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Abstract: As the growth of energy consumption has been explosive in current data centres and 
cloud systems, it has drawn greater attention in academia, industry and government. Task 
scheduling as a core in systems, it has become an important method to reduce energy dissipation. 
This paper proposes an energy aware list-based scheduling algorithm called EALS for parallel 
applications in the context of service level agreement (SLA) on cloud data centres. First, the 
EALS algorithm comprehensively considers the high power processors to minimise the number 
of high power processors used. Then, the algorithm try to migrate some tasks from a high power 
processor to a low power processor for energy saving. Finally, the EALS algorithm takes a more 
efficient way to assign the time slots among tasks based on the dynamic voltage scaling (DVS) 
technique. To demonstrate the effectiveness of the EALS algorithm, randomly generated graphs 
and several real-world applications are tested in our experiments. The experimental results  
show that the EALS algorithm can save up to 43.96% energy consumption for various parallel 
applications as well as balance the scheduling performance. 
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1 Introduction 

The demand of social life prompts the emergency and 
development of information science, while the development 
of information science on human society life, production 
and technological progress plays a huge role. However, too 
much of a good thing can also be bad, the cost and 
operational expenses of cloud data centres have soared with 
the lasting increase in computing capacity. Energy 
consumption has increasingly become a critical concern for 
cloud data centres owing to their high operation cost, 
environmental impact, and low reliability. So it is 
significant to study the strategy of reducing energy 
consumption in data centres. 

Energy awareness for parallel applications has become a 
growing concern for a decade. There are two popular 
mechanisms for energy saving in data centres: the dynamic 
voltage scaling (DVS) (Mittal, 2014; Mehta and Amrutur, 
2012) and the dynamic power management (DPM) (Benini 
et al., 2000; Liang et al., 2013). The former achieves 
massive energy savings by dynamically adjusting processor 
supply voltages based on the computing load; and the latter 
optimises energy consumption by powering off the idle 
computing nodes at runtime. In order to use the DPM more 
efficiently, a scheduling scheme must consolidate tasks on a 
minimum set of computing nodes to power off some nodes. 
For the scheduling of precedence-constrainted applications, 
the DPM is not quite suitable for this case, because the idle 
slot between the execution of two tasks is usually short. 
Instead, the DVS is particularly suited for it. The problem of 
scheduling an application, usually expressed as directed 
acyclic graph (DAG) scheduling, is NP-hard in the general 
case (Garey and Johnson, 1979; Shao et al., 2004). 
Therefore, one of the challenges in computing systems is to 
develop scheduling that allocate the appropriate CPU time 
to the tasks of an application, especially with energy 
awareness in cloud data centres. There is a rich body of 
studies and investigations pertaining to energy savings use 
of the DPM or the DVS in computing systems. However, 
most of these approaches just take one of the mentioned 
technologies to reduce energy consumption. Consequently, 
these approaches cannot fully exploit the latent capacity of 
the two technologies, so these approaches consume more 
resources in computing systems. 

In this paper, we address the energy-aware scheduling  
of precedence-constrained parallel applications on a 
heterogeneous computing (HC) system and propose a novel 
scheduling algorithm that combines the DVS and the DPM, 
namely energy aware list-based scheduling (EALS) 
algorithm. Our objective is to minimise the total energy 
consumption of the tasks while it still meets the certain 
performance goals-based service level agreement (SLA) 
(Wang et al., 2013; Wu et al., 2014; Quan, 2007). The SLA 
is a contract between users and their service providers, 
guaranteeing the quantifiable quality of service at defined 
levels. Our algorithm mainly contains three stages: 

1 initial task mapping phase stage: ordering all tasks 
according to calculated priorities and assigning the 
tasks to corresponding processors 

2 DPM optimising and task migrating optimisation phase: 
powering off the processors guided by the ideology of 
DPM and migrating some of high energy-consuming 
tasks to a appropriate processor 

3 task slacking phase: scaling the frequency of tasks with 
a heuristic method. 

The main contributions of this paper are summarised as 
follows: 

• We develop a novel energy-aware scheduling 
algorithm. Within a given deadline, the proposed 
algorithm can distribute the tasks to a set of appropriate 
processors, reassign part of tasks, and allocate the time 
slots among tasks in an effective manner to reduce the 
total energy consumption as well as meet the 
performance requirements. 

• We demonstrate the effectiveness of EALS algorithm 
through extensive experiments. Experimental results 
show that the proposed algorithm can achieve 
outstanding energy-saving effects in a wide range of 
applications. 

• We analyse the factors which are affecting the 
performance of our algorithm. 

The rest of this paper is organised as follows. Section 2 
introduces background and related works. We describe the 
related model in Section 3. Section 4 presents the detail of 
our scheduling algorithm EALS. In Section 5, we compare 
our experimental results with two related algorithms. 
Finally, we conclude this paper and give an overview of 
future work in Section 6. 

2 Related work 

In this section, we review background and related work of 
traditional task scheduling and energy-aware scheduling in 
computing systems. 

2.1 Traditional task scheduling 

The problem of optimisation scheduling of HC systems has 
been researched extensively due to its high academic and 
practical significance. There are several typical 
classifications of DAG scheduling: list-based scheduling 
algorithms, cluster heuristics algorithms and duplication-
based algorithms, etc. The heterogeneous earliest finish time 
(HEFT) is a famous list-based algorithm with high 
performance and low complexity for HC systems 
(Topcuoglu et al., 2002). Many other list-based algorithms, 
such as modified critical path (MCP) (Wu and Gajski, 
1990), dynamic critical path (DCP) (Kwok and Ahmad, 
1996) and critical path on a processor (CPOP) (Topcuoglu 
et al., 2002) are classical. Cluster heuristics divide tasks of 
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an application into several subsets and then performs an 
order over each subsets individually. Some examples in this 
classification include dominant sequence cluster (DSC) 
(Yang and Gerasoulis, 1994), greedy task clustering and 
scheduling (GTCS) (Piyatamrong et al., 2000), clustering 
heuristic scheduling algorithm (CHSA) (Ilyas and  
Khan, 2001), and so on. In duplication-based algorithms, 
heterogeneous critical parents with fast duplicator (HCPFD) 
(Hagras and Janeček, 2005), selective duplication (SD) 
(Bansal et al., 2003), heterogeneous limited duplication 
(HLD) (Bansal et al., 2005) and heterogeneous earliest 
finish with duplication (HEFD) (Tang et al., 2010) are able 
to perform well in a system. 

2.2 Energy-aware scheduling 

In consideration of the serious energy-using situation and 
the lasting rapid growth in energy consumption of 
computing systems, energy-saving has become increasingly 
important. Therefore, lots of researchers have done  
much research work for reducing energy consumption  
for computing systems (Mei and Li, 2012; Zhong and Xu, 
2007; Xiao and Han, 2014; Huang et al., 2012; Niu and 
Quan, 2013; Dargie, 2012; Wang et al., 2013). Mei and  
Li (2012) proposed an energy-aware scheduling by 
minimising duplication (EAMD) algorithm. Dargie (2012) 
investigated aspects of power dissipation in a node; 
analysed the strengths and weaknesses of DVS and 
provided a comprehensive assessment of the DPM. Zhong 
and Xu (2007) discussed scheduling tasks with DVS on 
single-processor systems and obtained good results. For 
dependent real-time tasks, the blocking-time stealing (BTS) 
algorithm can able to achieve energy saving and it still 
satisfies the time constraints of tasks (Wu and Wu, 2014). 
Mei et al. (2014) proposed a resource-aware scheduling 
algorithm with duplications (RADS) to search and delete 
redundant task duplications dynamically during the 
scheduling process. Huang et al. (2012) developed an 
enchanted energy-efficient scheduling (EES) algorithm with 
SLA to save energy consumption. To reduce both the 
dynamic and leakage energy consumption, two energy 
efficient scheduling approaches are proposed (Niu and 
Quan, 2013). Wang et al. (2013) proposed a power aware 
task clustering (PATC) algorithm, a power aware list-based 
scheduling (PALS) algorithm and an energy-performance 
tradeoff scheduling (ETS) algorithm, the effectiveness of 
their algorithms are justified by a simulation study. 

3 Models 

In this section, we introduce a computing system model and 
an application model. 

3.1 Computing system model 

The system comprises a set P of m heterogeneous 
processors, which are fully interconnected by a 
communication links. And our target system is denoted by  

P = {pi|0 ≤ i ≤ m − 1}, where pi is DVS-enabled and it runs 
in varying clock speeds. Three types of processors are 
considered in our simulation experiments and each 
processor has its own performance state (PState), which is 
shown in Table 1 (Terzopoulos and Karatza, 2013).  
Factors like the processor architecture, the task processing 
requirement and their compatibility decide the capacity of a 
processor in processing a task. 

Table 1 Performance and power consumption 

P-state-watts Frequency 
(GHz)  AMD Opteron Intel Pentium M VIA C7-M 

2.6  P0–95 - - 
2.4  P1–90 - - 
2.2  P2–76 - - 
2.0  P3–65 - P0–20 
1.8  P4–55 - P1–18 
1.6  - P0–25 P2–15 
1.4  - P1–17 P3–13 
1.2  - P2–13 - 
1.0  P5–32 P3–10 P4–10 
0.8  - P4–8 P5–7 
0.6  - P5–6 P6–6 
0.4  - - P7–5 
Idle  15 5 0.1 

Table 1 shows that the energy consumption model is 
different from a continuous energy model, which is that 
each processor of our system run only on a particular 
frequency points of the set and we cannot change the 
frequency of a processor continuously. The energy 
consumption of processor pi is mainly comprise of active 
energy consumption ,

i
p activeE  and idle energy consumption 

, .i
p idleE  So the total energy consumption of a system can be 

defined as: 

( )
1

, ,
0

.
m

i i
total p active p idle

i

E E E
−

=

= +∑  (1) 

3.2 Application model 

In general, a parallel application can be represented by a 
DAG and we can use G = G(V,E, Ω, Ψ) to formulate it, 
where V = {vi|0 ≤ i ≤ n − 1} represents the tasks of an 
application, E = {ei,j|0 ≤ i, j ≤ n − 1} represents  
the dependencies among tasks, Ω = {ωi,k|0 ≤ i ≤ n − 1,  
0 ≤ k ≤ m − 1} denotes the computation cost of task vi on 
processor pk, and Ψ = {ψ(ei,j)|0 ≤ i, j ≤ n − 1} denotes the 
communication cost between task vi and vj. A task with no 
parent is called an entry task ventry, and vexit represents an exit 
task with no children. A parent which completes the 
communication at latest time is called the most influential 
immediate parent (MIIP) of the task expressed as ( ) .imiip vv  
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Obviously, eft(vi, pk), the earliest finish time of task vi on 
processor pk, is mainly determined by the ( ) .imiip vv  The 
earliest start time, est(vi, pk), and the eft(vi, pk) of a task vi on 
a processor pk can be defined as: 

( )
( )

.

, ,

( ,  )
0                                                        ,  if   ;

min . ,

 max ( ,  ) ( )
( )

                                 

i k

i entry

n
k available

ς l i k ς i

ς i

est v p
v v

idle start

max est v p ω e
v pred v

=

⎛ ⎞
⎜ ⎟

= + +⎜ ⎟
⎜ ⎟⎜ ⎟∈⎝ ⎠

ψ

                           ,  otherwise;

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 (2) 

,( ,  )  ( ,  ) ,i k i k i keft v p est v p ω= +  (3) 

where . .n
k availableidle start  is the start time of the nth idle slack 

meeted ,. .. . , ( )n n
i k ik available k availableidle end idle start ω pred v− ≥  

is the set of immediate parent of vi, and if pk = pl, then 
ψ(eς,i) = 0. 

A list-based scheduling algorithm usually generates a 
task priority in first and orders all tasks according to 
calculated priorities prior to assignment. In this paper, we 
adopt the bottom level (b level) method to calculate the task 
priority. The b level of a task vi is the length of a longest 
path from vi to an exit task (Kwok and Ahmad, 1999). Let 
rankb(vi) represent the b level value of task vi, then rankb(vi) 
can be recursively calculated by 

( )

( )
( )( ),

 

                                       , if    ;

max ( )

                                               ,  otherwise;
σ i

b i

exit i exit

i σ σi
v succ v

rank v

ω v v

e rank vω
∈

⎧ =⎪⎪= + +⎨
⎪
⎪⎩

ψ
 (4) 

where succ(vi) is the set of immediate children of vi, and iω  

is the average computation cost of task vi. The iω  value of 

task vi can be calculated by 
1

,
0

1 ,
m

i i k
k

ω ω
m

−

=

= ∑  (5) 

where m is the number of processors. 
There will probably be a lot of idle slots among tasks on 

processors due to the precedence constraints. We can 
optimise the total energy consumption by taking full 
advantage of these slots. In the process of energy 
optimisation, we usually need to calculate the latest finish 
time of tasks. The latest finish time of task vi on a processor 
pk can be defined as 

( )
( )

,

, ,

( ,  )
                              ,  if   ;

( ,  ) ,
min min ( ,  ) ( )

                                              ,  otherwise;

l

i k

i exit

τ k τ k

σ l σ p i σ

σ i

lft v p
makespan v v

lft v p ω
lft v p ω e

v succ v

=⎧
⎪

⎛ ⎞−⎪ ⎜ ⎟⎪= − −⎜ ⎟⎨
⎜ ⎟⎪ ∈⎝ ⎠

⎩

ψ

⎪
⎪

 (6) 

where makespan is the schedule length of parallel 
applications, vτ is the task assigned next to vi on the same 
processor pk, vσ is the task assigned on the processor pl, and 
if pk = pl, then ψ(ei,σ) = 0. Then, the latest start time of task 
vi on a processor pk can be calculated by 

,( ,  )  ( ,  ) .i k i k i klst v p lft v p ω= −  (7) 

4 Proposed algorithm 
In this section, we present the details of our algorithm 
EALS. As the overall scheduling processes in EALS, 
Algorithm 1 aims at minimising the total energy 
consumption as much as possible with the determined SLA 
constrain. The EALS algorithm has three major phases: 

1 initial task mapping phase 

2 DPM optimising and task migrating optimisation phase 

3 task slacking phase. 

Algorithm 1 Energy aware list-based scheduling 

Require: μ, P, G. 

Ensure: ℑ.   A Schedule, 

1 call Algorithm 2 to generate the initial schedule ℑ, 
2 call Algorithm 3 to optimise the schedule and output the 

intermediate result ;′ℑ  

3 call Algorithm 5 to further optimise the schedule and 
update the result ℑ. 

4.1 Initial task mapping phase 

This subsection discusses the initial allocation of the tasks. 
The most important work in initialisation is to calculate the 
task priority, order the tasks, and schedule one by one. Here 
we employ the Algorithm 2 to map the tasks of an 
application to the processor set P. 

The output of Algorithm 2 can be considered as a initial 
schedule, which is taken as an input of the next optimising 
process. 

 
 
 
 
 
 



 Energy aware list-based scheduling for parallel applications in cloud 5 

Algorithm 2 Task mapping 

Require: P, G. 

Ensure: ℑ, £.  ℑ: A Schedule, £: makespan, 

1 for each task vi in G do 
2  calculate iω  by equation (5), 

3 end for 
4 for each task vi in G do 
5  calculate rankb(vi) by equation (4), 
6 end for 
7 rank the tasks into a sequence by a non-decreasing order 

based on b level and let RANK represent the sequence, 
8 while RANK is not null do 
9  task vi = RANK.pop(), 
10  for each processor pk in P do 
11   calculate est(vi, pk) by equation (2), 
12   calculate eft(vi, pk) by equation (3), 
13  end for 
14  assign task vi to the processor pk that minimises finish 

time of task vi, 
15 end while 

4.2 DPM optimising and task migrating optimisation 
phase 

Considering the lasting increase of energy consumption in 
cloud data centres, reducing the total energy consumption is 
imminent in systems. So green computing has been paid 
attention increasingly in recent years. A SLA, contracted 
between a service provider and a user, is used to  
guarantee quantifiable performance at defined levels. In the 
context of scheduling, a SLA means an acceptable 
performance loss to users, that is, a service provider can 
reduce the total energy consumption by extending the 
makespan in a system. Scheduling tasks without increasing 
the makespan can be referred as the ‘best-effort scheduling 
issue’, let makespanbest represent the makespan of this case. 
In this paper, finding a feasible schedule which tries to 
minimise the total energy consumption subjecting to 
makespan ≤ (1 + μ) × makespanbest, where μ is the 
makespan extension factor determined by the SLA and 
meeted μ ≥ 0. The detailed optimisation process is presented 
by Algorithm 3. 

In order to get better energy saving effects, the effective 
computation score of each processor is calculated by 
equation (8). 

0

0

( )
( ) ,

( )

watt
i level

i frequency
i level

type p
ecs p

type p
−

−

=  (8) 

where type(pi) is one of the three processor types in our 
system model, 0( )watt

i leveltype p −  represents the power 

consumption of processor pi at level-0, and 0( ) frequency
i leveltype p −  

is the corresponding frequency at level-0. Having calculated 
the ecs(pi) of each processor pi, we sort ecs(pi)s into a 

sequence by a non-increasing order of effective computation 
score. Note that in our system model, the lower the ecs(pi) 
is, the more effective the processor is. 

Algorithm 3 Optimising a schedule with DPM 

Require: ℑ, £, μ, P, G. 

Ensure: .′ℑ    :′ℑ  Intermediate Schedule, 

1 for each pi in P do 
2  calculate ecs(pi) by equation (8), 
3 end for 
4 sort ecs(pi)s with non-increasing order, let ecsSeq denote 

this sequence, 
5 let currProType = type(ecsSeq.peekFirst), 
6  current processor type, 

7 while makespan ≤ £ × (μ + 1) do 
8  pick a processor pk belonging to the currProType type 

from the ecsSeq, 
9  power off the processor pk, 
10  call Algorithm 2 to reschedule the tasks, 
11  if makespan ≤ £ × (μ + 1) then 
12   update the ℑ with current assignments, 
13  else 
14   power on the processor pk, 
15   currPro ype + +, 
16  end if 
17  if all processors of currProType type are powered off 

then 
18   currProType + +, 

19  end if 
20  if currProType does not exist then 
21   break, 
22  end if 
23 end while 
24 call Algorithm 4 to generate the output, ;′ℑ  

In Algorithm 3, the processor pi with a high ecs(pi) value 
can be considered one of the first attempts to power off. If 
the processor pi is powered off, and it still meets the SLA 
constraint, then we can keep trying to power off other 
processors which belong to the current processor type, 
otherwise we have to undo this operation and try to  
power off a processor with a lower ecs value until all 
processor types are handled successfully. One advantage of  
Algorithm 3 is that the approach can minimise the number 
of high power processors used. Another advantage of 
Algorithm 3 is that the approach can achieve higher energy 
efficiency by Algorithm 4. 

Having finished the process of powering off, some tasks 
are migrated from an inefficient processor to an efficient 
processor by the Algorithm 4. In the process of migration, if 
a task is placed on the other processor can bring an energy 
saving effect, then the task should be migrated. 



6 Y. Liu et al.  

Algorithm 4 Migrating tasks 

Require: ℑ, £, μ, P, G. 

Ensure: .′ℑ  

1 mark all tasks as unexamed, 
2 update the latest finish time of task vexit to £ × (μ + 1), 
3 rank the finish time of tasks into a sequence by a  

non-decreasing order and let FT represent the sequence, 
4 while FT is not null do 
5  task vi = FT.pop(),  
6  let pk represent the assigned processor to task vi, 
7  calculate lft(vi, pk) by equation (6), 
8  calculate lst(vi, pk) by equation (7), 
9 end while 
10 while ℑ is not null do 
11  popup the unexamed task vi with the earliest start time 

from ℑ, 
12  let pk denote the current assigned processor for vi, 
13  for each pn in P do 
14   if the processor pn is powered off then 
15    continue, 
16   else if assigning pn to vi meets equation (9) then 
17    let pk = pn, 
18   end if 
19  end for 
20  assign task vi to the processor pk, 
21  mark task vi as examed, 
22  mark ( ) ,imiip vv  

23 end while 

The migratable task vi assigned on the processor pk is the 
one which satisfies equation (9): 

( ), ,, 0

, ,0

, _

( )( )
1;

( ) ( )
( ,  ) ( )  ( ,  );

                              ( )
( ,  )  ( ,  )

wattwatt i n i k ni n n idlelevel
watt watt

i k k i k klevel idle

i n i σ l

σ i

i n τ n

ω ω type pω type p
ω type p ω type p
eft v p e lst v p

v succ v
eft v p lst v p

−

−

− ××
+ ≤

× ×

+ ≤

∈
≤

ψ

;

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 (9) 

where pn is the new processor mapped for vi, ( )watt
n idletype p  is 

the idle power value of pn, if pl = pn, then ψ(ei,σ) = 0, and vτ 
is the earliest unexamed task assigned on the processor pn. 

In Algorithm 4, each task vi is examined one by one, if 
there is a processor pn which matches with the task vi more 
efficient and meets the constraints, then the Algorithm 4 
will update the processor of the match with pn, otherwise it 
will keep the original match unchanged. Moreover, the 
MIIP of each task vi is recorded to provider convenience for 
post-process. Having done that, all migratable tasks are 
processed and the current process of the optimisation is 
finished. As a supplement of the EALS algorithm, the 
Algorithm 4 will be able to help the EALS get a better 

performance in communication bounded or low parallelism 
applications. 

4.3 Task slacking phase 

Having finished the first two phases of EALS, we can get an 
intermediate schedule of the DAG. Algorithm 5 aims to 
minimise the total energy consumption by slacking the tasks 
of an application. In order to calculate the slack time 
between two tasks, we first need to obtain the latest finish 
time of the tasks by equation (6). In Algorithm 5, one of the 
most important operations is to determine the frequency 
level of each task. Considering the earliest start time of each 
task vi is always overlapped with the latest finish time of 
task vj which is the latest task assigned ahead of vi on the 
same processor pk, and the start time of task vi is subject to 
the task vmiip(vi), we have to balance the constraints to obtain 
a good energy saving effect. So we update the slack time of 
task being processed by equation (10). 

( )

,

,

, ,

( ) ( ),

( ) 
 ( ,  )

   ( ,  ), ( ,  )

( ,  ) ( ,  )
  ,

( ,  )                     ,  if ( )  ( );
    

,  ( ),  oi

i

i k i k

i k i k

j k i k i k

i k j k

i k l k

miip v l miip vi i

uslack v
lft v p ω

max max est v p est v p

lft v p est v p ω
ω ω

est v p ecs p ecs p
lft v p e

= −

⎛
− ⎜⎜

⎝
− ×

+
+

<

+ψ
,

therwise;
⎞⎧⎪
⎟⎨ ⎟⎪⎩ ⎠

 (10) 

where vj is the latest task assigned ahead of vi on pk, pl is the 
processor assigned to ( ) .imiip vv  Once the uslack(vi) > 0 is 
determined, the ideal operating frequency of vi on the 
processor pk can be calculated by 

, 0

,

( )
( ) ,

( )

frequency
i k k level

ideal i
i k i

ω type p
f v

ω uslack v
−×

=
+

 (11) 

Then the running frequency of vi can be determined by 

( )( )  ( ) ( ),

              

frequency
run i k ideal ilevel nf v min type p f v

n P State
−= ≥

∈ −
 (12) 

where P − State is the set of frequency levels. 
Consequently, the execution time of task vi is updated to 

0
,

( )
( )  .

( ) 

frequency
k level

exe i i k
run i

type p
T v ω

f v
−= ×  (13) 

So, the start and finish time of task vi on the processor pk 
can be updated to [lft(vi, pk) − Texe(vi), lft(vi, pk)]. 

From Algorithm 5 we can see that the unprocessed task 
vi with largest lft(vi, pk) is processed first in a loop, where pk 
is the processor assigned to vi. Then the slack time of task vi 
is determined by equation (10). If the task vi involves 
overlapping with the nearest task vj assigned ahead of vi, 
then the overlapped area is proportioned by their 
computation cost. In the meanwhile, if the ( )imiip vv  is 
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assigned on a processor with higher effective computation 
score, the equation (10) will allocate more space to the 

( ) .imiip vv  Having determined the slack time of task vi, the 
running frequency of vi can be calculated by equations (11) 
and (12). At last, a push operation is used to ensure a more 
reasonable assignment. Algorithm 5 can deal with time slots 
appropriately, so it can reduce significant amount of energy 
consumption in a wide range of applications. 

Algorithm 5 Slacking tasks 

Require: ,′ℑ  £, μ, P, G. 

Ensure: ℑ. 
1 mark all tasks as unprocessed, 
2 for ′ℑ  is not null do 

3  popup the unprocessed task vi with the largest finish 
time from ;′ℑ    let pk denote the assigned 
processor for vi, 

4  calculate lft(vi, pk) by equation (6), 
5  calculate uslack(vi) by equation (10), 
6  if uslack(vi) > 0 then 
7   calculate the fideal(vi) by equation (11), 
8   pick frun(vi) by equation (12), 
9   calculate Texe(vi) by equation (13), 
10  else 
11   set Texe(vi) = ωi,k, 
12  end if 
13  update the start and finish time of task vi, 
14  mark task vi as processed, 
15 end for 
16 mark all tasks as unprocessed, 
17 while there are unprocessed tasks do 
18  pick the unprocessed task vi with the earliest start 

time, 
19  assign vi on the mapped processor as early as possible, 

  push task vi forward, 

20  update the start and finish time of task vi, 
21  mark task vi as processed, 
22 end while 

4.4 Time complexity of EALS 

The time complexity of EALS is expressed in terms of the 
number of nodes |V | = n, and the number of processors  
|P| = m. The task mapping can be done in O(m × n2). The 
complexity of Algorithm 3 is O(m2 × n2). The complexity of 
Algorithm 5 is bounded by O(n2). So the overall time 
complexity of EALS is O(m2 × n2). 
 

5 Performance evaluation 

In this section, we present the simulation results obtained 
from our EALS algorithm. We compare the EALS heuristic 
with two recently proposed algorithms, EES (Huang et al., 
2012) and ETS (Wang et al., 2013). The EES algorithm 
slacks the room for the non-critical tasks and schedules the 
tasks nearby running on a uniform frequency for global 
optimality, and it still meets the performance-based SLA. 
The ETS algorithm evenly distributes the slack obtained by 
makespan extension to critical tasks, and then slacks the 
room for the non-critical tasks. For better comparison, we 
take the output of Algorithm 2 as the initial input for the 
three algorithms. 

The performance is measured in terms of the  
total energy consumption. Here, we define a parameter  
energy-consumption-ratio (ECR) as the energy consumption 
metric: 

,
( )

total

total

EECR
E ees

=  (14) 

where Etotal(ees) is the total energy consumption of the EES 
algorithm, and Etotal is the total energy of a compared 
algorithm. The makespan extension is determined by: 
makespan ≤ (1 + μ) × makespanbest, where makespanbest is 
the schedule length of Algorithm 2. We present 
experimental results for makespan extension ratios equal to 
0.00 (no extension), 0.05, 0.10, 0.15, 0.20 and 0.25, 
respectively. 

The random generated application graphs and two  
real-world application graphs are utilised to evaluate  
the performance of the proposed algorithm. There are  
500 random graphs generated for each scenario and we take 
the average ECR as final results in order to avoid scattering 
effects. 

5.1 Randomly generated application graphs 

The random generated application graphs include three 
fundamental characteristics: 

1 n: the size of DAG 

2 CCR: communication to computation cost ratio 

3 λ: parallelism factor (Tang et al., 2010; Mei et al., 
2014). 

In our experiments, the number of tasks in a DAG is 
selected from the set {32, 64, 100, 200, 400, 800}, the 
communication to computation cost ratio is determined by 
the set {0.2, 0.5, 1.0, 2.0, 5.0}, and the parallelism factor is 
picked from the set {0.2, 0.5, 1.0, 2.0, 5.0}. 

Figures 1 and 2 present the first two set of experiments 
compared to average ECR of the algorithms with respect to 
various number of tasks. Based on the observations from the 
two set of results, we can find that the proposed EALS  
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algorithm is able to decrease the total energy consumption 
with the determined performance constraint. The EALS 
algorithm obtains more energy saving with the increase of 
extension factor under the same configurations. For  
instance in Figure 1(a), the average ECR of EALS is less  
than the EES and ETS algorithms by: (3.92%, 3.05%), 
(8.11%, 6.54%), (12.96%, 13.47%), (18.91%, 19.84%), 
(22.35%, 23.34%), and (23.30%, 24.91%), for value of 
extension factor of 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25, 
respectively. From Figure 2, we can see that the EALS 
approach consume less energy when the number of  
tasks is low. Since the EALS can power off some high 
energy-consumption processors guided by the heuristic 
strategy. As the number of tasks growth, there is only a few 
of processors can be powered off, so the total energy 
consumption is less distinct than otherwise. But the EALS 
heuristic still outperforms the EES and ETS algorithms. For 
instance in Figure 2, when the number of tasks is 800, the 
average ECR of our approach is less than the EES and ETS 
algorithms by: (1.65%, 1.38%), (1.03%, 2.04%), (3.66%, 
6.35%), (9.29%, 13.29%), (7.85%, 13.24%), and (12.97%, 
19.31%), for value of extension factor of 0.05, 0.10, 0.15, 
0.20, and 0.25, respectively. 

Figure 1 The average ECRs with respect to various numbers of 
tasks (CCR = 1.0, P = 4, λ = 1.0) (see online version 
for colours) 

 
(a) 

 
(b) 

 

Figure 2 The average ECRs with respect to various numbers of 
tasks (CCR = 1.0, P = 9, λ = 1.0) (see online version 
for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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The third set of experiments compare the average ECR of 
the algorithms with respect to CCRs and parallelism factors, 
which is shown in Figure 3. In Figure 3, we can find that the 
performance of EALS algorithm improve with the increase 
of CCR, since a high CCR application can be considered as 
a communication-intensive application and our heuristic 
approach can assign tasks on a few of processors effectively 
that eliminates a lot of communication costs. A low 
parallelism factor λ leads to a deeper DAG, so the 
Algorithm 2 assign all tasks on a few processors. However, 
the EES and ETS algorithms do not consider the other 
underutilised processors. Instead, our approach can 
minimise the number of high power processors used and 
power off the idle processors. Consequently, the proposed 
algorithm can reduce more energy consumption in a system. 

Figure 3 The average ECRs with respect to CCRs and 
parallelism factors (μ = 0.10, P = 9) (see online  
version for colours) 

 
(a) 

 
(b) 

5.2 Application graphs of real-world problems 

In this subsection, we consider application graphs of several 
real-world problems. The first two real-world applications 
are respectively the Gaussian elimination application 
(Cormen et al., 2009), which is a 5 × 5 matrix; and the 
molecular dynamic code (Kim and Browne, 1988), which 
consists of 41 tasks. The latter two real-world applications 
are respectively the fork-join (Yang and Gerasoulis, 1994), 
which consists of 18 tasks; and the partition algorithm (Li, 
2012), which consists of 22 tasks. We compare the average 
ECRs of algorithms with various extension factors in 
Figures 4 and 5 respectively. 

Figure 4 The average ECRs for the Gaussian elimination and 
molecular dynamic code (CCR = 1.0, P = 4) (see online 
version for colours) 

 
(a) 

 
(b) 

Figure 5 The average ECRs for the fork-join and partition 
algorithm (CCR = 1.0, P = 4), (a) fork-join (degree = 3, 
depth = 1 and width = 3) (b) a partition algorithm 
(width = 2 and height = 3) (see online version  
for colours) 

 
(a) 

 
(b) 
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From Figure 4, we can observe that the EALS approach 
consumes less energy than the EES and ETS algorithms, 
and the results are consistent with the results of randomly 
generated applications. With the increasing on extension 
factor, the energy-saving effect of EALS is increasingly 
obvious. For instance in Figure 4(a), the average ECR  
of the EALS approach is less than the EES and ETS  
algorithms by: (9.23%, 7.94%),(16.90%, 15.32%),(23.45%, 
23.54%),(29.14%, 29.85%),(34.04%, 33.42%) and (43.96%, 
43.81%), for value of extension factor of 0, 0.05, 0.10, 0.15, 
0.20 and 0.25, respectively. We can find out that EALS 
comes to the best scene when the extension factor is equal 
to 0.25. Since the room for improvement with the increase 
in extension value, the EALS algorithm can deal with these 
tasks in an effective manner. The energy-saving effect of 
scheduling a Gaussian elimination application is superior to 
the effect of scheduling a molecular dynamic application, 
since the number of tasks in a Gaussian elimination 
application is lower than those of the counterpart, that 
makes more processors powered off by the proposed 
heuristic. 

Figure 5 presents the average ECR of the last two real 
applications. The experimental results reveal that the 
proposed strategy can reduce significant amount of energy 
consumption compared with other algorithms. For instance 
in Figure 5(a), the average ECR of the proposed approach is 
less than the EES and ETS algorithms by: (5.50%, 4.55%), 
(10.45%, 8.82%), (15.73%, 15.25%), (19.24%, 19.96%), 
(21.80%, 22.55%) and (23.16%, 23.93%), for value of 
extension factor of 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25, 
respectively. Meanwhile, the average ECR of several 
algorithms have the same trend in fork-join applications and 
partition applications. These results benefit most from the 
characteristic of heuristic scheduling strategy. 

6 Conclusions and future work 

Energy efficiency has become one of the most crucial 
research issues in cloud data centres. A good energy aware 
scheduling strategy is the key to reduce the total energy 
consumption in systems. In this paper, we propose a  
novel energy aware list-based scheduling algorithm for  
parallel applications in the context of SLA on DVS-enabled 
cloud data centres. We optimise the initial schedule by 
powering off part of processors and migrating some high 
energy-consumption tasks to an appropriate processor, then 
we take advantage of the DVS technique to further optimise 
the schedule. In order to prove the validity of the proposed 
EALS algorithm, we have performed a large number of 
experiments. For example, randomly generated graphs and 
several real-world applications are examined in our 
experiments. The experimental results show that EALS can 
reduce more energy consumption compared with two 
existing algorithms, and it still meets SLA. 

In the further, the system reliability will be considered. 
We will optimise the EALS algorithm further and apply this 
algorithm to a Hadoop cloud system. 
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