].
On the other hand, the expectation of performance and qual-
ity of experience (QoE) for the services provided over the
Internet has obviously grown. For instance, Google reports
that an extra 0.5s in search page generation will lower user
satisfaction, causing in turn a 20 % traffic drop [26]. As a re-
sult, all data center must consider both performance and the
price of performance [5] to provide cloud computing ser-
vices, that is, managing the tradeoff between performance
metrics and energy cost.

Recently, there are a number of mechanisms proposed
to address the problem, e.g., dynamic voltage and fre-
quency scaling (DVFS) [19]. DVFS can dynamically scale
the server speed by reducing the processor voltage and fre-
quency when the load is light. Processors today are com-
monly equipped with the DVFS mechanism to reduce power
consumption, such as Intel’s Speed-Step technology [28]
and AMD’s Cool’n’Quiet technology [1]. With the currently
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available processor technology, the clock frequency and sup-
ply voltage can only be set with a few discrete values [13].
However, most of the recent researches model the adjust-
ment of frequency and voltage continuously and unbound-
edly [23, 31]. In this paper, we will investigate discrete and
bounded frequency and voltage adjustment, which will be
practically more useful.

Traditional load balancing mechanisms assign loads to
the server which has the maximum processing capacity to
achieve better performance. These mechanisms do not con-
sider power cost and have poor power efficiency. Thus, we
should consider the tradeoff between energy cost and per-
formance metrics. In this paper, we focus on the problem of
optimal dynamic speed scaling and job scheduling for mul-
tiple heterogeneous servers. Our purpose is to optimize the
performance and power consumption tradeoff.

We consider the following problems: (1) optimal job
scheduling with fixed service rates; (2) joint optimal ser-
vice speed scaling and job scheduling. These two prob-
lems can be abstracted as convex optimization with a linear
constraint. For problem (1), we present the Karush-Kuhn-
Tucker (KKT) conditions and provide a closed-form solu-
tion. For problem (2), both continuous speed scaling and dis-
crete speed scaling are considered. In discrete speed scaling,
the feasible service rates can be discrete and bounded. We
formulate this problem as an MINLP problem and propose
a distributed algorithm by online value iteration, which has
lower complexity than a centralized algorithm. For solving
the discrete speed scaling problem with discrete solutions
in certain range, we relax the discrete constraint to continu-
ous values in the same range, that is, to solve the continuous
speed scaling problem first. The simulation results show the
gain of using speed scaling, and also prove the effectiveness
and efficiency of the proposed algorithms.

The rest of the paper is organized as follows. The next
section briefly reviews some related work. In Sect. 3, we in-
troduce the performance model in terms of response time
and the power function which is related to the service rate.
Section 4 proposes the optimal job scheduling policy for
servers without DVFS. In Sect. 5, we formulate the prob-
lem of optimal job scheduling together with dynamic speed
scaling for servers with DVFS, and propose a distributed al-
gorithm by online value iteration. In Sect. 6, we present nu-
merical examples to illustrate the analysis method. Finally,
we conclude the paper in Sect. 7.

2 Related work

Reducing energy consumption in data centers has been an
important research issue recently. The fundamental princi-
ple to achieve energy efficiency is to make energy consump-
tion proportional to system utilization [6]. These energy-
proportional methods can be implemented at various levels.

At the server level, we have DVFS or speed scaling [4,
14, 17, 18, 20, 32, 33]. A static speed scaling policy is
the simplest nontrivial speed scaling method [10]. It usually
uses one or more thresholds to determine when to change
the server speed during the process of service [31].

A dynamic speed scaling policy design can be more flex-
ible and highly sophisticated. Reference [3] studied speed
scaling methods to minimize a weighted sum of response
time and energy consumption, and proved that a popular dy-
namic speed scaling algorithm is 2-competitive for this ob-
jective. In [24], the author studied dynamically scaling the
server speed according to power allocated, assuming that the
processor frequency and supply voltage can change contin-
uously and unboundedly.

At the data center level, there are lots of energy-aware
load balancing methods to consider the tradeoff between
performance and energy consumption [9, 23, 24, 30]. There
are different considerations in dealing with the power-
performance tradeoff. One consideration is to optimize the
performance under certain energy consumption constraint,
which is more adaptive in energy-restricted systems. Refer-
ence [13] assumes that a server farm has a fixed peak power
budget, and distributes the available power among servers
so as to get maximum performance in a variety of scenarios.

Another consideration is to minimize energy consump-
tion while meeting certain performance goal, so as to cut
the electricity bill in large-scale servers. In [34–37], the
authors addressed optimal performance constrained power
minimization in scheduling parallel workloads on a server
cluster, such that the proposed optimization model can pro-
vide accurate control of power consumption while meet-
ing the QoS. In [25], the author considered minimizing en-
ergy consumption with schedule length constraint. Refer-
ence [21] addresses the problem of scheduling precedence-
constrained parallel applications on multiprocessors and
minimizing processor energy while meeting deadlines for
task execution.

The interaction between load balancing and speed scaling
is also studied. Reference [10] considers static speed scaling
and shows that if the heterogeneity of a system is small, the
design of load balancing and speed scaling can be decou-
pled.

The last consideration is the joint optimization of energy
consumption and performance. Reference [32] minimizes a
weighted sum of mean response time and energy consump-
tion under processor sharing scheduling. In [16], the authors
minimized the energy consumption and the makespan while
meeting task deadlines and architectural requirements.

In this paper, we take the approach of minimizing a
weighted sum of power consumption and performance by
both load balancing and speed scaling. We will investigate
both continuous and discrete speed scaling. In discrete speed
scaling, the speed can only be set with some discrete levels
with an upper and a lower bound.
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3 The models

3.1 Performance model

Assume that we have N heterogeneous servers, and each
server has its own service rate. We assume that the ar-
rival of the jobs conforms to a Poisson process with rate λ.
The interval arrival times of Poisson arrival tasks conform
to an exponential distribution. According to the additive
property of exponential distributions, the jobs assigned to
server i is also a Poisson steam with arrival rate λi , and
λ1 + λ2 + · · · + λN = λ. We model server i with a local
queue as an M/G/1 queuing model. Let μi be the service
rate of server i. Then, the server utilization is ρi = λi/μi .
The expected value of service time is t̄i and the coefficient
of variation of service time is Ci . Hence, by using the well
known Pollaczek-Khinchin mean-value formula, we get the
average service time of server i as

Ti =
(

1 + 1 + C2
i

2
· ρi

1 − ρi

)
t̄i

= 1

μi

+ 1 + C2
i

2
· λi

μi(μi − λi)
. (1)

Therefore, the expected response time in the data center with
N servers can be expressed as

T =
N∑

i=1

(
λi

λ

)
Ti. (2)

3.2 Power model

The modeling of the power function P(s) of service rate
s is an open topic. Many researches show different forms
depending on specific systems. According to the data pro-
vided by Intel Labs [27], the processor uses the main part of
the power consumed by a server. Thus, we characterize the
server power consumption by two parts, i.e., the dynamic
power consumption generated by the workload running on
the server, and the static power consumption independent of
the workload.

Dynamic power consumption is created by circuit activ-
ity and depends mainly on utilization scenario and clock
rate [8], which is approximately pd = aCV 2f , where a is
the switching activity, C is the physical capacitance, V is the
supply voltage, and f is the clock frequency. Since s ∝ f

and f ∝ V , which implies that pd ∝ sα , where α is around 3
[12], we model dynamic power consumption approximately
as pd = ksα , where k is some constant.

The static power consumption is the power consumption
when a server is idle, which is caused by leakage currents

Fig. 1 A diagram of multiservers

independent of clock rate and utilization scenario. Thus, we
characterize the power consumption of server i as

Pi = ρikiμ
αi

i + P ∗
i , (3)

where ρi is the utilization of server i, and P ∗
i is the static

power consumption.

4 Multiservers without DVFS

We consider N heterogeneous servers with a load dispatcher
in Fig. 1, which schedules arrival jobs to servers according
to certain metric goal. The metric we choose in this paper
is a weighted sum of response time and power consumption
cost. Given arrival rate λ, the dispatcher will route a Poisson
stream λi to server i according to a scheduling policy λ =
(λ1, . . . , λN) to minimize the following metric:

f (λ) =
N∑

i=1

(
λi

λ

)
Ti + β

N∑
i=1

Pi, (4)

where β ≥ 0 is used to characterize the tradeoff between
power cost and job response time. The larger the value of
β , the higher the weight of power cost, which will result in
more degradation of response time.

4.1 Problem formulation

Our optimization problem is defined as follows: given job
arrival rate λ and service rates (μ1, . . . ,μN) for N servers,
find the optimal scheduling policy λ = (λ1, . . . , λN), which
minimizes the metric in (4), subject to the equilibrium con-
straint of arrival steams. In order to ensure stability, we
assume λi < μi for all i = 1, . . . ,N , and Ti = ∞ when
λi ≥ μi . The servers are entirely heterogeneous in terms
of service rate μi and power model Pi with different co-
efficient ki , exponent αi , and static power consumption P ∗

i .
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Formally, our optimization problem is to find

min
λ

(
f (λ) =

N∑
i=1

(
λi

λ

)
Ti + β

N∑
i=1

Pi

)
,

s.t.
N∑

i=1

λi = λ;

λi ≥ 0, ∀i = 1, . . . ,N;
μi − λi > 0, ∀i = 1, . . . ,N.

(5)

4.2 Solution methodology

The metric goal in our optimization is defined as f (λ) =∑N
i=1 fi(λi), where fi(λi) is

fi(λi) = λi

λ

(
1

μi

+ 1 + C2
i

2
· λi

μi(μi − λi)

)

+ β
(
λikiμ

αi−1
i + P ∗

i

)
. (6)

The Lagrange duality can relax the original problem (5) by
transferring the constraints to the objective in the form of a
weighted sum. Thus, the Karush-Kuhn-Tucker (KKT) con-
ditions of (5) are given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

\\ Lagrangian stationarity

∇ ∑N
i=1 fi(λi) − υ∇(

∑N
i=1 λi − λ)

−∑N
i=1 ωi∇(μi − λi) − oi

∑N
i=1 λi = 0;

\\ Complementary slackness

ωi(λi − μi) = 0, ∀i ∈ {1, . . . ,N};
oiλi = 0, ∀i ∈ {1, . . . ,N};
\\ Dual feasibility

υ,ωi, oi ≥ 0, ∀i ∈ {1, . . . ,N};
\\ Primal feasibility

μi − λi > 0, ∀i ∈ {1, . . . ,N};
λi ≥ 0, ∀i ∈ {1, . . . ,N};∑N

i=1 λi − λ = 0;

(7)

where υ and ωi are Lagrange multipliers. Notice that

∂fi(λi)

∂λi

= 1

λμi

+ 1 + C2
i

2μiλ
· 2μiλi − λ2

i

(μi − λi)2
+ βkiμ

αi−1
i . (8)

Also, we have

∂υ(
∑N

i=1 λi − λ)

∂λi

= υ,

∂oi(
∑N

i=1 λi)

∂λi

= oi.

(9)

Thus, in addition to λ1 + λ2 + · · · + λN = λ, for all i ∈
{1, . . . ,N}, we have N nonlinear equations, 2N linear equa-
tions, and 4N + 1 linear inequalities in (10).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λμi

+ 1+C2
i

2μiλ
· 2μiλi−λ2

i

(μi−λi)
2 + βkiμ

αi−1
i − υ + ωi = 0;

ωi(μi − λi) = 0;
oiλi = 0;
μi − λi > 0;
λi ≥ 0;
υ,ωi, oi ≥ 0.

(10)

Because μi − λi > 0, we can get ωi = 0 and eliminate N

linear equations and N linear inequalities. By solving the
quadratic equations of λi , we can formulate λi as a function
of υ . From the equation

∑N
i=1 λi = λ, we can get the value

of υ . Then, the variable λi can be obtained.
We consider a closed-form of (10) for a special case when

Ci = 1, e.g., M/M/1 queueing system. The first equation of
(10) can be written as,

2μiλi − λ2
i − (

υ − oi − βkiμ
αi−1
i

)
(μi − λi) = 0. (11)

From oiλi = 0, we discuss the possible conditions.

1. If oi = 0 and λi ≥ 0, we get

λi = μi −
√

μi

υ − βkiμ
αi−1
i

;

υ ≥ λβkμ
αi

i + 1

λμi

.

(12)

2. If oi 	= 0 and λi = 0, from oi ≥ 0, we get

υ <
λβkμ

αi

i + 1

λμi

. (13)

Then, we get the λi as a function of υ ,

λi(υ) =

⎧⎪⎨
⎪⎩

μi −
√

μi

υ−βkiμ
αi−1
i

, if υ ≥ λβkμ
αi
i +1

λμi
;

0, if υ <
λβkμ

αi
i +1

λμi
.

(14)

It is unlikely that the nonlinear equation
∑N

i=1 λi = λ by
considering (14) has a closed-form solution. Due to the fact
that λi(υ) is an increasing function of υ in the domain
[0,∞), we can use the binary search algorithm to find a nu-
merical solution (υ,λ1, λ2, . . . , λN).

From λi ≤ λ, we can derive that υ has an upper bound.
For each i, υ satisfies

υ ≤ βkμα−1
i + μi

(μi − λi)2
. (15)
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Algorithm 1 Binary search algorithm
Input:

left = 0: initial left side of search domain;
right = υUB : initial right side of search domain.

Output:
υ: the output of binary search.

1: while right ≥ left do
2: set υ = (left + right)/2;
3: if |λ − ∑N

i=1 λi(υ)| ≤ ε then
4: return υ;
5: end if;
6: if λ − ∑N

i=1 λi(υ) < 0 then
7: right = υ;
8: else
9: left = υ;

10: end if;
11: end while.

Thus, the upper bound of υ can be written as

υUB = max
i∈[1..N ]

(
βkμα−1

i + μi

(μi − λi)2

)
. (16)

The binary search algorithm is shown in Algorithm 1.
Especially, when β = 0, we get λi in the following form:

λi = μi∑
1≤i≤N μi

λ. (17)

The following theorem shows the effectiveness of our
method.

Theorem 1 The problem in (5) is a convex optimization
problem, and the λ∗ which satisfies the KKT conditions is
the global minimum.

Proof The first-order derivative of fi(λi) is shown in (8).
Under the condition μi − λi > 0, we can get f ′

i (λi) > 0.
The second-order derivative satisfies

f ′′
i (λi) = ∂2fi(λi)

∂2λi

= 1 + C2
i

2λμi

· 2μ2
i

(μi − λi)3
> 0. (18)

We can derive that fi(λi) is a strictly convex function, due
to the additivity of convex functions. The objective function
f (λ) = ∑N

i=1 fi(λi) is also a convex function. Also, we can
observe that the inequality constraint functions are convex
and the equality constraint functions are linear. Thus, the
problem in (5) is a convex optimization problem. According
to the role of the Karush-Kuhn-Tucker (KKT) conditions in
providing necessary and sufficient conditions for optimality
of a convex optimization problem, the local optimal λ∗ is
also the global minimum. �

5 Multiservers with DVFS

We consider the case when all the N heterogeneous servers
in Sect. 3 can dynamically scale their service rates with
DVFS. The higher the service rate, the lower the response
time and the higher the power consumption. Thus, in addi-
tion to the job scheduling problem, we need to find the op-
timal speed scaling policy to balance the performance and
power consumption tradeoff.

In this section, we study the job scheduling and speed
scaling problem to find the optimal λ = (λ1, λ2, . . . , λN)

and μ = (μ1,μ2, . . . ,μN). Assume that each server has
a maximum service rate μMAX

i and a minimum service
rate μMIN

i it can achieve, which differ for heterogeneous
servers. With the technology of DVFS, server i can scale
its rate in the range of [μMIN

i ,μMAX
i ]. Some researches as-

sume that the rate can be scaled continuously, in which the
rate can be set with any point in this range. Thus, μi is a
real number and we will discuss this case in this section
as well. However, continuous speed scaling is impractical.
Due to the current limited processor technology, a server
cannot continuously scale its speed. Instead, a server will
allow for some discrete levels which correspond to differ-
ent proportions of the maximum server speed. Thus, server
i will only choose certain service rate from a finite discrete
set Fi = {μ1

i , . . . ,μ
Mi

i }, where Mi is the number of feasible
service rates.

In addition, with the increase of variable N indicating the
number of servers, the problem will rapidly scale up and cor-
respondingly puts forward higher requirements on the han-
dling ability of a centralized load dispatch controller. Thus,
we propose a distributed algorithm and spread the comput-
ing load on each server. With sufficient online value itera-
tion, the objective function can converge to the optimal.

5.1 Continuous speed scaling

The metric is the same as that in Sect. 4, which is a weighted
sum of response time and power consumption cost. Let
λ = {λ1, . . . , λN } and μ = {μ1, . . . ,μN } be two vectors.
The metric goal in our optimization problem is given in (19):

f (λ,μ) =
N∑

i=1

(
λi

λ

)
Ti + β

N∑
i=1

Pi. (19)

We assume that

fi(λi,μi) =
(

λi

λ

)
Ti + βPi

= λi

λ

(
1

μi

+ 1 + C2
i

2
· λi

μi(μi − λi)

)

+ β
(
λikiμ

αi−1
i + P ∗). (20)



948 Cluster Comput (2014) 17:943–955

Our optimization problem is to find the optimal job
scheduling policy λ together with the optimal speed scal-
ing method μ. It can be specified as (i) a global schedul-
ing algorithm to dispatch jobs to servers (i.e., the arrival
rate λi to server i), and (ii) a speed μi in the range of
[μMIN

i ,μMAX
i ] for each server i, to minimize the metric in

(19), subject to the equilibrium constraint of arrival steam,
i.e.,

∑N
i=1 λi = λ. Also, we assume that λi < μi for all

i = 1, . . . ,N , Formally, our optimization problem is to find

C0: min
λ,μ

(
N∑

i=1

fi(λi,μi)

)
,

s.t.
N∑

i=1

λi = λ;

μMIN
i ≤ μi ≤ μMAX

i , ∀i = 1, . . . ,N;
μi − λi > 0, ∀i = 1, . . . ,N;
λi ≥ 0, ∀i = 1, . . . ,N.

(21)

The Karush-Kuhn-Tucker (KKT) conditions of (21) are
given as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ∑N
i=1 fi(λi,μi) − υ∇(

∑N
i=1 λi − λ)

− ∑N
i=1 ω1i∇(μi − λi) = 0;∑N

i=1 ω2i∇(μMAX
i − μi) − ∑N

i=1 ω3i∇λi

− ∑N
i=1 ω4i∇(μi − μMIN

i ) = 0;
ω1i (μi − λi) = 0;
ω2i (μ

MAX
i − μi) = 0;

ω3iλi = 0;
ω4i (μi − μMIN

i ) = 0;∑N
i=1 λi − λ = 0;

μi − λi > 0;
μMAX

i − μi ≥ 0;
λi ≥ 0;
ω1i ,ω2i ,ω3i ,ω4i ≥ 0;

(22)

where ω1i ,ω2i ,ω3i ,ω4i are Lagrange multipliers. This
equation set may have several solutions which are the lo-
cal optimal solutions. We choose the minimum among these
solutions as the global optimal. It is unlikely to get a closed-
form solution of the nonlinear equations. However, we can
use mathematical tools to get numerical solutions.

5.2 Discrete speed scaling

Discrete speed scaling will restrict the service rate μi to
some discrete value in a set Fi = {μ1

i , . . . ,μ
Mi

i }. Thus, our

optimization problem with discrete speed scaling can be de-
rived from the problem in (21), shown as follows:

D0: min
λ,μ

(
N∑

i=1

fi(λi,μi)

)
,

s.t.
N∑

i=1

λi = λ;

μi ∈ {
μ1

i , . . . ,μ
Mi

i

}
, ∀i = 1, . . . ,N;

μi − λi > 0, ∀i = 1, . . . ,N;
λi ≥ 0, ∀i = 1, . . . ,N.

(23)

We can see that the problem in (21) is the relaxed problem
in (23) with variables μi relaxed.

The problem D0 can be seen as a mixed integer nonlin-
ear programming problem (MINLP), with N real variables
λi and N integer (discrete) variables μi . Fundamental algo-
rithms for solving MINLP are often built by combining ex-
isting algorithms from linear programming (LP), mixed inte-
ger programming (MIP), and nonlinear programming (NLP)
[22], e.g., branch-and-bound, generalized benders decom-
position, and outer-approximation. However, the algorithm
complexity of MINLP is much higher than any of the LP,
MIP, and NLP algorithms. Furthermore, with the increase
of variable N , the problem scales up fast and consequently
puts forward higher requirements on the handling ability of a
centralized load dispatch controller. Thus, these algorithms
degrade the performance and have weak robustness espe-
cially under burst traffic.

5.3 Dual decomposition based distributed algorithm

In this section, we propose a distributed algorithm by online
value iteration instead of the existing centralized algorithms.
The distributed algorithm can adapt to both continuous and
discrete speed scaling. The obvious benefit of a distributed
algorithm is to decompose the problem with 2N variables
into N subproblems with 2 variables, where each subprob-
lem can be solved much more easily in each server instead
of centralized control.

Consider the problem D0 in (23). The objective is to
minimize the sum of a weighted sum of response time and
power cost, with the N real constraints coupled, which read-
ily presents some decomposition possibilities.

We use a dual decomposition approach [29] to solve
problem (23), and relax all the coupled constrains. We for-
malize the Lagrangian associated with problem (23) as fol-
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lows,

L0: min
λ,μ

(
N∑

i=1

fi(λi, γi) + ν

(
N∑

i=1

λi − λ

))
,

s.t. μi − λi > 0, ∀i = 1, . . . ,N;
μi ∈ {

μ1
i , . . . ,μ

Mi

i

}
, ∀i = 1, . . . ,N;

λi ≥ 0, ∀i = 1, . . . ,N;

(24)

where ν is the Lagrange multiplier, which relaxes the orig-
inal problem (23) by transferring the coupled constraints∑N

i=1 λi = λ to the objective function. The objective func-
tion can be represented as

L(λ,μ, ν) =
N∑

i=1

fi(λi,μi) + ν

(
λ −

N∑
i=1

λi

)
. (25)

After relaxation, the original problem (23) is decomposed
into distributively decoupled solvable subproblems, and the
optimization is separated into two levels of optimization,
which are then coordinated by a high-level master problem.
At the lower level, we have the subproblems in which for
each i:

Li(λi,μi, ν) = fi(λi,μi) − νλi. (26)

At the higher level, Lagrange duality ν links the original
minimization problem (23), termed primal problem, with a
dual maximization problem. The dual objective g(ν) is de-
fined as the minimum value of the Lagrangian over (λi,μi),

g(ν) = inf
(λi ,μi )

Li(λi,μi, ν). (27)

g(ν) is always concave even if the original problem is not
convex, because it is the pointwise infimum of a family of
affine functions of ν. The dual function can be maximized
to obtain a lower bound on the optimal value f �

i of the orig-
inal problem (23). Thus, we have the master dual problem
in charge of updating the dual variable ν by solving the dual
problem,

max

(
g(ν) =

N∑
i=1

gi(ν) + νλ

)
, (28)

where gi(ν) is the dual function obtained as the maximum
value of the Lagrangian solved in (23) for a given ν. This
problem is always a convex optimization problem even if
the original problem is not convex [29]. Given the current
Lagrange multiplier ν, we can get λ∗

i (ν), μ∗
i (ν) by solve the

subproblem of

Li: min
(
Li(λi,μi, ν)

)
,

s.t. μi − λi > 0;
μi ∈ {

μ1
i , . . . ,μ

Mi

i

}
, ∀i = 1, . . . ,N;

λi ≥ 0.

(29)

Algorithm 2 Distributed algorithm
Input:

Li : Lagrangian function for each server;
λ: total arrival rate.

Output:
λ∗

i (ν(t)): load assigned to server i;
μ∗

i (ν(t)): service rate of server i.
1: Set t = 0 and ν(0) equal to some nonnegative value;
2: while true do
3: Each server locally solves its problem by computing

(26) and then gets the solution λ∗
i (ν(t)) and μ∗

i (ν(t));
4: Each sever updates its service rate with the new

μ∗
i (ν(t));

5: The load dispatcher implements the new dispatch pol-
icy λ∗(ν(t));

6: The load dispatcher updates the Lagrange duality
variable ν with the gradient iterate (13) and gets the
new ν(t + 1);

7: Set t ← t + 1;
8: end while.

Thus, the original problem which N coupling non-
negative real variables and N non-negative integer variables
is decomposed into N decoupled subproblems, where each
subproblem has one non-negative real variable and one non-
negative integer variable which are decoupled. So we can
solve each subproblem in parallel at each server node.

The dual function is differentiable. It can be solved by the
following gradient method,

ν(t + 1) =
[
ν(t) + δ

(
λ −

∑
i

λ∗
i

(
ν(t)

))]+
, (30)

where t is the iteration index, δ is a positive scalar step-size,
[·]+ denotes the projection onto the set R+ of non-negative
real numbers.

For continuous speed scaling, the Lagrangian associated
with problem (21) is the relaxed problem of (23), and the
subproblem is the relaxed problem of (26). That is to say, for
solving the discrete speed scaling with discrete solutions in
range {μ1

i , . . . ,μ
Mi

i }, we will preliminary relax the discrete
constraint to continuous values in the same range. We now
describe the following distributed algorithm in Algorithm 2,
where the load dispatcher and each server can solve their
own problems with only local information.

At each iteration t , by solving the problem in (26), each
server obtains the optimal service rate and dispatched load.
Then, the server implements the optimal decision by chang-
ing into another service rate or maintaining its current rate.
The load dispatcher also implements the new dispatch pol-
icy according to the solutions of each server. By updating
the Lagrange duality variable with the gradient iterate, the
load dispatcher broadcasts the new duality variable to each
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Fig. 2 Feedback information interaction

server for the next iteration. The servers and the load dis-
patcher make decision according to the optimization results
in each iteration, even if the current iteration is not optimal,
but it will converge to optimal via sufficient iterations.

In Algorithm 2, there are some feedback information in-
teraction (see Fig. 2). To solve the problem in (26), each
server needs to know the offered duality variable of the dis-
patcher that is using it. This can be obtained by the broadcast
notification from the dispatcher. Hence, each server can ad-
just its service rate itself by the local information, instead
of centralized control. So, at the beginning of each itera-
tion, each server must wait to receive the notification and
then start its own computation. To update (30) and solve the
problem (26), the dispatcher needs to know the allocated ser-
vice rates vector computed by each server and assign loads
to each server.

After the above dual decomposition, the following propo-
sition can be proved using standard techniques in distributed
gradient algorithms convergence analysis.

Proposition 1 The dual variable ν(t) will converge to the
dual optimal ν∗ as t → ∞ and the primal variable λ∗(ν(t))

will also converge to the primal optimal variable λ∗ and μ∗.

Proof Since the primal problem (26) at high level is a
strictly convex optimization problem, and the constraints
are strictly feasible because μMAX

i is strictly positive, the
Slater’s condition for strong duality holds, and the corre-
sponding primal variables λi , μi give the globally optimal
solution of the primal problem (26) by the above distributed
Algorithm 2. The speed of convergence is difficult to formu-
late and will depend on many factors such as step size. �

Consider Step 3 in Algorithm 2, for solving the discrete
speed scaling problem (29) with discrete solutions in the
range {μ1

i , . . . ,μ
Mi

i }, we will preliminary solve the continu-
ous speed scaling problem which is the relaxed problem of

(29). In continuous speed scaling, we solve the relaxed prob-
lem of (29) with continuous variables, that is μi is relaxed
as a real value. The solution λ̄∗

i (ν(t)) and μ̄∗
i (ν(t)) of the

relaxed problem is the optimal solution in continuous speed
scaling.

In discrete speed scaling, we first get several local opti-
mal solutions. Consider each solution. The λi has no other
constraint in original problem, and λ̄∗

i (ν(t)) is the local op-
timal value. If μ̄∗

i (ν(t)) is just in the discrete values set, we
get μ∗

i (ν(t)) = μ̄∗
i (ν(t)). Otherwise, the μ̄∗

i (ν(t)) will be in
the range of (μMIN

i ,μMAX
i ). We can get two feasible values

of μi in the discrete values set which are closest to μ̄∗
i (ν(t))

from left and right sides. The values must follow the condi-
tion λ̄∗

i (ν(t)) < μi ≤ μMAX
i . If both values satisfy the con-

dition, the value whose objective function Li(λi,μi, ν) is
smaller than the other is the optimal μi . Thus, we get sev-
eral local optimal solutions in discrete speed scaling, and we
will choose the minimum as the global optimal solution.

5.3.1 Analytical results for α = 2 and Ci = 1

In Algorithm 2, each server locally solves its problem (26),
which is a mixed integer nonlinear programming problem
with one real variable λi and one integer variable γi . First,
we relax integer constraint and get the relaxed problem Li as
follows, which is a subproblem of continuous speed scaling:

Li: min
(
Li(λi,μi, ν)

)
,

s.t. μi − λi > 0;
μMIN

i ≤ μi ≤ μMAX
i ;

λi ≥ 0.

(31)

As proved in the last section, the problem Li is a convex
optimization problem. According to the KKT conditions, we
get Lagrangian stationarity in (32):

∇Li(λi,μi, ν) − ω1∇(μi − λi) − ω2∇
(
μMAX

i − μi

)
− ω3∇λi − ω4∇

(
μi − μMIN

i

) = 0. (32)

The KKT conditions are similar to (22). The difference
is that the coupled constraint

∑N
i=1 λi − λ = 0 here is de-

coupled, and the Lagrangian multiplier ν is a known value
by each iteration. We can solve the nonlinear equations but
unlikely get a closed-form solution.

Now we consider a closed-form solution to (32) which
can be obtained for a special case when α = 2 and Ci = 1,
e.g., an M/M/1 queueing system. The KKT conditions can
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be written as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi

λ(μi−λi)
2 + βkμi − ν + ω1 − ω3 = 0;

−λi

λ(μi−λi)
2 + βkλi − ω1 + ω2 − ω4 = 0;

ω1(μi − λi) = 0;
ω2(μ

MAX
i − μi) = 0;

ω3λi = 0;
ω4(μi − μMIN

i ) = 0;
ω1,ω2,ω3,ω4 ≥ 0.

(33)

By solving the 5 equations, we assume the kth solution

of (33) is λ
(k)
i and μ̄

(k)
i . Consider the 5th equation. We will

discuss the following possible cases.

1. For the case λi = 0 and ω3 ≥ 0:
From the equations, we get ω2 − ω4 = 0. If ω2 =
ω4 > 0, we get the contradiction equation μMAX

i =
μMIN

i . So, ω2 = ω4 = 0. Then, we know that μi can be
an arbitrary value in set Fi . For practical consideration,
if the dispatcher routes no job to this server, the server is
idle and should run at the lowest speed, So, we get the
first solution λ

(1)
i = 0 and μ

(1)
i = μMIN

i .
2. For the case ω3 = 0, if ω2 = 0 and ω4 = 0:

From the equations, we get the second solution λ
(2)
i =

ν
2βk

−
√

1
λβk

and μ̄
(2)
i = ν

2βk
, which is the solution of

continuous speed scaling. For discrete speed scaling, we
assume �μ̄(2)

i � is the left side of μ̄
(2)
i in discrete speed

value set, and μ > �μ̄(2)
i � is the right side of μ̄

(2)
i in dis-

crete speed value set. If both �μ̄(2)
i � and �μ̄(2)

i � exist, we

can obtain μ
(2)
i as

μ
(2)
i = argmin

{
Li

(⌊
μ̄

(2)
i

⌋)
,Li

(⌈
μ̄

(2)
i

⌉)}
. (34)

3. For the case ω3 = 0, if ω2 = 0 and μ̄i = μMIN
i :

From the equations, we get

λ
(3)
i = μMIN

i −
√

μMIN
i

λ(ν − βkμMIN
i )

.

4. For the case μ̄i = μMAX
i :

From the equations, under the condition ν −
βkμMAX

i ≥ 0, we get

λ
(3)
i = μMAX

i −
√

μMAX
i

λ(ν − βkμMAX
i )

,

μ
(3)
i = M .

Thus, we get a closed-form solution for all the four local
optimal λi and μi values as a function of ν, (λ

(1)
i ,μ

(1)
i ),

(λ
(2)
i ,μ

(2)
i ), (λ

(3)
i ,μ

(3)
i ), (λ

(4)
i ,μ

(4)
i ). In each iteration t , dif-

ferent ν(t) will make some of the four solutions not feasible,

Table 1 Main parameters and their explanations

Parameters Explanations

N = 3 Number of types of servers

Mi Number of feasible service rates for each server:
M1 = 2, M2 = 7, M3 = 10

Ci Coefficient of variation of service time: C1 = 1,
C2 = 0.01, C3 = 0.1

α = 2 Exponent of power function

λ ∈ [0,30] Job arrival rate

μi μ1 = 3, μ2 = 5, μ3 = 8, for servers without DVFS

μMAX
i μMAX

1 = 3, μMAX
2 = 5, μMAX

3 = 8, for servers
with DVFS

μMIN
i μMIN

1 = μMIN
2 = μMIN

3 = 0, for servers with
DVFS

ki Coefficient of power function: k1 = 0.1, k2 = 0.2,
k3 = 0.5

P ∗
i Static power consumption: P ∗

1 = 1, P ∗
2 = 2,

P ∗
3 = 5

so we must check the solutions under constraints of (26). If
more than one solutions are satisfied, we will choose the
unique minimum solution as the global optimal.

6 Numerical results

In this section, we present some numerical and simulation
results for the proposed algorithms by considering servers
without and with DVFS. We consider three types of het-
erogeneous servers, and each type owns 100 homogeneous
servers. The main parameters are shown in Table 1.

These heterogeneous servers have different power con-
sumption characteristics and processing capacities. Typi-
cally, the three types are lightweight servers (denoted by
server 1) with low service rate and power consumption,
middleweight servers (denoted by server 2) with medium
service rate and power consumption, heavyweight servers
(denoted by server 3) with high service rate and power
consumption. We assume that the service rates are fixed
for these three types without DVFS, i.e., μ1 = 3, μ2 = 5,
μ3 = 8. For servers with DVFS, a high service rate means
a high maximum service rate. Correspondingly, the maxi-
mum service rates with DVFS are μMAX

1 = 3, μMAX
2 = 5,

μMAX
3 = 8. Besides the maximum rate, each server has dif-

ferent number of discrete service rate Mi . We assume that
M1 = 2, M2 = 7, M3 = 10. According to the simulation re-
sults, we can know that for servers of the same type, the
speed scaling behaviors are consistent and the optimal load
dispatch policy is load balanced. Thus, we present the simu-
lation results at the level of server types, instead of specific
servers. By server i we mean all servers in type i.



952 Cluster Comput (2014) 17:943–955

Fig. 3 Dispatched load proportion when β = 1

Fig. 4 Dispatched load proportion when β = 0.05

6.1 Servers without DVFS

The weighting factor β adjusts the tradeoff between perfor-
mance and power consumption. A larger β means higher
weight on power consumption and lower performance re-
striction, and vice versa.

Figures 3 and 4 illustrate the load dispatch results in
terms of percentage in the cases of β = 1 and β = 0.05. It
can be observed that in the case of β = 1, when the work-
load is light, the lightweight server 1 is assigned with most
of the load. With the load increasing, the lightweight server 1
cannot satisfy the performance demand, which leads to as-
signing more proportions to server 2 and server 3. Thus,
the proportion of server 1 decreases and those of server 2
and server 3 increase. In addition, the quantity of load as-
signed to all the servers increases due to the total heavier
load. If the load continues to grow, all the servers are at full

Fig. 5 The response time degradation for different beta values

load, the steady-state proportions are achieved. In the case
of β = 0.05, the performance restriction is higher than the
case of β = 1. So, even the load is light, the proportion of
heavyweight server 3 is large so as to lower the response
time. The same as β = 1, when all the servers are at full
load, the steady-state proportions are achieved.

Different values of β lead to different levels of perfor-
mance degradation. In particular, the response time will in-
crease when β grows. We can get the degradation of per-
formance with the growth of β . Figure 5 illustrates the re-
sponse time degradation when β ∈ {0,0.02,0.05,0.2,0.5}.
If β = 0, the portion of power consumption in the objective
function vanishes, which means that there is no power con-
sumption concern, and there is no performance degradation.
With the growth of β , the response time gets larger. There-
fore, we must cautiously choose the value of β according to
the service level agreement (SLA) of users.

6.2 Servers with DVFS

A server can adjust its service rate with DVFS, instead of
a fixed value. We assume that the servers in the last section
are enabled with DVFS, with the maximum service rates the
same as the fixed service rates without DVFS.

We simulate Algorithm 2 with step size δ = 0.01. Fig-
ure 6 illustrates the convergence property of the proposed
algorithm when β = 1 and λ = 10. It shows the dual func-
tion Li(λi,μi, νi) at each iteration. We can see that the dual
function converges to the optimal quite fast. Roughly in the
50th iteration, the dual functions reach the steady state and
achieve the optima.

Figures 7 and 8 illustrate the load dispatch results in
terms of percentage in the cases of β = 1 and β = 0.05.
It can be observed that proportion curves of assigned load
almost conform to those without DVFS shown in Figs. 3
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Fig. 6 Illustration of convergence property

Fig. 7 Dispatched load proportion and speed scaling policy when
β = 1

and 4. Instead of constant service rates, the service rates
vary in a way consistent with that proportion curves. In the
case of β = 1, when the load is light, the load proportion
of server 1 is large and the service rate of server 1 main-
tains high. When the load grows, the larger load proportion
of servers 2 and 3 can achieve an optimal tradeoff. Thus, the
service rate of server 1 decreases and that of servers 2 and 3
increase. If the load continues to full load, server 3 must in-
crease its service rate to meet the performance demands. In
the case of β = 0.05, the performance restriction is higher
than the case of β = 1. So even the load is light, server 3
still maintain its maximum service rate. With the growth of
load, server 1 and server 2 will speed up to its maximum
capacity.

Figure 9 shows the response time degradation. We can
observe that the curve will oscillate around the optimal. This
oscillating behavior mathematically results from the integer

Fig. 8 Dispatched load proportion and speed scaling policy when
β = 0.05

Fig. 9 The response time degradation for different beta values

constraint of the dual function, which is also the reason for
the oscillation in Fig. 10.

6.3 Comparison between DVFS and None-DVFS

To show the objective function gain of our Algorithm 2, we
provide comparison of the achieved objective function value
and the corresponding power consumption.

As shown in Fig. 10, the DVFS can produce a smaller
optimal objective function value for the same β value, and a
larger β generates more objective function gain.

The corresponding power consumption gain is shown in
Fig. 11. The power cost in servers without DVFS increases
rapidly with the job arrival rate, especially when the arrival
rate is high. However, the power cost in servers with DVFS
almost increases linearly with lower gradient. We can con-
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Fig. 10 Comparison of cost function between DVFS and None-DVFS

Fig. 11 Comparison of power consumption between DVFS and
None-DVFS

clude that servers with DVFS can save at least 50 % power
consumption compared with servers without DVFS.

7 Conclusion

In this paper, we have studied the problem of optimal load
dispatching and speed scaling for heterogeneous servers in
cloud computing. The propose is to provide an analytical
way to study the various tradeoff between performance and
power consumption by introducing a weighting factor. Our
approach is to model a server as an M/G/1 queueing sys-
tem and formulate the average response time as a function
of the service rate. Without DVFS, the service rate is a con-
stant. We prove the convexity of the problem and present
the KKT conditions to provide the optimal load dispatch-
ing. With DVFS, the feasible service rates are discrete and

bounded. We formulate the problem as an MINLP problem.
We propose a distributed algorithm by online value iteration,
which has lower complexity than a centralized algorithm.
The simulation results show the convergence property of the
proposed algorithm. Using our distributed algorithm, servers
with DVFS can save at least 50 % power cost compared with
servers without DVFS.
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