
41118 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

AoI-Oriented Computation Offloading and
Resource Allocation for End–Edge–Cloud

Computing Systems
Youling Zeng , Yue Zeng , Jining Chen, Yufan Shen , Liying Li , Peijin Cong ,

Junlong Zhou , Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—As smart mobile applications increasingly demand
timely situational awareness and energy efficiency, the Age of
Information (AoI) metric plays a vital role in maintaining data
freshness. This need is further supported by the end–edge–
cloud computing (EECC) paradigm, which enhances application
performance by facilitating task offloading to the edge or the
cloud. However, existing AoI optimization solutions focus solely
on task offloading, often neglecting critical aspects, such as
system resource allocation and energy efficiency, which can lead
to resource waste, increased energy consumption, compromised
Quality of Service (QoS), and system performance degradation.
Therefore, this article investigates the joint optimization of task
offloading, communication and computing resource allocation in
EECC systems, aiming to minimize AoI and energy consumption
under constraints of deadlines and capacity constraints. To
address this problem, we divide the decision space into multiple
nonintersecting decision areas based on the characteristics of
the studied problem and design a task offloading and resource
allocation algorithm based on slow-movement particle swarm
optimization (SPSO) to handle each decision area individually. In
the algorithm design, we customize the position, velocity, update
rules, and fitness function for the optimization problem. Finally,
extensive simulation-based and testbed experiment results show
that the proposed algorithm can save up to 14.56% of energy
consumption, shorten AoI by up to 27.80%, and improve utility
(weighted sum of AoI and energy consumption) by up to 15.89%
compared with existing algorithms.

Index Terms—Age of Information (AoI), computation offload-
ing, end–edge–cloud computing (EECC), resource allocation.

Received 2 April 2025; revised 24 May 2025 and 1 July 2025;
accepted 19 July 2025. Date of publication 22 July 2025; date of cur-
rent version 25 September 2025. This work was supported in part by
the National Natural Science Foundation of China under Grant 62302221,
Grant 62302216, Grant 62172224, and Grant 62402226; in part by the
Natural Science Foundation of Jiangsu Province under Grant BK20230913,
Grant BK20230912, Grant BK20220138, and Grant BK20241453; in part
by the Fundamental Research Funds for the Central Universities under
Grant 30922010318, Grant 30924010815, and Grant 30924010817; and in
part by the Open Project Program of Guangxi Key Laboratory of Digital
Infrastructure under Grant GXDIOP2024006. (Corresponding authors: Peijin
Cong; Junlong Zhou.)

Youling Zeng, Yufan Shen, Liying Li, Peijin Cong, and Junlong Zhou
are with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail:
jlzhou@njust.edu.cn).

Yue Zeng is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China, and also with
the State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China.

Jining Chen is with the Digital Infrastructure Key Laboratory, Guangxi
Zhuang Autonomous Region Information Center, Nanning 530022, China.

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA.

Digital Object Identifier 10.1109/JIOT.2025.3591682

I. INTRODUCTION

THE RAPID development of the Internet and smart mobile
devices has led to a substantial increase in the number of

users. According to a report by GSMA [1], the global mobile
Internet user base reached 4.6 billion by the end of 2023.
This growth has not only resulted in an explosion of data
but also spurred the emergence of numerous latency-sensitive
and computation-intensive applications, such as virtual reality,
camera tracker, health management, and online gaming. A
crucial aspect of these applications is the need for timely
situational awareness. Ensuring decisions are made promptly
and accurately requires up-to-date information, as outdated
data can interfere with decision-making and lead to unfore-
seen losses. Traditional latency metrics, such as latency and
throughput, do not fully capture information timeliness. The
introduction of Age of Information (AoI) as a metric offers a
more accurate measure of information freshness [2], [3]. AoI
is defined as the time elapsed since the latest received data
packet was generated at its source [4]. Unlike conventional
metrics, AoI provides a perspective on information freshness
from the receiver’s perspective [5]. This metric addresses
the quantitative needs of emerging applications for timely
information and has rapidly become a key indicator for
evaluating system performance across various domains.

As demands for Quality of Service (QoS) and energy
efficiency continue to rise, maintaining efficient operation
of applications on infrastructure has become increasingly
complex [6]. To address these challenges, cloud computing
(CC) and edge computing (EC) offer distinct paradigms for
task processing. CC offloads tasks to remote cloud servers,
alleviating local constraints but incurring high latency and
network congestion [7]. Conversely, EC mitigates these issues
by placing computing resources closer to users [8], but it suf-
fers from resource limitations [9]. Multiaccess-edge computing
(MEC)1 [10] further enhances EC by deploying resources at
the edge of mobile networks [11], [12], supporting timely

1Although MEC and end-edge CC (EECC) are closely related, their
architectural scopes are fundamentally different. MEC, standardized by ETSI,
primarily operates within a two-tier structure (end and edge), focusing on
localized edge processing without explicitly modeling coordination with
the cloud or end devices (EDs). In contrast, EECC introduces an explicit
three-tier hierarchy encompassing the end, edge, and cloud layers, thereby
supporting global task coordination and fine-grained resource management
across all levels [13]. This distinction makes EECC a more suitable framework
for system-wide optimization in increasingly complex and heterogeneous
computing environments.

2327-4662 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-6564-9209
https://orcid.org/0000-0002-5553-5534
https://orcid.org/0000-0003-3488-2921
https://orcid.org/0000-0002-7223-4215
https://orcid.org/0009-0006-3766-4929
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0001-5224-4048

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41119

services in dynamic environments. However, as applications
grow increasingly heterogeneous and system-scale coordina-
tion becomes critical, there is a need for a more comprehensive
architectural model. EECC has thus emerged as a unified
three-tier framework that enables collaborative task processing
across end, edge, and cloud layers [13], offering greater
flexibility and scalability. Within this framework, support-
ing timely and AoI-critical applications requires intelligent
task offloading and adaptive resource allocation. Offloading
refers to dynamically selecting the most appropriate execution
layer—end, edge, or cloud—while resource allocation refers
the efficient assignment of bandwidth and computing resources
to ensure efficient and timely task execution.2

However, efficient computation offloading and resource allo-
cation for AoI-oriented applications in EECC environments
face the following challenges. First, in EECC systems where
multiple users share resources, resource competition among
mobile devices is inevitable. Thus, balancing computation
offloading and resource allocation across these devices is
critical. Second, variations in communication and computation
overheads, resulting from different strategies, significantly
impact the effectiveness of EECC systems. Third, the com-
plexity of the system introduces additional challenges. The
inherent resource heterogeneity necessitates decision-making
that accounts for differences among various nodes, while
latency sensitivity demands that tasks be processed promptly
to meet deadlines. Lastly, the multitiered architecture of EECC
adds another layer of complexity related to cross-layer coor-
dination and optimization. Furthermore, energy management
complicates the situation by requiring a balance between the
limited energy of user devices and performance needs to
extend their lifespan.

To address the aforementioned challenges, existing research
has examined various approaches. Conventional studies [6],
[7], [14], [15], [16] primarily focus on optimizing either
latency or energy. While latency-oriented strategies can reduce
task completion time, they often fail to ensure the freshness
and timeliness of information, which are critical for decision-
making in dynamic environments. This shortcoming can limit
the efficacy of these strategies for real-time applications.
Besides, recent research [3], [4], [5], [17], [18], [19], [20],
[21], [22] has investigated AoI-oriented task scheduling and
computation offloading, aiming to minimize peak or aver-
age AoI to guide strategy selection. Notably, metaheuristic
algorithms [23], [24] have demonstrated potential in handling
AoI optimization through multiobjective balancing. However,
existing AoI-oriented studies on offloading or scheduling often
lack a holistic consideration of energy efficiency, communi-
cation resource allocation, or computing resource allocation,
with most works addressing only a subset of these aspects.

2In this work, task offloading refers to the decision regarding where a task
should be executed—on the ED, at the edge server (ES), or in the cloud—
based on latency, energy, and workload considerations. Resource allocation
refers to how communication and computing resources (e.g., bandwidth and
CPU cycles) are distributed to the selected execution nodes to support efficient
task processing. Meanwhile, task scheduling, which involves determining the
execution order or timing of tasks on a specific node to manage queueing or
meet deadlines, is not included in our system model and is beyond the scope
of this work.

This partial optimization may lead to inefficient resource uti-
lization, increased energy consumption, and degraded overall
system performance.

In this article, we investigate the joint task offloading and
resource allocation problem aimed at minimizing AoI and
energy consumption in EECC environments constrained by
deadlines, computation, and bandwidth capacity. The former
decides the execution location, while the latter allocates
resources to enable efficient execution. Specifically, we first
derive the average AoI formula for tasks on mobile devices
and formalize the optimization problem as a mixed integer
nonlinear programming (MINLP) problem. To address this
problem, we then divide its decision space into multiple
nonintersecting decision areas based on its characteristics
and process each decision area individually. Afterwards, we
propose a two-phase computation offloading and resource
allocation algorithm based on the slow-movement particle
swarm optimization (SPSO) algorithm, where the position
vectors, velocity vectors, update rules, and fitness func-
tion in SPSO are customized for our studied problem.
Finally, we build a real testbed platform and conduct exten-
sive simulation and testbed-based experiments to verify its
superiority over existing solutions in terms of AoI and
energy consumption. Our main contributions are listed as
follows.

1) To the best of our knowledge, this is the first work
that jointly optimizes task offloading, communication
and computing resource allocation in an EECC system,
while minimizing both AoI and energy under deadline
and capacity constraints. We formalize the problem as a
MINLP problem and analyze its complexity.

2) We divide the decision space into multiple noninter-
secting decision areas based on the characteristics of
the studied problem and design an SPSO-based com-
putation offloading and resource allocation algorithm
to handle each decision area individually, where the
position, velocity, update rules, and fitness function are
customized for the problem.

3) We validate the efficacy of our approach through
extensive simulation and testbed-based experiments.
Evaluation results show that, compared with existing
solutions, our approach can reduce average AoI by up
to 27.80%, save energy consumption by up to 14.56%,
and improve utility by up to 15.89%.

The rest of this article is outlined as follows. Section II
reviews the related work. Section III presents the architecture
and relevant models. Section IV deduces the average AoI
calculation formula and defines the studied problem. The
proposed algorithm is elaborated in Section V, and is evaluated
in Section VI. Section VII concludes this article.

II. RELATED WORK

This section classifies the related work into two categories:
conventional metric-oriented optimization and AoI-oriented
optimization. A comparative summary of these works, in terms
of their optimization objectives and decision variables, is
provided in Table I.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41120 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

TABLE I
COMPARISON OF OPTIMIZATION OBJECTIVES AND DECISION VARIABLES IN EXISTING STUDIES AND THIS WORK

A. Conventional Metric-Oriented Optimization

Existing research on EECC systems primarily addresses
either energy consumption [14], [15], [25] or latency
optimization issues [7], [26], [27]. For energy-focused
offloading, [14] investigates energy-efficient strategies under
deadline constraints, aiming to optimize system-level energy
consumption. In contrast, Xiao et al. [15] and Zhai et al. [25]
concentrated on device-level energy optimization. For
example, Xiao et al. [15] explored how to allocate transmission
power, bandwidth, and computing resources to minimize
device energy consumption. Regarding latency, Qu and
Wang [26] focused on emergency task offloading in smart
factories, emphasizing the reduction of task execution delays.
Kai et al. [7] and Liu et al. [27] included transmission
power allocation, with Kai et al. optimizing total system
latency and Liu et al. targeting average task latency. Some
studies address both energy consumption and latency issues
to enhance system performance. Tang et al. [28] used deep
reinforcement learning to simultaneously improve average
latency and energy consumption. Focusing on energy-delay
tradeoffs, Zhai et al. [29] jointly optimized task offloading
and computing resource allocation using deep Q-networks.
Ding et al. [6] and Niu et al. [30] modeled the minimization
of the weighted sum of latency and energy consumption as
a multiuser computation offloading game. Although these
studies effectively optimize task processing latency and energy
consumption, they often neglect information freshness, which
is crucial for emerging smart device applications. Outdated
information can lead to erroneous decisions, diminishing
system accuracy and reliability, and posing security threats.

B. AoI-Oriented Optimization

Recently, AoI has garnered significant attention in wireless
and networked computing systems [2], [3], [4], [5], [17],
[18], [19], [20], [21], [22], [31], [32], [33]. AoI measures
the time elapsed since the most recent packet was gen-
erated, with factors like update frequency and processing

time influencing its value. Reducing AoI can lead to lower
response times and improved throughput [18]. Han et al. [2]
proposed a physical-layer forwarding strategy for minimizing
average AoI in multihop networks. Xu et al. [17] focused
on minimizing peak AoI in autonomous driving using a
reinforcement learning approach, while Song et al. [4] intro-
duced the concept of Age of Task (AoT) with the goal of
minimizing its sum, and Li et al. [18] proposed the concept
of Age of Processing (AoP) and optimized the long-term
average AoP by considering offloading strategies and sampling
frequencies. Ndikumana et al. [3] considered an AoP-aware
offloading strategy for autonomous vehicles, integrating a
mobility-aware communication model with edge collaboration,
but they lacked fine-grained, task-level resource optimization.
Moreover, energy efficiency is usually ignored in the above
approaches. Ma et al. [31] and Huang et al. [32] incor-
porated energy efficiency but only used AoI as a stability
constraint. Studies by [5], [19], and [33] explore AoI-
based data transmission and charging in wireless powered
networks, focusing on charging efficiency rather than overall
energy utilization. Song et al. [20] and Yang et al. [21]
considered UAV-assisted systems and jointly optimized AoI
and energy through trajectory planning and offloading deci-
sions, yet they did not account for bandwidth or computing
resource allocation. Wang et al. [22] maximized transmission
energy efficiency under AoI constraints by optimizing signal-
ing and beamforming, but did not consider task offloading
and computing resource allocation. Meanwhile, metaheuris-
tic algorithms [23], [24] have demonstrated adaptability in
addressing AoI optimization problems. The aforementioned
studies on AoI fail to fully optimize energy efficiency,
communication resource allocation, and computing resource
allocation—addressing only subsets of these dimensions and
thus leading to inefficient utilization, higher operational costs,
and subsequent degraded overall system performance. In
addition, they are confined to the EC environment and did
not fully leverage the potential of cloud resources, resulting
in limited scalability and flexibility.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41121

TABLE II
SUMMARY OF KEY NOTATIONS AND DEFINITIONS

Summary: In light of the above, we explore the task offload-
ing and resource allocation problem in EECC environments,
aiming to minimize both AoI and energy consumption under
the deadline and resource constraints.

III. PRELIMINARY

This section first presents the EECC architecture, followed
by an introduction to the preliminaries of computation latency,
communication latency, energy consumption, and AoI. The
relevant notations are summarized in Table II.

A. EECC Architecture

As shown in Fig. 1, our EECC system consists of a cloud,
M ESs, and N EDs. Denote the set of ESs by S = {Sj|1 ≤
j ≤ M} and the set of EDs by D = {Di|1 ≤ i ≤ N}. For
each ES Sj, the computation and communication capacities are
denoted as f edge

j and Bedge
j , respectively. Each ED Di possesses

a computing capability fi and is associated with the nearest
ES. The cloud’s computing capability is considered infinite,
providing each offloaded task with a consistent computing
resource f cloud [6]. The set of EDs associated with ES Sj is
represented as D′

j. Following [18], we assume that each ED Di

generates Ki tasks sequentially, with new task generated only

Fig. 1. EECC framework.

after the current one is completed3. Let �i = {τi,k|1 ≤ k ≤ Ki}
represent the set of tasks generated by ED Di, with τi,k being
the kth task on ED Di. Each task τi,k is characterized by a six-
tuple (δi,k, ωi,k, di,k,wi,k,T rel

i,k ,Tfin
i,k), where δi,k is the data size,

ωi,k is the processing density, di,k is the completion deadline,
wi,k is the waiting time between the completion of τi,k−1 and
the generation of τi,k, and T rel

i,k and Tfin
i,k are the generation and

completion times, respectively.
Tasks can be processed in three ways: locally on the ED,

offloaded to an ES, or offloaded to the cloud. The offloading
strategy for task τi,k is denoted by the tuple (xL

i,k, xE
i,k, xC

i,k),
where xL

i,k, xE
i,k, xC

i,k ∈ {0, 1}. Specifically, xL
i,k = 1 indicates

local execution at ED Di with a local computing resource fi,
xE

i,k = 1 indicates offloading to ES Sj with computation and

communication resources f edge
j and Bedge

j , and xC
i,k = 1 denotes

offloading to the cloud with a computing resource f cloud

allocated. EDs communicate with the cloud via both wireless
and wired connections, with transmission rates denoted as rwl

for wireless and rwd for wired [6].

B. Communication Latency

As mentioned above, tasks can be offloaded either to ESs
or to the cloud. Therefore, we categorize the communication
latency into two types: 1) end-to-edge communication latency
and 2) end-to-cloud communication latency.

End-to-Edge Communication Latency: For the EDs asso-
ciated with ES Sj, i.e., Di ∈ D′

j, they can simultaneously
offload their tasks to the server. We use orthogonal frequency
division multiple access (OFDMA) technology for end-to-
edge communication. When ED Di offloads its task τi,k to
the corresponding ES Ej, the bandwidth Bedge

i,k,j is allocated.
According to Shannon’s theorem [34], [35], the transmission
rate of ED Di when sending task τi,k to ES Ej is computed as

ri,k,j = Bedge
i,k,j log2

⎛
⎝1 + ptrans

i gi

σ + ∑
Dî∈D′

j,x
E
î,k

=1,î �=i ptrans
î

gî

⎞
⎠ (1)

where σ is the additive white gaussian noise power, ptrans
i is

the transmission power of Di, and gi is the channel gain. Then,

3In practice, IoT, smart home, and industrial devices generate tasks
sequentially—spacing them to avoid resource contention and address data
dependencies or hardware constraints.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41122 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

the transmission latency of offloading task τi,k with data size
δi,k to ES Ej can be formulated as

t̃trans
i,k = δi,k

ri,k,j
. (2)

End-to-Cloud Communication Latency: When ED Di

chooses to offload its task τi,k directly to the cloud, the end-to-
cloud transmission latency includes both wireless and wired
transmission latencies [6], [36]. Thus, the transmission latency
of offloading τi,k with data size δi,k to the cloud is derived as

t̂trans
i,k = δi,k

rwl
+ δi,k

rwd
(3)

where rwl and rwd are the wireless transmission rate and the
wired transmission rate, respectively.

C. Computation Latency

In our system, tasks can be executed locally, offloaded to
ESs, or offloaded to the cloud. Accordingly, the computation
model is categorized into three types: local, edge, and cloud
computation, as follows.

Local Computation: When ED Di executes its task τi,k

locally, the computation latency is calculated as

texe
i,k = δi,kωi,k

fi
. (4)

Edge Computation: When ED Di offloads its task τi,k to the
corresponding ES Ej, the allocated computational resource is
f edge
i,k,j . The computation latency is formulated as

t̃exe
i,k = δi,kωi,k

f edge
i,k,j

. (5)

Cloud Computation: The cloud has sufficient computing
resources to compute multiple tasks in parallel [6]. When ED
Di chooses to offload its task τi,k to the cloud, the computation
latency is derived as

t̂exe
i,k = δi,kωi,k

f cloud
. (6)

Considering both communication and computation
processes, the processing latency of task τi,k is defined as

ti,k = xL
i,ktexe

i,k + xE
i,k

(
t̃trans
i,k + t̃exe

i,k

)
+ xC

i,k

(
t̂trans
i,k + t̂exe

i,k

)
. (7)

In our task generation model, each task τi,k is generated after
τi,k−1 completes and a variable waiting time wi,k elapses [18].
Therefore, the generation time T rel

i,k (when the task becomes
ready for processing) corresponds to the earliest start time4,
and the completion time Tfin

i,k of task τi,k is the sum of its
generation time and its processing latency, which is

Tfin
i,k = T rel

i,k + ti,k. (8)

4In our model, each task τi,k is represented by a tuple, including its
generation time Trel

i,k and completion time Tfin
i,k . Trel

i,k is determined sequentially
as the completion time of task τi,k−1 plus a controllable intertask waiting
time wi,k . As such, it serves as the earliest possible start time for task τi,k .

D. Energy Consumption

The energy consumption of each ED can be computed
separately in three scenarios based on the offloading strategy.

1) Energy Consumption for Local Computation: When ED
Di executes its task τi,k locally, its energy consumption
only includes computational energy consumption. This
energy depends on the total number of CPU cycles
required and the local CPU frequency fi. Specifically,
the energy consumption can be expressed as

ei,k = κfi
2C = κfi

2δi,kωi,k = κfi
3texe

i,k (9)

where κ is a frequency-related coefficient, κfi2 is energy
consumption per CPU cycle [7], C = δi,kωi,k denotes
the total CPU cycles for task τi,k with δi,k representing
the data size and ωi,k denoting the processing density,
and texe

i,k = (δi,kωi,k/fi) is substituted from (4).5

2) Energy Consumption for Offloading to ES: When ED Di

offloads its task τi,k to the corresponding ES, its energy
consumption only includes transmission energy, which is

ẽi,k = t̃trans
i,k ptrans

i (9)

where ptrans
i is the transmission power of ED Di.

3) Energy Consumption for Offloading to Cloud: When
ED Di offloads its task τi,k to the cloud, its energy
consumption also only includes transmission energy
consumption, which is

êi,k = t̂trans
i,k ptrans

i . (10)

As discussed above, the energy consumption of executing
all tasks on ED Di is expressed as

Ei =
Ki∑

k=1

(
xL

i,kei,k + xE
i,kẽi,k + xC

i,kêi,k

)
. (11)

Subsequently, the total energy consumption of all EDs can be
derived as

Ẽ =
∑

Di∈D
Ei. (12)

E. Age of Information

The AoI of ED Di corresponds to the time elapsed by the
latest completed task generated on that device. Therefore, the
AoI of ED Di at time t can be expressed as

Ai(t) = t − T rel
i,max(t) (13)

where T rel
i,max(t) denotes the generation time of the latest

completed task on ED Di.
Fig. 2(a) gives an example to show the evolution of AoI

of ED Di. As shown in the figure, AoI increases linearly
with time until any task is completed. The linear relationship

5This formulation follows the commonly used assumption in DVFS-based
processor modeling [7], where the energy consumed per CPU cycle is
proportional to fi2. Given that the number of CPU cycles required for the
task τi,k is δi,kωi,k , the total local energy consumption is initially expressed
as ei,k = κfi2δi,kωi,k . Using (4), ei,k = κfi3texe

i,k is obtained, which reveals
the cubic relationship between energy and frequency due to the inverse
dependency of latency and frequency.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41123

(a) (b)

Fig. 2. Example to show the evolution of AoI of ED Di. (a) Evolution of AoI of ED Di. (b) AoI of task τi,k on ED Di.

between AoI and time results in an isosceles right triangle
formed by the area bounded by the function and the x-axis.
This occurs because the function’s linear variation creates
equal slopes on both sides of the vertex. For example, starting
from time t = T rel

i,1, AoI increases linearly until task τi,1 is
completed, and AoI drops to Tfin

i,1−T rel
i,1. Obviously, the function

of AoI is continuous. The average AoI of ED Di is equal to
the area of AoI function divided by the latest task completion
time, which can be expressed as

Aave
i = 1

Tfin
i,Ki

∫ Tfin
i,Ki

0
Ai(t)dt. (14)

IV. PROBLEM DEFINITION

In this section, we calculate the average AoI of the EECC
system and formulate the optimization problem.

A. Average AoI Calculation

Based on the definition given in (14), we deduce the average
AoI of the EECC system as follows, which is calculated as the
sum of the average AoI of each ED. As discussed in [2], the
average AoI of each ED depends not only on the processing
latency of tasks given in (7) but also on the waiting time
between when the previous task finished and the next task was
generated. The waiting time of ED Di between task τi,k−1 and
τi,k can be expressed as wi,k = T rel

i,k − Tfin
i,k−1.6 For ED Di, to

calculate the average AoI, the total AoI of each ED must first
be computed and then divided by the time point at which all Ki

tasks are completed. As depicted in Fig. 2(a), the total AoI of
Di corresponds to the area enclosed by the sawtooth function
and the x-axis. Using each task’s generation time T rel

i,k as the
dividing point, this total area can be partitioned into multiple
smaller regions, each representing the AoI of a task. For task
τi,k, its AoI comprises the area Ui,k,1 of a parallelogram (light
blue) and the area Ui,k,2 of an isosceles right triangle (dark
blue) as exemplified in Fig. 2(b). Based on the above, we have

Aave
i = 1

Tfin
i,Ki

∫ Tfin
i,Ki

0
Ai(t)dt = 1

Tfin
i,Ki

Ki∑
k=1

(
Ui,k,1 + Ui,k,2

)

= 1

Tfin
i,Ki

(Ki∑
k=1

(
T rel

i,k − T rel
i,k−1

)(
Tfin

i,k − T rel
i,k

)

6For consistency, we define wi,1 but set it to 0 since it does not affect the
AoI calculations from time t = 0 to Tfin

i,Ki
.

+
Ki−1∑
k=1

(
T rel

i,k+1 − T rel
i,k

)2

2
+

(
Tfin

i,Ki
− T rel

i,Ki

)2

2

)

= 1∑Ki
k=1

(
ti,k + wi,k

)
(Ki∑

k=1

(
ti,k−1 + wi,k

)
ti,k

+
Ki−1∑
k=1

(
ti,k + wi,k+1

)2

2
+ ti,Ki

2

2

)
. (15)

Thus, the average AoI of all EDs is expressed as

Ã =
∑

Di∈D
Aave

i . (16)

B. Problem Formulation

In this article, we aim to minimize the system average AoI
and total energy consumption of all EDs under constraints
of computing resources, communication resources, and task
deadlines. However, since AoI and energy consumption are
measured in different dimensions, we normalize both metrics.
Following the approach proposed in [37], we define the
normalized AoI and energy efficiency improvement for a given
device set D and task number set K as

Aimp(D,K) = Aloc(D,K)− Ã

Aloc(D,K) (17)

Eimp(D,K) = Eloc(D,K)− Ẽ

Eloc(D,K) (18)

where K = {Ki|Di ∈ D}, Aloc(D,K) and Eloc(D,K) denote
the AoI and energy consumption of executing all tasks locally,
respectively. According to (9) and (15), the AoI and energy
consumption for locally executing all tasks are expressed as

Aloc(D,K) =
∑

Di∈D

1
∑Ki

k=1

(
texe
i,k + wi,k

)

(
texe
i,Ki

2

2
+

Ki∑
k=1

(
texe
i,k−1 + wi,k

)
texe
i,k

+
Ki−1∑
k=1

(
texe
i,k + wi,k+1

)2

2

)
(19)

Eloc(D,K) =
∑

Di∈D

Ki∑
k=1

κfi
3texe

i,k . (20)

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41124 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

Based on the prior discussion, we define the utility function
Qsys to measure the reduced AoI and energy consumption as

Qsys = γAimp(D,K)+ (1 − γ)Eimp(D,K) (21)

where γ is a constant within the range of (0, 1) and can
be used to control the preference for the average AoI and
energy consumption of our system. Clearly, the larger Qsys,
the more energy consumption and AoI are reduced. Naturally,
minimizing the average AoI and energy consumption can be
achieved by maximizing the utility Qsys.

The utility Qsys maximization problem is formalized as

max
x,w,Bedge,Fedge

: Qsys (22)

s.t.: C1: xL
i,k + xE

i,k + xC
i,k = 1

∀i ∈ {1, 2, . . . ,N} ∀k ∈ {1, 2, . . . ,Ki} (23)

C2:
∑

Di∈D′
j

xE
i,kBedge

i,k,j ≤ Bedge
j

∀k ∈ {1, 2, . . . ,Ki} ∀j ∈ {1, 2, . . . ,M} (24)

C3:
∑

Di∈D′
j

xE
i,kf edge

i,k,j ≤ f edge
j

∀k ∈ {1, 2, . . . ,Ki} ∀j ∈ {1, 2, . . . ,M} (25)

C4: ti,k ≤ di,k

∀i ∈ {1, 2, . . . ,N} ∀k ∈ {1, 2, . . . ,Ki} (26)

C5: xL
i,k, xE

i,k, xC
i,k ∈ {0, 1}

∀i ∈ {1, 2, . . . ,N} ∀k ∈ {1, 2, . . . ,Ki} (27)

where x = {(xL
i,k, xE

i,k, xC
i,k)}, w = {wi,k}, Bedge = {Bedge

i,k,j },
and Fedge = {f edge

i,k,j }. C1 ensures that any task τi,k can
only be executed by one entity. C2 and C3 guarantee the
communication and computing resources allocated to EDs in
D′

j by ES Sj cannot exceed its capacity. C4 indicates that any
task τi,k should be finished before its deadline.

Obviously, the problem formalized above is a MINLP
problem. Solving problems with an exponential solution
space is inherently time-consuming. While standard particle
swarm optimization (PSO) is valued for its adaptability and
efficiency in nonlinear optimization, it faces limitations in
our high-dimensional 0–1 discrete offloading problem due to
overshooting and weak local search. To mitigate this, we adopt
SPSO, as proposed in [38], which slows particle velocities
to stabilize trajectories and enhance fine-grained search. This
makes it particularly suited for discrete decision spaces,
improving the likelihood of identifying globally optimal
configurations.7 The details of our SPSO-based scheme are
provided in the next section.

V. PROPOSED SPSO-BASED APPROACH

This section first introduces the basic concepts of SPSO,
then develops a two-phase task offloading and resource allo-
cation scheme based on SPSO.

7By slowing down movement, SPSO allows particles to better probe
adjacent discrete configurations, reducing the chance of skipping over viable
solutions and improving robustness against premature convergence in rugged
search spaces.

A. Basics of SPSO

The SPSO algorithm is an optimization technique inspired
by swarm intelligence. It simulates group behaviors, such as
bird foraging and fish migration, to find optimal solutions
through information sharing among individuals. The basic
idea of the SPSO algorithm is to continuously approach the
optimal solution in the solution space by updating the velocity
and position of particles. The particle swarm, denoted as
	, contains |	| particles. Each particle ψp (1 ≤ p ≤ |	|)
represents a potential solution and has two properties: position
ξp and velocity vp. The position of a particle represents
its current solution, while the velocity determines the direc-
tion and distance of the particle’s movement in the next
evolution.

The updating rule of particles consists of two parts: the
historical best position of the particle itself, called the personal
best (pBest) position (ξ

pBest
p), and the best position within

the entire swarm, known as the global best (gBest) position
(ξgBest). In each iteration, particles adjust their moving speed
and update their positions based on both ξ

pBest
p and ξgBest.

Through continuous iterations, the particle swarm gradually
converges to the optimal solution. Specifically, the updating
rules of the velocity vector and position vector of ψp in each
iteration are

vp = εvp + c1r1sgn
(
ξp, ξ

pBest
p

)
λ+ c2r2sgn

(
ξp, ξ

gBest)λ
(28)

ξp = ξp + vp (29)

where ε is the inertia weight. c1 and c2 are the self-learning
and social learning factors, respectively. r1 and r2 are used to
enhance the randomness of the search process. λ is a small
positive constant regulating the step size of the movement.
sgn(·) is used to control the direction of particle movement.

Next, we customize the position vectors, velocity vectors,
updating rules, parameter settings, and the fitness function
according to the characteristics of the problem being studied,
where the fitness function is used to measure the quality of
each solution.

B. Proposed SPSO-Based Algorithm

Overview: In our system, tasks generated by EDs can be
directly offloaded to either the ES or the cloud for execution
under deadline constraints. Inspired by a similar approach
in [6], we address our task offloading and resource allocation
problem in two phases. In the first phase, we simplify the
EECC architecture by focusing solely on end-edge offloading.
The objective in this phase is to determine the task offloading
strategy x which only involves whether the task is executed
locally or offloaded to an ES for execution (i.e., deciding
whether xL

i,k or xE
i,k takes the value of 1 or 0), task generation

waiting time w, and resource allocation Bedge and Fedge of
the ESs, with the aim of maximizing the system utility Qsys
for end-edge offloading. In the second phase, we introduce
cloud offloading and iteratively adjust the strategies obtained
from the first phase to further enhance system utility. For
each task, we compare the utility of offloading it to the

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41125

cloud against the current optimal utility. If cloud offloading
yields a higher value, the task is offloaded to the cloud.
Meanwhile, as the task no longer competes for edge resources,
prompting a re-evaluation of the end-edge offloading decisions
for remaining tasks based on the first phase’s logic. This
iterative process continues until no further improvement can be
achieved, meaning that the offloading strategies stabilize. The
final decisions for end–edge–cloud offloading and resource
allocation are hence derived.

1) Phase 1: Utility Maximization for End-Edge Offloading
and Resource Allocation: We analyze the system character-
istics and abstract them into noninterfering decision areas,
represented by A = {Aj|1 ≤ j ≤ M}. Next, we customize posi-
tion vectors, velocity vectors, update rules, parameter settings,
and the fitness function in the SPSO algorithm for each Aj.
It is important to note that, in addition to traditional updating
rules for continuous decision variables, our update rules also
necessitate adaptations for discrete decision variables x to suit
our studied problem.

Decision Area: According to the system model in
Section III, there is no resource competition between the
EDs associated with different ESs. Thus, we can optimize
the task offloading and resource allocation strategy of EDs
associated with a certain ES Sj and traverse M ESs to obtain
the final strategy for the entire system. For clarity, we define
the following notion: Aj is the smallest decision unit of EECC
system, including the ES Sj, the set of EDs D′

j associated
with Sj, and the corresponding set of generated tasks �′

j =
{τi,ζ |∀Di ∈ D′

j, 1 ≤ ζ ≤ Ki}. Suppose that the current iteration
number is k, D′

j,k = {Di|Di ∈ D′
j,Ki ≥ k} is the set of EDs

which have tasks to execute, and the number of EDs in D′
j,k

is N′
j,k = |D′

j,k|. The set of pending tasks of EDs in D′
j,k

corresponds to �′
j,k = {τi,k|∀Di ∈ D′

j,k}, and the ith (1 ≤ i ≤
N′

j,k) task in �′
j,k is denoted as τ ′

i .
Setting Position and Velocity Vectors: To address the AoI

and energy optimization in Aj, the task offloading strategy
x, task generation waiting time w of tasks in set �′

j,k, and

resources allocation Bedge and Fedge for the ES Sj must be
determined. Thus, the dimensions of the position vectors and
velocity vectors of particles in the swarm 	 are both 4N′

j,k.
The position vector ξp (1 ≤ p ≤ |	|) of particle ψp is
defined as ξp = (xp,� p,Bp, f p). Here, xp = (xp,1, . . . , xp,N′

j,k
)

is a binary vector denoting the end-edge offloading strategy
for tasks in the set �′

j,k, where xp,i = 0 indicates τ ′
i (1 ≤

i ≤ N′
j,k) is executed locally and xp,i = 1 indicates τ ′

i is
offloaded to the ES. � p = (�p,1, . . . ,�p,N′

j,k
) denotes the

waiting time for these tasks, varying in the range of [0,�max].
Bp = (Bp,1, . . . ,Bp,N′

j,k
) and f p = (fp,1, . . . , fp,N′

j,k
) repre-

sent the communication and computing resource allocation
strategy of the ES Sj, respectively. Specifically, Bp,i is the
bandwidth provided by Sj for transmitting τ ′

i , ranging from
[0,Bedge

j], and fp,i is the computing frequency allocated by Sj

for executing τ ′
i , varying from [0, f edge

j]. The corresponding
velocity vector is defined as vp = (vx

p, v�
p , vB

p , vf
p). Similarly,

vx
p = (vx

p,1, . . . , vx
p,N′

j,k
), v�

p = (v�p,1, . . . , v�p,N′
j,k
), vB

p =
(vB

p,1, . . . , vB
p,N′

j,k
), and vf

p = (vf
p,1, . . . , vf

p,N′
j,k
), where vx

p,i, v�p,i,

vB
p,i, and vf

p,i, (1 ≤ i ≤ N′
j,k) represent the updating speed of

xp,i, �p,i, Bp,i, and fp,i, respectively.
Setting Updating Rules: The velocity vector vp is updated

according to (28). Due to the binary nature of xp in ξp, xp,i

(1 ≤ i ≤ N′
j,k) cannot be updated simply using (29). Instead,

we use the sigmoid function to map the velocity variable vx
p,i

to the interval [0, 1] [39]. The sigmoid function is defined as

s
(

vx
p,i

)
= 1

1 + exp
(
−vx

p,i

) . (30)

The mapping result s(vx
p,i) indicates the probability of vx

p,i = 1,
i.e., the probability of offloading task τ ′

i to the ES for
execution. The end-edge offloading indicator xp,i for τ ′

i is
determined by comparing s(vx

p,i) with a randomly generated
number ε

xp,i =
{

1, if ε ≤ s
(

vx
p,i

)

0, otherwise.
(31)

The elements of � p,Bp, and f p in ξp are continuous variables
that can be updated normally. The updated equations for �p,i,
Bp,i and fp,i are as follows:

�p,i = �p,i + v�p,i
(

1 ≤ i ≤ N′
j,k

)
(32)

Bp,i = Bp,i + vB
p,i

(
1 ≤ i ≤ N′

j,k

)
(33)

fp,i = fp,i + vf
p,i

(
1 ≤ i ≤ N′

j,k

)
. (34)

Setting Fitness Function: The greedy approach is used to
determine the strategy for Aj. The objective of task offloading
and resource allocation for tasks in �′

j,k is to minimize the
current AoI and energy consumption. Thus, for the task set
�′

j,k, the fitness function is adapted from (21) and can be
expressed as

Qfit
j,k = γAimp

(
D′

j,k,K′
j,k

)
+ (1 − γ)Eimp

(
D′

j,k,K′
j,k

)
(35)

where K′
j,k = {K′

i |Di ∈ D′
j,k,K′

i = min{k,Ki}}. The gBest

particle position ξgBest
j,k obtained by the discrete SPSO in this

phase is the optimal end-edge strategy of Aj.
Setting Key Parameters: For the proposed discrete SPSO-

based algorithm, the key parameters, including the inertia
weight ε, self-learning factor c1, and social learning factor c2
in (28) need to be optimized to achieve a superior solution and
accelerate the search for the optimal solution. The proposed
algorithm focuses on exploration capability when ε is large,
while it focuses on exploitation capability when ε is small.
Hence, we adopt linearly decreasing inertia weight [41],
searching for a good position with larger ε in the early stage,
while fine-tuning the search with smaller ε in the later stage.
More specifically, ε decreases linearly from the initial value
(εmax) to the final value (εmin) by

ε = εmin + I − g

I
(εmax − εmin) (36)

where g and I represent the current iterations and maximum
iterations, respectively. As for the learning factors, to balance
the algorithm’s exploration and exploitation performance, it is
recommended that the values of c1 and c2 should be varied

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41126 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

over the iterations. In the early stage, to prevent particles from
quickly converging to local optima and encourage extensive
exploration in the global domain, we set a relatively large value
for c1 and a smaller value for c2. In the later stage, to facilitate
rapid and accurate convergence of particles to the global
optimum, we adjust c1 to a smaller value and c2 to a larger
value. Thus, we construct c1 as a monotonically decreasing
function and c2 as a monotonically increasing function [40].
The expressions are as follows:

c1 = 2 sin2
(π

2

(
1 − g

I

))
(37)

c2 = 2 sin2
(πg

2I

)
. (38)

The pseudo-code of our discrete SPSO-based end-
edge offloading utility maximization method is given in
Algorithm 1. Initially, the position and velocity vectors of all
particles in the swarm 	 are randomly initialized (line 1).
Lines 2–13 calculate the fitness of each particle ψp to initialize
its pBest position ξ

pBest
p and corresponding fitness QpBest

p .
Specifically, lines 3 and 4 set the fitness Qfit

j,k(ψp) to −1
when violating the resource constraints. The processing time
of each task in �′

j,k is calculated in line 6. If at least one
task violates the timing constraint, the fitness Qfit

j,k(ψp) is set
to −1 (lines 7 and 8). Lines 10 and 12 calculate the fitness
of particles that satisfy all constraints. The algorithm then
sets the initial particle as the pBest particle in line 13. The
particle with maximum fitness is set to the gBest particle
(line 14). Lines 15–22 describe the evolution process of the
pBest particle and the gBest particle. The velocity and position
vector of each particle are updated in line 16. For each particle
ψp, line 18 calculates its new fitness in the same manner as
lines 3–12. Lines 19 and 20 update the pBest particle if a better
position is found. Similarly, lines 21 and 22 check whether to
update the gBest particle. After all the evolutions, the optimal
end-edge task offloading and resource allocation strategy and
its corresponding fitness are obtained.

2) Phase 2: Iterative Adjustment and Optimization With
Cloud Offloading: In this phase, we continue to use the
Decision Area (Aj) as the smallest decision unit. After
Phase 1, we obtain the end-edge optimal strategy ξgBest

j,k , which
serves as the baseline configuration for further refinement.
Although this strategy is already well optimized, it may
lack adaptability to dynamic task demands and heterogeneous
resource availability, and it does not fully explore the potential
benefits of CC. To refine ξgBest

j,k , we introduce cloud offloading
and evaluate each task individually to determine whether it is
better to maintain the existing strategy or offload the task to the
cloud for processing. Note that when a specific task τ ′

i in �′
j,k

is offloaded to cloud, the other tasks in �′
j,k keep the strategy in

ξ
gBest
j,k . Assuming that the cloud has sufficient communication

and computing resources, this phase involves only one decision
variable: the task generation waiting time w. Thus, in the
configuration of SPSO, the search space dimension is set to 1.
The position vector is ξp = (�p,1), where �p,1 denotes the
generation waiting time of the next task. The velocity vector
is vp = (v�p,1), where v�p,1 controls the searching direction and
speed. The fitness function remains the same as in Phase 1.

Algorithm 1: Utility Maximization for End-Edge
Offloading and Resource Allocation

Input: Aj, �′
j,k, B

edge
j , f

edge
j , I, λ, ε, c1, c2;

Output: Optimal strategy ξgBest
j,k of Aj and the corresponding

fitness Q
gBest
j,k ;

// Particle swarm initialization
1 Randomly generate each particle’s position vector ξp and

velocity vector vp in the particle swarm 	;
2 for each particle ψp ∈ 	 do

// Constraint Violation Handling

3 if
∑

Di∈D′
j,k

xp,iBp,i > B
edge
j or

∑
Di∈D′

j,k
xp,ifp,i > f

edge
j

then
4 Qfit

j,k(ξp) ↼ −1;
// Personal best (pBest) selection

5 else
6 Calculate the processing latency tτ ′

i
of each task in �′

j,k
using Eq. (7);

7 if ∃τ ′
i ∈ �′

j,k, tτ ′
i
> dτ ′

i
then

8 Qfit
j,k(ξp) ↼ −1;

9 else
10 Get Ẽ and Eimp by Eqs. (12) and (18);
11 Get Ã and Aimp by Eqs. (16) and (17);
12 Get Qfit

j,k(ξp) by Eq. (35);

13 ξ
pBest
p ↼ ξp, Q

pBest
p ↼ Qfit

j,k(ξ
pBest
p);

// Global best (gBest) selection

14 ξ
gBest
j,k ↼ arg maxξp Q

pBest
p , Q

gBest
j,k ↼ max Q

pBest
p ;

// Iterative pBest and gBest update
15 for g = 1 to I do
16 Refresh the particle swarm 	 by updating vp and ξp of

each particle ψp using Eqs. (28), (30)-(32), and (36)-(38);
17 for each particle ψp ∈ 	 do
18 Execute the operations in lines 3-12 to obtain the new

fitness Qfit
j,k(ξp) of ψp;

19 if Qfit
j,k(ξp) > Q

pBest
p then

20 Q
pBest
p ↼ Qfit

j,k(ξp), ξ
pBest
p ↼ ξp;

21 if Qfit
j,k(ξp) > Q

gBest
j,k then

22 Q
gBest
j,k ↼ Qfit

j,k(ξp), ξ
gBest
j,k ↼ ξp;

23

The pseudo-code of the proposed SPSO-based iterative
adjustment and optimization with cloud offloading method is
presented in Algorithm 2. The algorithm begins by setting
Abegin

j as the input Aj (line 1). Each task τ ′
i in �′

j,k is evaluated
sequentially to determine its eligibility for cloud offloading
under the given constraints (lines 3–5). If the deadline con-
straint is satisfied, we use SPSO to find the optimal cloud
offloading strategy and the corresponding fitness Qgc

j,k for τ ′
i

(lines 7–16). We then compare Qgc
j,k with QgBest

j,k obtained from
Algorithm 1. If Qgc

j,k is superior, τ ′
i will be offloaded to the

cloud and removed from �′
j,k, with its generation waiting

time set to ξ
gc
j,k (lines 17–19). Consequently, as τ ′

i exits the
competition for the resources of Sj, the remaining tasks in �′

j,k
need to reoptimize using Algorithm 1 (line 20). Based on the
redecision results, the input of Aj, including the set of tasks

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41127

Algorithm 2: Iterative Adjustment and Optimization With
Cloud Offloading

Input: k, Aj, �′
j,k, f cloud, rwl, rwd as well as the ξgBest

j,k and

Q
gBest
j,k obtained by Algorithm 1;

Output: x,w,Bedge,Fedge of Abegin
j ;

1 Initialization: Abegin
j ↼ Aj;

// Iterative optimization for ξ
gBest
j,k

2 for τ ′
i ∈ �′

j,k do
3 Calculate processing latency tτ ′

i
when offloading τ ′

i to the
cloud by Eqs. (3) and (6);
// Deadline constraint check

4 if tτ ′
i
> dτ ′

i
then

5 Set x,w,Bedge,Fedge for τ ′
i as specified in ξgBest

j,k ;
6 else

// Search for cloud offloading
strategy of τ ′

i based on SPSO
7 Initialize 	 as Algorithm 1;
8 for ψp ∈ 	 do
9 Get Ẽ and Eimp by Eqs. (12) and (18) based on

ξ
gBest
j,k ;

10 Get Ã and Aimp by Eqs. (16) and (17);
11 Get Qfit

j,k(ξp) by Eq. (35);

12 ξ
pBest
p ↼ ξp, Q

pBest
p ↼ Qfit

j,k(ξ
pBest
p);

13 ξ
gc
j,k ↼ arg maxξp Q

pBest
p , Q

gc
j,k ↼ max Q

pBest
p ;

14 for g = 1 to I do
15 Update vp and ξp of each ψp by Eqs. (28), (32),

and (36)-(38);

16 Update ξpBest
p , Q

pBest
p , ξgc

j,k, and Q
gc
j,k in the same

manner as lines 17-22 in Algorithm 1;

// Adjust the strategy for τ ′
i and

re-optimize the strategy for the
remaining tasks

17 if Q
gc
j,k > Q

gBest
j,k then

18 xC
τ ′

i
↼ 1, wτ ′

i
↼ ξ

gc
j,k to offload τ ′

i to the cloud;

19 Remove τ ′
i and its ED from �′

j,k and D′
j,k;

20 Call Algorithm 1 to re-decide for the remaining
tasks in �′

j,k;

21 Update Aj, ξ
gBest
j,k and Q

gBest
j,k ;

22 // Keep the strategy for τ ′
i

23 else
24 Set x,w,Bedge,Fedge for τ ′

i as in ξgBest
j,k ;

�′
j,k and the set of EDs D′

j,k, along with ξgBestj, k and QgBest
j,k ,

are updated (line 21). If QgBest
j,k is preferred, the strategy for

τ ′
i will retain the existing strategy in ξ

gBest
j,k (line 23). This

process is repeated for all tasks until �′
j,k is empty, at which

point the optimal strategy for the initial input Aj, i.e., Abegin
j ,

is obtained.
3) Two-Phase Computation Offloading and Resource

Allocation: The proposed two-phase computation offloading
and resource allocation method is summarized in Algorithm 3.
Given that no new tasks are generated until the current pending

Algorithm 3: Two-phase Computation Offloading and
Resource Allocation

Input: D, S, �;
Output: x, w, Bedge, Fedge, Qsys;

1 K ↼ max{Ki|Di ∈ D};
2 for k = 1 to K do
3 for Sj ∈ S do
4 Get Aj’s information, including Sj, D′

j,k, and �′
j,k;

5 Call Algorithm 1 to get the optimal end-edge

offloading strategy (ξgBest
j,k , Qfit

j,k) for Aj;

6 Call Algorithm 2 to further adjust and refine ξgBest
j,k ;

7 Use (21) to obtain the utility Qsys based on x,w,B edge, and

Fedge associated with ξgBest
j,k ;

task has obtained its execution result, we can use the current
pending task number of EDs as the outer loop and each Aj

in our system as the inner loop to ensure that the processing
strategies of all tasks across all EDs are decided. Specifically,
in the inner loop, when the current iteration number is k, the
algorithm first obtains the information of Aj, including Sj, D′

j,k,
and �′

j,k (line 4). Next, it calls Algorithm 1 to determine the
optimal end-edge execution strategy for Aj (line 5). Then, it
calls Algorithm 2 to adjust and further optimize the execution
strategy for Aj obtained by the last step (line 6). After each
iteration of the inner loop, the execution strategies for all
pending tasks within the current round have been generated.
Once the outer loop has iterated through all task iterations, the
execution strategies for all tasks across the EECC system are
fully determined. The utility value Qsys of the EECC system is
calculated with the final strategy (x,w,Bedge, Fedge) (line 7).

4) Computational Complexity: Notably, since the decision
areas Aj (1 ≤ j ≤ M) are mutually independent, the
overall optimization process allows parallel execution, which
significantly reduces the practical computation time through
code parallelization. To evaluate the computational complexity
of the proposed algorithm (Algorithm 3), we consider the
worst-case scenario when the EECC system contains only one
ES (M = 1).

Theorem 1: The total computational complexity of our
proposed algorithm is bounded by O(KIN2|	|), where K is
the maximum number of tasks per ED, N is the number of
EDs, |	| is the particle population size, and I is the maximum
number of SPSO iterations.

Proof: Assume that M = 1, i.e., the system contains only
one ES. In this case, the outer loop of Algorithm 3 iterates over
K tasks in the worst case, resulting in a complexity of O(K).
Within each iteration, the algorithm invokes both Algorithms 1
and 2. For Algorithm 1, during initialization, there are |	|
particles each with a dimension of 4N, resulting in a complex-
ity of O(N|	|). In the iteration phase, the resource capacity
and deadline constraint checks have a complexity of O(N),
followed by the core fitness function Qfit evaluation, which is
defined as a weighted sum of the AoI and energy improvement.
Specifically, the AoI-related terms Aloc and Ã are calculated
using (15) and (19) for all devices, yielding a complexity

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41128 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

of O(N). Similarly, the energy-related terms Eloc and Ẽ are
computed per (20) and the execution models in (9)–(11), also
with complexity O(N). Thus, the fitness evaluation per particle
costs O(N). With a population size of |	| and I iterations,
the process of iterations yields a complexity of O(IN|	|).
Thus, the total complexity of Algorithm 1 is O(N|	|) +
O(IN|	|) = O(IN|	|). Algorithm 2 employs a similar SPSO
process but introduces additional overhead for task offloading
decision adjustments. In the extreme case where optimization
is required for all N tasks, its complexity becomes O(N) ·
O(IN|	|)+ O(IN|	|) = O(IN2|	|). Hence, in Algorithm 3,
the complexity for the inner loop becomes O(IN2|	|) +
O(IN|	|) = O(IN2|	|), and over K iterations, the total com-
plexity of Algorithm 3 is O(K) · O(IN2|	|) = O(KIN2|	|).
This result confirms that the proposed algorithm operates
within polynomial time, making it computationally feasible
for practical EECC scenarios. Moreover, the scalability of the
algorithm is ensured in real-world scenarios since 1) N is
inherently constrained by the physical coverage of a single
ES; 2) K is bounded by the task capacity per ED; and
3) optimization parameters, such as I and |	| can be flexibly
tuned to balance performance and efficiency.

VI. EVALUATION

This section presents the evaluation settings and then
shows the results on the simulated and real-platform exper-
iments. Specifically, our evaluation focuses on four aspects:
1) optimization of the utility function; 2) improvement of task
success rates; 3) reduction of total task completion latency;
and 4) performance on real-world platforms.

A. Settings

Evaluation Environment: All simulations are performed on
MATLAB R2021a under Windows 10, using a computer
equipped with an 8-core Intel Core i7-7700 CPU @ 3.60 GHz
and 16 GB-RAM.

Metrics: First, we select the utility function Qsys (with
its value normalized to the interval [0, 1]) calculated by
(21) as one of the evaluation metrics. Next, we examine
the task success rate in detail, which is defined as the ratio
of tasks completed within the deadline to the total task
number of EECC system (quantified as a percentage metric
ranging from 0% to 100%). To evaluate the efficacy of
the AoI-oriented optimization strategy, we else compare its
makespan performance (defined as the total task completion
latency

∑N
i=1 Tfin

i,K , where Tfin
i,K is the completion time of the

last task on ED Di) against latency-oriented optimization
approach.

Parameter Settings: The number of ESs, denoted as M,
is set to 2, 4, and 6, while the number of EDs, denoted
as N, ranges from 10 to 50 in increments of 10 (equivalent
to scaling the task traffic intensity). The transmission power
Ptrans

i of ED Di ranges from 0.1 to 0.5 J/s, and the gaussian
noise power σ is set at −100 dBm [42]. The wired and
wireless transmission rate, rwd and rwl, are set to 1.52 Mb/s.
The local computing frequency fi of ED Di ranges from 0.5
to 1 GHz, while the cloud allocates f cloud = 10 GHz of

TABLE III
SIMULATION PARAMETERS

computing resources. The computing capacity f egde
j of ES

Sj ranges between 35 and 45 GHz, with a communication
resource Begde

j of 9.97R Mb/s, where R ∈ [5, 10] [6], [44]. For
each task τi,k, the data size δi,k is randomly selected from 1 to
5 MB, and the processing density ωi,k is randomly distributed
between 1000 and 3000 cycles/bit [45]. The value of εmax and
εmin are set as 0.9 and 0.4, respectively [41]. γ is set to 0.2,
0.5, 0.8, and 1. The relevant parameters are summarized in
Table III [42], [43], [44].

Comparative Algorithms: Existing AoI optimization
schemes primarily focus on task offloading without coordi-
nated resource allocation, which might degrade performance.
To highlight this limitation, we compare our method with
random full-offloading algorithm (RFOA), gray wolf optimizer
(GWO), and firefly algorithm (FA), which solely optimize
AoI. Moreover, to reveal the drawbacks of latency-oriented
approaches that overlook AoI, we include latency-oriented
computation offloading algorithm (LOCOA), which prioritizes
delay but neglects information freshness. Above all, we
compare the proposed method with the following algorithms.

1) RFOA employs a stochastic policy for task offloading
and resource allocation, with no systematic optimization.
It randomly selects task destinations (ES/cloud), com-
munication/computing resources, and waiting times
within predefined limits. This naive approach serves as a
critical baseline to quantify the benefits of optimization.

2) GWO [23] is based on the gray wolf optimization
algorithm and has been modified to suit the problem of
our research. The algorithm iteratively updates candidate
solutions to approach the optimal decision variables. Its
balance between exploration and exploitation makes it a
strong benchmark for our studied problem.

3) FA [24] is based on the FA and has been modified to
suit the problem of our research. It employs an attraction
mechanism where solutions move toward brighter peers,
mimicking natural swarm behavior. Its brightness-based
attraction is inherently suited to discrete-continuous
hybrid search spaces.

4) LOCOA [6] employs weight-based resource alloca-
tion and derives the final solution by minimizing the
weighted sum of latency and energy consumption, which
is compared to demonstrate the superior performance of
AoI-oriented optimization.

Real Testbed Platform: We build the EECC architecture on
a real testbed as shown in Fig. 3. The specific platform settings

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41129

TABLE IV
REAL TESTBED PLATFORM SETTINGS

TABLE V
LIST OF TASKS

Fig. 3. Snapshot of the implemented testbed.

are elaborated in Table IV. Considering the heterogeneity at
the user layer, we select four types of development boards
with varying computational capabilities, i.e., Nvidia’s Jetson
Xavier NX, Jetson Orin NX, Jetson Nano, and Jetson Orin
Nano, as EDs.

Task Settings: We designate each ED to perform five tasks,
and for each ED, the tasks it performs are randomly selected
from the whole task set. The task set includes a variety of
classic and practical applications [46], [47], [48], [49], [50].
Detailed specifications of the available tasks are outlined in
Table V.

B. Simulation Results

1) Utility: We first examine the utility values achieved
by the proposed method and comparative algorithms (i.e.,
RFOA, GWO, FA) with different number of EDs for varying
numbers of ESs and weight coefficients. In this evaluation, the
deadline for task execution ranges from 80% to 110% of the
local execution time. The comparison results are presented in
Fig. 4, demonstrating that the proposed method consistently
outperforms the other three, regardless of system scales and
parameter configurations. As depicted in Fig. 4(a), (d), and
(g), when the weight coefficient γ is set to 0.8, indicating

the system prioritizes AoI, the proposed method significantly
enhances utility values compared to the others. It improves
utility by an average of 52.44%, reaching a peak improvement
of 70.33% over RFOA, 14.25% on average and up to 15.89%
over GWO, and 21.40% on average and up to 23.64% over
FA. As illustrated in Fig. 4(b), (e), and (h), when γ is set to
0.5, indicating the system equally prioritizes AoI and energy
consumption, the proposed method continues to outperform
the others, with an average utility improvement of 34.03% (up
to 46.48%) over RFOA, 13.37% (up to 15.48%) over GWO,
and 16.72% (up to 19.73%) over FA. Finally, when γ is set to
0.2, indicating the system prioritizes energy consumption, the
proposed method still delivers superior results. It achieves a
peak enhancement of 28.38% over RFOA, 10.31% over GWO,
and 14.29% over FA, as shown in Fig. 4(c), (f), and (j).

In addition, when the number of ESs is fixed, the utility of
each algorithm shows a declining trend as the number of EDs
increases, and this trend is progressively more pronounced
with the decrease of ESs. Since the resources owned by
each ES are limited, for each decision area, the competition
for resources intensifies as the number of EDs increases,
and the bandwidth and computing resources that can be
allocated to each task decrease accordingly. This decrease
affects both the transmission and execution time when tasks
are offloaded to the ES, which in turn affects the average AoI
and energy consumption of the EDs. Notably, when M = 2
and N = 50, the advantage of the proposed method is less
pronounced compared to other cases, due to the extreme
resource constraints faced by the system.

In summary, extensive experiments show that regardless of
system scales and weight coefficients, the proposed method
consistently outperforms the other three. It exhibits a signifi-
cant advantage in terms of utility value. This is because our
proposed algorithm better balances exploration and exploita-
tion, enabling it to identify superior decisions in various
scenarios within the solution space.

2) Task Success Rates: We then investigate the task execu-
tion success rates of the optimal solutions from four algorithms

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41130 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Utility function values with different number of EDs for varying numbers of ESs and weight coefficients. (a) M = 2, γ = 0.8. (b) M = 2, γ = 0.5.
(c) M = 2, γ = 0.2. (d) M = 4, γ = 0.8. (e) M = 4, γ = 0.5. (f) M = 4, γ = 0.2. (g) M = 6, γ = 0.8. (h) M = 6, γ = 0.5. (i) M = 6, γ = 0.2.

as the number of EDs increases incrementally from 5 to 50
in steps of 5. The weight parameter γ is set to 0.5, and task
deadlines di,k range from 0.7 to 1.1 times the local completion
time. Simulations are conducted, with results depicted in
Fig. 5. Initially, with a small number of EDs, resources are
sufficient, allowing all algorithms to complete tasks within
their deadlines at a 100% success rate. However, as the number
of EDs increases, resource contention escalates, leading to
time constraint violations in some cases. Notably, when other
algorithms fail to maintain a 100% success rate, the proposed
method continues to perform flawlessly up to 35 EDs. Beyond
35 EDs, no algorithm achieves 100% success. Among the
algorithms, RFOA yields the worst results, while FA and GWO
maintain relatively high-success rates. The proposed method
consistently outperforms all others, showing improvements of
up to 12.56% over GWO, 17.46% over FA, and 32.39% over
RFOA in the most resource-constrained scenarios when the
ED number approaches 50. These results demonstrate that

Fig. 5. Task execution success rates under varying EDs.

the proposed method excels in identifying an optimal task
offloading strategy across various conditions.

3) AoI-Oriented Versus Latency-Oriented: To validate
the superiority of the AoI-oriented offloading optimization
algorithm over its latency-oriented counterpart, we conduct

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41131

Fig. 6. Makespan under different number weight coefficient varying with
task deadline constraints.

Fig. 7. Task execution success rates under different number weight coefficient
varying with task deadline constraints.

a comparative analysis between the proposed method and
LOCOA, which serves as a representative of latency-oriented
optimization. The comparison focuses on two key aspects:
total task completion latency and task success rate. To facilitate
subsequent discussions, we will alternately use “AoI-oriented
algorithm” and “the proposed method,” as well as “latency-
oriented algorithm’‘and “LOCOA,” depending on the context.

Here, we configure 2 ESs and 30 EDs. Additionally,
three sets of task deadline constraints di,k are established,
corresponding to 0.5–0.9, 0.7–1.1, and 0.9–1.3 times the local
completion time of tasks. As shown in Figs. 6 and 7, the
results indicate that when the deadline constraints are relatively
lenient, the proposed method consistently achieves lower
makespan across all weight settings compared to LOCOA,
with an average reduction of 27.30%. Moreover, the task
success rate of the proposed method remains at 100%, while
LOCOA experiences instances where some tasks fail to meet
their deadlines under lower latency optimization weights.

As the task deadlines become slightly tighter, the advantage
of the AoI-oriented algorithm in terms of makespan becomes
more evident, with an average reduction of 28.85%. Although
some task execution failures may occur at this stage, the
overall success rate of the proposed method remains higher
than that of LOCOA, with an average improvement of 6.69%.
Notably, a 100% success rate is achieved when the AoI
optimization weight is set to 1 and 0.8. Further tightening the
deadline constraints leads to a remarkable reduction of 30.56%
in total task completion latency for the AoI-oriented algorithm
compared to the latency-oriented algorithm, with maximum

Fig. 8. Execution time comparison to other algorithms.

Fig. 9. AoI and energy consumption of the proposed algorithm, GWO, FA,
and RFOA for executing all tasks on the real platforms. “loc AoI” denotes
the AoI value of task execution entirely on local devices.

improvements in task success rates reaching up to 15.73% and
an average improvement of 14.67%.

These findings highlight the superior performance of the
AoI-oriented offloading optimization scheme regarding both
total task completion time and task success rates under varying
deadline constraints. This is because AoI-oriented optimization
can better perceive situational changes, meeting the real-time
requirements of devices.

4) Overhead: As depicted in Fig. 8, the execution time of
RFOA remains low and grows gently with the number of EDs
due to its random offloading without complex optimization.
In contrast, the proposed algorithm, along with the GWO and
FA algorithms, relies on iterative optimization to derive the
final solution, inherently consuming additional computational
resources and time. Notably, our proposed algorithm consis-
tently outperforms GWO and FA in terms of execution time,
and despite its reliance on iterative optimization, its execution
time is still within a reasonable range. In AoI-based scenario
applications, such as smart agriculture, logistics tracking, and
telemedicine, this execution time is completely acceptable,
fully demonstrating its good practical application feasibility.

C. Experimental Results

To be more convincing, we implement our proposed SPSO-
based method and conduct experimental tests on NVIDIA
platforms. Fig. 9 compares the AoI and energy consumption

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41132 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

Fig. 10. Utility function values with different weight coefficients under real
testbed platform.

values obtained by completing the tasks for all EDs using
the proposed method, GWO, FA, and RFOA in case the
weight coefficient value is 0.8, 0.5, and 0.2, respectively. The
results clearly indicate that the proposed method achieves
reduced AoI and energy consumption across various weight
parameter settings compared to GWO and FA. Moreover,
as the weight coefficient decreases, the system gradually
shifts from optimizing AoI to optimizing energy consumption.
Specifically, with decreasing the weight coefficient, the AoI
values show an increasing trend, while the energy consumption
values exhibit a decreasing trend. It is also easily noticed that
RFOA has a significantly lower energy consumption than the
other three algorithms because all tasks are offloaded to the
edge or cloud server for execution, leaving only the energy
consumption for task transmission on the EDs.

However, the significant reduction in energy consumption
comes at the expense of higher AoI values. As shown in Fig. 9,
the value of AoI of RFOA even surpasses that of loc AoI,
as all tasks require offloading, intensifying competition for
communication and computing resources, inevitably leading to
prolonged task offloading and execution latency along with a
substantial increase in AoI. Consequently, it can be concluded
that although the resources of EDs in the EECC architecture
are limited, they should be utilized wisely. Only through the
collaborative processing among the end, edge, and cloud, the
desirable outcomes can be achieved.

We also compare the utility values of each group of exper-
iments in Fig. 10. The utility value of the proposed method
consistently surpasses those of other algorithms across various
weight coefficient settings in the final results, aligning with the
simulation results. Specifically, when γ is 0.8, the proposed
method surpasses GWO by 13.46%, FA by 19.51%, and
markedly outperforms RFOA by a significant 48.29%. When
γ is 0.5, the proposed method exceeds GWO by 11.24%,
outperforms FA by 16.52%, and remarkably surpasses RFOA
by 27.70%. When γ is 0.2, the proposed method achieves a
6.82% increase compared to GWO, a 12.08% improvement
over FA, and a 13.54% enhancement in comparison to RFOA.

VII. CONCLUSION

Achieving efficient computation offloading and resource
allocation within EECC environments is fraught with

challenges, such as system intricacy, resource heterogeneity,
latency sensitivity, and energy management. Given that AoI
can directly quantify information freshness, offering a more
holistic and timely evaluation of system performance than
conventional latency measures, thereby enhancing decision-
making quality, we delve into the intricate joint optimization of
task offloading and resource allocation in EECC systems, tar-
geting the minimization of AoI and energy consumption under
constraints of deadlines, bandwidth, and computation capacity.
Specifically, we first construct the mathematical relationship
between task offloading decisions and AoI, and then formulate
the optimization problem as a MINLP problem. To address
this problem, we devise a solution based on SPSO, which
partitions the decision space into multiple nonintersecting
decision areas tailored to the problem’s features. We customize
the position, velocity, updating rules, and fitness function of
SPSO, and propose a two-phase computation offloading and
resource allocation algorithm. Finally, extensive simulation-
based and testbed results demonstrate that the proposed
method significantly outperforms existing algorithms both in
AoI and energy consumption. To support reproducibility and
facilitate further research, the source code of the proposed
framework has been made publicly available at https://github.
com/ghost601010/AoI_TORA_exp/tree/master/project.

REFERENCES

[1] “The state of mobile Internet connectivity,” Accessed: Oct. 2023.
[Online]. Available: https://www.gsma.com/r/wp-content/uploads/2023/
10/The-State-of-Mobile-Internet-Connectivity-Report-2023.pdf/

[2] X. Han, H. Pan, Z. Wang, and J. Li, “Successive interference
cancellation-enabled timely status update in linear multi-hop wireless
networks,” IEEE Trans. Mobile Comput., vol. 24, no. 6, pp. 5298–5311,
Jun. 2025, doi: 10.1109/TMC.2025.3529462.

[3] A. Ndikumana, K. K. Nguyen, and M. Cheriet, “Age of processing-aware
offloading decision for autonomous vehicles in 5G open RAN environ-
ment,” IEEE Trans. Mobile Comput., vol. 23, no. 7, pp. 7865–7877,
Jul. 2024.

[4] X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang, “Age based task schedul-
ing and computation offloading in mobile-edge computing systems,” in
Proc. IEEE WCNCW, 2019, pp. 1–6.

[5] Q. Chen, S. Guo, Z. Cai, J. Li, T. Shi, and H. Gao, “Peak AoI
minimization at wireless-powered network edge: From the perspective
of both charging and transmitting,” IEEE/ACM Trans. Netw., vol. 32,
no 1, pp. 806–821, Feb. 2024.

[6] Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic
approach to computation offloading strategy optimization in end–edge–
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 6,
pp. 1503–1519, Jun. 2022.

[7] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-
end task offloading in mobile-edge computing networks with limited
communication capability,” IEEE Trans. Cogn. Commun. Netw., vol. 7,
no. 2, pp. 624–634, Jun. 2021.

[8] Y. Zeng et al., “ExpertDRL: Request dispatching and instance config-
uration for serverless edge inference with foundation models,” IEEE
Trans. Mobile Comput., vol. 24, no. 9, pp. 8089–8104, Sep. 2025,
doi: 10.1109/TMC.2025.3553201.

[9] C. Yi, J. Cai, T. Zhang, K. Zhu, B. Chen, and Q. Wu, “Workload re-
allocation for edge computing with server collaboration: A cooperative
queueing game approach,” IEEE Trans. Mobile Comput., vol. 22, no. 5,
pp. 3095–3111, May 2023.

[10] H. Djigal, J. Xu, L. Liu, and Y. Zhang, “Machine and deep learning for
resource allocation in multi-access edge computing: A survey,” IEEE
Commun. Surveys Tuts., vol. 24, no. 4, pp. 2449–2494, 4th Quart., 2022.

[11] H. Zhou, M. Li, P. Sun, B. Guo, and Z. Yu, “Accelerating federated
learning via parameter selection and pre-synchronization in mobile
edge-cloud networks,” IEEE Trans. Mobile Comput., vol. 23, no. 11,
pp. 10313–10328, Nov. 2024.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2025.3529462
http://dx.doi.org/10.1109/TMC.2025.3553201

ZENG et al.: AOI-ORIENTED COMPUTATION OFFLOADING AND RESOURCE ALLOCATION FOR EECC SYSTEMS 41133

[12] H. Zhou, H. Wang, Z. Yu, G. Bin, M. Xiao, and J. Wu, “Federated dis-
tributed deep reinforcement learning for recommendation-enabled edge
caching,” IEEE Trans. Services Comput., vol. 17, no. 6, pp. 3640–3656,
Nov./Dec. 2024.

[13] H. She, L. Yan, and Y. Guo, “Efficient end–edge–cloud task offloading
in 6g networks based on multiagent deep reinforcement learning,” IEEE
Internet Things J., vol. 11, no. 11, pp. 20260–20270, Jun. 2024.

[14] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-
efficient offloading for DNN-based smart IoT systems in cloud-edge
environments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3,
pp. 683–697, Mar. 2022.

[15] H. Xiao, J. Huang, Z. Hu, M. Zheng, and K. Li, “Collaborative
cloud-edge-end task offloading in MEC-based small cell networks with
distributed wireless backhaul,” IEEE Trans. Netw. Service Manag.,
vol. 20, no. 4, pp. 4542–4557, Dec. 2023.

[16] Y. Shi, C. Yi, R. Wang, Q. Wu, B. Chen, and J. Cai, “Service migration
or task rerouting: A two-timescale online resource optimization for
MEC,” IEEE Trans. Wireless Commun., vol. 23, no. 2, pp. 1503–1519,
Feb. 2024.

[17] C. Xu, Q. Xu, J. Wang, K. Wu, K. Lu, and C. Qiao, “AoI-centric task
scheduling for autonomous driving systems,” in Proc. IEEE INFOCOM,
2022, pp. 1019–1028.

[18] R. Li, Q. Ma, J. Gong, Z. Zhou, and X. Chen, “Age of pro-
cessing: Age-driven status sampling and processing offloading for
edge-computing-enabled real-time IoT applications,” IEEE Internet
Things J., vol. 8, no. 19, pp. 14471–14484, Oct. 2021.

[19] Q. Chen, S. Guo, W. Xu, Z. Cai, L. Cheng, and H. Gao, “AoI
minimization charging at wireless-powered network edge,” in Proc.
IEEE ICDCS, 2022, pp. 713–723.

[20] F. Song, Q. Yang, M. Deng, H. Xing, Y. Liu, and X. Yu, “AoI and
energy tradeoff for aerial-ground collaborative MEC: A multi-objective
learning approach,” IEEE Trans. Mobile Comput., vol. 23, no. 12,
pp. 11278–11294, Dec. 2024.

[21] Y. Yang, T. Song, J. Yang, H. Xu, and S. Xing, “Joint energy and AoI
optimization in UAV-assisted MEC-WET systems,” IEEE Sensors J.,
vol. 24, no. 9, pp. 15110–15124, May 2024.

[22] Q. Wang, X. Liang, H. Zhang, and L. Ge, “AoI-aware energy efficiency
resource allocation for integrated satellite-terrestrial IoT networks,”
IEEE Trans. Green Commun. Netw., vol. 9, no. 1, pp. 125–139,
Mar. 2025.

[23] J. Bi, Z. Wang, H. Yuan, J. Zhang, and M. Zhou, “Cost-minimized
computation offloading and user association in hybrid cloud and edge
computing,” IEEE Internet Things J., vol. 11, no. 9, pp. 16672–16683,
May 2024.

[24] Z. Xiao, J. Shu, H. Jiang, G. Min, H. Chen, and Z. Han, “Perception
task offloading with collaborative computation for autonomous driving,”
IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 457–473, Feb. 2023.

[25] X. Zhai, Y. Peng, and X. Guo, “Edge-cloud collaboration for low-latency,
low-carbon, and cost-efficient operations,” Comput. Elect. Eng., vol. 120,
Dec. 2024, Art. no. 109758.

[26] X. Qu and H. Wang, “Emergency task offloading strategy based
on cloud-edge-end collaboration for smart factories,” Comput. Netw.,
vol. 234, Oct. 2023, Art. no. 109915.

[27] T. Liu, L. Fang, Y. Zhu, W. Tong, and Y. Yang, “A near-optimal
approach for online task offloading and resource allocation in edge-cloud
orchestrated computing,” IEEE Trans. Mobile Comput., vol. 21, no. 8,
pp. 2687–2700, Aug. 2022.

[28] T. Tang, C. Li, and F. Liu, “Collaborative cloud-edge-end task offloading
with task dependency based on deep reinforcement learning,” Comput.
Commun., vol. 209, pp. 78–90, Sep. 2023.

[29] L. Zhai, Z. Lu, J. Sun, and X. Li, “Joint task offloading and computing
resource allocation with DQN for task-dependency in multi-access edge
computing,” Comput. Netw., vol. 263, May 2025, Art. no. 111222.

[30] Z. Niu, H. Liu, Y. Ge, and J. Du, “Distributed hybrid task offloading
in mobile-edge computing: A potential game scheme,” IEEE Internet
Things J., vol. 11, no. 10, pp. 18698–18710, May 2024.

[31] X. Ma, A. Zhou, Q. Sun, and S. Wang, “Freshness-aware information
update and computation offloading in mobile-edge computing,” IEEE
Internet Things J., vol. 8, no. 16, pp. 13115–13125, Aug. 2021.

[32] J. Huang, H. Gao, S. Wan, and Y. Chen, “AoI-aware energy control and
computation offloading for industrial IoT,” Future Gener. Comput. Syst.,
vol. 139, pp. 29–37, Feb. 2023.

[33] Q. Chen, Z. Cai, L. Cheng, F. Wang, and H. Gao, “Joint near-optimal
age-based data transmission and energy replenishment scheduling at
wireless-powered network edge,” in Proc. IEEE INFOCOM, 2022,
pp. 770–779.

[34] C. Yi, J. Cai, and Z. Su, “A multi-user mobile computation offloading
and transmission scheduling mechanism for delay-sensitive applica-
tions,” IEEE Trans. Mobile Comput., vol. 19, no. 1, pp. 29–43,
Jan. 2020.

[35] J. Zhou, X. Hou, Y. Zeng, P. Cong, W. Jiang, and S. Guo, “Quality
of experience and reliability-aware task offloading and scheduling
for multi-user mobile-edge computing systems,” IEEE Trans. Services
Comput., vol. 18, no. 3, pp. 1683–1696, May/Jun. 2025.

[36] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523, Dec. 2015.

[37] Z. Ji, S. Wu, and C. Jiang, “Cooperative multi-agent deep reinforce-
ment learning for computation offloading in digital twin satellite edge
networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 11, pp. 3414–3429,
Nov. 2023.

[38] Y. Zhang, Y. Liu, J. Zhou, J. Sun, and K. Li, “Slow-movement particle
swarm optimization algorithms for scheduling security-critical tasks in
resource-limited mobile edge computing,” Future Gener. Comput. Syst.,
vol. 112, pp. 148–161, Nov. 2020.

[39] B. Aygun, B. G. Kilic, N. Arici, A. Cosar, and B. Tuncsiper, “Application
of binary PSO for public cloud resources allocation system of Video
on Demand (VoD) services,” Appl. Soft Comput., vol. 99, Feb. 2021,
Art. no. 106870.

[40] W. Ren and X. Wu, “A modified simple particle swarm optimization
using dynamically changing learning factor,” Techn. Autom. Appl.,
vol. 31, no. 10, pp. 9–11, 2012.

[41] S. Choudhary, S. Sugumaran, A. Belazi, and A. A. A. El-Latif,
“Linearly decreasing inertia weight PSO and improved weight factor-
based clustering algorithm for wireless sensor networks,” J. Ambient
Intell. Humanized Comput., vol. 14, pp. 6661–6679, Jun. 2023.

[42] W. Jiang, J. Zhou, P. Cong, G. Zhang, and S. Hu, “QoE and reliability-
aware task scheduling for multi-user mobile-edge computing,” in Proc.
WASA, 2022, pp. 380–392.

[43] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[44] M. Yu, A. Liu, N. N. Xiong, and T. Wang, “An intelligent game-
based offloading scheme for maximizing benefits of IoT-edge-cloud
ecosystems,” IEEE Internet Things J., vol. 9, no. 8, pp. 5600–5616,
Apr. 2022.

[45] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.

[46] Y. Sun et al., “Accurate and rapid CT image segmentation of the eyes
and surrounding organs for precise radiotherapy,” Med. Phys., vol. 46,
no. 5, pp. 2214–2222, 2019.

[47] M. J. F. Calero, M. Aldás, J. Lázaro, A. Gardel, N. Onofa, and
B. Quinga, “Pedestrian detection under partial occlusion by using logic
inference, HOG and SVM,” IEEE Latin America Trans., vol. 17, no. 9,
pp. 1552–1559, Sep. 2019.

[48] X. Lv, “Cifar-10 image classification based on convolutional neural
network,” Front. Signal Process., vol. 4, no. 4, pp. 100–106, 2020.

[49] S. Zhang, Z. Wei, Y. Wang, and T. Liao, “Sentiment analysis of chinese
micro-blog text based on extended sentiment dictionary,” Future Gener.
Comput. Syst., vol. 81, pp. 395–403, Apr. 2018.

[50] S. Lin, L. Li, J. Chen, P. Cong, T. Wang, and J. Zhou, “IATS:
Information-age aware task scheduling for vehicle-road-cloud coopera-
tive systems,” J. Syst. Archit., vol. 167, Oct. 2025, Art. no. 103480.

Youling Zeng received the B.S. degree in computer
science and technology from Nanjing University of
Science and Technology, Nanjing, China, in 2023,
where she is currently pursuing the M.S. degree.

Her research interests are in the area of edge
computing and caching.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

41134 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 19, 1 OCTOBER 2025

Yue Zeng received the Ph.D. degree from Nanjing
University, Nanjing, China, in 2023.

He is currently an Associate Professor
with Nanjing University of Science and
Technology, Nanjing. He has published more
than a dozen papers in top journals and
conferences, including IEEE TRANSACTIONS

ON COMPUTERS, IEEE TRANSACTIONS ON

SERVICES COMPUTING, IEEE TRANSACTIONS

ON MOBILE COMPUTING, IEEE TRANSACTIONS

ON COMMUNICATIONS, IEEE TRANSACTIONS ON

CLOUD COMPUTING and IEEE CVPR. His research interests include edge
intelligence, deep reinforcement learning, machine learning training and
inference, federated learning, and serverless computing.

Jining Chen received the B.S. and M.S. degrees
from Guangxi University, Nanning, China.

He is a Senior Engineer with the Digital
Infrastructure Key Laboratory, Guangxi Zhuang
Autonomous Region Information Center, Nanning,
China. He has published more than ten aca-
demic papers, including IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY. His research
interests are in the area of edge computing and
end–edge–cloud.

Yufan Shen received the B.S. degree in manage-
ment from Ningbo University, Ningbo, China, in
2020. She is currently pursuing the Ph.D. degree
with Nanjing University of Science and Technology,
Nanjing, China.

Her research interests include edge computing
and IoT.

Liying Li received the Ph.D. degree from the
Department of Computer Science and Technology,
East China Normal University, Shanghai, China, in
2022.

She is currently an Assistant Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology,
Nanjing, China. Her current research interests are in
the areas of cyber–physical systems, IoT resource
management, data mining, and distributed artificial
intelligence.

Peijin Cong received the B.S. and Ph.D. degrees
in computer science from East China Normal
University, Shanghai, China, in 2016 and 2021,
respectively.

She is currently an Associate Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology,
Nanjing, China. She has published 30 refereed
papers. Her research interests are in the areas of
cloud computing, service computing, and IoT.

Junlong Zhou (Member, IEEE) received the Ph.D.
degree in computer science from East China Normal
University, Shanghai, China, in 2017.

He was a Visiting Scholar with the University
of Notre Dame, Notre Dame, IN, USA, from
2014 to 2015. He is currently an Associate
Professor with Nanjing University of Science and
Technology, Nanjing, China. He has published 120
refereed papers, including more than 40 in pre-
mier IEEE/ACM Transactions. His research interests
include edge computing, cloud computing, and
embedded systems.

Dr. Zhou received the Best Paper Awards from IEEE iThings 2020, IEEE
CPSCom 2022, and IEEE ICITES 2024. He has been an Associate Editor
of the Sustainable Computing: Informatics and Systems, the Journal of
Circuits, Systems, and Computers, and IET Cyber–Physical Systems: Theory &
Applications, and a Subject Area Editor of the Journal of Systems Architecture.

Keqin Li (Fellow, IEEE) received the B.S. degree in
computer science from Tsinghua University, Beijing,
China, in 1985, and the Ph.D. degree in computer
science from the University of Houston, Houston,
TX, USA, in 1990.

He is a SUNY Distinguished Professor with the
State University of New York, New Paltz, NY, USA,
and a National Distinguished Professor with Hunan
University, Changsha, China. He has authored or
co-authored more than 1130 journal articles, book
chapters, and refereed conference papers. He holds

nearly 80 patents announced or authorized by the Chinese National Intellectual
Property Administration.

Dr. Li received the IEEE TCCLD Research Impact Award from the IEEE
CS Technical Committee on Cloud Computing in 2022 and the IEEE TCSVC
Research Innovation Award from the IEEE CS Technical Community on
Services Computing in 2023. He won the IEEE Region 1 Technological
Innovation Award (Academic) in 2023. He was a recipient of the 2022–
2023 International Science and Technology Cooperation Award and the 2023
Xiaoxiang Friendship Award of Hunan Province, China. Since 2020, he has
been among the world’s top few most influential scientists in parallel and
distributed computing regarding single-year impact (ranked #2) and career-
long impact (ranked #4) based on a composite indicator of the Scopus citation
database. He is listed in Scilit Top Cited Scholars (2023–2024) and is among
the top 0.02% out of over 20 million scholars worldwide based on top-cited
publications. He is listed in ScholarGPS Highly Ranked Scholars (2022–2024)
and is among the top 0.002% out of over 30 million scholars worldwide
based on a composite score of three ranking metrics for research productivity,
impact, and quality in the recent five years. He is a member of the SUNY
Distinguished Academy. He is an AAAS Fellow, an AAIA Fellow, an ACIS
Fellow, and an AIIA Fellow. He is a member of the European Academy of
Sciences and Arts. He is a member of Academia Europaea (Academician of
the Academy of Europe).

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 26,2025 at 02:09:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

