
Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531 519

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Energy-aware schedulingwith reconstruction and

frequency equalization on heterogeneous systems∗

Yong-xing LIU†1, Ken-li LI†‡1, Zhuo TANG1, Ke-qin LI1,2

(1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China)

(2Department of Computer Science, State University of New York, New Paltz, New York 12561, USA)
†E-mail: yongxing510@126.com; lkl@hnu.edu.cn

Received Nov. 24, 2014; Revision accepted Apr. 30, 2015; Crosschecked June 5, 2015

Abstract: With the increasing energy consumption of computing systems and the growing advocacy for green
computing, energy efficiency has become one of the critical challenges in high-performance heterogeneous computing
systems. Energy consumption can be reduced by not only hardware design but also software design. In this paper,
we propose an energy-aware scheduling algorithm with equalized frequency, called EASEF, for parallel applications
on heterogeneous computing systems. The EASEF approach aims to minimize the finish time and overall energy
consumption. First, EASEF extracts the set of paths from an application. Then, it reconstructs the application
based on the extracted set of paths to achieve a reasonable schedule. Finally, it adopts a progressive way to equalize
the frequency of tasks to reduce the total energy consumption of systems. Randomly generated applications and
two real-world applications are examined in our experiments. Experimental results show that the EASEF algorithm
outperforms two existing algorithms in terms of makespan and energy consumption.

Key words: Directed acyclic graph, Dynamic voltage scaling, Energy aware, Heterogeneous systems, Task
scheduling

doi:10.1631/FITEE.1400399 Document code: A CLC number: TP314

1 Introduction

In the past decade, with the rapid increase of
the high-performance requirements of applications
and the rapid development of low-cost computers,
heterogeneous computing systems have been increas-
ingly employed to solve complex problems. A suite
of distributed computing machines with varied com-
putational capabilities, which are interconnected by
high speed links, can be defined as a heterogeneous
computing (HC) system (Freund and Siegel, 1993).
To satisfy the high-performance requirements of ap-
plication executions, the main design goal of the pro-

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61133005, 61432005, 61370095, 61472124, and
61402400)

ORCID: Yong-xing LIU, http://orcid.org/0000-0001-8935-9543
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

cessor is to improve the frequency of the processor.
However, with the lasting increase of the frequency,
energy consumption has been growing exponentially
in computers and computing centers, embedded sys-
tems, portable devices, etc. (Brown, 2008). The in-
creased energy consumption causes severe economic,
ecological, and technical problems, such as huge ex-
pense of power supply, excessive carbon dioxide emis-
sions, and massive heat dissipation. So, it is signif-
icant to study the strategy of reducing energy con-
sumption in an HC system.

There are two approaches for reducing energy
consumption in HC systems. The first approach is
hardware design, such as low-power processor archi-
tecture and low-power memory hierarchy. The sec-
ond approach is energy-aware software design. For
instance, we can reduce energy dissipation using an



520 Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531

energy-aware scheduling algorithm. In particular,
the dynamic voltage scaling (DVS) (Mehta and Am-
rutur, 2012; Mittal, 2014) and dynamic power man-
agement (DPM) (Benini et al., 2000; Amador et al.,
2012) techniques are employed as the key tool to re-
duce energy consumption in a scheduling algorithm.
For a given HC system, in general we cannot improve
the architecture of a processor; energy consumption
can be reduced only through software design. It is
well known that finding an optimal schedule is an
NP hard problem in most cases (Ullman, 1975; Li,
2012). Therefore, one of the challenges in heteroge-
neous computing is to develop scheduling algorithms
that can optimally assign the tasks of an application
to processors.

Many task scheduling algorithms have been pro-
posed to minimize the execution time (Kwok and
Ahmad, 1999; Topcuoglu et al., 2002; Bajaj and
Agrawal, 2004; Hagras and Janeček, 2005; Bozdag
et al., 2009; Khan, 2012) of an application running
on an HC system. The performance of these algo-
rithms is evaluated based on one criterion in gen-
eral, i.e., schedule length (or ‘makespan’). However,
scheduling is inherently a multi-objective problem,
especially in the HC scenario, since it usually implies
several conflicting objectives in the optimization pro-
cess. For example, reducing power consumption may
lead to slower execution of applications. To reduce
energy consumption of computing systems and cater
to the trend of green computing, many efforts have
been devoted to energy-aware scheduling design.

In this study, we address the problem of schedul-
ing a directed acyclic graph (DAG) in an HC system
with a bi-objective of minimizing finish time and en-
ergy consumption. In the first phase, we determine
the set of paths from a DAG to prepare for the next
phase. Then, we reconstruct a DAG based on the de-
termined paths to obtain a reasonable schedule dur-
ing post-processing. In the last phase, we consider
equalizing the frequency of tasks in an application
and scaling the frequency of a CPU dynamically, in
order to achieve the goal of reducing the overall sys-
tem energy consumption.

2 Related work

Task scheduling algorithms based on DAG can
typically be classified into several sub-categories,
such as list-based scheduling algorithms, cluster-

based heuristics algorithms, and duplication-based
algorithms.

Heterogeneous earliest finish time (HEFT)
(Topcuoglu et al., 2002) is the most well-known list-
based scheduling algorithm for heterogeneous sys-
tems. Several other classical examples of list schedul-
ing algorithms are the critical path on a proces-
sor (CPOP) (Topcuoglu et al., 2002), dynamic crit-
ical path (DCP) (Kwok and Ahmad, 1996), het-
erogeneous critical parents with a fast duplicator
(HCPFD) (Hagras and Janeček, 2005), etc. Fur-
thermore, Khan (2012) proposed a novel approach
called constrained earliest finish time (CEFT), which
outperforms HEFT, dynamic level scheduling (DLS)
(Sih and Lee, 1993), and levelized min-time (LMT)
(Iverson et al., 1995) in a diverse collection of task
graphs.

The difference between a list-based algorithm
and a cluster-based algorithm is that the former or-
ders all tasks according to calculated priorities prior
to assignment, while the latter generates subsets of
tasks first and then orders each subset individually.
In a cluster algorithm, dominant sequence cluster-
ing (DSC) (Yang and Gerasoulis, 1994) is the most
well-known approach, but DSC does not support het-
erogeneous systems. Some other examples in this
category include the clustering heuristic scheduling
algorithm (CHSA) (Ilyas and Khan, 2001), greedy
task clustering and scheduling (GTCS) (Piyatam-
rong et al., 2000), clustering for heterogeneous pro-
cessors (CHP) (Boeres and Rebello, 2004), and the
objective-flexible clustering algorithm (OFCA) (Fu
et al., 2010).

The difference between a duplication-based al-
gorithm and the first two types of algorithms is
whether some tasks need to be duplicated in the
process of scheduling. Usually, duplication-based al-
gorithms are able to obtain a better performance in
terms of makespan compared with list- and cluster-
based algorithms. Some classical examples in this
category include selective duplication (Bansal et al.,
2003), HCPFD (Hagras and Janeček, 2005), hetero-
geneous limited duplication (HLD) (Bansal et al.,
2005), and heterogeneous earliest finish with dupli-
cation (HEFD) (Tang et al., 2010). As mentioned
before, almost all these algorithms do not consider
the energy consumption of systems when scheduling
tasks. At the same time, energy dissipation of sys-
tems has shown an explosive growth trend in the past



Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531 521

decades.
The explosive energy consumption has led to

greater advocacy for green computing. Many efforts
have been devoted to energy-aware scheduling to re-
duce energy consumption in systems. An on-line
DVS algorithm called OLDVS can achieve significant
energy savings for some applications (Lee and Shin,
2004). An algorithm named energy-aware scheduling
by minimizing duplication (EAMD) achieves good
energy saving by deleting redundant task copies in
the schedules generated by duplication-based algo-
rithms (Mei and Li, 2012). For a set of real-time
tasks with precedence constraints executed on a
distributed system, a simple static power manage-
ment scheme (S-SPM) and a dynamic power man-
agement (DPM) approach are presented (Mishra
et al., 2003). Some other DVS-based examples in-
clude energy-conscious scheduling (ECS) (Lee and
Zomaya, 2011), energy-efficient scheduling (EES)
(Huang et al., 2012), and adaptive energy-efficient
scheduling (AEES) (Zhu et al., 2012). Many studies
mentioned above have proved that DVS is a very
promising technique with its demonstrated capa-
bility for energy savings. For this reason, in this
study we adopt the DVS technique to reduce energy
consumption.

3 Models

In this section, a computing system model and
an application model are described in detail.

3.1 Computing system model

We study the task scheduling problem for ap-
plications on a set P of m heterogeneous processors
that are fully interconnected. The computing system
model is denoted by P = {pi|0 ≤ i ≤ m− 1}, where
each processor is DVS enabled and it can operate
at different clock frequency levels. Power consump-
tion at each performance state (P-state) (Terzopou-
los and Karatza, 2013) for all processors is depicted
in Table 1.

The capacity of a processor depends on several
factors: processor architecture, task processing re-
quirement, and degree of match between the task and
the processor. A processor which is best at perform-
ing one task may be bad at performing another task.
When a task arrives at a processor, if the processor
is idle, it will execute the task at once; otherwise,

Table 1 Performance and power consumption

Frequency Power (W)

(GHz) AMD Opteron Intel PentiumM VIA C7-M

2.6 95 – –
2.4 90 – –
2.2 76 – –
2.0 65 – 20
1.8 55 – 18
1.6 – 25 15
1.4 – 17 13
1.2 – 13 –
1.0 32 10 10
0.8 – 8 7
0.6 – 6 6
0.4 – – 5

Idle 15 5 0.1

the task has to wait until the processor is available.
A task cannot be suspended when it is running on a
processor; that is, the running task is locked against
preemption in the system.

3.2 Application model

An application, in general, can be represented
by a DAG. A DAG with both node and edge weights
is represented as G = G(V,E,Ω, Ψ), which consists
of a set of nodes V = {vi|0 ≤ i ≤ n − 1} represent-
ing the tasks of the application, and a set of directed
edges E = {ei,j |0 ≤ i, j ≤ n−1} representing depen-
dencies among tasks. Ω = {ωi,k|0 ≤ i ≤ n − 1, 0 ≤
k ≤ m− 1} denotes the computation cost of task vi
on processor pk, and Ψ = {ψ(ei,j)|0 ≤ i, j ≤ n − 1}
denotes the communication cost between tasks vi
and vj . If edge ei,j exists, then vi is called a parent
of vj and vj is called a child of vi. The immediate
parent set of task vi is denoted by pare(vi) and the
immediate child set of task vi is denoted by child(vi).

Fig. 1 gives a simple DAG which consists of 12
nodes. Table 2 represents the computation costs of
tasks on different processors. A task having no par-
ent is called an entry task, such as task v0 in Fig. 1.
A task having no child is called an exit task, such
as task v11 in Fig. 1. A DAG may have multiple
entry tasks and multiple exit tasks. For a DAG with
multiple entry/exit tasks, we can transform it by
adding zero-cost pseudo entry/exit tasks with zero-
cost edges to a single-entry single-exit DAG, which
does not affect the schedule.



522 Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531

Fig. 1 A simple DAG representing an application
graph with precedence constraints

Table 2 Computation costs of tasks in Fig. 1

Task p0 p1 p2 p3 ωi

0 29 50 23 29 32.75
1 27 48 41 27 35.75
2 30 43 34 30 34.25
3 18 39 31 18 26.50
4 24 36 28 24 28.00
5 23 47 34 23 31.75
6 21 38 35 21 28.75
7 33 47 44 33 39.25
8 27 54 39 27 36.75
9 25 44 28 25 30.50
10 28 32 30 28 29.50
11 19 46 40 19 31.00

3.3 Performance measurements

The schedule length is undoubtedly one of the
most important criteria for performance measure-
ment. So, makespan is adopted as the first criterion
in this study. In the scheduling model, let ts(vi, pk)
and tf(vi, pk) represent the start time and finish time
of task vi scheduled on processor pk, respectively.
Then, tf(vi, pk) = ts(vi, pk) + wi,k. The makespan
can be defined as

makespan = max {tf(vi, pk)}. (1)

Processor energy consumption is the second per-
formance metric in the system. The total energy con-
sumption of processor Ei includes mainly two parts:
active energy consumption Ei,active and idle energy
consumption Ei,idle. So, the total energy consump-
tion of a system can be calculated by

E =
m−1∑

i=0

(Ei,active + Ei,idle). (2)

4 Proposed algorithm

This section presents the details of the EASEF
algorithm. In EASEF, all tasks in a DAG are as-
signed scheduling priorities and the task with the
highest priority is scheduled first. The EASEF
scheduling process includes mainly three phases:
path determining, application reconstructing, and
frequency equalizing. To achieve a reasonable assign-
ment, the set of paths in an application is first de-
termined for the reconstruction process, which helps
better distribute tasks. Then the EASEF algorithm
takes a progressive way to equalize the frequency
of two adjacent tasks. The detailed description of
EASEF is presented in the following subsections.

4.1 Path determining phase

The main goal of this phase is to determine the
set of paths from an application. In general, a crit-
ical path (CP) in a DAG is the longest path from
the entry node to the exit node. In a heterogeneous
computing system, the CP length in a DAG is the
sum of the mean computation costs of tasks and the
communication costs along the path. The mean com-
putation cost of task vi is calculated by

ωi =
1

m

m−1∑

k=0

ωi,k. (3)

To determine the CP from a DAG, upward rank
and downward rank values are needed in general.
The upward rank of task vi is recursively calculated
by

rankb(vi) =⎧
⎨

⎩
ωexit, vi = vexit,

ωi + max
vσ∈child(vi)

(rankb(vσ) + ψ(ei,σ)), otherwise.

(4)
Similarly, the downward rank of task vi is recursively
calculated by

rankt(vi) =⎧
⎨

⎩
0, vi = ventry,

max
vj∈pare(vi)

(rankt(vj) + ψ(ej,i) + ωj), otherwise.

(5)
Then, the rank value of task vi is calculated by

rank(vi) = rankb(vi) + rankt(vi). (6)



Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531 523

The detailed process of determining the set of
paths is described in Algorithm 1. First, we can cal-
culate the mean computation cost of tasks by Eq. (3).
Then, to guarantee that the calculations in Algo-
rithm 1 are orderly, we need to ensure that the DAG
is a single-entry single-exit DAG. Having calculated
the upward and downward rank values of tasks, we
can determine the rank values of tasks by Eq. (6).
Then we can extract a critical path with a maximum
rank value from the entry node to the exit node.
To continue determining the rest of the paths in the
DAG, Algorithm 1 will remove all tasks that belong
to a determined critical path from the DAG. Then,
repeat the above steps until all paths are determined
by Algorithm 1.

Algorithm 1 Determining the set of paths
Require: G. // G: an application graph
Ensure: CP[ ]. // CP[ ]: the set of paths
1: for each task vi in G do
2: Calculate ωi by Eq. (3);
3: end for
4: if G is not a single-start single-exit graph then
5: G = transform(G); // transform G into a single-

// start single-exit graph
6: end if
7: Let count = 0;
8: while G is not null do
9: for each task vi in G do

10: Calculate rankb(vi) by Eq. (4);
11: Calculate rankt(vi) by Eq. (5);
12: Calculate rank(vi) by Eq. (6);
13: end for
14: for each task vi in G do
15: if vi is a critical task then
16: CP[count].add(vi); // save the critical task

// based on the rank value of the task
17: end if
18: end for
19: G = G.remove

(
CP[count]

)
;

// remove the critical tasks from G

20: G = transform(G);
21: count++;
22: end while

The whole processing procedure of this phase
for Fig. 1 is represented by Fig. 2. In the first round,
the critical path [0-2-8-10-11] with length 318.25 is
found. Then these nodes are pruned from the DAG,
and the pseudo nodes (ventry, vexit) with zero-cost
edges are added to transform the DAG into a single-
entry single-exit DAG. In the second round, the crit-

Fig. 2 An example of the processing procedure of
Algorithm 1

ical path [3-6-9] with length 166.75 is found. Next,
the critical paths [1-4], [7], and [5] are determined,
for values of 95.75, 39.25, and 31.75, respectively.

4.2 Application reconstructing phase

In this phase, we consider the reconstruction of
the DAG based on the CPs calculated using Algo-
rithm 1. The main goal of this phase is to deal with
the tasks that can be merged according to the CPs
and the dependencies of tasks. If a task has n par-
ents, then the indegree of the task is n. Similarly, the
outdegree is n if a task has n children. If a task vi
just has one parent, then this task can be expressed
by

indegree[vi] = 1. (7)

The CPOP (Topcuoglu et al., 2002) algorithm
maps the tasks of the longest path to the critical
processor, but it does not consider the individual
computation cost of tasks on different processors.
The CEFT (Khan, 2012) algorithm assigns the con-
strained critical paths to a suite of appropriate pro-
cessors, but it does not consider the relationship be-
tween the parent-node and child-node. Based on
these findings, we temporarily merge some tasks into
one task, so that the child nodes have higher priority
than otherwise. Having scheduled a parent-node, the
child with a higher priority will be scheduled immedi-
ately on the same processor with a large probability.
Thus, the tasks on the longer path will be scheduled



524 Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531

in a more reasonable way. The detailed process is
described in Algorithm 2.

In the process of reconstruction, the weight of
the newly generated node is the sum of all the merged
tasks. Let ve and [vj , · · · , vk] represent the new node
and merged tasks, respectively. Then, the weight of
node ve can be calculated by

ωe =

k∑

i=j

ωi. (8)

To avoid breaking the tie of precedence con-
straints, Algorithm 3, which is called by Algorithm 2,
is used to deal with the dependencies of edges. Typ-
ically, there are three types of edges that need to
be processed. In the first case, the edges between
two merged nodes of a path can be removed di-
rectly. In the second case, there is only one edge
between the merged nodes of a path and task vn.
Let [va, · · · , vi, · · · , vm] represent the merged nodes
of a path in turn, and ei,n the only edge. Then the
communication cost between the new node ve gener-
ated by merging and vn can be determined by

ψ(ee,n) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ψ(ei,n) <
m∑

j=i+1

ωj ,

ψ(ei,n) −
m∑

j=i+1

ωj , otherwise,
(9)

where ei,n will be removed after the calculation of
Eq. (9). In the last case, there are several edges
between the merged nodes of a path and task vn.
Let [va, · · · , vi, · · · , vk, · · · , vm] represent the merged
nodes of a path in turn, and [vi, · · · , vk] the nodes
that need to send data to vn. Then the communi-
cation cost between the new node vt generated by
merging and vn can be determined by

ψ(et,n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0,

k∑

r=i

⎛

⎝ψ(er,n)−
m∑

j=r+1

ωj

⎞

⎠ < 0,

k∑

r=i

⎛

⎝ψ(er,n)−
m∑

j=r+1

ωj

⎞

⎠, otherwise.

(10)
From Algorithm 2, we know that the process has

three major phases. First, some tasks are merged,
as shown in lines 1–11. Then, three different depen-
dencies of tasks are handled by Algorithm 3. Finally,
the priority rule of tasks is mapped from the recon-
structed graph to the original graph, as shown in

Algorithm 2 Reconstructing the DAG
Require: G, CP[ ]. // G: an application graph;

// CP[ ]: the set of paths
Ensure: G′, RANK. // G′: the reconstructed graph;

// RANK: the sequence of tasks
1: G′=G.clone();//duplicate the structure of the graph

2: for each path CP in CP[ ] do
3: while CP is not null do
4: Task vi = CP.pop();
5: if task vi satisfies Eq. (7) then
6: Merge task vi with its parent;
7: Calculate the new weight ωe by Eq. (8);
8: Remove task vi from G′;
9: end if

10: end while
11: end for
12: call Algorithm 3 to handle the dependencies of tasks;

13: for each task vi in G′ do
14: Calculate rankb(vi) by Eq. (4);
15: if vi is not a new node then
16: Let the upward rank value of the same number

task vi of G equal rankb(vi);
17: else
18: Let the upward rank values of all the merged

and corresponding tasks [vi, · · · , vk] of G equal
rankb(vi);

19: end if
20: end for
21: Sort all the tasks in a sequence by non-decreasing

order of the upward rank values, and let RANK

represent the sequence;

lines 13–21. The result of the reconstruction phase
for Fig. 1 is shown in Fig. 3. Having reconstructed
the original DAG, we can find that the nodes v0 and
v2, v3 and v6 are merged into the new nodes v0′ and
v3′ , respectively. The weight of node v0′ in Fig. 3 is
the sum of v0 and v2 in Fig. 1. Similarly, the weight

Fig. 3 The DAG reconstructed according to Algo-
rithm 2



Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531 525

Algorithm 3 Handling the dependencies of tasks
Require: G,G′. // G: an application graph
Ensure: G′. // G′: the reconstructed graph
1: for each task vn in G do
2: for each task vi in pare(vn) do
3: if task vi is not a merged node then
4: Do nothing;
5: else if vn and vi are contained in a node then
6: Remove edge ei,n from G′;
7: else if only one parent of task vn is contained

in a node ve then
8: Calculate ψ(ee,n) by Eq. (9);
9: Remove edge ei,n from G′;

10: else
11: Let [va, · · · , vi, · · · , vk, · · · , vm] represent the

merged nodes contained in vt;
12: Let [vi, · · · , vk] represent the nodes that need

to send data to vn;
13: Calculate ψ(et,n) by Eq. (10);
14: Remove the edges ei,n, · · · , ek,n from G′;
15: end if
16: end for
17: end for

of node v3′ is the sum of v3 and v6 in Fig. 1. Further,
we can find that the communication costs between a
normal node and the merged nodes are updated by
Algorithm 3. Fig. 3 gives the related communication
costs of the reconstructed DAG. Having calculated
the upward rank values of tasks in the reconstructed
DAG, we can map the precedence relation of tasks
from the reconstructed DAG to the original applica-
tion. From Algorithm 2, we can obtain a precedence
sequence 0-2-3-6-1-8-7-5-4-9-10-11 based on the ex-
ample shown in Fig. 1.

4.3 Frequency equalizing phase

In this phase, the idle time slots among tasks
on processors can be slacked and redistributed us-
ing the DVS technique without violating dependency
constraints. In the process of scheduling, the earliest
start time (tes) of task vi on processor pk is defined
by

tes(vi, pk) =⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, vi = ventry,

max
(
min

(
idlenk.available.start

)
,

max(tes
vς∈pare(vi)

(vς , pl) + ωi,k + ψ(eς,i))
)
, otherwise,

(11)

where idlenk.available.start is the start time of the
nth idle slack which satisfies idlenk.available.end −
idlenk.available.start ≥ ωi,k, and if pk = pl, ψ(eς,i) = 0.
The earliest finish time (tef) of task vi on processor
pk is defined by

tef(vi, pk) = tes(vi, pk) + ωi,k. (12)

The latest finish time (tlf) of task vi on processor pk
is defined by

tlf(vi, pk) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

makespan, vi = vexit,

min(tlf(vτ , pk)− ωτ,k,

min
vσ∈child(vi)

(
tlf(vσ, pl)− ωσ,pl

− ψ(ei,σ)
)
),

otherwise,

(13)

where vτ is the task assigned next to vi on the same
processor pk, vσ is the task assigned on processor pl,
and if pk = pl, ψ(ei,σ) = 0. Then the slack time of
task vi on processor pk can be defined by

slack(vi) = tlf(vi, pk)− tes(vi, pk)− ωi,k. (14)

Usually there is a certain amount of overlap of
the slack time between two adjacent tasks (vi and
vj) scheduled on the same processor pk. Without
loss of generality, we assume tes(vi, pk) < tes(vj , pk)

and tlf(vi, pk) > tes(vj , pk). Then, different slack as-
signment methods can lead to different energy con-
sumptions. To avoid a task squeezing the slack time
of other tasks and reduce the energy consumption of
systems, the proposed approach takes an equalized
way to optimize the frequency of tasks progressively.
Equalizing the frequency of two adjacent tasks is the
main objective in this phase. The detailed process is
presented in Algorithm 4.

Let vi and vj represent the two adjacent tasks
scheduled on processor pk, and assume that vj is the
task assigned next to vi. We take the two tasks as
a whole to balance the overlap of the slack time be-
tween vi and vj . Then, the common ideal frequency
of the two tasks can be calculated by

fid(vi, vj) =
ωi,k + ωj,k

tlf(vj , pk)− tes(vi, pk)
· fk,0, (15)

where fk,0 represents the highest frequency of pro-
cessor pk. Selecting the lowest frequency fid(vj) of
processor pk from Table 1, which is no less than the
fid(vi, vj), as the actual running frequency of task



526 Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531

Algorithm 4 EASEF
Require: G, P,RANK. // G: an application graph;

// P : set of processors; RANK: sequence of tasks
Ensure: S. // S: a schedule
1: while RANK is not null do
2: Task vi = RANK.pop();
3: for each processor pk in P do
4: Calculate tes(vi, pk) by Eq. (11);
5: Calculate tef(vi, pk) by Eq. (12);
6: end for
7: Assign task vi to processor pk which minimizes

the finish time of task vi;
8: end while
9: Rank all tasks into a sequence by non-decreasing

order based on tef and let FT represent the sequence;
10: while FT is not null do
11: Task vj = FT.pop();
12: Let pk represent the processor assigned to vj ;
13: Calculate tlf(vj , pk) by Eq. (13);
14: Let vi represent the nearest task assigned prior to

vj on the same processor pk;
15: if vi exists then
16: Calculate fid(vi, vj) by Eq. (15);
17: Determine fac(vj) by Eq. (16);
18: else
19: Calculate slack(vj) by Eq. (14);
20: Calculate fid(vj) by Eq. (19);
21: Determine fac(vj) by Eq. (20);
22: end if
23: Determine taf(vj , pk) by Eq. (17);
24: Calculate tas(vj , pk) by Eq. (18);
25: end while
26: Rank all tasks into a sequence by non-increasing

order based on tas and let ST represent the sequence;
27: while ST is not null do
28: Task vi = ST.pop();
29: Let pk represent the processor assigned to vi;
30: Calculate tes(vi, pk) by Eq. (11);
31: Let tef(vi, pk) = tes(vi, pk)+taf(vi, pk)−tas(vi, pk);
32: Update tas(vi, pk) with tes(vi, pk);
33: Update taf(vi, pk) with tef(vi, pk);
34: end while

vj , the actual running frequency of task vj should
satisfy

fac(vj) =min {fk,level}
level∈PState

≥ max

(
fid(vi, vj),

ωj,k · fk,0
tlf(vj , pk)− tes(vj , pk)

)
,

(16)

where PState is the set of frequency levels. Then the
actual finish time (taf) of task vj on processor pk is

updated by

taf(vj , pk) = tlf(vj , pk). (17)

The actual start time (tas) of task vj on processor pk
is updated by

tas(vj , pk) = taf(vj , pk)− ωj,k

fac(vj)
· fk,0. (18)

If vi is the first task of the assigned processor pk, then
the maximum value of slack time can be calculated
using Eq. (14). In this case, the ideal frequency of
task vi is defined by

fid(vi) =
ωi,k

ωi,k + slack(vi)
· fk,0. (19)

Then the running frequency of task vi should satisfy

fac(vi) = min {fk,level}
level∈PState

≥ fid(vi). (20)

Fig. 4 shows the schedule results of the dif-
ferent algorithms for Fig. 1. The makespan of the
EASEF algorithm is 205. Furthermore, the CEFT
algorithm produces a schedule of length 231 and the
CPOP algorithm produces a schedule of length 251.
The makespan of the proposed approach is less than
those of CEFT and CPOP by 11.26% and 18.33%,
respectively. Meanwhile, the results reveal that the
EASEF algorithm is effective and saves energy com-
pared with the other two algorithms. This example
demonstrates that we can benefit from the applica-
tion reconstructing phase and frequency equalizing
phase in terms of schedule length and total energy
consumption.

5 Performance evaluation

In this section, we evaluate the performance of
the proposed EASEF algorithm using randomly gen-
erated application graphs and two real-world appli-
cation graphs.

5.1 Experimental settings

The random graphs are generated with three
fundamental characteristics as follows:

n: the number of tasks in a DAG.
CCR: the communication to computation ra-

tio. A low CCR application can be considered as a
computation-intensive application and a high CCR
application can be considered as a communication-
intensive application.



Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531 527

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

V:0

0
V:3 V:7

V:2

V:6

V:9

V:10

V:11

V:8

V:4V:5

V:1

CEFT:
proc0
proc1
proc2
proc3

EASEF:
proc0
proc1
proc2
proc3

CPOP:
proc0
proc1
proc2
proc3

V:0

V:3

V:2

V:6

V:1

V:7

V:8 V:10

V:9 V:11

V:0 V:2 V:7 V:11
V:4 V:9

V:3 V:6
V:5

V:8 V:10

V:4 V:5

V:1

Fig. 4 The schedule results for Fig. 1 using three algorithms

λ: the parallelism factor of DAG. The number
of tasks at each level is randomly selected from a
uniform distribution with mean value of λ

√
n, and

the depth of a DAG is randomly generated from a
uniform distribution with mean value of

√
n/λ. A

lower λ leads to a deeper DAG with a low parallelism
degree and a higher λ leads to a shorter DAG with a
higher parallelism degree.

In our experiments, n is selected from the set
{16, 32, 64, 100, 200, 400, 500}, CCR is determined
by the set {0.2, 0.5, 1.0, 2.0, 5.0}, and λ is chosen
from the set {0.2, 0.5, 1.0, 2.0, 5.0}. To demonstrate
the performance improvement of EASEF, two exist-
ing algorithms, CPOP and CEFT, with EvenlyDVS
(Wang et al., 2013), are used as baseline algorithms
to compare the makespan and energy consumption.
The schedule length ratio (SLR) and energy con-
sumption ratio (ECR) are defined as follows:

SLR =
makespan

min
k∈P

( ∑
i∈CP

ωi,k

) , (21)

ECR =
E

P (fs,0) ·
∑

i∈CP

ωi,s
, (22)

where s is the processor number determined using
Eq. (21), and P (fs,0) is the power of processor ps at
the highest frequency.

There are more than 500 random graphs gen-
erated for each scenario, and we take the average
SLR and average ECR as the final results to avoid
scattering effects.

5.2 Random application performance analysis

In this subsection, the effects of three different
algorithms on the capability of scheduling random
graphs are compared.

Figs. 5 and 6 present the results of the first two
sets of experiments with respect to various numbers
of tasks. The average SLR and ECR increase with
the increase of the number of tasks. In Fig. 5, the
average SLR of the EASEF algorithm is less than
those of the CPOP and CEFT algorithms by (2.49%,
5.79%), (3.93%, 12.42%), (4.16%, 16.94%), (3.48%,
18.22%), and (2.61%, 21.61%), for 16, 32, 64, 100,
and 200 tasks, respectively. The average ECR of the
proposed approach is significantly better than those
of the two existing algorithms which are not com-
bined with the EvenlyDVS algorithm. With the help
of the EvenlyDVS algorithm, both CPOP and CEFT
algorithms can obtain good energy saving. However,
EASEF still outperforms them in terms of average
ECR. Fig. 6 reveals that the average SLR of the
CEFT algorithm increases rapidly with the increase
of the number of tasks. This is due to the fact that
the CEFT algorithm does not fully capture the com-
munication costs of tasks. The proposed approach
achieves better performance compared with the two
baseline algorithms in terms of schedule length and
energy consumption.

The third set of experiments is conducted for
comparing the average SLR and ECR of the algo-
rithms with respect to various values of the paral-
lelism factor. Fig. 7 shows that the average SLR and
ECR increase with the increase of the parallelism
factor. This is because a higher parallelism factor



528 Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531

leads to a shorter DAG; that is, the denominator
of Eq. (21) decreases with the increase of the par-
allelism factor. Further, we can discover that a low
parallelism factor leads to a deeper DAG, which is
not suitable for distributing tasks on various proces-
sors. So, the results of the three algorithms are very
close under a low parallelism factor.

Fig. 8 shows the experimental results with re-
spect to different values of CCR. The performance
of CEFT is worse than those of CPOP and EASEF,
whether CCR is low or high. This is because

0 20015050 100
n

16 20010032 64
n

(a)

(b)

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Av
er

ag
e 

S
LR

10
9
8
7
6
5
4
3
2
1
0

Av
er

ag
e 

E
C

R

CPOP
CPOP-DVS
CEFT
CEFT-DVS
EASEF

CPOP
CEFT
EASEF

Fig. 5 Average SLR (a) and ECR (b) for various
numbers of tasks (CCR=1.0, P=4, λ=1.0)

6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5

Av
er

ag
e 

S
LR

20
18
16
14
12
10

8
6
4
2
0

Av
er

ag
e 

E
C

R

0 500300 400100 200
n

100 500400200 300
n

(a)

(b)

CPOP
CEFT
EASEF

CPOP
CPOP-DVS
CEFT
CEFT-DVS
EASEF

Fig. 6 Average SLR (a) and ECR (b) for various
numbers of tasks (CCR=1.0, P=9, λ=1.0)

CEFT always picks a fast processor for the current
task without considering communication costs effec-
tively. The average SLR of EASEF is less than those
of CPOP and CEFT by (7.33%, 20.90%), (5.99%,
16.80%), (3.23%, 11.40%), (1.78%, 6.77%), and
(5.00%, 15.12%), for CCR of 0.2, 0.5, 1.0, 2.0, and
5.0, respectively. The proposed approach achieves
better energy saving compared with the two existing
algorithms.

3.5

3.0

2.5

2.0

1.5

1.0

Av
er

ag
e 

S
LR

7

6

5

4

3

2

1

0

Av
er

ag
e 

E
C

R

0.2 5.02.00.5 1.0
λ

1.00 5.04.02.0 3.0
λ

(a)

(b)

CPOP
CEFT
EASEF

CPOP
CPOP-DVS
CEFT
CEFT-DVS
EASEF

Fig. 7 Average SLR (a) and ECR (b) for various val-
ues of the parallelism factor (CCR=1.0, P=4, n=32)

7

6

5

4

3

2

1

Av
er

ag
e 

S
LR

7

6

5

4

3

2

1

0

Av
er

ag
e 

E
C

R

0 5.03.0 4.01.0 2.0
CCR

CCR
0.2 5.02.00.5 1.0

(a)

(b)

CPOP
CEFT
EASEF

CPOP
CPOP-DVS
CEFT
CEFT-DVS
EASEF

Fig. 8 Average SLR (a) and ECR (b) for various
values of CCR (n=32, P=4, λ=1.0)



Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531 529

5.3 Real application performance analysis

In addition to randomly generated applications,
we consider two real-world applications. The first is
the Gaussian elimination application (Cormen et al.,
2009), which is a 5×5 martix. The second is the
molecular dynamic code (Kim and Browne, 1988),
which consists of 41 tasks. Since the structures of
the two real applications are known, it is not nec-
essary to consider the parallelism factor. We just
consider the CCR values in our experiments. We as-
sume that the computation cost of a task is randomly
generated from a uniform distribution and CCR is
selected from the set {0.2, 0.5, 1.0, 2.0, 5.0}, and the
number of processors is set to 4.

Fig. 9 gives the experimental results with re-
spect to different values of CCR for Gaussian elim-
ination applications. The average SLR increases
with the increase of CCR, since a higher CCR value
means that the system needs more time to transmit
data. However, EASEF is still superior to CPOP
and CEFT under a high value of CCR. For instance,
when CCR equals 5.0, the average SLR of EASEF
is less than those of CPOP and CEFT by 26.73%
and 29.02%, respectively. The corresponding aver-
age energy savings are 15.67% and 16.33%, respec-
tively, when the two counterparts are combined with
the EvenlyEVS algorithm. Overall, EASEF outper-
forms the other two algorithms in terms of average
SLR and average ECR.

3.0

2.5

2.0

1.5

1.0

0.5

Av
er

ag
e 

S
LR

3.0

2.5

2.0

1.5

1.0

0.5

0

Av
er

ag
e 

E
C

R

0 5.04.01.0 2.0 3.0
CCR

CCR
0.2 5.02.00.5 1.0

(a)

(b)

CPOP
CEFT
EASEF

CPOP
CPOP-DVS
CEFT
CEFT-DVS
EASEF

Fig. 9 Average SLR (a) and ECR (b) for Gaussian
elimination (n=14, P=4)

Fig. 10 shows the experimental results with re-
spect to various values of CCR for molecular dynamic
code applications. Comparing Figs. 9a and 10a, we
can find that the performance advantage of EASEF
in Fig. 10a is more apparent at a low value of CCR.
This is because the parallelism of the molecular dy-
namic code is higher than that of the Gaussian elim-
ination and the computation cost of an application
is the dominant part of schedule length. Moreover,
the energy saving effect of EASEF is apparent at a
low CCR. For instance, the average energy saving of
EASEF compared with CPOP and CEFT is 9.29%
and 19.11%, respectively, when the value of CCR is
0.2. Overall, EASEF achieves better performance
compared to the two counterparts.

5

4

3

2

1

Av
er

ag
e 

S
LR

5.0

4.5

4.0

3.5

3.0

2.5

2.0

Av
er

ag
e 

E
C

R

0 5.04.01.0 2.0 3.0
CCR

CCR
0.2 5.02.00.5 1.0

(a)

(b)

CPOP
CEFT
EASEF

CPOP
CPOP-DVS
CEFT
CEFT-DVS
EASEF

Fig. 10 Average SLR (a) and ECR (b) for molecular
dynamic code (n=41, P=4)

6 Conclusions

In this paper, we propose a new scheduling al-
gorithm called EASEF for heterogeneous comput-
ing systems. EASEF tries to minimize both finish
time and energy dissipation. EASEF comprehen-
sively considers the communication and computation
costs of tasks. To better explain the implementation,
we divide EASEF into several phases. The first two
phases are used to obtain a more reasonable prece-
dence sequence of tasks. In the last phase, EASEF
takes a progressive way to equalize the frequency of
tasks in order to achieve better energy saving.



530 Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531

We have performed a large number of experi-
ments to demonstrate the effectiveness of EASEF.
The results show that in general the proposed algo-
rithm outperforms the other two algorithms in terms
of makespan and energy consumption.

In future work, we intend to optimize this algo-
rithm further and adapt some strategies for the cloud
environment.

References
Amador, E., Knopp, R., Pacalet, R., et al., 2012. Dynamic

power management for the iterative decoding of turbo
codes. IEEE Trans. VLSI Syst., 20(11):2133-2137.
[doi:10.1109/TVLSI.2011.2167765]

Bajaj, R., Agrawal, D.P., 2004. Improving scheduling of tasks
in a heterogeneous environment. IEEE Trans. Parall.
Distr. Syst., 15(2):107-118. [doi:10.1109/TPDS.2004.
1264795]

Bansal, S., Kumar, P., Singh, K., 2003. An improved du-
plication strategy for scheduling precedence constrained
graphs in multiprocessor systems. IEEE Trans. Parall.
Distr. Syst., 14(6):533-544. [doi:10.1109/TPDS.2003.
1206502]

Bansal, S., Kumar, P., Singh, K., 2005. Dealing with het-
erogeneity through limited duplication for scheduling
precedence constrained task graphs. J. Parall. Distr.
Comput., 65(4):479-491. [doi:10.1016/j.jpdc.2004.11.
006]

Benini, L., Bogliolo, A., de Micheli, G., 2000. A survey
of design techniques for system-level dynamic power
management. IEEE Trans. VLSI Syst., 8(3):299-316.
[doi:10.1109/92.845896]

Boeres, C., Rebello, V.E.F., 2004. A cluster-based
strategy for scheduling task on heterogeneous proces-
sors. 16th Symp. on Computer Architecture and
High Performance Computing, p.214-221. [doi:10.1109/
SBAC-PAD.2004.1]

Bozdag, D., Ozguner, F., Catalyurek, U.V., 2009. Com-
paction of schedules and a two-stage approach for
duplication-based DAG scheduling. IEEE Trans. Par-
all. Distr. Syst., 20(6):857-871. [doi:10.1109/TPDS.
2008.260]

Brown, R., 2008. Report to Congress on Server and
Data Center Energy Efficiency: Public Law 109-431.
Lawrence Berkeley National Laboratory. [doi:10.2172/
929723]

Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al., 2009.
Introduction to Algorithms. MIT Press, Cambridge.

Freund, R.F., Siegel, H.J., 1993. Guest editor’s introduction:
heterogeneous processing. Computer, 26(6):13-17.

Fu, F.F., Bai, Y.X., Hu, X.A., et al., 2010. An objective-
flexible clustering algorithm for task mapping and
scheduling on cluster-based NoC. Academic Sympo-
sium on Optoelectronics and Microelectronics Tech-
nology and 10th Chinese-Russian Symp. on Laser
Physics and Laser Technology Optoelectronics Technol-
ogy, p.369-373. [doi:10.1109/RCSLPLT.2010.5615317]

Hagras, T., Janeček, J., 2005. A high performance, low
complexity algorithm for compile-time task scheduling
in heterogeneous systems. Parall. Comput., 31(7):653-
670. [doi:10.1016/j.parco.2005.04.002]

Huang, Q.J., Su, S., Li, J., et al., 2012. Enhanced
energy-efficient scheduling for parallel applications in
cloud. 12th IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Computing, p.781-786. [doi:10.1109/CCGrid.
2012.49]

Ilyas, M.U., Khan, S.A., 2001. A clustering heuristic al-
gorithm for scheduling periodic and deterministic tasks
on a multiprocessor system. Proc. IEEE Int. Multi
Topic Conf., Technology for the 21st Century, p.1-5.
[doi:10.1109/INMIC.2001.995305]

Iverson, M.A., Özgüner, F., Follen, G.J., 1995. Parallelizing
existing applications in a distributed heterogeneous en-
vironment. 4th Heterogeneous Computing Workshop,
p.93-100.

Khan, M.A., 2012. Scheduling for heterogeneous systems
using constrained critical paths. Parall. Comput.,
38(4-5):175-193. [doi:10.1016/j.parco.2012.01.001]

Kim, S.J., Browne, J.C., 1988. A general approach to
mapping of parallel computation upon multiprocessor
architectures. Int. Conf. on Parallel Processing, 3:1-8.

Kwok, Y.K., Ahmad, I., 1996. Dynamic critical-path schedul-
ing: an effective technique for allocating task graphs to
multiprocessors. IEEE Trans. Parall. Distr. Syst.,
7(5):506-521. [doi:10.1109/71.503776]

Kwok, Y.K., Ahmad, I., 1999. Static scheduling algo-
rithms for allocating directed task graphs to multipro-
cessors. ACM Comput. Surv., 31(4):406-471. [doi:10.
1145/344588.344618]

Lee, C.H., Shin, K.G., 2004. On-line dynamic voltage scaling
for hard real-time systems using the EDF algorithm.
25th IEEE Int. Real-Time Systems Symp., p.319-335.
[doi:10.1109/REAL.2004.38]

Lee, Y.C., Zomaya, A.Y., 2011. Energy conscious scheduling
for distributed computing systems under different oper-
ating conditions. IEEE Trans. Parall. Distr. Syst.,
22(8):1374-1381. [doi:10.1109/TPDS.2010.208]

Li, K.Q., 2012. Scheduling precedence constrained tasks with
reduced processor energy on multiprocessor comput-
ers. IEEE Trans. Comput., 61(12):1668-1681. [doi:10.
1109/TC.2012.120]

Mehta, N., Amrutur, B., 2012. Dynamic supply and thresh-
old voltage scaling for CMOS digital circuits using in-
situ power monitor. IEEE Trans. VLSI Syst., 20(5):
892-901. [doi:10.1109/TVLSI.2011.2132765]

Mei, J., Li, K.L., 2012. Energy-aware scheduling algorithm
with duplication on heterogeneous computing systems.
ACM/IEEE 13th Int. Conf. on Grid Computing, p.122-
129. [doi:10.1109/Grid.2012.32]

Mishra, R., Rastogi, N., Zhu, D.K., et al., 2003. En-
ergy aware scheduling for distributed real-time systems.
Proc. Int. Parallel and Distributed Processing Symp.,
p.1-9. [doi:10.1109/IPDPS.2003.1213099]

Mittal, S., 2014. A survey of techniques for improv-
ing energy efficiency in embedded computing systems.
Int. J. Comput. Aided Eng. Technol., 6(4):440-459.
[doi:10.1504/IJCAET.2014.065419]

Piyatamrong, B., Ohara, S., Kantakajorn, S., 2000. GTCS:
a greedy task clustering and scheduling algorithm for
distributed memory processor architecture. Proc. 4th
Int. Conf./Exhibition on High Performance Computing
in the Asia-Pacific Region, p.310-314. [doi:10.1109/
HPC.2000.846567]

http://dx.doi.org/10.1109/TVLSI.2011.2167765
http://dx.doi.org/10.1109/TPDS.2004.1264795
http://dx.doi.org/10.1109/TPDS.2004.1264795
http://dx.doi.org/10.1109/TPDS.2003.1206502
http://dx.doi.org/10.1109/TPDS.2003.1206502
http://dx.doi.org/10.1016/j.jpdc.2004.11.006
http://dx.doi.org/10.1016/j.jpdc.2004.11.006
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1109/SBAC-PAD.2004.1
http://dx.doi.org/10.1109/SBAC-PAD.2004.1
http://dx.doi.org/10.1109/TPDS.2008.260
http://dx.doi.org/10.1109/TPDS.2008.260
http://dx.doi.org/10.2172/929723
http://dx.doi.org/10.2172/929723
http://dx.doi.org/10.1109/RCSLPLT.2010.5615317
http://dx.doi.org/10.1016/j.parco.2005.04.002
http://dx.doi.org/10.1109/CCGrid.2012.49
http://dx.doi.org/10.1109/CCGrid.2012.49
http://dx.doi.org/10.1109/INMIC.2001.995305
http://dx.doi.org/10.1016/j.parco.2012.01.001
http://dx.doi.org/10.1109/71.503776
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1109/REAL.2004.38
http://dx.doi.org/10.1109/TPDS.2010.208
http://dx.doi.org/10.1109/TC.2012.120
http://dx.doi.org/10.1109/TC.2012.120
http://dx.doi.org/10.1109/TVLSI.2011.2132765
http://dx.doi.org/10.1109/Grid.2012.32
http://dx.doi.org/10.1109/IPDPS.2003.1213099
http://dx.doi.org/10.1504/IJCAET.2014.065419
http://dx.doi.org/10.1109/HPC.2000.846567
http://dx.doi.org/10.1109/HPC.2000.846567


Liu et al. / Front Inform Technol Electron Eng 2015 16(7):519-531 531

Sih, G.C., Lee, E.A., 1993. A compile-time scheduling
heuristic for interconnection-constrained heterogeneous
processor architectures. IEEE Trans. Parall. Distr.
Syst., 4(2):175-187. [doi:10.1109/71.207593]

Tang, X.Y., Li, K.L., Liao, G.P., et al., 2010. List scheduling
with duplication for heterogeneous computing systems.
J. Parall. Distr. Comput., 70(4):323-329. [doi:10.
1016/j.jpdc.2010.01.003]

Terzopoulos, G., Karatza, H.D., 2013. Dynamic voltage
scaling scheduling on power-aware clusters under power
constraints. IEEE/ACM 17th Int. Symp. on Dis-
tributed Simulation and Real Time Applications, p.72-
78. [doi:10.1109/DS-RT.2013.16]

Topcuoglu, H., Hariri, S., Wu, M.Y., 2002. Performance-
effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. Parall. Distr.
Syst., 13(3):260-274. [doi:10.1109/71.993206]

Editors-in-Chief: Yun-he Pan, Xi-cheng Lu 
 

Frontiers of Information Technology & Electronic Engineering 
(ISSN 2095-9184, monthly), FITEE for short, is an 
international peer-reviewed journal launched by Chinese 
Academy of Engineering (CAE) and Zhejiang University, 
co-published by Springer & Zhejiang University Press. FITEE 
is aimed to publish the latest implementation of applications, 
principles, and algorithms in the broad area of Electrical and 
Electronic Engineering, including but not limited to Computer 
Engineering, Telecommunications, Control Systems, Robotics, 
Radio Engineering, Signal Processing, Power Engineering, 
Systems Engineering, Electronics, and Microelectronics. 
 
FITEE is formerly known as Journal of Zhejiang University- 
SCIENCE C (Computers & Electronics) (2010–2014), which 
has been covered by SCI-E since 2010. Authors of manuscripts 
submitted or accepted come from 40+ countries and regions, 
including mainland China, Taiwan, Malaysia, Iran, Korea, 
Spain, Germany, UK, Greece, USA, Brazil, etc. There are 
different types of articles for your choice, including research 
articles, review articles, science letters, perspective, new 
technical notes and methods, etc. 

Highlights (metrics & services): 
 Key metrics: 

Impact factor: 0.415 
Peer review period: 1–3 months 
From submission to publication (currently): <10 months  
Frequency of publication: monthly 
Editorial board: 16 foreign members, 29 domestic 
members (including 16 members of CAE) 

 Timely and high-quality service for authors and readers 
 Rigorous editing and proof-reading 
 Article in press: Accepted articles will be pushed online 

immediately after the acceptance 
 Innovative techniques adopted:  

CrossMark, to track content changes 
ORCID, to connect research and researchers 

 Peer reviewer comments (before publication) are 
selected by editor to be demonstrated and open peer 
comments (after publication) can be provided by readers 
on the article page 

 English summary is provided for each paper to give 
readers a quick view and Chinese summary to a wider 
audience of Chinese readers, both freely accessible 

 Abstracted/Indexed in: SCI-E, EI-Compendex, Scopus, 
INSPEC, Google Scholar, DBLP, etc. 

 Full text is available from www.zju.edu.cn/jzus; 
engineering.cae.cn; www.springerlink.com 

 
Thanks for your attention and welcome your contribution! 
 
Online submission: 
http://www.editorialmanager.com/zusc/ 
 
Manuscript guidelines: 
http://www.zju.edu.cn/jzus/manuscript.php 
 
Contact: 
Editorial Office of J. Zhejiang Univ.-SCIENCE (A/B) & FITEE 
38 Zheda Road, Hangzhou 310027, China 
Managing Editors: Helen Zhang & Ziyang Zhai 
jzus@zju.edu.cn; jzus_zzy@zju.edu.cn 
+86-571-87952276/87952783 
 

FITEE: Call for papers 

Ullman, J.D., 1975. NP-complete scheduling problems.
J. Comput. Syst. Sci., 10(3):384-393. [doi:10.1016/
S0022-0000(75)80008-0]

Wang, L.Z., Khan, S.U., Chen, D., et al., 2013. Energy-
aware parallel task scheduling in a cluster. Fut.
Gener. Comput. Syst., 29(7):1661-1670. [doi:10.1016/
j.future.2013.02.010]

Yang, T., Gerasoulis, A., 1994. DSC: scheduling parallel
tasks on an unbounded number of processors. IEEE
Trans. Parall. Distr. Syst., 5(9):951-967. [doi:10.1109/
71.308533]

Zhu, X.M., He, C., Li, K.L., et al., 2012. Adaptive energy-
efficient scheduling for real-time tasks on DVS-enabled
heterogeneous clusters. J. Parall. Distr. Comput.,
72(6):751-763. [doi:10.1016/j.jpdc.2012.03.005]

http://dx.doi.org/10.1109/71.207593
http://dx.doi.org/10.1016/j.jpdc.2010.01.003
http://dx.doi.org/10.1016/j.jpdc.2010.01.003
http://dx.doi.org/10.1109/DS-RT.2013.16
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1016/j.future.2013.02.010
http://dx.doi.org/10.1016/j.future.2013.02.010
http://dx.doi.org/10.1109/71.308533
http://dx.doi.org/10.1109/71.308533
http://dx.doi.org/10.1016/j.jpdc.2012.03.005

	Introduction
	Related work
	Models
	Computing system model
	Application model
	Performance measurements

	Proposed algorithm
	Path determining phase
	Application reconstructing phase
	Frequency equalizing phase

	Performance evaluation
	Experimental settings
	Random application performance analysis
	Real application performance analysis

	Conclusions

