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ARTICLE INFO ABSTRACT

Communicated by N. Zeng Influence maximization (IM) problem is an extensively studied problem in social networks. It aims to find a
small set of users in the social network to initiate the diffusion process and maximize the expected influence

Keyw, o ds: R spread. Existing works on conformity-aware IM focus on the interaction between influence and conformity in
Adoption maximization . A . . o . i N d
Conformity a single-influence setting and ignore the role of conformity in a competitive and multiple-influence setting.

Competitive influence This paper proposes a conformity-aware independent cascade (C-IC) model that considers the competition
Reverse influence sampling among multiple influences as well as the role of conformity in a user’s decision-making. It is proved that
the adoption of an influence under the C-IC model is monotone and submodular. Meanwhile, we formulate
two adoption maximization (AM) problems, O-AM and S-AM, which are both NP-hard. Because estimating
the adoption through diffusion simulations is very time-consuming, we propose a reverse adoption estimation
(RAE) method based on a reverse multiple influence sampling (RMIS) technology for the C-IC model and
integrate it into the D-SSA-fix (Nguyenet al., 2018) framework, DSSA for short, to compute a solution with
approximation guarantee. To further boost the performance, we present a fast one-hop adoption estimation
(OAE) method and develop a heuristic algorithm based on OAE, called GOAE. Extensive experiments on eight
real-world social networks show that the C-IC model is superior to a non-conformity diffusion model and
that RAE4+DSSA and GOAE are efficient and effective. In most cases, GOAE finds comparable solutions to
RAE+DSSA and CELF with less time and memory overhead. GOAE is five to six orders of magnitude faster
than CELF and RAE+DSSA is up to three orders of magnitude faster than CELF on NetHEPT. GOAE runs up
to four to five orders of magnitude faster than RAE+DSSA with at most two orders of magnitude less memory
usage. GOAE is more scalable than RAE+DSSA in terms of the number of seeds and the size of the social

network.

1. Introduction the followers may receive information on different products from a
user or several users These people who receive diverse influences often

In the past decades, much work on social networks has emerged face a problem that how to make a choice. And the online social

in sociology, economics, psychology, and other disciplines [1,2]. As platforms also want to know how to select the most influential users
information technology advances [3-5], with the emergence of growing in their platforms. This poses a challenge for modeling the diffusion
large-scale datasets from online social networks, social network analy- and adoption of multiple influences in competitive social networks.
sis draws a great deal of interest from researchers but faces many new However, the existing diffusion models are not suitable for this context.
challenges. Most of the existing diffusion models are designed for single-influence

settings. However, in real life, there are numerous competitive products
in the social network and people may even recommend multiple similar
products simultaneously based on their experience or information she
has learned. In addition, even for the existing competitive multiple-
influence diffusion models, they often use a “first come, first served”
strategy or a fair strategy to choose a product, which may lead to biased
adoption estimation or the selection of users who are not the most
influential.

Challenge. With the development of communication technology
and the Internet, communication is more convenient and online con-
tents are easier to obtain. People can easily access more diverse in-
formation from social networks. For example, online social platforms
like TikTok and Xiaohongshu in China are growing in popularity,
and users enjoy sharing their experiences with their followers. These
experiences often involve multiple (one or more) similar products, such
as newly released mobile phones or some latest movies. As a result,
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To overcome this challenge, we propose a conformity-aware inde-
pendent cascade (C-IC) model that considers the competition among
multiple influences and the role of conformity in a user’s decision-
making. The C-IC model emphasizes the role of the frequency of
receiving an influence in a user’s decision-making and leverages the
property of conformity to build a bridge between the frequency of
receiving an influence to a user’s adoption probability. [6-8] conducted
similar field experiments in the USA, the UK, and Sweden to study
the relationship between conformity and the number of influencers,
respectively. They find as the number of influencers increased. Similar
phenomena also appear online, where more people have more influ-
ence. [9] reported users on Facebook were more likely to like content
if they saw three (compared to one) people had liked it. [10] reported
people were less likely to believe a news if several others commented
it was untrue when they reading on social media. Therefore, we as-
sume that the adoption probability of an influence increases with the
frequency of receiving an influence.

On the other hand, viral marketing aims to promote and popularize
products and innovations by word of mouth to new users who often
lack sufficient knowledge of the products and innovations. New users’
decisions are usually influenced by informational conformity [2]. In-
formational conformity stems from the mentality that when individuals
lack sufficient knowledge and experience, they tend to trust the wisdom
of the group and align themselves with it. For example, on social
platforms, individuals tend to believe the messages that are frequently
retweeted, even if they do not know the truth. Moreover, individuals
are more likely to adopt the products frequently recommended by
friends in their social networks. These phenomena also verify that the
C-IC model is reasonable.

Based on the C-IC model, we formulate two adoption maximization
problems, named O-AM and S-AM, which are significant in applica-
tions such as viral marketing and innovation promotion. The adoption
maximization problem aims to find a small set of users to start the
propagation process and maximize the adoption under the C-IC model.
In the AM problem, adoption serves as the criterion for evaluating the
quality of a solution instead of the influence spread, since an influenced
user only adopts one influence from the influences she received under
the C-IC model.

Contributions. In this paper, we present the C-IC model in the
context of multiple competitive influences, which portrays the diffusion
process of multiple competitive influences and highlights the role of
conformity in users’ decision-making. Besides, we formulate two adop-
tion maximization problems, named O-AM and S-AM, under the C-IC
model and develop two methods, RAE+DSSA and GOAE, to address the
S-AM problem. To summarize, our contributions are as follows.

We propose the C-IC model for competitive social networks and
demonstrate that the expectation of adoption under the C-IC
model is non-negative, monotone, and submodular. Then we
present two AM problems, O-AM and S-AM, and prove they are
NP-hard.

We present the RAE method based on the RMIS technology for
the C-IC model to estimate the adoption and integrate it into the
DSSA [11] framework for the S-AM problem. Then, we demon-
strate the mathematical basis of the RAE method.

We provide a GOAE algorithm based on a fast one-hop adoption
estimation (OAE) which further speeds up the adoption estima-
tion. The GOAE algorithm is more scalable than RAE+DSSA in
terms of running time and memory usage, particularly in the
context of large seed numbers and large-scale networks.

We conducted experiments on eight real-world network datasets.
We evaluate the C-IC model by compared it with a non-conformity
diffusion model. The experiment results show that the C-IC model
is superior to a non-conformity diffusion model and more con-
ducive to obtaining superior seed sets. We compare RAE+DSSA,
GOAE, and CELF. These experiments suggest that RAE+DSSA
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and GOAE are efficient and effective. GOAE finds comparable
solutions to RAE+DSSA and CELF with less time and memory
usage. The experiments with the large k setting suggest GOAE
scales well for large k values on large networks.

We organize the rest of the paper as follows. We introduce the re-
lated work in Section 2 and the preliminaries of this work in Section 3.
We propose the C-IC model and formulate the S-AM problem and the O-
AM problem in Section 4. We establish the theoretical basis of the RAE
method and introduce the RMIS technology in Section 5. We present the
GOAE algorithm based on the OAE method in Section 6. We illustrate
the experiments on eight real-world network datasets and analyze the
results of the experiments in Section 7. We conclude this paper in
Section 8. For ease of reading, all the proofs are given in Appendix.

2. Related work

Kempe et al. [12] formally proposed the influence maximization
(IM) problem, and then proved that it is NP-hard. Additionally, they
proved the influence spread functions under the independent cas-
cade (IC) model and the linear threshold (LT) model are both non-
negative, monotone, and submodular, and based on the fact they
proposed a greedy algorithm to find a solution providing a (1-1/e—¢)-
approximation. Leskovec et al. [13] proposed the CELF (Cost-Effective
Lazy Forward) algorithm to accelerate seed search by avoiding estimat-
ing the influence spreads of unnecessary candidate solutions benefitting
from the submodularity of the influence spread function. Some exist-
ing algorithms for IM waive approximation guarantees for improving
practical efficiency. Chen et al. [14] proposed DegreeDiscount which is
significantly superior to the degree and centrality-based heuristics and
runs faster than the greedy algorithms in [12,13] by many orders of
magnitude. Chen et al. [15] showed that computing influence spread
in the IC model is #P-hard. To improve the performance of computing
influence spread, they designed two heuristic algorithms, called MIA
and PMIA, which use local arborescence structures of each node to ap-
proximate the influence spread. Jiang et al. [16] proposed a simulated
annealing-based approach for the IM problem to replace the time-
consuming greedy algorithm. To further improve the efficiency, they
use EDV (expected diffusion value) instead of estimating the influence
spread through influence diffusion simulations. Jung et al. [17] pro-
posed IRIE which derives a system of linear equations whose solution
can be computed fast by an iterative method. Then the computed values
are used as estimations of the influence spread.

More recently, a wealth of extensions on IM have emerged.
Kazemzadeh et al. [18] proposed the IMBC (Influence Maximization
Based on Community structure) algorithm which exploits optimal
pruning and a minimum of dominating nodes to improve efficiency
and modulates the scores of nodes with a high Rich-Club coefficient
to optimize the selection of seed set. Yang et al. [19] proposed a
Continuous Influence Maximization problem based on an assumption
that the purchase probability curve with respect to discount for each
user is known. They investigated what discounts should be offered
to users to maximize the adoption of a product. Ohsaka et al. [20]
proposed an algorithm to coarsen an original influence network into
a node-weighted influence network which is much smaller and can
approximate the diffusion properties of the original influence network.
The coarsened influence network is used to speed up the estima-
tion of influence spread and the algorithms for IM. Zhao et al. [21]
transformed identifying the most influential nodes into a classification
problem and proposed an InfGCN model based on Graph Convolutional
Networks (GCN), which considers the roles of both network struc-
tures and node features in identifying the importance of nodes. Kou
et al. [22] transformed identifying influential nodes into a regression
problem and proposed a deep learning model based on the graph multi-
head attention mechanism and the dense connection to identify the
most influential nodes.
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2.1. Competitive IM and adoption maximization.

Bharathi et al. [23] are among the first who study the competitive
IM problem with multiple competing innovations. Bhagat et al. [24]
presented an LT-C model and studied the adoption maximization based
on it. They distinguish between adopting and influencing and take
users’ attitude into account based on her experience with products.
They showed that the adoption maximization problem is NP-hard and
the expected number of product adoptions is monotone and submodular
under the LT-C model; Valera and Gomez-Rodriguez [25] proposed
a continuous-time probabilistic model, based on temporal point pro-
cesses, for the adoption and frequency of use of competing products,
which captures several intuitive key factors, i.e. social influence, re-
cency, and competition. Li et al. [26] proposed a game theory-based
framework for the competitive IM problem which jettisons unrealistic
assumptions that a new competitor is aware of a rival’s strategy. Zhu
et al. [27] presented Competitive Independent Cascade model in which
users including seeds are able to spread competitive influences at
the same time and investigated the Minimum Cost Seed Set problem
based on their model. Recently, Hong et al. [28] presented a com-
petitive reverse influence estimation-based greedy (CRIEG) algorithm
with bounded approximation guarantees, which significantly improves
efficiency under the competitive IC model.

2.2. RIS-based algorithms.

Time efficiency becomes a primary challenge for the IM problem
due to the increasing size of social networks. Diffusion simulation-based
greedy algorithms are extremely time-consuming and not scalable,
while other heuristic algorithms lack approximation guarantees. Borgs
et al. [29] made a theoretical breakthrough and proposed a novel
O(kI*(m + n)e3log?n) time algorithm based on a drastically different
method which is known as reverse influence sampling (RIS) for the
IM problem under the IC model. Tang et al. [30] further reduced the
running time to O((k + I)(m + n)logn/€?) and proposed two algorithms,
TIM and TIM+, for the IM problem under the triggering model which
is a general diffusion model including the IC model and the LT model.
Then, they [31] proposed a further improved algorithm, IMM, for
the IM problem, which can support any diffusion model for which a
certain sampling procedure is well-defined. Nguyen et al. [32] adopted
a Stop-and-Stare strategy and proposed two algorithms, SSA and D-
SSA, which perform better than IMM in terms of empirical efficiency.
Huang et al. [33] uncovered some errors in proofs for the approx-
imation factors and the sampling efficiency of SSA and D-SSA, and
then provided an SSA-fix algorithm. Nguyen et al. [11] provided an
D-SSA-fix algorithm and affirmed the sampling efficiency of D-SSA-fix.
Wang et al. [34] proposed a bottom-k sketch based RIS framework
(BKRIS), which brings the order of samples into the RIS framework,
to accelerate the RIS framework and reduce memory consumption. Guo
et al. [35] presented a framework for generating reverse reachable (RR)
sets, called SUBSIM, and developed the SKIP algorithm for the sorted
subset sampling problem. Then they presented the HIST algorithm to
enhance the scalability in high influence networks. Zhu et al. [36]
proposed a 2-hop+ sampling method for fast and accurate estimation of
influence spread under the IC model, which reduces the sample number
by generating only samples including at least one 2-hop live path. Then,
they exploit a SkipEdge technique to further improve the sampling
efficiency of their method. In addition, they presented the generalized
stopping rule algorithm to obtain an (¢, §)-estimation of the mean of
random variables with fewer samples needed.

2.3. Conformity and conformity-aware social influence analysis.
Conformity is a fundamental and well-studied concept in social

psychology. Extensive work in social psychology [2,37,38] has shown
the importance of conformity and studied the relationship between
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Table 1

Frequently used notations.
Notation Definition
G(V,E,p) an influence graph
N,,(u) the in-neighbor set of u
N, () the out-neighbor set of u
N 4 (u) the set of in-neighbors activated u
S () a seed set (the seed set of influence ;)
S, the seed set of all competitive influences
S, the set of seed sets of all competitive influences
1 the influence set
I(u) the set of influences received by u
h(u,I) the probability u adopts an influence I
a(S) the influence spread of a seed set S
f(S) the adoption of a seed set .S

conformity and the number of influencers [6-10,39]. Milgram et al. [6]
conducted a field experiment in New York. They asked 1, 3, 5, 10,
and 15 people, called influencers, to stop and look upwards on a busy
sidewalk. They found the proportion of passers-by who are influenced
and look upwards increases with the number of influencers. Coultas
and Eriksson [7] and Gallup et al. [8] replicated the experiment in the
UK and Sweden. They found as the number of influencers increased,
the influence showed a similar linear pattern. Similar phenomena also
appear online, where more people have more influence. Egebark and
Ekstrom [9] reported users on Facebook were more likely to like
content if they saw three (compared to one) people had liked it. Col-
liander [10] reported people were less likely to believe a piece of news
if several others commented it was untrue when they reading on social
media. Based on these observations, we model conformity in the C-IC
model as a social influence that increases with the times a user receives
it. Li et al. [40] studied conformity as an individual’s inclination to
be influenced by others and they computed conformity indices of each
individual by using individuals’ relationships with positive or negative
signs. Zhang et al. [41] studied how the conformity tendency changes
with users’ role defined by her structural properties and proposed a
probabilistic graphical model for modeling the role-aware conformity
influence. Tang et al. [42] studied the role of conformity in changing
individuals’ online behavior and formalized the effects of social confor-
mity into a probabilistic model. The three works study conformity for
computing individuals’ traits or predicting individuals’ actions, which
is different from the purpose of this paper. Li et al. [43] proposed
a conformity-aware cascade (C?) model that exploits the influence
probabilities computed with conformity in [40] for estimating influence
spreads in the context of the IM problem in signed social networks. Li
et al. [44] proposed a group-based algorithm for the IM problem under
the conformity-aware diffusion model based on user profiles and group
profiling. Recently, Li et al. [45] proposed a conformity-aware Hawkes
process-based framework to characterize online information diffusion
and used a semi-parametric inference approach to learn their model.
The three works study online information diffusion or the IM problem
in a different setting from this work. And they cannot to be used for
competitive and multiple-influence diffusion environments which is the
context of this work.

3. Preliminaries

A social network is modeled as an influence graph G = (V. E, p),
where V is the set of nodes, E is the set of directed edges, with n = |V|
and m = |E| and p : E — (0,1] is an influence probability function.
N;,(w) and N,,(u) represent the in-neighbor (incoming neighbor) set
and the out-neighbor (outgoing neighbor) set of a node u, respectively.

In this section, we review the IC model and the RIS technology
under the IC model. Table 1 lists notations used frequently.
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3.1. Independent cascade model

The independent cascade model is one of the most widely used
diffusion models in the IM problem. In the IC model, each node takes
one of two states, active or inactive. Inactive nodes can become active,
but not vice versa. Given an influence graph G = (V,E,p) and an
initially activated seed set S C V. The diffusion proceeds in discrete
steps according to the following randomized rules. When a node be-
comes active in Step ¢, it acquires only one chance to activate each
of its inactive out-neighbors randomly with the influence probability
between them. If any inactive out-neighbor is activated successfully,
then it will become active in Step ¢ + 1. The diffusion process ends
when no more nodes are activated. Note that if an inactive node is
activated by any node, it cannot be influenced by other in-neighbors.
This is different from the C-IC model.

The influence spread o(S) is defined as the expected number of
active nodes when the diffusion ends. Unfortunately, computing o(.S)
under the IC model is #P-hard [15]. The diffusion simulation-based
method has been used for approximately computing o(.5), which re-
peatedly performs diffusion simulations and takes the mean of the
number of active nodes as ¢(.S). In practice, ten thousand simulations
are sufficient to estimate o(.5) [12].

3.2. Influence maximization problem

The IM problem aims to find an optimal seed set in the social
network to maximize the number of activated nodes under a diffusion
model. It is defined formally as follows.

Definition 3.1 (Influence Maximization Problem [12]). Given an influ-
ence graph G = (V, E, p) and an integer k, the influence maximization
problem requires finding a seed set .S C V' of size k that maximizes the
influence spread o(.S).

It is proved that computing the optimal seed set under the IC model
is NP-hard [12]. Fortunately, the influence spread under the IC model
is non-negative, monotone, and submodular. Therefore, the greedy
algorithm can be used to look for a (1 — 1/e — ¢)-approximate optimal
solution [12]. The greedy algorithm starts with .S = §J. Then it chooses
a node providing the largest marginal gain and adds the node into .S
iteratively until .S includes k nodes.

However, the greedy algorithm for IM suffers from low efficiency
because of two disadvantages. Firstly, computing the influence spread
of a candidate seed set needs to perform large numbers of diffusion
simulations. Secondly, it executes global searches in the influence graph
for each new seed. In other words, to find a new seed, it estimates
the influence spreads for all candidate seed sets. It runs Zf:ol (n—1i)-1
simulations for finding a seed set of size k, where / is the number of
simulations for computing the influence spread of each seed set. The
greedy algorithm is computationally prohibitive for the IM problem,
especially in large networks.

3.3. RIS under the IC model

Borgs et al. [29] developed the reverse influence sampling (RIS)
technology which estimates o(S) by generating a set R of random
reverse reachable (RR) sets. Each RIS process generates a random RR
set R in the reverse influence graph G’ which is the transpose graph
of the influence graph G. Note that the influence probability of each
reversed edge in G7 is the same as the probability of the original edge in
G. Given G7, the RIS is like a random breadth-first traversal (BFS) from
a randomly selected node u. A RIS proceeds as the following procedure:
(1) Select a node u uniformly at random from G”. (2) Visit u and start
a random BFS from u in G7. In the random BFS, each visited node
gets one chance to randomly visit each of its out-neighbors with the
influence probability between it and its out-neighbor. (3) The random
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activate successfully choose an influence

Inactive Adopted

activate unsuccessfully

Fig. 1. Node states under the C-IC model.

BFS ends if no new nodes are visited. (4) Finally, return the set of the
visited nodes as the random RR set R. Intuitively, u can reach the nodes
in R in the RIS. Therefore, the nodes in R can influence u.

Given a seed set .S of an influence I, if any seed in .S exists in R,
i.e., S intersects R, u will be influenced by I. Given a set R of random
RR sets, the more random RR sets S intersects, the more influential .S
is. Based on the idea, [29] uses a greedy algorithm to select the seed set
that intersects the most random RR sets in R. In addition, the RIS-based
algorithms [29-36] for the IM problem investigate how to generate
random RR sets with lower computational overheads to guarantee the
quality and reliability of the seed set.

4. Problem definition

In real life, users may receive information on different products
or innovations from their friends and form their own opinions and
attitudes based on this information. In addition, research work in the
field of social psychology shows people usually tend to conform with
their friends. Therefore, we develop a conformity-aware independent
cascade model that models the propagation and adoption of multiple
competitive influences. Then, we define two adoption maximization
problems under the C-IC model.

4.1. Conformity-aware independent cascade model

In the C-IC model, there are multiple influences propagating in the
social network. Nodes including seeds can propagate multiple influ-
ences simultaneously. The seed sets of different influences may overlap
and a seed may serve multiple influences. Furthermore, the C-IC model
consists of two stages, activation and adoption. Nodes may receive
multiple influences and spread all of them, but they can only adopt
one. The adoption process is subject to conformity in the C-IC model
which emphasizes the role of conformity in the adoption stage from an
audience’s perspective.

To facilitate the description of the C-IC model, some symbols are
defined first. Denote by I the overall set of influences propagating in
the social network G and denote by Z(u) the set of influences received
by u. § = ['31 S§; is the overall seed set of all the influences, where S
is the seed set of I,.

In the C-IC model, each node has three states, inactive, active, and
adopted as shown in Fig. 1. Each node keeps inactive before it is
exposed to any influence. Only inactive nodes can be activated. Nodes
will become active after they are activated and receive some influences.
Each active node attempts to activate its inactive out-neighbors. Then
they become adopted after they adopt one influence from the influences
received. The adopted nodes remain adopted until the diffusion process
ends. Nodes can only change their states in two ways, becoming active
from inactive and becoming adopted from active.

Given an influence graph G and a seed set S, the diffusion proceeds
in discrete time steps according to the following rules. To start the
propagation process, the influences activate their seeds, while the rest
nodes remain inactive. In Step ¢, each active node gets one chance to
randomly activate each of its inactive out-neighbors with the influence
probability between it and its out-neighbor. If a node u activates its
out-neighbor v successfully, it propagates all the influences in its influ-
ence set Z(u) to v. After attempting to activate all the out-neighbors,
each active node randomly adopts one influence from its influence
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@

Fig. 2. An example of the influence diffusion process under the C-IC model.

set according to the conformity-aware adoption probability introduced
in Section 4.2. Then the active nodes turn adopted and they cannot
activate any inactive out-neighbor in subsequent steps. Note that if an
inactive node is activated by its in-neighbors, it will remain inactive
(activatable) until the next time step to give other active in-neighbors
opportunities to activate it. As a result, a node may be activated by
multiple in-neighbors in the same time step and may receive multiple
influences from those in-neighbors. If an inactive node v is activated
by an in-neighbor, v will receive all the influences in the set of the in-
neighbor. Then we get I(v) = (J,¢ No© I(u), where N 4(v) consists of all
the in-neighbors that have activated v. In Step ¢+ 1, the nodes activated
in Step t become active. Then they repeat the behaviors of active nodes
in Step t. Finally, the diffusion process ends when no more nodes are
activated.

Example. Fig. 2 illustrates the diffusion process of four influences
under the C-IC model in a social network composed of seven nodes
and nine directed edges. I, I,, I,, and 1, are represented in yellow,
brown, pink, and green, respectively. The colors of a node are used to
express how it is activated by corresponding influences. A green edge
represents that an activation attempt occurs between the end nodes
of the edge in the current time step. The dashed edges indicate that
activation attempts fail or no activation occurs.

In Step 0, to start the influence diffusion, a, b, and ¢ are activated
and their influence set consists of the influences activating them. For
example, I(b) becomes {I,,1,,1,}, since node b has been activated by
the three influences.

In Step 1, a, b, and ¢ become active, and then attempt to activate
their inactive out-neighbor along the green edges. Note that « and b
activate e in the same time step, while ¢ fails to activate e. Therefore,
I(e) becomes {I,, I}, I,,1,}. After all activation attempts finish, e ran-
domly adopts one influence from the received influences based on their
adoption probabilities and becomes adopted.

In Step 2, d, e, and f become active and they successfully activate g.
Note that g is activated by I, and I, twice and by /, and I, once. The
sector area is used to indicate the ratio of activation times of different
influences. For example, the green sector covers one-third of the area
of g because the activation time of I, is one-third of the total activation
time. Then, d, e, and f adopt one influence from their influence sets
and become adopted.

In Step 3, g becomes active, but no nodes can be activated. Then
it randomly adopts one influence and becomes adopted. Finally, the
diffusion process ends since no nodes are activated in this step.

4.2. Conformity-aware adoption probability function

Conformity is a kind of social influence that persons tend to fit in
with their groups in social interactions. Conformity plays an impor-
tant role when users make a choice in a competitive social network,
especially when they lack sufficient knowledge about the products and

Neurocomputing 573 (2024) 127224

innovations. In the adoption stage of the C-IC model, the conformity-
aware adoption probability is defined as a function depending on the
number of times the influences are received.

Denote by h(u, I;) the probability function that a node u adopts an
influence I;. We have 0 < h(u,1;) < 1 and ¥, .7 h(u,I;) = 1 for any
influence I; and any activated node u. Specially, if an influence I; is
not exposed to u, h(u, I;) = 0. And if only one influence I; is exposed to
u, h(u,I;) = 1.

The conformity-aware adoption probability is modeled based on
the following two observations of common phenomena in information
diffusion process.

Observation one: Literature [6-10] in social psychology report that
the conformity influence increases with the number of influencers and
follows a similar linear pattern. Besides, to ensure a good decision
is made, an individual usually supports the choice that the majority
of people make and the probability of supporting a choice increases
with the population supporting the same choice. We assume that the
adoption probability of an influence increases with the number of times
the influence is received.

Observation two: When a person learns about a product for the first
time, it makes a deep impression. Nevertheless, the impact will wane as
the number of times the same information is received increases. In other
words, the marginal gain of the adoption probability of an influence
decreases as the number of times the influence is received increases.

4.2.1. Linear adoption probability
Based on the two observations above, the conformity-aware adop-
tion probability function is defined as

[N, (u, I}
leez |NA(u» I)l ’

where set N4 (u, I;) € N,,(u) consists of all the neighbors that propagate
influence I; to node u.

We discuss the properties of the adoption probability function for an
influence I based on an assumption that seeds of competitive influences

remain unchanged. We have the following conclusion.

h(u,I;) = H(N 4(u, I;)) =

Corollary 4.1. The adoption probability function h(u, I,) = H(N 4(u, I,))
is a function from N,,(u)> to R, where N,,(u)* is the power set of N,,(u)
and R is the set of real numbers. h(u, I;) is non-negative, monotone, and

submodular.

Corollary 4.2. For any set X CY C N,,(u) and any set W C N,;,w)—Y,
we have

HXUW)-HX)>HYUW)—-H(Y). (€D)]
4.3. Adoption under the C-IC model

The adoption f(S;) under the C-IC model is the expected number of
nodes that adopt an influence I; by using its seed set .S;. Additionally,
the overall adoption F(S) = Z"i |1 f(S;) is the sum of adoptions of all
the influences.

Theorem 4.3. Given the seed set S = Uli '1 S, the overall adoption F(.S)
is non-negative, monotone, and submodular. Therefore, F(S) will reach
the maximum when the seed sets of all the influences do not overlap and
|S| = Zﬂ |:S;| is the maximum.

In the rest of this section, we focus on analyzing the adoption of a
specific influence.

Theorem 4.4.  Given the influence graph G = (V,E,p) and the set
S, = {S;lj #i,1 £ j < |1}, the adoption f(S,) of the influence I; under
the C-IC model is non-negative, monotone, and submodular.

We illustrate the complexity of computing the two adoption func-
tions below.
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Theorem 4.5. Computing the overall adoption F(S) = Zl'i‘l ) under
the C-IC model is #P-hard.

Theorem 4.6. Given the set of competitive seed sets S, = {S;|j #i,1 <
Jj < ||}, Computing the adoption f(S;) of I; on S; under the C-IC model
is #P-hard.

4.4. Problem definition

Given an influence graph G, the number of seeds k, and the adoption
probability function h(u, I,), we define the overall adoption maximiza-
tion (O-AM) and the single adoption maximization (S-AM) under the
C-IC model.

Definition 4.1 (Overall adoption maximization (O-AM)). O-AM aims to
find out a seed set S = UZ |1 S; that maximizes the overall adoption
F(S) = ZZ |1 f(s;) under the C-IC model.

Since F(S) will reach the maximum when the seed sets of all the
influences do not overlap and |S| = Ziill |.S;| is the maximum. More-
over, F(S) under the C-IC model is equal to ¢(S) under the IC model.
Therefore, the O-AM problem under the C-IC model is equivalent to
the IM problem under the IC model, which asks for a seed set .S to
maximize o(.5). Furthermore, the O-AM problem under the C-IC model
is NP-hard, since the IM problem under the IC model is NP-hard.

Definition 4.2 (Single adoption maximization for (S-AM)).. Given set
{S;1j #i,1 < j <|I|} of all competitive influences, S-AM for I, requires
finding out a seed set S; of size k that maximizes the adoption f(S;)
under the C-IC model.

The S-AM problem under the C-IC model is NP-hard, since when
|Z|] = 1, S-AM is equivalent to the IM problem under the IC model.
Therefore, S-AM is not easier than IM which is NP-hard.

5. Reverse adoption estimation

Computing the adoption f(.S;) of an influence under the C-IC model
is #P-hard and the S-AM problem is NP-hard. The diffusion simulation-
based method can be used to estimate f(S;). Benefitting from the
nonnegativity, monotonicity, and submodularity of f(S;), the greedy
algorithm can be used to tackle the S-AM problem and provides a
(1 = 1/e — ¢)-approximate optimal solution. The greedy algorithm runs
Zf:ol (n — i) adoption estimations to obtain k seeds for the S-AM prob-
lem. However, the running time of the greedy algorithm is prohibited,
especially for large scale networks.

To overcome the challenges, we propose a reverse adoption esti-
mation (RAE) method based on a reverse multiple influence sampling
(RMIS) technology for the C-IC model for the S-AM problem.

We first demonstrate the mathematical basis of the RAE method
in Section 5.1. Then we describe the RMIS process and explain how
to compute the adoption probability under the C-IC model in Sec-
tion 5.2. After that, we illustrate how to select seeds by updating the
marginal adoption gains of candidate seeds in Section 5.3. Finally,
the two technologies are integrated into the DSSA framework [11] in
Section 5.4.

5.1. Mathematical basis of the RAE method

The RAE technology is proposed to bridge the gap between esti-
mating adoption and the C-IC model, which avoids the inefficiency of
estimating the adoption by repeatedly simulating the influence diffu-
sion processes. It is based on the idea that the expected adoption f(S;)
of the influence I; under the C-IC model can be estimated by estimating
the expected adoption probability E[A(u, I;)].
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Table 2

Notations in Algorithm 1.
Notation Definition
u the sampling source selected randomly
n, a structure representing an RR node
n,.id a number representing an RR node
n,.level the distance from u to n,
n,.N, the neighbor set of u in the paths from u to n,
g a structure corresponding to an RR graph
g.-N, the set consisting of all RR nodes
g..d, the distance from competitive seeds to u
g,-N,(v) the RR node structure in g,.N, whose id equals v
N, () the set of u’s neighbors spreading I to u

Algorithm 1 RMIS

Input: The reverse influence graph G”, a randomly selected node u, and the
competitive seed set S,

Output: A structure corresponding to the random RR graph, namely g,

. struct{id; level; N,; }n,;

. struct{N,; d,; t.; }g,;

: g,.d, « o0 and g,.t, < 0;

: level < 0 and seeds, < @;

n,.id < u, n,.level < level, and n,.N, < @;

: &N, < g.N,Ufin};

:if u e S, then

g..d, < level and g,.1, < |I(u)l;

Return g,;

10: seen « {u}, active « §§, and next < {u};

11: while next # §§ && seeds, =@ do

12:  active < next and next « f;

13: level « level + 1;

14:  for each v € active do

15: for each w € N,,,(v) do

16: if w & seen then

17: if v activates w then

18: next < next | J{w} and seen < seen|J{w};
19: n,.id « w and n,.level « level;

20: if level = 1 then

21: n,.N, < {w};

22: else

23: n,.N, < g.N,.(v).N,;

24: &N, < g.N,U(n);

25: if w € S, then

26: g,.d, < level and seeds, « seeds, | J{w};
27: else

28: if w € next && v activates w then

29: &N, (w).N, < g,.N,w).N,Jg,.N,(v).N,;

30: if seeds, # ¢ then

31:  for each s € seeds, do

32: for each I € I(s) do

33: N,(I)= N,(I)Jg,N,(s).N,;
34: 8l < leel,/;éi |Nu(Ij)|;

35: Return g,;

Theorem 5.1.  Given the competitive seed sets S, = {S;|j #i,1 < j <
|Z|}, the adoption f(S;) of the influence I, on a seed set S; under the C-IC
model is n time the expected adoption probability E[h(u, I;)], where u is an
arbitrary node in the influence graph G.

A variable P(u, I;) is defined as the adoption probability with which
an arbitrary node u € G adopts I;. Hence, we have P(u, I;) = E[h(u, I})]
and f(S;) = n- P(u,I;) according to Theorem 5.1. The S-AM problem
under the C-IC model is equivalent to identifying k nodes to maximize
P(u, I,).

5.2. Reverse multiple influence sampling

P(u, I;) is estimated based on the following ideas. A random variable
p(u, I;) is defined as the possibility with which a uniformly randomly
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selected node u € G adopts I; in a random diffusion process. Thus,
if we have sufficient instances of p(u, I;), we can approximate P(u, I;)
with the mean of these instances due to P(u, I;) = E[p(u, I;)]. To achieve
this goal, the RMIS algorithm is proposed to generate an instance of
p(u, I). We first select a node u uniformly at random from the reverse
influence graph G” which is the transpose graph of G. Then, an RMIS
is conducted in GT as presented in Algorithm 1 and outputs a structure
g,.. Finally, we exploit g, to calculate an instance of p(u, I;), denoted by
Py, (. I), as described in Section 5.2.1.

To facilitate understanding of Algorithm 1, some important no-
tations and their meanings are listed in Table 2. As described in
Algorithm 1, an RMIS proceeds like a random breadth-first traversal
from u. First of all, we identify whether u is a competitive seed or not
(Lines 7-9). If not, we put u into the set next to start searching for
nodes which are able to influence it (Line 10). In the loop (Lines 14-
29), each out-neighbor of each node in active is attempted to activate
(Lines 17 and 29) with the influence probability between the two
nodes. The RMIS ends after a loop ends if no nodes are activated or
competitive seeds are activated in the loop (Line 11). Activating the
competitive seeds causes the RMIS to terminate early because the nodes
activated in subsequent loops cannot influence u. Because the RMIS is
the reverse process of influence diffusion under the C-IC model. Unlike
the breadth-first traversal, a node can be activated more than once by
different nodes in the same loop (Lines 27-29). This case corresponds
to a node that can activate multiple out-neighbors in G under the C-
IC model. Furthermore, that a node is activated by different nodes in
the RMIS process means it can spread influences to u along different
paths. Correspondingly, N, of such a node is set to the union of N,
of the nodes that activate it (Line 29). To facilitate the computation of
p(u, I;), we compute the total number of times u receives competitive
influences, denoted by g,.r., after the RMIS process ends (Lines 30-34).

Example. Fig. 3(a) exhibits an RMIS process from a randomly selected
node u. Since u is not a competitive seed, the RMIS process searches
the nodes that can influence it until the competitive seeds (b and c)
are activated. If an activated node v activates another node w, we add
a new structure n, corresponding to w into g,. Note that the node set
next to the symbol of each node in Fig. 3(a) is its N,. For example, a’s
N, = {d,e} is the union of d’s N, = {d} and e’s N, = {e}, since a is
activated by d and e. It means that a can influence g via d and e.

5.2.1. Adoption probability computation

Logically, the activated nodes and activated edges in an RMIS
process make up a reverse reachable (RR) graph, denoted by g, which
is an un-weighted directed graph. In g, if there is a path from u to a
node w, w is able to spread influences to u. Let g be the transpose graph
of gr and we calculate the adoption probability, denoted by P, 1),
of u on g by H(N 4(u, I;)) that is the probability of u adopting I; in g.

In order to calculate Pg, W, 1)), we need to calculate the number of
times u receives each influence, i.e., the number of neighbors sending
each influence to u. Any node sends all the influences it has received to
the nodes it activates under the C-IC model. Besides, if there are paths
from an activated neighbor n, of u to a node w in g,, n, is added into
w’s N, in Algorithm 1. Hence, each seed can send all the influences to
u through the nodes in its N,. As a result, given the seeds, we can get
the neighbors sending each influence to u and compute the number of
times u receives competitive influences (Lines 31-34 in Algorithm 1).

Example. Fig. 3(b) exhibits how the influences spread in the transpose
graph of g, where a is I;’s seed (yellow), and b and ¢ are the com-
petitive seeds. I; is spread to u twice via d and e, and the competitive
influences are sent to u four times via e and f. Therefore, u will adopt
influence /; with the probability p,, (u, I;) = 1/3.
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a:{d, e} d:{d} a:1/3 d

c: {f}

(a) The RR graph gg. (b) The transpose graph of

8R-
a:seed d:2/3

(c) The RR graph gg. (d) The RR graph gr.

Fig. 3. Illustrate RMIS and the adoption probability computation.
5.3. Seed selection

Algorithm 1 outputs g, that corresponds to an RR graph gz. Denoted
by Iy (S) the adoption of S; on u in g, and let I, (S) = pg,(u, 1), where
u is the sampling source of g, and S; is I;’s seed set. Denoted by .S; , the
set of I,’s seeds in g, and by N, (I;) the set of u’s out-neighbors spreading
I; to u. Hence we have N, (I)) = U5, 8-N,(v).N,, where g,.N,(v).N,
is N, of g,.N,(v). We calculate the adbbtion gain I 5, (S) as

1,
I, (S) = { IN, ()

INyUDI+gr 1.’

if Ps;g, < &r-dcs
if ps,.q, = 8rdes

where g,.7. is the number of times u receive the competitive influences
and p Sia, is the shortest distance from u to S, .

Denote by G, the set consisting of large numbers of outputs of
Algorithm 1. The adoption of I; on a seed set S; on the outputs in G,,
denoted by I (S)), is calculated by I (S) = Z, ¢ I, (S)/1G,]. We
have the following conclusion.

Theorem 5.2.  Given the set of competitive seed sets S, = {S;|j #
i,1 < j < |I|}, the adoption I'; (S;) of the influence I; based on G, is
non-negative, monotone, and submodular.

In order to find a seed set of size k with a maximum adoption
based on G,, we develop a Seed-Selection algorithm in Algorithm 2.
In Algorithm 2, the marginal gain of each node is initialized before
selecting the first seed (Lines 3-5). For a node v in an output g,
assume it is a new seed and calculate the marginal gain on g, by
I, vy U S) - T, (S). Then we calculate the marginal gain of the node
by accumulating all marginal gains of it on the outputs in G,. The seeds
are selected one by one until the number of seeds reaches k (Lines 6-
12). In each loop, the node providing the maximum marginal gain is
chosen as a new seed s (Line 7). Then we update the marginal gains of
the nodes in the outputs that contain s (Lines 9-11). For a node in an
output g,, the new marginal gain on g, should be calculated based on
{s} U S;. Thus, we update the marginal gain by subtracting the original
marginal gain based on .S; and then adding the new marginal gain based
on {s} |J.S;. Finally, we output S; and I, (S) which is the adoption of
I; (Line 14).
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Algorithm 2 Seed-Selection

Input: A set of outputs of Algorithm 1 G,, an integer k

Output: A seed set S; of the influence I; and the adoption Iy (S))
1: S; < @ and I, (S) < 0;

2: Set the marginal gain y(v) to be 0 for each node v in V;

3: for each g, in G, do

4:  for each v in g, do

S r(V) < y@) + I, ({0} U S) = I, (S);

6: for i =1 to k do

7: S argmaxcy_g,) y(u);

8:  for each g, containing s do

9: for each v in g, and v # s do

10: () < r() = (I, ({v US)—F(S)),

11: (V) < y() + (I, (v} Ufs YU S) - I, (sy U S

120 I (S) < g (S) +7(s);
13: S, < S, Uls)
14: Return S; and Iy (S));

Theorem 5.3. Let S; be the seed set output by Algorithm 2. Let S} be
an optimal seed set with maximum adoption I'; (S;) over all sets of size k
on the output set G,. l"gl_(Sf) > (1-1/e)- I, (S}) holds.

Example. Fig. 3(c) and Fig. 3(d) explain how to initialize and update
the marginal gain of each node in gy, respectively. Let Ygr () denote the
marginal gain of a node v in gg. In Fig. 3(c), there are two competitive
seeds, b and ¢, and there are no seeds of the influence I;. We compute
the marginal gain of each node based on the assumption that it is a
new seed. For instance, we have Ve W) =1 since if u is the seed of I;,
u must adopt I;. If e is the seed of I;, we get 7, (e) = 1 because /; will
reach u earlier than the competitive influences from b and c. Besides,
assuming c is a seed of I;, ¢ spreads two influences to u and b spreads
three influences to u, respectively. In the case, (¢) = 1/5 is because
u only receives I; once from f

Yer

In Fig. 3(d), we assume a has been chosen to be a seed of I; and
the marginal gains of nodes in g, need updating. Fig. 3(d) presents the
updated marginal gain of each node and these marginal gains decrease
compared to that in Fig. 3(c). In this case, we adjust the value of the
marginal gain of a node v by using Yer (@) = Iy, ({v} Ufah - Iy ({a}).
For example, 7, (d) = 2/3, since 7, (d) = I, ({d} U{a}) - I, ({a}) =
1-1/3 =2/3. And we find Ve (®) =0 because even if b is used as a new
seed of I;, the number of times u receives I; keeps the same. In addition,
if ¢ is used as a new seed of I;, we have Yer(© = Ty ({c} Ufah) -
I, ({a)=3/1-1/3=2/21

5.4. RAE+DSSA algorithm

The DSSA [11] algorithm, one of the state-of-the-art algorithms,
provides a (1 — 1/e — ¢)-approximate solution with a probability of at
least (1 — &) under the IC model. It strives to improve the efficiency of
tackling the IM problem while ensuring the approximation guarantee
and reliability of the solution.

The RAE method and the Seed-Selection algorithm bridge the gap
between the C-IC model and the DSSA algorithm. We adapt DSSA to fit
the C-IC model that models multiple competitive influences spreading
simultaneously in a social network. We exploit the RAE method to
compute adoptions based on G, in the changed DSSA algorithm. We
replace the RIS technology with the RMIS technology to generate sam-
ples for estimating adoption and replace the Max-Coverage algorithm in
the DSSA algorithm with the Seed-Selection algorithm to provide the
seed set with the maximum adoption and its adoption. The changed
algorithm is called RAE+DSSA.

Since the Seed-Selection algorithm provides a (1 —1/e)-approximate
solution based on G,. According to [11], we have the following conclu-
sion: Given ¢ € (0,1) and 6 € (0,1), RAE+DSSA returns an (1 — 1/e —
e)-approximate optimal solution with probability at least (1 — §).
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6. One-hop adoption estimation

To reduce the time and space complexity of estimating adoption,
only seeds and their out-neighbors are taken into consideration. The
adoption of an influence is defined as the sum of the adoption gains
(the adoption probabilities of the influence) on its seeds and their
out-neighbors.

Denote by g(S;,v,) the adoption gain that a specific influence I,
can obtain on a node v, by using the seed set S;. vy may be in one
of the following three states. (1) If v, is a seed of influence I;, we have
g(S;,vy) = |1(v T (2) If v, is not a seed of influence I; but v, is a
seed of any competitive influence, we have g(S;,vy) = 0. (3) If v, is
not a seed of any influence, we can compute g(S;, v,) by using Eq. (2).
In this case, we consider an in-coming star graph G,,(vy) = V', E',p')
which is a subgraph of G. V' includes v, and its in-neighbors, i.e., V' =
{vo} U N;,(vp)- E’ includes all the edges from the in-neighbors to v,

Denote by T and .S the seed set of all the influences and 7; in N;,(v),
respectively, i.e., S = S, (| N;,(vy) and T = (UL_IJI S;) () N;u(vp). Denote
by 7 the set consisting of all subsets of T. We have

2 1w IT a-ro- SSnrl

T'eT vel’ ver-T’ Derr 1T @I’

where p, is the probability with which v activates v.

The time complexity of computing g(S;,v,) by using Eq. (2) is
Q(2!T!). However, Eq. (2) only computes an adoption gain on just one
node. Therefore, an approximation of the adoption gain is imperative
to reduce the time complexity. To simplify the computation, we first
transform Eq. (2). Let set C = T — S be the seed set in which seeds
only serve for the competitive influences. Denote by S and C the set
consisting of all subsets of .S and C, respectively. Since any subset of T’
can be uniquely divided into two subsets of .S and C. We have

8(S;, v9) = 2

gSpv =Y Y { e IIe- I 0-r0
s'esc’ec ves’ vec’! ves-S’
1S’
1-p,)- .
UEIJC/( pL) ZUES’ |I(U)| + ZL’GC’ |I(U)| }

Since the in-neighbors activate v, independently in the C-IC model,
the adoption gain can be computed as

(S )= { e IT a-»0

S'es ves’ ves-sS’

I a-ro-

veC-C’

i

C’'eC veC’

S|
ZUES’ IZ()| + ZUGC' | Z(v) ’

Since the influence probabilities are small in C-IC models, we re-
place 1 — p, in [],ec_cr (1 — p,) with 1 and neglect terms with C’ # @
in the above equation and get

Y IIr I] a-p0-

C'eC veC’ veC-C’

S| 19
Sies IO+ Tpeer 1O~ Tpesr 1T

Then, we further simplify the computation by only considering
terms with |S’| = 1 and finally approximate g(sS;, v,) as

s
gSpvr Y [Iee 1 (=p)
S'esveS’  ves-s' Ziest 1@
Z H 3
R ) Dy (1=py-
uesS veS—{u} lI(u)l

Suppose s € N,,(vy) is a candidate seed of I; and S is the current
seed set of I; in N,,(v,). Based on Eq. (3), the marginal gain of s on v,
denoted by A(s, S, vy), is estimated as

A(s, S, v9) = g(S; | {5}, v0) - g(Sl-, o)

@
1=p,)- — by - 8(S;, vp).
Ug |1( ] 0
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Table 3

Datasets.
Dataset n m Type
NetHEPT 15.2K 31.4K Undirected
NetPHY 37.1K 174.2K Undirected
Enron 36.7K 367.7K Directed
Epinions 131.6K 840.8K Directed
DBLP 0.6M 2.0M Undirected
Pokec 1.6M 30.6M Directed
Orkut 3.0M 117.2M Undirected
LiveJournal 4.8M 68.5M Directed

Based on Eq. (4), the total marginal gain F(s,.S;) of s is estimated
as the sum of marginal gains on s and its out-neighbors. Intuitively, the
adoption gain on s is defined as A(s, S, s) = g(S;, s). Therefore,
we have

F(s.S) = A Sp9)+ Y,
VEN 4, (8),VESC

1
1Z(s)l
A(s, S}, v). 5)

A greedy strategy is used to select the seeds with maximum marginal
gain iteratively until the number of seeds reaches k in Algorithm 3.
In each loop, the marginal gains of two classes of nodes change after
adding a new seed s into S; and need to be updated. One class includes
nodes that share common out-neighbors with s. The marginal gains
of those nodes obtained from the common out-neighbors will reduce
after adding s into S; according to Eq. (4) and Eq. (5). The other class
includes the in-neighbors of s since they cannot activate s and obtain
marginal gains from s. Note that we only update the marginal gains
that will change after selecting a new seed instead of re-computing the
marginal gains of all nodes (Line 6). Therefore, the running time of
Algorithm 3 is further reduced.

Algorithm 3 GOAE

Input: Seed number k, influence graph G = (V,E,p), seed sets of the
competitive influences

Output: A seed set .S; of the influence I,

1: Let seed set S; = §;

2: Initialize the marginal gain F(u, S;) for every node u € V;

3: fori=1to k do

4 s < argmaxgey_s,) F@, S));

5

6

Add s into S;;
Update F(u,.S;) of nodes whose marginal gains change after adding s
into S;;

7: Return S;;

7. Experiments

Numerous experiments are conducted to evaluate the performance
of RAE+DSSA and GOAE in this section. All the experiments are con-
ducted on a Linux machine with 2.4 GHz Intel Xeon E5-2680 v4 and
251.6 GB memory. The algorithms tested are implemented in C++ and
compiled with g++ 4.8.5.

7.1. Experimental setup

Datasets: Seven real network datasets are used in the experiments,
as listed in Table 3. NetHEPT, NetPHY, and DBLP are three collabo-
ration networks, which are downloaded from [46]. Enron is an email
communication network and Epinions, Pokec, Orkut, and LiveJournal
are online social networks, which are downloaded from SNAP [47].

Influence probability settings. We adopt the following three clas-
sic models to set the influence probabilities.

UC [12]: The influence probabilities of all the edges are uniformly
set to 0.1.

WC [12]: The multiplicity of edges is considered in the WC model.
For an edge (u,v), we set the influence probability p,, = c,,/d;,(v),
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where ¢, is the number of the parallel edges from u to v and d,,(v)
is the in-degree of v. The WC model is asymmetric.

TC [15]: The influence probability of each edge is selected uni-
formly at random from the following three values 0.001, 0.01, and 0.1.
The three values reflect the different strength of influence from weak
to strong.

Size of seed set. Although there is no limit to the number of
competitive influences in the C-IC model, we consider two competitive
influences in the experiments. Two settings of the seed number k are
considered: (i) k € {1,10,20,30,40,50}, referred to as the small k
setting. Meanwhile, the sizes of the two competitive seed sets are set
to twenty. We first assign the top ten largest out-degree nodes to the
two competitive influences as common seeds. Then we select seeds from
the remaining nodes and assign them to the two competitive influences
as follows. Step (a), the node with the largest out-degree is assigned
to one competitive influence and the other competitive influence gets
the node with the second largest out-degree. Step (b), exchange the
order in which we assign the selected seeds. Step (c), return to Step
(a) until the competitive influences both have twenty seeds. (ii) k €
{1, 5000, 10000, 15000, 20000, 25000}, referred to as the large k setting.
Moreover, the sizes of the two competitive seed sets are set to ten
thousand. They have two thousand five hundred common seeds whose
out-degree are in the top two thousand five hundred. The other seeds
of the two competitive influences are assigned as in the small k setting.

Parameter settings. We implement a sequential version of the
D-SSA-fix algorithm [11] and integrate the RMIS algorithm and the
Seed-Selection algorithm into it for the S-AM problem under the C-IC
model. It removes the influence of parallel sampling in the original
version on computational performance. When not confusing, DSSA
refers to our implementation in this section. In all the experiments, we
set ¢ = 0.1 and 6 = 0.1, and retain the settings of other parameters
of the D-SSA-fix algorithm in [11]. For each experiment, we run each
algorithm five times and report the mean of the measurements. To
evaluate and compare the quality of the solutions returned by the two
algorithms, we run one thousand diffusion simulations for each seed
set and report the average adoption as its adoption.

7.2. Experimental results under small k setting

We experimentally evaluate RAE+DSSA and GOAE under the small
k setting on NetHEPT, NetPHY, Enron, Epinions, and DBLP. The small k
setting is a classic setting of the size of seed sets, which is used in most
existing work on the IM problem. We compare the solution quality, the
running time, and the memory usage of the two algorithms under the
C-IC model with the three influence probability settings. The results of
RAE+DSSA under the WC setting when k = 1 are not reported since the
running time is over 5 h.

Solution quality. Fig. 4 shows the adoptions of seed sets returned
by RAE+DSSA and GOAE on the four real-world networks. The adop-
tions increase with the size of the seed set in all experiments on the
four networks. The adoptions of most seed sets returned by GOAE are
not significantly less than those of seed sets returned by RAE+DSSA.
It illustrates that GOAE returns seed sets of comparable quality to
RAE+DSSA. We additionally report the proportions of the adoptions of
seed sets returned by GOAE to the adoptions of seed sets returned by
RAE+DSSA in Table 4. The results also show that the quality of most
solutions returned by the two algorithms is comparable. Most (85%)
of the proportions are larger than 70%. In some cases, the proportion
even reaches 1. It verifies that the adoption estimated by using Eq. (3)
is a good indicator of seed set quality.

Computation cost. Fig. 5 and Fig. 6 show the running time and
memory usage of RAE+DSSA and GOAE on the four real-world net-
works, respectively. The computation cost, both running time and
memory usage, of RAE+DSSA are mainly affected by the number of
samples and the computation cost of each sample. The computation
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Fig. 4. Adoption vs. k under the three influence probability settings on four real-world networks.
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Fig. 5. Running time vs. k under the three influence probability settings on four real-world networks.
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Fig. 6. Memory used vs. k under the three influence probability settings on four real-world networks.
Table 4
The proportions of the adoptions of seed sets obtained by GOAE to the adoptions of seed sets obtained by RAE+DSSA.
wC ucC TC
k 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
NetHEPT 0.88 0.78 0.86 0.89 0.87 0.90 0.95 0.90 0.87 0.91 0.91 0.92 0.63 0.87 0.88 0.88 0.88 0.89
NetPHY 1.00 0.82 0.84 0.84 0.85 0.86 0.74 0.86 0.93 0.94 0.91 0.92 0.80 0.81 0.89 0.92 0.95 0.94
Enron 1.00 0.98 0.98 0.96 0.97 0.96 0.66 0.71 0.79 0.79 0.79 0.76 0.68 0.69 0.74 0.73 0.70 0.72
Epinions 0.91 0.90 0.93 0.87 0.90 0.92 0.41 0.74 0.65 0.65 0.69 0.72 0.65 0.76 0.70 0.72 0.74 0.74
DBLP - 0.80 0.84 0.82 0.85 0.84 0.51 1.00 1.00 1.00 1.00 1.00 0.22 0.74 0.76 0.79 0.83 0.82

cost of each sample is determined by the RAE method and the num-
ber of samples is determined by DSSA. The computation costs of
RAE+DSSA when k = 1 are significantly higher than the computation
costs under other values of k since DSSA needs large numbers of
samples to provide an approximation guarantee for the solution when
the adoption of a candidate solution is small. The adoptions of the
candidate solutions increase with k, which results in a reduction in the
number of samples required for DSSA. Therefore, the computation cost
of RAE+DSSA decreases when k increases. Note that when k reaches a
certain value, this trend will end, after which the computation cost of
RAE+DSSA will increase with k to provide an approximation guarantee
for the solution. On the contrary, the computation cost of GOAE is not
only significantly lower than the computation cost of RAE+DSSA but
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also grows very slowly with k. Fig. 5 shows GOAE runs at least two
orders of magnitude faster than RAE+DSSA. Furthermore, GOAE runs
up to four orders of magnitude faster than RAE+DSSA under the three
influence probability settings. RAE+DSSA is very time-consuming for
large networks, especially when k = 1. In Fig. 6, the memory usage
of RAE+DSSA is at most two orders of magnitude larger than that
of GOAE. Besides, the computation cost of RAE+DSSA is significantly
influenced by the influence probability settings, while that of GOAE are
very closed under the three influence probability settings. For the same
k, the computation cost of RAE+DSSA varies, because the adoption of
the solution is affected by the three influence probability settings. Like
the previous analysis, if the adoption of the solution is less, e.g., under
the TC setting, RAE+DSSA will need more samples.
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Adoptions of seed sets obtained by GOAE under the three influence probability settings on Pokec.

Adoption (k)

k 1 100 200 300 400 500 600 700 800 900 1000 2000 3000 4000 5000 10000
TC 0.47 367  5.83 7.87 9.18 1014 1113 1215 13.18 14.17 15.21 18.74 19.74 2074 2174 2674
ucC 1.92 8.78 10.41 12.22 14.15 16.07 17.33 17.43 17.53 17.63 17.73 18.73 19.72 20.72 21.72 26.72
wC 0.51 8.84 12.86 16.66 17.14 17.23 17.31 17.40 17.49 17.59 17.68 18.63 19.61 20.60 21.59 26.56
RAE+DSSA GOAE —CELF  HUC AWC @TC conformity, the adoptions are overestimated and the selected seed sets
1000 100000 10000 are not the optimal. The difference in the adoptions between C-IC(NC)
< ‘WJ g P R fi,‘m and C-IC in Figs. 8(a) and 8(c) is small and less than that in Fig. 8(b).
A s % : Because the influence probabilities in TC are much smaller than UC and
* o S E™ WC, which means that a user can only be activated by fewer neighbors
—_— s R — A and receive fewer influences. It weakens the role of conformity in the

k 3 Kk
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Fig. 7. Experiments on NetHEPT.
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Fig. 8. Adoption on NetHEPT under the C-IC model and the non-conformity model.

7.2.1. Experimental results on NetHEPT

We also implement the CELF algorithm in [13], as the baseline
method, and run it on NetHEPT for the S-AM problem. In the CELF
algorithm, the adoptions are estimated based on influence diffusion
simulations and we run ten thousand simulations for each candidate
seed set. But we do not use it on other datasets, since it takes tens of
hours for one experiment.

To compare with RAE+DSSA and GOAE, the experimental results
are presented in Fig. 7. We report the adoption, running time, and used
memory of the three methods. The three measurements of RAE+DSSA
and GOAE show similar trends as shown in Fig. 4, 5, and 6. As shown
in Fig. 7(a), RAE+DSSA achieves comparable adoptions with the CELF
algorithm. The adoptions obtained by GOAE are slightly less than the
adoptions obtained by RAE+DSSA and CELF. However, GOAE is three
to five orders of magnitude faster than RAE+DSSA and five to six orders
of magnitude faster than CELF on NetHEPT in Fig. 7(b). In addition,
RAE+DSSA is up to three orders of magnitude faster than CELF on
NetHEPT. Fig. 7(c) shows GOAE and CELF use nearly the same amount
of memory which is much less than the memory used by RAE+DSSA. In
summary, GOAE and RAE+DSSA outperform CELF, since running time
is the main challenge of the S-AM problem.

To evaluate the C-IC model, we compare it with a non-conformity
diffusion model and we also use the CELF algorithm under the non-
conformity diffusion model on NetHEPT, under which a user selects
one influence from her received influences with the same probabilities.
For example, if a user receives three influences, and then she will adopt
one of them with a one-third probability for each received influence.

The adoptions used three influence probabilities settings are shown
in Fig. 8. In Fig. 8, C-IC and NC represent adoptions under the C-IC
model and the non-conformity diffusion model respectively. C-IC(NC)
stands for adoptions under the C-IC model, but the seed sets are
selected under the non-conformity diffusion model. Fig. 8 shows that
the adoptions under the non-conformity diffusion model are always
larger than the adoptions under the C-IC model. Besides, the adoptions
denoted by C-IC(NC) are consistently less than the adoptions under
the C-IC model. It means that if a diffusion model ignores the role of
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adoption stage and leads to a small difference in the adoptions between
C-IC(NC) and C-IC. Similarly, a user can only be activated by a few
neighbors under the WC settings, since the influence probabilities in
WC are set as p,, = ¢,,/d;,(v), which makes the expected number
of neighbors activating a user is small. This results in the adoptions
of C-IC(NC) and C-IC being close. While under the UC model, an
activated user can receive more influences from more friends, which
enables conformity to play a role in the adoption stage. Therefore, in
Fig. 8(b), the adoptions under the C-IC model are significantly larger
than the adoptions denoted by C-IC(NC). Due to the easy access to
online content and the convenience of communication, a person in a
social network often receives a wealth of messages both in variety and
frequency from her friends. We believe the real information dissemina-
tion environments are closer to the UC influence probabilities setting.
To summarize, compared with a non-conformity diffusion model, the
C-IC model is more conducive to obtaining superior seed sets.

7.3. Experimental results under large k setting

We additionally evaluate GOAE algorithms under the large k setting
on the three large real-world networks, i.e., Pokec, LiveJournal, and
Orkut.

Adoption. We report the adoptions of solutions obtained by GOAE
on Pokec in Table 5 varying k from 1 to 10000. Table 5 shows the
adoption increases with k. Besides, the results indicate that only a
small fraction of nodes can influence a large number of nodes. We
observe that the adoption gain becomes almost equal to the number
of new seeds added after this small fraction of nodes are selected as
seeds. The phenomenon is consistent with the motivation of adoption
maximization.

Computation cost. Fig. 9 and Table 6 show the running time and
the memory usage of GOAE on the three large networks, respectively.
Similar to the experimental results under the small k setting, the
computation cost of GOAE is very low and increases very slowly with k.
The results illustrate that GOAE scales well for large k values on large
networks. For example, GOAE returns 25000 seeds within 150 s using
less than 6 GB of memory on Orkut which has more than 117 million
edges.

For each value of k, the running time is similar and the memory
usage is almost the same under the three influence probability settings.
It means that the computation cost of GOAE is not influenced by the
influence probability setting. Furthermore, we observe that selecting
one seed seems time-consuming compared to selecting a large number
of seeds. This is because GOAE needs to calculate and sort the marginal
gains of all the nodes before selecting the first seed.

8. Conclusion

In this paper, we propose the C-IC model to model influence diffu-
sion and adoption in a competitive social network to obtain a more
realistic and effective seed set. The adoption under the C-IC model
is non-negative, monotone, and submodular. Furthermore, two AM
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Fig. 9. Running time vs. k£ under the three influence probability settings on three
real-world networks.

Table 6
Memory used vs. k under the three influence probability settings.

Memory used (M)

k 1 5000 10000 15000 20000 25000
Pokec 618 1050 1050 1050 1050 1050
LiveJournal 2600 2657 2657 2657 2657 2657
Orkut 2372 6039 6039 6039 6039 6039

problems, O-AM and S-AM, are proposed, which are both NP-hard.
The RAE method based on RMIS is presented to estimate the adoption
instead of the method based on influence diffusion simulation. Then
it is integrated into the DSSA framework to obtain a solution to the
S-AM problem with approximate guarantees. In addition, we propose
the GOAE algorithm based on the OAE method for overcoming the
challenge caused by the large-scale networks and large size of seed set.
Experiments on eight real-world networks demonstrate the effective-
ness of the two methods. Moreover, the GOAE algorithm runs up to
four to five orders of magnitude faster than RAE+DSSA. The memory
usage of GOAE is at most two orders of magnitude less than that of
RAE+DSSA.
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Appendix

Proof of Corollary 4.1. Monotonicity and submodularity of A(u, I;) are
proofed as follows.

Monotonicity of h(u,I;): For any node u € V, if v is a new
in-neighbor sending I; to u, we have
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H(N4(u, I}) U {v}) — H(N 4 (u, I;))

B ZI,ez,Ij;eI, [N (u, I))]

T (Chyer INAG@ T er INAG T+ 1)
T

TN A@ I+ DN g, 1] + 1) + T1

>0,

(A1)

where T = leEl,[j#[[ |N4(u,I;)| > 0.Based on Eq. (A.1), H(X) < H(Y)
for any two sets X C Y C N,,(u). Therefore, H(N 4(u, I;)) is monotone
increasing. This is consistent with Observation one.

Submodularity of A(u,I;): For any X C Y C N,,(w) and v €
N;,(u) =Y, we have

H(X U {v}) - HX)

_ T

T (XI+ DX+ D+T]
S T

T (YI+DIY[+D+T]
=HY u{v) - HQY),

since |Y| > | X|, where T = Y, er.1.21, INA@ I))I. Therefore, H(N 4(u,
TG
1)) is submodular. This is consistent with Observation two. O

Proof of Corollary 4.2.. When W =§, |W| =0, Eq. (1) is established.
For any set W, |[W| >0,if HXUW)—-H(X)> HYUW)—-H(Y)
holds. Then, add a new element w into W. We have

H(XUW U {v}) - HX)
=HXUWU{v})- HXUW)+ HXUW) - HX)
>HYUWU{v) - HYUW)+ HY UW) - H(Y)
=HY UW U {v}) - HY),

because HXUW U{v})-HXUW)> HYUW U{v})— H(Y UW) and
H(XUW)—-H(X)> H(Y uW)— H(Y). This corollary is proofed. []

Proof of Theorem 4.3. Given the seed set S = U,‘-ill S;, the overall
adoption F(S) under the C-IC model is equal to o¢(S) under the IC
model. Thus, F(S) is non-negative, monotone, and submodular. More-
over, F(S) achieves the maximum value when the size of .S reaches
maximum, which needs seed sets of all the influences do not overlap.
Theorem 4.3 is proved. []

Proof of Theorem 4.4. In G, each edge ¢ = (u,v) has a weight
p. € (0,1] representing the probability that u activates v. The influence
graph G is interpreted as a distribution G over determined unweighted
instance graphs. An instance graph g € G is a randomly generated
graph where each edge e is independently removed from G with the
probability 1 — p,. Our proof for the monotonicity and submodularity
of f(S;) is based on the instance graphs in C.

That a node in an instance graph is reachable from the seeds of
an influence I, means it is activated by I;,. A node may be activated
by multiple influences and it will adopt only one influence from these
influences. The adoption of I; in an instance graph g is denoted by
f(g,S;), where S; is the seed set of I,.

Monotonicity of f(g, S;): We first prove the monotonicity of f(g, S;)
in an instance graph g. For a node v in g, denoted by f, (v, S;) the adop-
tion that /; can obtain from v, i.e., f,(v,S;) = h(v, I;) = H(N4(, I)).
First of all, we analyze the adoption f,(v.S;) in g, since f(g,S;) =
Yoev fo (v, S;). Suppose a new seed s € V —S; is added into ;. f,(v,S;)
is monotone increasing, if fo(0, S Uish > fo(0,8) holds for any S;
and s.

For the sake of simplicity, we first define three auxiliary variables,
Py Ps;» and pg . They are the minimum distances from the new seed
s, the seed set S;, and the competitive seed set S, = |J 5/€8, S; to v,
respectively.

(1) If v = 5, adding the new seed s into .S; may result in the following
two cases.
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(1.1) if pg, = 0, ie. v € S, we have f,(v,5; U{s}) > 0 and
f¢(,.$;) =0 due to pg, > ps,.

(1.2) if pg, > 0, we have [, (v, S; Uf{sh =1 for p, =0 < ps, and
fo(0.8) > 0.

Thus, given v = s, f,(v,S; U{s}) — f,(v,S;) > 0 holds.

(2) If v # s, there are more possible cases after adding s into S;.

(2.1) if ps, < ps,s fo(0,S;U{s)) = f,(v, S)) = 1 holds no matter how
long p, is.

(2.2) if pg, > pg,, we have f (v, S; U{s}) 2 0 and f,(v,S;) = 0.

(2.3)if pg, = ps,, we have 0 < £, (v, S)) < 1. (2.3.1) if p; < pg, = ps,,
f@.8;U{s) = 1 holds; (2.3.2) if p, > pg = ps., f,(. 5 Uls) =
fo(v.S) holds; (2.3.3) if p, = ps, = ps., [0S Us) > f,©.)
holds due to the following analysis. Denote by N,(v,S,;) the set of v’s
in-neighbors that spread I; to v, when S; is used as the seed set of I;.
We have [N, (v, S)| < I[N (0. S; U{sD| for N,(v,S) C N,(v,S; U{s).
Since the adoption probability function A(u, I;) is monotone increasing,
we get f,(v,S; U{s}) > f,(v, ).

Thus, given v # s, f,(v,S; U{s}) — f(v, ;) > 0 holds.

To summarize, f(g,.S;) is monotone increasing owing to f(g,S;) =
Zoev S0, S)).

Submodularity of f(g,.S;): We prove the submodularity of f(g..S;)
based on f,(v, S;). Firstly, we aim to prove that

o080 L) = fo(0.8) 2 fo(0.T; U (s)) = fo(0.T)) (A.2)

holds for any S; and 7}, if S; C 7, CV and s€ V - T,.

(M) If v = 5, we have f, (v, T;U{s}) = f,(v,S;U{s}) owing to s € V-T,.
Additionally, f,(v,T;) 2 f,(v,S;) holds due to T; 2 S;. Thus, Eq. (A.2)
holds.

(2)If v # s, there are more possible cases. We have pr, < ps, because
of S; CT,.

2.DIf p; < ps,> We have f,(v,T; U {s}) = f,(v,S; U {s}) = 1 and
fo(0.T)) > f,(v.S). Eq. (A.2) holds.

2.2)If p, > ps,> We have f,(v, T,u{s}) = f,(v,T;) and f,(v, S;U{s}) =
fq(0, ). Eq. (A.2) holds.

(2.3) If p, = Ps,> there are three cases. (2.3.1) If p, = ps, < pr,, we
have f,(v,T;U{s}) = f,(v. S;U{s}) and £,(v.T)) = f,(v. S;) = 0. Eq. (A.2)
holds. (2.3.2) If p, = ps, > pr,, We have f,(v,T; U {s}) - f,(v.T;) = 0. In
addition, we have Se@,S; U {sh = fg(v, ) 2 0. Thus, Eq. (A.2) holds.
(2.3.3) If p; = pg, = pr,, we consider v’s in-neighbors spreading I; to v.
Denote by N, (v, S;) the set of v’s in-neighbors which spread /; tovin g,
when §; is used as the seed set of I;. Given W = N (0, T;U{s})—N, (v, T)),
we have f,(v,T; U {s}) — f,(v,T}) = H(N (v, T) U W) — H(N,(v,T))) <
H(N,(v,S;)UW)—H(N,(v, S;)) according to Corollary 4.2. In addition,
we have N,(v,S;) € N,(v,T;) because of S; C T;. Further, we have
W C Ny(v,S;U{s})= N, (v, S;) and H(N,(v, S,U{s})) = H(N(v, S)UW)
according to Corollary 4.1. Therefore, we have of f,(v,S; U {s}) -
fe(0,S) = H(N,(,S; U {s})) — HN,(,S})) 2 H(N,(v,S) U W) -
H(N,4(v,S))). As a result, Eq. (A.2) holds.

To summarize, f(g,S;) is submodular owing to f(g,S;,) = Y
fe, S, ie. f(g,S;U{sh)— f(g )= f(gT;U{sh— flgT).

Monotonicity and submodularity of f(S,): Since f(g, I,) is mono-
tone and submodular and g € G is an instance graph of the influence
graph G. The adoption f(S;) is monotone and submodular due to
fSH=3 eec Pr(8)-f(g. S, where Pr(g) is the probability of generating
g O

vevV

Proof of Theorem 4.5. Since computing ¢(5) under the IC model
is #P-hard. In addition, computing 7(S) under the C-IC model is
equivalent to computing ¢(.5) under the IC model. Therefore, the time
complexity of computing F(.5) is #P-hard. []

Proof of Theorem 4.6. The IC model is a special case of the C-IC
model when |Z| = 1. Therefore, computing f(S;) under the C-IC model
is not easier than computing ¢(.S) under the IC model. Theorem 4.6 is
proved. []
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Proof of Theorem 5.1. Given the competitive seed sets, we have

f(S) = Pr(e)- £(2,5)

geg

=Y Pr(g)- Y\ hw.I)

8€g ueg

= ) Pr(g) - n- E,gylh(u, I)]
g€g

=n-Elhu,1)]. O

Proof of Theorem 5.2. Like f,(v,S;) in the proof of Theorem 4.4,
T, (S) is non-negative, monotone, and submodular. Theorem 5.2 is
proved. [

Proof of Theorem 5.3. I, (S;) is non-negative, monotone, and sub-
modular. Algorithm 2 is a greedy algorithm based on I (S;). There-
fore, the seed set S} output by Algorithm 2 provides a (1 — 1/e)-

approximation of the optimal solution S} on the output set G,. []
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