
Int. J. Embedded Systems, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

Energy aware list-based scheduling for parallel
applications in cloud

Yongxing Liu, Kenli Li*, Zhuo Tang and
Keqin Li
College of Computer Science and Electronic Engineering,
Hunan University,
Changsha, 410082, China
Email: yongxing510@126.com
Email: lkl@hnu.edu.cn
Email: ztang@hnu.edu.cn
Email: likq@hnu.edu.cn
*Corresponding author

Abstract: As the growth of energy consumption has been explosive in current data centres and
cloud systems, it has drawn greater attention in academia, industry and government. Task
scheduling as a core in systems, it has become an important method to reduce energy dissipation.
This paper proposes an energy aware list-based scheduling algorithm called EALS for parallel
applications in the context of service level agreement (SLA) on cloud data centres. First, the
EALS algorithm comprehensively considers the high power processors to minimise the number
of high power processors used. Then, the algorithm try to migrate some tasks from a high power
processor to a low power processor for energy saving. Finally, the EALS algorithm takes a more
efficient way to assign the time slots among tasks based on the dynamic voltage scaling (DVS)
technique. To demonstrate the effectiveness of the EALS algorithm, randomly generated graphs
and several real-world applications are tested in our experiments. The experimental results
show that the EALS algorithm can save up to 43.96% energy consumption for various parallel
applications as well as balance the scheduling performance.

Keywords: cloud data centre; directed acyclic graph; dynamic voltage scaling; DVS; energy
aware scheduling; service level agreement; SLA.

Reference to this paper should be made as follows: Liu, Y., Li, K., Tang, Z. and Li, K. (xxxx)
‘Energy aware list-based scheduling for parallel applications in cloud’, Int. J. Embedded Systems,
Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Yongxing Liu is currently working towards his MS at Hunan University of
China. His research interests include modelling and scheduling for embedded systems,
distributed computing systems, and cloud computing.

Kenli Li received his PhD in Computer Science from Huazhong University of Science and
Technology, Wuhan, China in 2003. He has been a Visiting Scholar at University of Illinois at
Champaign and Urbana from 2004 to 2005. His major research contains parallel computing, grid
and cloud computing, and DNA computer.

Zhuo Tang is currently an Associate Professor of Computer Science and Technology at Hunan
University. He received his PhD in Computer Science from Huazhong University of Science and
Technology, Wuhan, China in 2008. His current research interests include cloud computing,
distributed systems and security of distributed systems.

Keqin Li is a SUNY Distinguished Professor of Computer Science in the State University of
New York at New Paltz. His research interests are mainly in design and analysis of algorithms,
parallel and distributed computing, and computer networking. He is currently on the editorial
board of IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on
Computers, Journal of Parallel and Distributed Computing, International Journal of Parallel,
Emergent and Distributed Systems, International Journal of High Performance Computing and
Networking, and Optimization Letters.

This paper is a revised and expanded version of a paper entitled [title] presented at [name,
location and date of conference].

Comment [t1]: Author: Please
complete where highlighted.

2 Y. Liu et al.

1 Introduction

The demand of social life prompts the emergency and
development of information science, while the development
of information science on human society life, production
and technological progress plays a huge role. However, too
much of a good thing can also be bad, the cost and
operational expenses of cloud data centres have soared with
the lasting increase in computing capacity. Energy
consumption has increasingly become a critical concern for
cloud data centres owing to their high operation cost,
environmental impact, and low reliability. So it is
significant to study the strategy of reducing energy
consumption in data centres.

Energy awareness for parallel applications has become a
growing concern for a decade. There are two popular
mechanisms for energy saving in data centres: the dynamic
voltage scaling (DVS) (Mittal, 2014; Mehta and Amrutur,
2012) and the dynamic power management (DPM) (Benini
et al., 2000; Liang et al., 2013). The former achieves
massive energy savings by dynamically adjusting processor
supply voltages based on the computing load; and the latter
optimises energy consumption by powering off the idle
computing nodes at runtime. In order to use the DPM more
efficiently, a scheduling scheme must consolidate tasks on a
minimum set of computing nodes to power off some nodes.
For the scheduling of precedence-constrainted applications,
the DPM is not quite suitable for this case, because the idle
slot between the execution of two tasks is usually short.
Instead, the DVS is particularly suited for it. The problem of
scheduling an application, usually expressed as directed
acyclic graph (DAG) scheduling, is NP-hard in the general
case (Garey and Johnson, 1979; Shao et al., 2004).
Therefore, one of the challenges in computing systems is to
develop scheduling that allocate the appropriate CPU time
to the tasks of an application, especially with energy
awareness in cloud data centres. There is a rich body of
studies and investigations pertaining to energy savings use
of the DPM or the DVS in computing systems. However,
most of these approaches just take one of the mentioned
technologies to reduce energy consumption. Consequently,
these approaches cannot fully exploit the latent capacity of
the two technologies, so these approaches consume more
resources in computing systems.

In this paper, we address the energy-aware scheduling
of precedence-constrained parallel applications on a
heterogeneous computing (HC) system and propose a novel
scheduling algorithm that combines the DVS and the DPM,
namely energy aware list-based scheduling (EALS)
algorithm. Our objective is to minimise the total energy
consumption of the tasks while it still meets the certain
performance goals-based service level agreement (SLA)
(Wang et al., 2013; Wu et al., 2014; Quan, 2007). The SLA
is a contract between users and their service providers,
guaranteeing the quantifiable quality of service at defined
levels. Our algorithm mainly contains three stages:

1 initial task mapping phase stage: ordering all tasks
according to calculated priorities and assigning the
tasks to corresponding processors

2 DPM optimising and task migrating optimisation phase:
powering off the processors guided by the ideology of
DPM and migrating some of high energy-consuming
tasks to a appropriate processor

3 task slacking phase: scaling the frequency of tasks with
a heuristic method.

The main contributions of this paper are summarised as
follows:

• We develop a novel energy-aware scheduling
algorithm. Within a given deadline, the proposed
algorithm can distribute the tasks to a set of appropriate
processors, reassign part of tasks, and allocate the time
slots among tasks in an effective manner to reduce the
total energy consumption as well as meet the
performance requirements.

• We demonstrate the effectiveness of EALS algorithm
through extensive experiments. Experimental results
show that the proposed algorithm can achieve
outstanding energy-saving effects in a wide range of
applications.

• We analyse the factors which are affecting the
performance of our algorithm.

The rest of this paper is organised as follows. Section 2
introduces background and related works. We describe the
related model in Section 3. Section 4 presents the detail of
our scheduling algorithm EALS. In Section 5, we compare
our experimental results with two related algorithms.
Finally, we conclude this paper and give an overview of
future work in Section 6.

2 Related work

In this section, we review background and related work of
traditional task scheduling and energy-aware scheduling in
computing systems.

2.1 Traditional task scheduling

The problem of optimisation scheduling of HC systems has
been researched extensively due to its high academic and
practical significance. There are several typical
classifications of DAG scheduling: list-based scheduling
algorithms, cluster heuristics algorithms and duplication-
based algorithms, etc. The heterogeneous earliest finish time
(HEFT) is a famous list-based algorithm with high
performance and low complexity for HC systems
(Topcuoglu et al., 2002). Many other list-based algorithms,
such as modified critical path (MCP) (Wu and Gajski,
1990), dynamic critical path (DCP) (Kwok and Ahmad,
1996) and critical path on a processor (CPOP) (Topcuoglu
et al., 2002) are classical. Cluster heuristics divide tasks of

 Energy aware list-based scheduling for parallel applications in cloud 3

an application into several subsets and then performs an
order over each subsets individually. Some examples in this
classification include dominant sequence cluster (DSC)
(Yang and Gerasoulis, 1994), greedy task clustering and
scheduling (GTCS) (Piyatamrong et al., 2000), clustering
heuristic scheduling algorithm (CHSA) (Ilyas and
Khan, 2001), and so on. In duplication-based algorithms,
heterogeneous critical parents with fast duplicator (HCPFD)
(Hagras and Janeček, 2005), selective duplication (SD)
(Bansal et al., 2003), heterogeneous limited duplication
(HLD) (Bansal et al., 2005) and heterogeneous earliest
finish with duplication (HEFD) (Tang et al., 2010) are able
to perform well in a system.

2.2 Energy-aware scheduling

In consideration of the serious energy-using situation and
the lasting rapid growth in energy consumption of
computing systems, energy-saving has become increasingly
important. Therefore, lots of researchers have done
much research work for reducing energy consumption
for computing systems (Mei and Li, 2012; Zhong and Xu,
2007; Xiao and Han, 2014; Huang et al., 2012; Niu and
Quan, 2013; Dargie, 2012; Wang et al., 2013). Mei and
Li (2012) proposed an energy-aware scheduling by
minimising duplication (EAMD) algorithm. Dargie (2012)
investigated aspects of power dissipation in a node;
analysed the strengths and weaknesses of DVS and
provided a comprehensive assessment of the DPM. Zhong
and Xu (2007) discussed scheduling tasks with DVS on
single-processor systems and obtained good results. For
dependent real-time tasks, the blocking-time stealing (BTS)
algorithm can able to achieve energy saving and it still
satisfies the time constraints of tasks (Wu and Wu, 2014).
Mei et al. (2014) proposed a resource-aware scheduling
algorithm with duplications (RADS) to search and delete
redundant task duplications dynamically during the
scheduling process. Huang et al. (2012) developed an
enchanted energy-efficient scheduling (EES) algorithm with
SLA to save energy consumption. To reduce both the
dynamic and leakage energy consumption, two energy
efficient scheduling approaches are proposed (Niu and
Quan, 2013). Wang et al. (2013) proposed a power aware
task clustering (PATC) algorithm, a power aware list-based
scheduling (PALS) algorithm and an energy-performance
tradeoff scheduling (ETS) algorithm, the effectiveness of
their algorithms are justified by a simulation study.

3 Models

In this section, we introduce a computing system model and
an application model.

3.1 Computing system model

The system comprises a set P of m heterogeneous
processors, which are fully interconnected by a
communication links. And our target system is denoted by

P = {pi|0 ≤ i ≤ m − 1}, where pi is DVS-enabled and it runs
in varying clock speeds. Three types of processors are
considered in our simulation experiments and each
processor has its own performance state (PState), which is
shown in Table 1 (Terzopoulos and Karatza, 2013).
Factors like the processor architecture, the task processing
requirement and their compatibility decide the capacity of a
processor in processing a task.

Table 1 Performance and power consumption

P-state-watts Frequency
(GHz) AMD Opteron Intel Pentium M VIA C7-M

2.6 P0–95 - -
2.4 P1–90 - -
2.2 P2–76 - -
2.0 P3–65 - P0–20
1.8 P4–55 - P1–18
1.6 - P0–25 P2–15
1.4 - P1–17 P3–13
1.2 - P2–13 -
1.0 P5–32 P3–10 P4–10
0.8 - P4–8 P5–7
0.6 - P5–6 P6–6
0.4 - - P7–5
Idle 15 5 0.1

Table 1 shows that the energy consumption model is
different from a continuous energy model, which is that
each processor of our system run only on a particular
frequency points of the set and we cannot change the
frequency of a processor continuously. The energy
consumption of processor pi is mainly comprise of active
energy consumption ,

i
p activeE and idle energy consumption

, .i
p idleE So the total energy consumption of a system can be

defined as:

()
1

, ,
0

.
m

i i
total p active p idle

i

E E E
−

=

= +∑ (1)

3.2 Application model

In general, a parallel application can be represented by a
DAG and we can use G = G(V,E, Ω, Ψ) to formulate it,
where V = {vi|0 ≤ i ≤ n − 1} represents the tasks of an
application, E = {ei,j|0 ≤ i, j ≤ n − 1} represents
the dependencies among tasks, Ω = {ωi,k|0 ≤ i ≤ n − 1,
0 ≤ k ≤ m − 1} denotes the computation cost of task vi on
processor pk, and Ψ = {ψ(ei,j)|0 ≤ i, j ≤ n − 1} denotes the
communication cost between task vi and vj. A task with no
parent is called an entry task ventry, and vexit represents an exit
task with no children. A parent which completes the
communication at latest time is called the most influential
immediate parent (MIIP) of the task expressed as () .imiip vv

4 Y. Liu et al.

Obviously, eft(vi, pk), the earliest finish time of task vi on
processor pk, is mainly determined by the () .imiip vv The
earliest start time, est(vi, pk), and the eft(vi, pk) of a task vi on
a processor pk can be defined as:

()
()

.

, ,

(,)
0 , if ;

min . ,

 max (,) ()
()

i k

i entry

n
k available

ς l i k ς i

ς i

est v p
v v

idle start

max est v p ω e
v pred v

=

⎛ ⎞
⎜ ⎟

= + +⎜ ⎟
⎜ ⎟⎜ ⎟∈⎝ ⎠

ψ

 , otherwise;

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 (2)

,(,) (,) ,i k i k i keft v p est v p ω= + (3)

where . .n
k availableidle start is the start time of the nth idle slack

meeted ,. .. . , ()n n
i k ik available k availableidle end idle start ω pred v− ≥

is the set of immediate parent of vi, and if pk = pl, then
ψ(eς,i) = 0.

A list-based scheduling algorithm usually generates a
task priority in first and orders all tasks according to
calculated priorities prior to assignment. In this paper, we
adopt the bottom level (b level) method to calculate the task
priority. The b level of a task vi is the length of a longest
path from vi to an exit task (Kwok and Ahmad, 1999). Let
rankb(vi) represent the b level value of task vi, then rankb(vi)
can be recursively calculated by

()

()
()(),

 , if ;

max ()

 , otherwise;
σ i

b i

exit i exit

i σ σi
v succ v

rank v

ω v v

e rank vω
∈

⎧ =⎪⎪= + +⎨
⎪
⎪⎩

ψ
 (4)

where succ(vi) is the set of immediate children of vi, and iω

is the average computation cost of task vi. The iω value of

task vi can be calculated by
1

,
0

1 ,
m

i i k
k

ω ω
m

−

=

= ∑ (5)

where m is the number of processors.
There will probably be a lot of idle slots among tasks on

processors due to the precedence constraints. We can
optimise the total energy consumption by taking full
advantage of these slots. In the process of energy
optimisation, we usually need to calculate the latest finish
time of tasks. The latest finish time of task vi on a processor
pk can be defined as

()
()

,

, ,

(,)
 , if ;

(,) ,
min min (,) ()

 , otherwise;

l

i k

i exit

τ k τ k

σ l σ p i σ

σ i

lft v p
makespan v v

lft v p ω
lft v p ω e

v succ v

=⎧
⎪

⎛ ⎞−⎪ ⎜ ⎟⎪= − −⎜ ⎟⎨
⎜ ⎟⎪ ∈⎝ ⎠

⎩

ψ

⎪
⎪

 (6)

where makespan is the schedule length of parallel
applications, vτ is the task assigned next to vi on the same
processor pk, vσ is the task assigned on the processor pl, and
if pk = pl, then ψ(ei,σ) = 0. Then, the latest start time of task
vi on a processor pk can be calculated by

,(,) (,) .i k i k i klst v p lft v p ω= − (7)

4 Proposed algorithm
In this section, we present the details of our algorithm
EALS. As the overall scheduling processes in EALS,
Algorithm 1 aims at minimising the total energy
consumption as much as possible with the determined SLA
constrain. The EALS algorithm has three major phases:

1 initial task mapping phase

2 DPM optimising and task migrating optimisation phase

3 task slacking phase.

Algorithm 1 Energy aware list-based scheduling

Require: μ, P, G.

Ensure: ℑ. A Schedule,

1 call Algorithm 2 to generate the initial schedule ℑ,
2 call Algorithm 3 to optimise the schedule and output the

intermediate result ;′ℑ

3 call Algorithm 5 to further optimise the schedule and
update the result ℑ.

4.1 Initial task mapping phase

This subsection discusses the initial allocation of the tasks.
The most important work in initialisation is to calculate the
task priority, order the tasks, and schedule one by one. Here
we employ the Algorithm 2 to map the tasks of an
application to the processor set P.

The output of Algorithm 2 can be considered as a initial
schedule, which is taken as an input of the next optimising
process.

 Energy aware list-based scheduling for parallel applications in cloud 5

Algorithm 2 Task mapping

Require: P, G.

Ensure: ℑ, £. ℑ: A Schedule, £: makespan,

1 for each task vi in G do
2 calculate iω by equation (5),

3 end for
4 for each task vi in G do
5 calculate rankb(vi) by equation (4),
6 end for
7 rank the tasks into a sequence by a non-decreasing order

based on b level and let RANK represent the sequence,
8 while RANK is not null do
9 task vi = RANK.pop(),
10 for each processor pk in P do
11 calculate est(vi, pk) by equation (2),
12 calculate eft(vi, pk) by equation (3),
13 end for
14 assign task vi to the processor pk that minimises finish

time of task vi,
15 end while

4.2 DPM optimising and task migrating optimisation
phase

Considering the lasting increase of energy consumption in
cloud data centres, reducing the total energy consumption is
imminent in systems. So green computing has been paid
attention increasingly in recent years. A SLA, contracted
between a service provider and a user, is used to
guarantee quantifiable performance at defined levels. In the
context of scheduling, a SLA means an acceptable
performance loss to users, that is, a service provider can
reduce the total energy consumption by extending the
makespan in a system. Scheduling tasks without increasing
the makespan can be referred as the ‘best-effort scheduling
issue’, let makespanbest represent the makespan of this case.
In this paper, finding a feasible schedule which tries to
minimise the total energy consumption subjecting to
makespan ≤ (1 + μ) × makespanbest, where μ is the
makespan extension factor determined by the SLA and
meeted μ ≥ 0. The detailed optimisation process is presented
by Algorithm 3.

In order to get better energy saving effects, the effective
computation score of each processor is calculated by
equation (8).

0

0

()
() ,

()

watt
i level

i frequency
i level

type p
ecs p

type p
−

−

= (8)

where type(pi) is one of the three processor types in our
system model, 0()watt

i leveltype p − represents the power

consumption of processor pi at level-0, and 0() frequency
i leveltype p −

is the corresponding frequency at level-0. Having calculated
the ecs(pi) of each processor pi, we sort ecs(pi)s into a

sequence by a non-increasing order of effective computation
score. Note that in our system model, the lower the ecs(pi)
is, the more effective the processor is.

Algorithm 3 Optimising a schedule with DPM

Require: ℑ, £, μ, P, G.

Ensure: .′ℑ :′ℑ Intermediate Schedule,

1 for each pi in P do
2 calculate ecs(pi) by equation (8),
3 end for
4 sort ecs(pi)s with non-increasing order, let ecsSeq denote

this sequence,
5 let currProType = type(ecsSeq.peekFirst),
6 current processor type,

7 while makespan ≤ £ × (μ + 1) do
8 pick a processor pk belonging to the currProType type

from the ecsSeq,
9 power off the processor pk,
10 call Algorithm 2 to reschedule the tasks,
11 if makespan ≤ £ × (μ + 1) then
12 update the ℑ with current assignments,
13 else
14 power on the processor pk,
15 currPro ype + +,
16 end if
17 if all processors of currProType type are powered off

then
18 currProType + +,

19 end if
20 if currProType does not exist then
21 break,
22 end if
23 end while
24 call Algorithm 4 to generate the output, ;′ℑ

In Algorithm 3, the processor pi with a high ecs(pi) value
can be considered one of the first attempts to power off. If
the processor pi is powered off, and it still meets the SLA
constraint, then we can keep trying to power off other
processors which belong to the current processor type,
otherwise we have to undo this operation and try to
power off a processor with a lower ecs value until all
processor types are handled successfully. One advantage of
Algorithm 3 is that the approach can minimise the number
of high power processors used. Another advantage of
Algorithm 3 is that the approach can achieve higher energy
efficiency by Algorithm 4.

Having finished the process of powering off, some tasks
are migrated from an inefficient processor to an efficient
processor by the Algorithm 4. In the process of migration, if
a task is placed on the other processor can bring an energy
saving effect, then the task should be migrated.

6 Y. Liu et al.

Algorithm 4 Migrating tasks

Require: ℑ, £, μ, P, G.

Ensure: .′ℑ

1 mark all tasks as unexamed,
2 update the latest finish time of task vexit to £ × (μ + 1),
3 rank the finish time of tasks into a sequence by a

non-decreasing order and let FT represent the sequence,
4 while FT is not null do
5 task vi = FT.pop(),
6 let pk represent the assigned processor to task vi,
7 calculate lft(vi, pk) by equation (6),
8 calculate lst(vi, pk) by equation (7),
9 end while
10 while ℑ is not null do
11 popup the unexamed task vi with the earliest start time

from ℑ,
12 let pk denote the current assigned processor for vi,
13 for each pn in P do
14 if the processor pn is powered off then
15 continue,
16 else if assigning pn to vi meets equation (9) then
17 let pk = pn,
18 end if
19 end for
20 assign task vi to the processor pk,
21 mark task vi as examed,
22 mark () ,imiip vv

23 end while

The migratable task vi assigned on the processor pk is the
one which satisfies equation (9):

(), ,, 0

, ,0

, _

()()
1;

() ()
(,) () (,);

 ()
(,) (,)

wattwatt i n i k ni n n idlelevel
watt watt

i k k i k klevel idle

i n i σ l

σ i

i n τ n

ω ω type pω type p
ω type p ω type p
eft v p e lst v p

v succ v
eft v p lst v p

−

−

− ××
+ ≤

× ×

+ ≤

∈
≤

ψ

;

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 (9)

where pn is the new processor mapped for vi, ()watt
n idletype p is

the idle power value of pn, if pl = pn, then ψ(ei,σ) = 0, and vτ
is the earliest unexamed task assigned on the processor pn.

In Algorithm 4, each task vi is examined one by one, if
there is a processor pn which matches with the task vi more
efficient and meets the constraints, then the Algorithm 4
will update the processor of the match with pn, otherwise it
will keep the original match unchanged. Moreover, the
MIIP of each task vi is recorded to provider convenience for
post-process. Having done that, all migratable tasks are
processed and the current process of the optimisation is
finished. As a supplement of the EALS algorithm, the
Algorithm 4 will be able to help the EALS get a better

performance in communication bounded or low parallelism
applications.

4.3 Task slacking phase

Having finished the first two phases of EALS, we can get an
intermediate schedule of the DAG. Algorithm 5 aims to
minimise the total energy consumption by slacking the tasks
of an application. In order to calculate the slack time
between two tasks, we first need to obtain the latest finish
time of the tasks by equation (6). In Algorithm 5, one of the
most important operations is to determine the frequency
level of each task. Considering the earliest start time of each
task vi is always overlapped with the latest finish time of
task vj which is the latest task assigned ahead of vi on the
same processor pk, and the start time of task vi is subject to
the task vmiip(vi), we have to balance the constraints to obtain
a good energy saving effect. So we update the slack time of
task being processed by equation (10).

()

,

,

, ,

() (),

()
 (,)

 (,), (,)

(,) (,)
 ,

(,) , if () ();

, (), oi

i

i k i k

i k i k

j k i k i k

i k j k

i k l k

miip v l miip vi i

uslack v
lft v p ω

max max est v p est v p

lft v p est v p ω
ω ω

est v p ecs p ecs p
lft v p e

= −

⎛
− ⎜⎜

⎝
− ×

+
+

<

+ψ
,

therwise;
⎞⎧⎪
⎟⎨ ⎟⎪⎩ ⎠

 (10)

where vj is the latest task assigned ahead of vi on pk, pl is the
processor assigned to () .imiip vv Once the uslack(vi) > 0 is
determined, the ideal operating frequency of vi on the
processor pk can be calculated by

, 0

,

()
() ,

()

frequency
i k k level

ideal i
i k i

ω type p
f v

ω uslack v
−×

=
+

 (11)

Then the running frequency of vi can be determined by

()() () (),

frequency
run i k ideal ilevel nf v min type p f v

n P State
−= ≥

∈ −
 (12)

where P − State is the set of frequency levels.
Consequently, the execution time of task vi is updated to

0
,

()
() .

()

frequency
k level

exe i i k
run i

type p
T v ω

f v
−= × (13)

So, the start and finish time of task vi on the processor pk
can be updated to [lft(vi, pk) − Texe(vi), lft(vi, pk)].

From Algorithm 5 we can see that the unprocessed task
vi with largest lft(vi, pk) is processed first in a loop, where pk
is the processor assigned to vi. Then the slack time of task vi
is determined by equation (10). If the task vi involves
overlapping with the nearest task vj assigned ahead of vi,
then the overlapped area is proportioned by their
computation cost. In the meanwhile, if the ()imiip vv is

 Energy aware list-based scheduling for parallel applications in cloud 7

assigned on a processor with higher effective computation
score, the equation (10) will allocate more space to the

() .imiip vv Having determined the slack time of task vi, the
running frequency of vi can be calculated by equations (11)
and (12). At last, a push operation is used to ensure a more
reasonable assignment. Algorithm 5 can deal with time slots
appropriately, so it can reduce significant amount of energy
consumption in a wide range of applications.

Algorithm 5 Slacking tasks

Require: ,′ℑ £, μ, P, G.

Ensure: ℑ.
1 mark all tasks as unprocessed,
2 for ′ℑ is not null do

3 popup the unprocessed task vi with the largest finish
time from ;′ℑ let pk denote the assigned
processor for vi,

4 calculate lft(vi, pk) by equation (6),
5 calculate uslack(vi) by equation (10),
6 if uslack(vi) > 0 then
7 calculate the fideal(vi) by equation (11),
8 pick frun(vi) by equation (12),
9 calculate Texe(vi) by equation (13),
10 else
11 set Texe(vi) = ωi,k,
12 end if
13 update the start and finish time of task vi,
14 mark task vi as processed,
15 end for
16 mark all tasks as unprocessed,
17 while there are unprocessed tasks do
18 pick the unprocessed task vi with the earliest start

time,
19 assign vi on the mapped processor as early as possible,

 push task vi forward,

20 update the start and finish time of task vi,
21 mark task vi as processed,
22 end while

4.4 Time complexity of EALS

The time complexity of EALS is expressed in terms of the
number of nodes |V | = n, and the number of processors
|P| = m. The task mapping can be done in O(m × n2). The
complexity of Algorithm 3 is O(m2 × n2). The complexity of
Algorithm 5 is bounded by O(n2). So the overall time
complexity of EALS is O(m2 × n2).

5 Performance evaluation

In this section, we present the simulation results obtained
from our EALS algorithm. We compare the EALS heuristic
with two recently proposed algorithms, EES (Huang et al.,
2012) and ETS (Wang et al., 2013). The EES algorithm
slacks the room for the non-critical tasks and schedules the
tasks nearby running on a uniform frequency for global
optimality, and it still meets the performance-based SLA.
The ETS algorithm evenly distributes the slack obtained by
makespan extension to critical tasks, and then slacks the
room for the non-critical tasks. For better comparison, we
take the output of Algorithm 2 as the initial input for the
three algorithms.

The performance is measured in terms of the
total energy consumption. Here, we define a parameter
energy-consumption-ratio (ECR) as the energy consumption
metric:

,
()

total

total

EECR
E ees

= (14)

where Etotal(ees) is the total energy consumption of the EES
algorithm, and Etotal is the total energy of a compared
algorithm. The makespan extension is determined by:
makespan ≤ (1 + μ) × makespanbest, where makespanbest is
the schedule length of Algorithm 2. We present
experimental results for makespan extension ratios equal to
0.00 (no extension), 0.05, 0.10, 0.15, 0.20 and 0.25,
respectively.

The random generated application graphs and two
real-world application graphs are utilised to evaluate
the performance of the proposed algorithm. There are
500 random graphs generated for each scenario and we take
the average ECR as final results in order to avoid scattering
effects.

5.1 Randomly generated application graphs

The random generated application graphs include three
fundamental characteristics:

1 n: the size of DAG

2 CCR: communication to computation cost ratio

3 λ: parallelism factor (Tang et al., 2010; Mei et al.,
2014).

In our experiments, the number of tasks in a DAG is
selected from the set {32, 64, 100, 200, 400, 800}, the
communication to computation cost ratio is determined by
the set {0.2, 0.5, 1.0, 2.0, 5.0}, and the parallelism factor is
picked from the set {0.2, 0.5, 1.0, 2.0, 5.0}.

Figures 1 and 2 present the first two set of experiments
compared to average ECR of the algorithms with respect to
various number of tasks. Based on the observations from the
two set of results, we can find that the proposed EALS

8 Y. Liu et al.

algorithm is able to decrease the total energy consumption
with the determined performance constraint. The EALS
algorithm obtains more energy saving with the increase of
extension factor under the same configurations. For
instance in Figure 1(a), the average ECR of EALS is less
than the EES and ETS algorithms by: (3.92%, 3.05%),
(8.11%, 6.54%), (12.96%, 13.47%), (18.91%, 19.84%),
(22.35%, 23.34%), and (23.30%, 24.91%), for value of
extension factor of 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25,
respectively. From Figure 2, we can see that the EALS
approach consume less energy when the number of
tasks is low. Since the EALS can power off some high
energy-consumption processors guided by the heuristic
strategy. As the number of tasks growth, there is only a few
of processors can be powered off, so the total energy
consumption is less distinct than otherwise. But the EALS
heuristic still outperforms the EES and ETS algorithms. For
instance in Figure 2, when the number of tasks is 800, the
average ECR of our approach is less than the EES and ETS
algorithms by: (1.65%, 1.38%), (1.03%, 2.04%), (3.66%,
6.35%), (9.29%, 13.29%), (7.85%, 13.24%), and (12.97%,
19.31%), for value of extension factor of 0.05, 0.10, 0.15,
0.20, and 0.25, respectively.

Figure 1 The average ECRs with respect to various numbers of
tasks (CCR = 1.0, P = 4, λ = 1.0) (see online version
for colours)

(a)

(b)

Figure 2 The average ECRs with respect to various numbers of
tasks (CCR = 1.0, P = 9, λ = 1.0) (see online version
for colours)

(a)

(b)

(c)

(d)

 Energy aware list-based scheduling for parallel applications in cloud 9

The third set of experiments compare the average ECR of
the algorithms with respect to CCRs and parallelism factors,
which is shown in Figure 3. In Figure 3, we can find that the
performance of EALS algorithm improve with the increase
of CCR, since a high CCR application can be considered as
a communication-intensive application and our heuristic
approach can assign tasks on a few of processors effectively
that eliminates a lot of communication costs. A low
parallelism factor λ leads to a deeper DAG, so the
Algorithm 2 assign all tasks on a few processors. However,
the EES and ETS algorithms do not consider the other
underutilised processors. Instead, our approach can
minimise the number of high power processors used and
power off the idle processors. Consequently, the proposed
algorithm can reduce more energy consumption in a system.

Figure 3 The average ECRs with respect to CCRs and
parallelism factors (μ = 0.10, P = 9) (see online
version for colours)

(a)

(b)

5.2 Application graphs of real-world problems

In this subsection, we consider application graphs of several
real-world problems. The first two real-world applications
are respectively the Gaussian elimination application
(Cormen et al., 2009), which is a 5 × 5 matrix; and the
molecular dynamic code (Kim and Browne, 1988), which
consists of 41 tasks. The latter two real-world applications
are respectively the fork-join (Yang and Gerasoulis, 1994),
which consists of 18 tasks; and the partition algorithm (Li,
2012), which consists of 22 tasks. We compare the average
ECRs of algorithms with various extension factors in
Figures 4 and 5 respectively.

Figure 4 The average ECRs for the Gaussian elimination and
molecular dynamic code (CCR = 1.0, P = 4) (see online
version for colours)

(a)

(b)

Figure 5 The average ECRs for the fork-join and partition
algorithm (CCR = 1.0, P = 4), (a) fork-join (degree = 3,
depth = 1 and width = 3) (b) a partition algorithm
(width = 2 and height = 3) (see online version
for colours)

(a)

(b)

10 Y. Liu et al.

From Figure 4, we can observe that the EALS approach
consumes less energy than the EES and ETS algorithms,
and the results are consistent with the results of randomly
generated applications. With the increasing on extension
factor, the energy-saving effect of EALS is increasingly
obvious. For instance in Figure 4(a), the average ECR
of the EALS approach is less than the EES and ETS
algorithms by: (9.23%, 7.94%),(16.90%, 15.32%),(23.45%,
23.54%),(29.14%, 29.85%),(34.04%, 33.42%) and (43.96%,
43.81%), for value of extension factor of 0, 0.05, 0.10, 0.15,
0.20 and 0.25, respectively. We can find out that EALS
comes to the best scene when the extension factor is equal
to 0.25. Since the room for improvement with the increase
in extension value, the EALS algorithm can deal with these
tasks in an effective manner. The energy-saving effect of
scheduling a Gaussian elimination application is superior to
the effect of scheduling a molecular dynamic application,
since the number of tasks in a Gaussian elimination
application is lower than those of the counterpart, that
makes more processors powered off by the proposed
heuristic.

Figure 5 presents the average ECR of the last two real
applications. The experimental results reveal that the
proposed strategy can reduce significant amount of energy
consumption compared with other algorithms. For instance
in Figure 5(a), the average ECR of the proposed approach is
less than the EES and ETS algorithms by: (5.50%, 4.55%),
(10.45%, 8.82%), (15.73%, 15.25%), (19.24%, 19.96%),
(21.80%, 22.55%) and (23.16%, 23.93%), for value of
extension factor of 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25,
respectively. Meanwhile, the average ECR of several
algorithms have the same trend in fork-join applications and
partition applications. These results benefit most from the
characteristic of heuristic scheduling strategy.

6 Conclusions and future work

Energy efficiency has become one of the most crucial
research issues in cloud data centres. A good energy aware
scheduling strategy is the key to reduce the total energy
consumption in systems. In this paper, we propose a
novel energy aware list-based scheduling algorithm for
parallel applications in the context of SLA on DVS-enabled
cloud data centres. We optimise the initial schedule by
powering off part of processors and migrating some high
energy-consumption tasks to an appropriate processor, then
we take advantage of the DVS technique to further optimise
the schedule. In order to prove the validity of the proposed
EALS algorithm, we have performed a large number of
experiments. For example, randomly generated graphs and
several real-world applications are examined in our
experiments. The experimental results show that EALS can
reduce more energy consumption compared with two
existing algorithms, and it still meets SLA.

In the further, the system reliability will be considered.
We will optimise the EALS algorithm further and apply this
algorithm to a Hadoop cloud system.

Acknowledgements

The research was partially funded by the Key Program of
National Natural Science Foundation of China (Grant
Nos. 61133005, 61432005), and the National Natural
Science Foundation of China (Grant Nos. 61370095,
61472124).

References
Bansal, S., Kumar, P. and Singh, K. (2003) ‘An improved

duplication strategy for scheduling precedence constrained
graphs in multiprocessor systems’, Parallel and Distributed
Systems, IEEE Transactions on, Vol. 14, No. 6, pp.533–544.

Bansal, S., Kumar, P. and Singh, K. (2005) ‘Dealing with
heterogeneity through limited duplication for scheduling
precedence constrained task graphs’, Journal of Parallel and
Distributed Computing, Vol. 65, No. 4, pp.479–491.

Benini, L., Bogliolo, A. and De Micheli, G. (2000) ‘A survey
of design techniques for system-level dynamic power
management’, Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, Vol. 8, No. 3, pp.299–316.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009)
Introduction to algorithms, MIT press. Dargie, W. (2012)
‘Dynamic power management in wireless sensor networks:
state-of-the-art’, Sensors Journal, IEEE, Vol. 12, No. 5,
pp.1518–1528.

Garey, M.R. and Johnson, D.S. (1979) ‘Computers and
intractability: a guide to the theory of np-completeness’.

Hagras, T. and Janeček, J. (2005) ‘A high performance, low
complexity algorithm for compile-time task scheduling in
heterogeneous systems’, Parallel Computing, Vol. 31, No. 7,
pp.653–670.

Huang, Q., Su, S., Li, J., Xu, P., Shuang, K. and Huang, X. (2012)
‘Enhanced energy-efficient scheduling for parallel
applications in cloud’, in Proceedings of the 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGRID 2012), IEEE Computer Society,
pp.781–786.

Ilyas, M.U. and Khan, S.A. (2001) ‘A clustering heuristic
algorithm for scheduling periodic and deterministic tasks on a
multiprocessor system’, in Multi Topic Conference, IEEE
INMIC, Technology for the 21st Century, Proceedings, IEEE
International, IEEE, pp.1–5.

Kim, S.J. and Browne, J.C. (1988) ‘A general approach to
mapping of parallel computation upon multiprocessor
architectures’, in International Conference on Parallel
Processing, Vol. 3, p.8.

Kwok, Y-K. and Ahmad, I. (1996) ‘Dynamic critical-path
scheduling: an effective technique for allocating task graphs
to multiprocessors’, Parallel and Distributed Systems, IEEE
Transactions on, Vol. 7, No. 5, pp.506–521.

Kwok, Y-K. and Ahmad, I. (1999) ‘Static scheduling algorithms
for allocating directed task graphs to multiprocessors’, ACM
Computing Surveys (CSUR), Vol. 31, No. 4, pp.406–471.

Li, K. (2012) ‘Scheduling precedence constrained tasks with
reduced processor energy on multiprocessor computers’,
Computers, IEEE Transactions on, Vol. 61, No. 12,
pp.1668–1681.

Liang, A., Xiao, L. and Ruan, L. (2013) ‘Adaptive workload
driven dynamic power management for high performance
computing clusters’, Computers & Electrical Engineering,
Vol. 39, No. 7, pp.2357–2368.

Comment [t2]: Author: Please provide
the journal title where the paper/article was
taken.

Author: Please provide the volume number,
issue number and page numbers.

Energy aware list-based scheduling for parallel applications in cloud 11

Mehta, N. and Amrutur, B. (2012) ‘Dynamic supply and threshold
voltage scaling for CMOs digital circuits using in-situ power
monitor’, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, Vol. 20, No. 5, pp.892– 901.

Mei, J. and Li, K. (2012) ‘Energy-aware scheduling algorithm with
duplication on heterogeneous computing systems’, in Grid
Computing (GRID, ACM/IEEE 13th International Conference
on, IEEE, pp.122–129.

Mei, J., Li, K. and Li, K. (2014) ‘A resource-aware scheduling
algorithm with reduced task duplication on heterogeneous
computing systems’, The Journal of Supercomputing,
Vol.68, No.3, pp.1347–1377.

Mittal, S. (2014) ‘A survey of techniques for improving energy
efficiency in embedded computing systems’, International
Journal of Computer Aided Engineering and Technology,
Vol. 6, No. 4, pp.440–459.

Niu, L. and Quan, G. (2013) ‘Leakage-aware scheduling for
embedded real-time systems with (m, k)-constraints’,
International Journal of Embedded Systems, Vol. 5, No. 4,
pp.189–207.

Piyatamrong, B., Ohara, S. and Kantakajorn, S. (2000) ‘GTCs:
a greedy task clustering and scheduling algorithm for
distributed memory processor architecture’, in High
Performance Computing in the Asia-Pacific Region,
Proceedings, The Fourth International Conference/Exhibition
on, IEEE, Vol. 1, pp.310–314.

Quan, D.M. (2007) ‘Error recovery mechanism for grid-based
workflow within SLA context’, International Journal of High
Performance Computing and Networking, Vol. 5, No. 1,
pp.110–121.

Shao, Z., Zhuge, Q., Zhang, Y. and Sha, E.H. (2004) ‘Algorithms
and analysis of scheduling for low power high-performance
DSP on VLIW processors’, International Journal of High
Performance Computing and Networking, Vol. 1, No. 1,
pp.4–16.

Tang, X., Li, K., Liao, G. and Li, R. (2010) ‘List scheduling with
duplication for heterogeneous computing systems’, Journal of
Parallel and Distributed Computing, Vol. 70, No. 4,
pp.323–329.

Terzopoulos, G. and Karatza, H.D. (2013) ‘Dynamic voltage
scaling scheduling on power-aware clusters under power
constraints’, in Distributed Simulation and Real Time
Applications (DS-RT, IEEE/ACM 17th International
Symposium on, IEEE, pp.72–78.

Topcuoglu, H., Hariri, S. and Wu, M-y. (2002)
‘Performance-effective and low-complexity task scheduling
for heterogeneous computing’, Parallel and Distributed
Systems, IEEE Transactions on, Vol. 13, No. 3, pp.260–274.

Wang, L., Khan, S.U., Chen, D., Ko lodziej, J., Ranjan, R.,
Xu, C-z. and Zomaya, A. (2013) ‘Energyaware parallel task
scheduling in a cluster’, Future Generation Computer
Systems, Vol. 29, No. 7, pp.1661–1670.

Wu, C-M., Chang, R-S. and Chan, H-Y. (2014) ‘A green
energy-efficient scheduling algorithm using the dvfs
technique for cloud datacenters’, Future Generation
Computer Systems, Vol. 37, pp.141–147.

Wu, J. and Wu, J-X. (2014) ‘An SRP-based energy-efficient
scheduling algorithm for dependent real-time tasks’,
International Journal of Embedded Systems, Vol. 6, No. 4,
pp.335–350.

Wu, M-Y. and Gajski, D.D. (1990) ‘Hypertool: a programming aid
for message-passing systems’, IEEE Transactions on Parallel
and Distributed Systems, Vol. 1, No. 3, pp.330–343.

Xiao, P. and Han, N. (2014) ‘A novel power-conscious scheduling
algorithm for data-intensive precedence constrained
applications in cloud environments’, International Journal of
High Performance Computing and Networking, Vol. 7, No. 4,
pp.299–306.

Yang, T. and Gerasoulis, A. (1994) ‘DSC: scheduling parallel
tasks on an unbounded number of processors’, Parallel and
Distributed Systems, IEEE Transactions on, Vol. 5, No. 9,
pp.951–967.

Zhong, X. and Xu, C-Z. (2007) ‘Energy-aware modeling and
scheduling for dynamic voltage scaling with statistical
real-time guarantee’, Computers, IEEE Transactions on,
Vol. 56, No. 3, pp.358–372.

