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a b s t r a c t

Accurate and reliable resource utilization forecasting is critical to achieving efficient resource schedul-
ing in data centers. Traditional prediction methods in cloud computing provide unidimensional output.
However, the unidimensional output cannot capture the relationship between multiple dimensions,
which results in limited information and inaccurate prediction results. In this paper, we propose
CPW-EAMC, a framework that can predict the resource utilization of physical machines in multiple
dimensions. This framework consists of two parts: a noise reduction algorithm and a neural network.
We propose a noise reduction algorithm CPW to extract data features more precisely and improve the
robustness of our prediction algorithm. Then, we establish a multi-dimensional prediction network
named EAMC for accurate predictions in multi-steps. Finally, to comprehensively evaluate the model’s
performance, we propose a novel evaluation standard CMES for model evaluation. Experimental results
show that our model has an improvement of 2% to 17% compared with other popular approaches.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the accelerated development of information technology
n recent years, the construction of cloud data centers is faster
han before. Data Center (DC) is an important infrastructure of
odern society. According to the statistics [1], about 97% of
etwork traffic is related to DCs. In 2019, the energy consumption
f DCs was about 200 TWh, which accounts for about 1% of
lobal electricity consumption, and demand for data services is
ising exponentially [2]. The high energy consumption of DCs has
ecome a concern to cloud service providers and governments.
The underloaded hosts in DCs will bring a colossal electricity

ost and negatively affect the cloud computing environment [3].
here are many methods to optimize the resource utilization of
osts. Virtual machine (VM) consolidation is one of the schemes
pplied to migrate VMs into a lesser number of active physical
achines (PMs). As a result, the PMs which have no VMs can
e turned into a sleep state to save energy [4]. For the VM
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consolidation algorithm, a key objective is to locate the con-
solidation’s source machines and target machines. Many studies
use threshold as the decision variables in their consolidation
algorithm [5,6]. They determine the source machines and target
machines by comparing the resource utilization at the current
moment with the given threshold. However, such methods are
difficult to obtain accurate prediction results. At the same time,
other studies use machine learning [7] to predict the VM state
in the next scheduling interval and determine which VM needs
to be migrated. Many prediction models with single output are
proposed in cloud computing, which means their predictions tend
to be unidimensional. Unidimensional prediction algorithms will
restrict our understanding of how the host works. Because a
physical machine is a system, each component in one system
works together and will affect each other. In unidimensional
forecasting, the model can only learn the historical laws of the
dimension, but cannot learn the mutual influences between vari-
ous dimensions. For example, the utilization of hardware like CPU
and memory will affect each other. Using a model to predict them
separately cannot catch the internal relationship between the key
components.

Further, the consolidation algorithms can make more effective
scheduling decisions based on more prediction information. And

thereby, multi-step forecasting shows its superiority. So, adopting
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multidimensional prediction model in this scenario is necessary.
n this paper, we propose a multi-input–multi-output (MIMO)
rediction model with a multi-step-ahead strategy to provide
ore information for the consolidation algorithm in advance.
As mentioned in [8], the workload of a PM depends on many

andom factors, both internal and external. These random factors
hat we call noise will cause some performance fluctuations in
server, harming our analysis. For external factors, for example,
he temperature and humidity around the target machine. On the
acks of the data center, if the surrounding servers of the target
erver are under a high load condition, the heat dissipation of
hese high load machines will increase. These short-term ambient
emperature fluctuations will affect the electronic components’
erformance of the target server. When the performance drops,
he utilization of a component for the same task becomes larger.
lso, the fluctuation of outside temperature will cause an in-
ccurate influence on our acquisition hardware. The external
emperature fluctuations are one of the noise sources of external
actors on the server. For internal factors, if the machine’s task
rrives with abnormal fluctuations, the utilization data of a recent
ime will not reflect the machine’s actual use, which will prevent
ur model from catching the fundamental rules. However, the ex-
stence of these noises in the original data is short-term, random,
nd hard to capture. The existing noise reduction methods will
ring about excessive smoothing under this scenario so that the
riginal features in the data will be destroyed. Therefore, we need
noise reduction method that can handle this short-term and

andom noise but retain the characteristics of the data as much
s possible.
In response to the previous possible problems, we propose a

ew PM resource utilization data denoising method and extract
he data characteristics in advance. Considering that the noise
ntroduced into the server is generally short-term and small in
mplitude. To not affect the subject’s data characteristics, we
dopt the Complete Ensemble Empirical Mode Decomposition
ith Adaptive Noise (CEEMDAN) method to divide the original
ata into multiple Intrinsic Mode Functions (IMFs). Then we use
ermutation Entropy (PE) to calculate the noise contained in each
MF. We only smooth the IMFs with a loud noise. At last, we
ebuild the data with the processed IMFs. This approach can
reatly reduce the loss of essential features caused by the overall
moothing of the original data, and at the same time, it can
emove the noise due to minor effects.

After we obtain the processed data, we need a model that can
apture the inherent laws of the data. In cloud computing, Arti-
icial Neural Network (ANN) is widely used to predict resource
tilization in a system. ANN has the characteristics of flexibility
nd excellent nonlinear fitting ability. This kind of method can
ell dig out the patterns hidden in the historical information.
or example, when predicting the workload of DCs, many studies
ased on ANN achieve good results in predicting the workload of
ervers.
Nevertheless, these studies largely fail to address the issues

e mentioned earlier because they ignored the interaction of
ther factors. Based on such research background, this paper
s devoted to studying the ANN-based prediction model. Elman
eural Network (ENN) is a classical network in solving prediction
roblems and is used widely. The structure of ENN is simpler than
any Recurrent Neural Networks (RNNs) like Long Short-Term
emory (LSTM) and Gated Recurrent Unit (GRU), which makes it

aster in training and less computing resource cost. However, as a
ind of recurrent neural network, the single-layer structure of its
ontext layer has a great limitation on its long-term dependence.
o go further, the self-feedback coefficient α is limited in the
ontext layer, making it inflexible to adjust its preference to the

ata of historical information and current information according
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to the changes of scenario and requirements. Therefore, this
paper proposes a novel prediction model based on ENN, which
integrates a feed-forward neural network into a recurrent neural
network to optimize the long-term dependence and improve the
precision in prediction.

This paper aims to build a multi-step forecasting model with
multi-input–multi-output (MIMO) based on the historical data
collected in cloud data centers. Therefore, we propose an ENN-
Attention-MLP-Context with CEEMDAN-PE-Wavelet (CPW-EAMC)
model for PM resource utilization forecasting. The main contribu-
tions of this paper are as follows:

1. We propose a CPW-EAMC model with MIMO for multi-step
prediction. In the scenario with multi-dimensional output,
it is tedious and resource-consuming to train a model
separately for each dimension of data. Furthermore, this
model gathers multi-dimensional outputs into one model
and it can preserve the hidden relationship between the
dimensions.

2. We propose a noise reduction method CPW for resource
utilization data. With this denoising method, the data can
be smoothed and its information can be preserved as much
as possible so that we can focus on learning the essential
characteristics and rules of the data.

3. To overcome the insufficient memory ability of ENN, we
propose a novel network EAMC. With attention mecha-
nism, this network enhances feature extraction ability of
the current moment and the Multilayer Perceptron (MLP)
component strengthens long-term dependency of ENN.

4. We present a comprehensive evaluation metric in space
that can avoid the defect of evaluating the performance of
a model through a single metric. Simultaneously, it can be
carried out when there is no unity among the indicators.

The rest of the paper is organized as follows. Section 2 in-
troduces the related work on noise reduction and time series
forecasting technology. Section 3 presents our CPW-EAMC model
in detail. Section 4 presents our new evaluation method in this
paper. Section 5 evaluates our model and demonstrates our ex-
periment result. Finally, we conclude our work and show our
future research directions in Section 6.

2. Related work

As mentioned above, the data collected from the real world
contains influences that cause our analysis to be inaccurate. Such
influence that brings us negative effects in our analysis is called
noise. The multidimensional PM resource utilization data col-
lected from the cloud server belongs to a complex time series. It
is necessary for us to reduce the noise of PM resource utilization
data before analyzing it.

2.1. Noise reduction algorithm

Traditional noise reduction algorithms include Fourier Trans-
form (FT), Wavelet Transform (WT), Singular Spectrum Analysis
(SSA), and Empirical Mode Decomposition (EMD). After Huang
et al. proposed EMD in 1998 [9], studies such as Ensemble Empir-
ical Mode Decomposition (EEMD) [10] and CEEMDAN have been
proposed as improvements of EMD. Cheng et al. [11] proposed
a method that combined EEMD called EEMD-SVD-LWT to reduce
the noise of the radar signal. However, the Gaussian white noise
added in the decomposition process is not eliminated after finite
averaging in EEMD, which leads to residual noise. Therefore,
Torres et al. proposed CEEMDAN [12] which can solve the residual
noise problem and make the decomposition result more thor-
ough. With the help of CEEMDAN, we can decompose a nonlinear
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nd non-stationary time series signal into multiple Intrinsic Mode
unctions (IMFs) and a margin R. Cao et al. built a forecast
odel of financial series data based on LSTM [13] in which the
eries data can be preprocessed respectively by the IMFs obtained
hrough CEEMDAN decomposition. Except for EMD and its vari-
nt, WT is also a widely used method. WT is the variant of FT
hich overcomes the limitations of FT in unstable signals. Recent
tudies combine WT with other algorithms and achieve desirable
esults. For example, Bento et al. combined WT and bat algorithm
n short-term forecasting for power systems [14] and Qiao et al.
sed a hybrid model based on WT to predict and analyze U.S.
lectricity prices [15]. What is more, Li et al. [16] proposed a
oise reduction algorithm combining CEEMDAN, PE, and wavelet
ransform for underwater acoustic signal denoising. They divided
MFs from CEEMDAN into noise IMFs, noise-dominant IMFs, and
eal IMFs. Then, they identified noise IMFs according to mutual
nformation and obtained the noise-dominant IMFs among the
emaining IMFs. Once the IMFs are distinguished as noise IMFs,
hey will be filtered. However, this method is not suitable in our
cenario. The noise in our scenario is random, hard to capture, or
ven slight. If we filter out some of the IMFs, their information
ill be lost, which is also meaningful to us. Compared with FT,
he performance of WT will be better in the context of sudden
ise and fall, which makes WT is more suitable in our scenes that
luctuation of our server is generally short-term.

The above research has demonstrated that WT is an effective
nd animate algorithm. However, WT performs noise reduction
rocessing on the entire signal, and it will also smooth essential
arts of the signal, resulting in a lack of important information.
herefore, our CPW divides the original signal into multiple sub-
ignals and performs noise reduction for those with significant
oise. It allows us to preserve as much important information as
ossible while obtaining good noise reduction performance.

.2. Time series forecasting technology

After getting the denoised series successfully, we can continue
ur work to predict and extract the features of the denoised
eries. We can divide time series forecasting techniques into
arametric and non-parametric methods [17]. However, a para-
etric method is unfriendly to many researchers as it requires

esearchers to be proficient in the computational mathematics of
heir business field. Furthermore, the parametric method shows
ts limitations when facing a complex and changeable time series.
n non-parametric methods, machine learning is an exemplary
ethod. As an essential part of machine learning, ANNs have
ained much attention from scientists. ANN has an excellent
on-linear fitting ability, and it can extract features from data
hrough training. For example, the Ref. [18] uses MLP in exchange
ate prediction. As a feed-forward neural network, MLP lacks
he ability of memory and causes gradient explosion or gradient
isappearance. As a result, a plain feed-forward neural network
as disadvantages when solving a long-term forecasting problem.
Recurrent Neural Network (RNN) can overcome the disadvan-

ages of feed-forward neural network [19]. RNN is widely used
n time series prediction and natural language processing due to
ts memory ability of historical data in its network structure. For
xample, Hu et al. [20] used particle swarm optimization (PSO)
nd gradient descent (GD) for aggregation and combined LSTM
or trend following while Yang et al. [21] used LSTM with feature
nhancement for traffic flow prediction. Moreover, LSTM can deal
ith non-uniform data. The Ref. [22] processed non-uniformly
ampled data with LSTM. Although LSTM is powerful, standard
STM cannot fully capture all the different effects on target se-
ies in multivariate time series prediction tasks. Therefore, Hu
t al. [23] used TG-LSTM network for multivariate time series
294
prediction. More and more studies have been trying to combine
their algorithm with an attention mechanism in recent years. For
example, Lin et al. [24] used LSTM with attention mechanism
in electricity consumption forecasting. However, LSTM consumes
many resources during training and testing. So, a network unit
called GRU is proposed. GRU can achieve similar performance
as LSTM but requires fewer resources. Niu et al. [25] improved
GRU based on attention mechanism and used it in wind power
forecasting. Although GRU needs fewer resources than LSTM, both
of them still face the problem of large resource consumption and
long training time. A network called Elman Neural Network (ENN)
can be trained faster than those as it has fewer parameters in its
structure. Research like [26] has shown ENN’s ability to feature
extraction and the Ref. [27] had shown that ENN could do well
in series processing. For instance, Zhang et al. [28] improve ENN
with piecewise weighted gradient for time series prediction. Also,
ENN is used to solve the energy consumption problem of data
centers. Wu et al. [29] built a power consumption model of cloud
servers with native ENN. And a modified ENN is used for atrial
fibrillation signals classification in [26]. ENN has been proved by
many studies and experiments to have outstanding performance
in time series prediction.

However, ENN’s memory ability is constrained by the single-
layer neuron of its context layer, leading to unstable prediction
performance and accuracy. To learn the rules of PM resource
usage utilization and predict it, we need to combine as much
historical information as possible to obtain historical rules. The
resource utilization of the server is affected by the user’s rules
and the logic of the scheduling algorithm. Therefore, we need
long-term dependence of the network to capture the contex-
tual correlation of utilization. Our model presented in this paper
uses a component to surmount the shortcoming of the original
structure. In addition, we enhance its ability to fit periods with
significant changes with an attention mechanism.

2.3. Multi-dimensional forecasting technology

In the prediction of time series, many models have unidimen-
sional output even though their input is multi-dimensional. The
overall energy consumption of one PM is closely related to differ-
ent hardware components. It is necessary to build a forecasting
model with multi-dimensional output of PMs. Bao et al. [30]
used multi-step Support Vector Machine (SVM) in time series
prediction. However, they must apply a MIMO strategy with their
model, or their model would degenerate into H dispersed models
(H is the dimension of input data). Some researchers notice the
significance of the MIMO model to the real world. Zhou et al. [31]
developed a deep multi-output LSTM neural network (DM-LSTM)
for air quality forecasting. In the real world, most of the problems
are caused by multiple factors. When solving time series forecast-
ing problems, it is necessary to consider that they are affected by
multi-dimensional factors. And as a result, it is significant to study
the time series forecasting problem with multiple dimensions in
cloud computing.

2.4. Resource usage prediction in cloud computing

With the development of forecasting technology, more and
more researchers apply forecasting techniques to cloud comput-
ing. In [5], it uses Extreme Learning Machine for CPU utilization
prediction of each PM. However, a simple network for forecasting
cannot satisfy the accuracy. Therefore, Sima et al. [32] propose a
Wavelet-GMDH-ELMmodel for workload prediction that contains
CPU, storage, and network resources. The Wavelet of the model
is used for data analysis and noise reduction, while the rest is for
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orkload prediction. This model uses Wavelet for noise reduction
o improve the prediction accuracy.

To improve the forecasting accuracy, Kim et al. [33] pro-
ose a Sequence-to-Sequence-LSTM (Seq2Seq-LSTM) based on
he robust framework called Sequence-to-Sequence in time series
rediction for energy consumption prediction. Moreover, Hoang
t al. [34] use LSTM-Encoder–Decoder for host load prediction.
ime series forecasting technology is a hot and potential method
n cloud computing. Therefore, we obtain a prediction frame-
ork with good robustness and high accuracy by combining an

mproved noise reduction method with a novel network.
Therefore, in this paper, we propose a CPW-EAMC framework

o process the data in the cloud cluster in the early stage and
rovide accurate multi-step multi-dimensional forecasts for the
esource utilization of physical machines.

. The proposed method

.1. Motivation

In a cloud data center, the submitted tasks mainly include
PU-intensive tasks, memory-intensive tasks, and disk I/O-
ntensive tasks. When analyzing the performance of PMs, the
cheduling algorithm in a DC has a greater impact on the resource
tilization of one single PM. Different scheduling strategies will
xecute different scheduling schemes for the submitted tasks,
esulting in workload differences between PMs. Predicting the
esource utilization of PMs can provide more information to the
cheduling algorithm for effective and accurate decisions, which
an make the workload of a PM rational. In addition, within
ur knowledge, most research has ignored the implicit mutual
elationship between hardware. With MIMO, we can capture the
idden relationship between hardware in one model instead of
bserving them individually.
In this scenario, we found that the prediction accuracy of ENN

as a good performance with a short training time. However,
NN has a critical shortcoming in this scenario that is unstable.
herefore, it would be encouraging if we could improve ENN to
ake its prediction more stable.
For accurate prediction and stable performance, we propose

PW-EAMC. With the help of the noise reduction algorithm CPW,
e can enhance the robustness of models and optimize the
eneralization ability and the fitting ability of the model.

.2. CEEMDAN-PE-Wavelet (CPW)

CEEMDAN is an algorithm that decomposes a complete sig-
al into multiple IMFs. CEEMDAN is an improved algorithm of
MD. CEEMDAN adds adaptive white noise to each stage of its
ecomposition, which can eliminate model aliasing and reduce
he reconstruction error to the minimum.

PE is an indicator used to measure the complexity of time
eries [35]. PE is to add a sorting step when calculating the com-
lexity between reconstructed subsequences. Suppose we have
btained a time series of length L+ 1, Ts = {tsi|i = 0, 1, 2, . . . , L}
here tsi is the value at moment i. We need to reconstruct, sort,
nd calculate the permutation entropy of the original sequence
s. The greater permutation entropy, the more complex the time
eries.
The resource utilization of physical machines is mainly deter-

ined by the submitted tasks. However, the time when tasks
re submitted by users and the type of tasks are completely
andom. It is one of the main reasons for the unstable use of
hysical machine resources. FT is a classical method in time series
rocessing. Nonetheless, FT has obvious defects in managing non-
tationary time series. Luckily, as an improvement of FT, WT
295
Fig. 1. Process of CEEMDAN-PE-Wavelet.

vercomes the limitations of FT in unstable series processing.
herefore, WT is suitable for tackling the problems in this paper.
We propose a noise reduction algorithm called CEEMDAN-PE-
avelet (CPW), which can be shown in Fig. 1. This algorithm
ecomposes the original time series through CEEMDAN into sev-
ral IMFs and a margin R. The margin R is the residual amount
enerated after the decomposition of IMFs. We can regard each
MF as new time-series data. For the multiple time series data
e newly obtained, we calculate permutation entropy for each

MF. We need to define a threshold tk of permutation entropy. We
calculate the permutation entropy for each IMF decomposed from
the original signal and sort IMFs based on the descending order of
permutation entropy. We can aim at the high noise subsequence
for denoising through this method and avoid the disadvantage
of reducing the signal containing important information while
weakening the noise.

We select the IMFs in which permutation entropy is higher
than the given threshold tk and group them into a set IMF ′ where
IMF ′ =

{
IMF ′1, IMF ′2, . . . , IMF ′k

}
. Then, we denoise each IMF ′i ∈

MF ′, i ∈ [1, k], i ∈ N and get the collection of processed IMFs,
MF ′′ =

{
IMF ′′1 , IMF ′′2 , . . . , IMF ′′k

}
. Finally, we add up all the IMFs

nd the margin R we have including the IMFs whose permutation
ntropy is lower than the given tk to rebuild the denoised signal.

This algorithm is described as Algorithm 1. The WT () function in
line 16 in Algorithm 1 is the wavelet transform function. Since
each dimension has its own characteristics, we execute the CPW
algorithm separately on each dimension.

3.3. ENN-Attention-MLP-Context (EAMC)

As is shown in Fig. 2, the traditional ENN uses a layer of
neurons as a context layer. The orange lines in Fig. 2 show the
trace of state from the hidden layer to the context layer. α is a
self-feedback coefficient, which is to merge the previous context
state with the state at that moment. The context layer’s primary
function is to act like the recurrent component of RNN for his-
tory information recording. However, only one layer of neurons
constrains ENN’s ability to memorize history information.

The application of attention mechanisms in the field of artifi-
cial intelligence is relatively extensive. The attention mechanism
mainly imitates human beings’ behavior to focus on certain im-
portant areas when observing the image. There are many changes
in the attention mechanism. Soft attention and hard attention are
typical representatives. The attention mechanism mainly gives
the value in a vector or a matrix more weight to the focus area.
The value of the hard attention is in {0, 1}, while the value of
soft attention is in a range of [0, 1]. The main problem of the
hard attention mechanism is that its value is either 0 or 1. It will
cause a large amount of information loss if the hard attention

mechanism is applied to continuous data. However, soft attention
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Fig. 2. Structure of ENN.

can avoid this problem, for it can maintain the continuity of
data while highlighting the key areas in the continuous data by
adjusting the weight in the range of [0,1].

Algorithm 1 CEEMDAN-PE-Wavelet.

Input:
The signal to be denoised,signal
The embedding dim of the permutation entropy, em
The delay time of the permutation entropy, dt
The permutation entropy threshold of the IMF need to be
denoise, thpe
The threshold used in wavelet transform, thwa

Output: The signal denoised by the algorithm, signal
′

1: Initialize PEs with blank list, PEsort with blank dictionary
2: IMFs← CEEMDAN(signal)
3: for each_IMF in IMFs do:
4: PE← permutation_entropy(each_IMF , em, dt)
5: PEsort ← {PE, each_IMF}
6: end for
7: PEsort ← sort(PEsort )
8: for each_PE in PEsort do
9: if each_PE >thpe then:
0: IMF ← PE_sort[each_PE]
1: PEsort [each_PE] ← WT (IMF , thwa)
2: else
3: IMFs← all IMF by sorted order from PEsort
4: end if
5: end for
6: signal

′

←
∑

IMFs
7: return signal

′

As we mentioned before, MLP is widely used in many areas, in-
luding time series forecasting. The Ref. [36] is an example of time
eries forecasting with MLP. We can know that MLP has its ability
n feature extraction. The MLP (shown in Fig. 3) involves an input
ayer, an output layer, and at least one hidden layer between the
nput layer and the output layer [37]. The information in MLP is
ransmitted forward through layers of neurons. The dimensions
f input and output data determine the number of neurons in the
nput and output layer of the MLP.

With this helpful tool, we proposed a new network based on
NN called ENN-Attention-MLP-Context (as shown in Fig. 4) to
nhance the memory ability of ENN. First, we use an MLP to
eplace the context layer of ENN. Using MLP to expand the con-
ext layer can improve time dependence enhancement, making
he affected time range larger. Nevertheless, by combining the
eature extraction capabilities of MLP, it can extract the features
rom historical data and store the features inside the subnet
296
Fig. 3. Structure of MLP.

Fig. 4. Structure of ENN-Attention-MLP-Context.

f MLP. This expansion is conducive to enhance the long-term
ependence of ENN and the capability to fit time series with
nternal hidden features.

For the sample at time t , X(t) = {x(t), y(t)}, x(t) ∈ Rm, y(t) ∈
q. We assume that the weight between input layer and output
ayer is W hi. The weight between attention layer and MLP is Wms.
LP has three layers of neurons. The weight between hidden

ayer and MLP is W hm, the weight between output layer and
idden layer is W oh, and Wmh is the weight between merge
ayer and hidden layer while Wmm is the weight between the
utput of MLP and the merge layer. In input layer, the dimensions
f input data and the number of neurons in hidden layer are
ften inconsistent. We need to map the input data to the same
imension as the hidden layer. Among the weights listed above,
hi
∈ Rm×i,Wms

∈ Rn×n,W hm
∈ Rn×n,W oh

∈ Rq×n,Wmh
∈

Rm×h,Wmm
∈ Rn×m. We define the self-feedback coefficient

between the output of MLP and the input from input layer as α.
The number of hidden layers is H . The relationship of each layer
can be expressed as follows:

Input Layer:

xi(t) = lin(x(t)), xi(t) ∈ Rn (1)

Merge Layer:

m(t) = (1− α) ·W hi(t) · xi(t)+ α ·Wmm(t) · xm(t) (2)

Hidden Layer:

h(t) = m(t) ·Wmh(t) (3)

Inside Attention Layer:

xatt_in(t) = [xi(t), Statet−1] (4)

s−o s−o (n+n)×n
xatt_out (t) = W (t) · xatt_in(t),W ∈ R (5)
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utput Layer:

eto(t) = W oh(t)h(t) (6)

ˆ(t) = g
(
neto(t)

)
(7)

We can get the calculation expression of the MLP in the
context module through the description of MLP:

MLPin(t) = W smxatt−out (t) (8)

net hj(t) = wj−1 net hj−1(t)+ b, 1 ≤ j ≤ H (9)

hj = f
(
net hj(t)

)
(10)

xm(t) = MLPout(t) = W hmhH (t) (11)

xi(t) in (1) is the linear mapping result of input and lin(∆) is
the linear mapping function. xm(t) in (2) is the output of MLP
and α is the self-feedback coefficient. Through adjusting α, we
can adjust the ratio of historical information to the influence
of the input information at the current moment. And we can
decide whether the network will be more affected by current
information or historical information so that our network can
adapt flexibly according to the changes in our scene. Statet−1 in
(4) is the state from hidden layer of the last moment t − 1 and
xatt_out (t) in (5) is the output of Attention Layer. ŷ(t) in (7) is the
prediction result of the network. In (8), MLP in(t) is the input of
MLP at time t and net hj(t) in (9) is the state of hidden layer in
MLP where 1 ≤ j ≤ H, j ∈ N . hj in (10) is the output of jth
hidden layer and f (∆) is activation function. In our network, the
activation function in MLP is ReLU while the activation function
in output layer is sigmoid. MLPout (t) in (11) refers to the output
of MLP at time t . hH (t) in (11) is the output of the last layer of
hidden layer.

Unlike traditional ENN, we merge the input at the current
moment through the attention mechanism and the state of the
context layer. This method can increase the impact of the current
data on historical information. During network training, we use
MSELoss (12) as the loss function.

loss
(
ŷi, yi

)
= (ŷi − yi)2 (12)

To prevent serious overfitting and enhance the robustness
of our network, we use L2 regularization on the loss function.
The objective function we need to optimize can be expressed
according to the following formula:

E(t) =
1
2
(ŷ(t)− y(t))⊤(ŷ(t)− y(t))+

C
2
W⊤(t)W (t) (13)

In the formula, ŷ(t) is the predicted value of our network
nd y(t) is the true value of the predicted value at that mo-
ent. W (t) is the weight of the entire network at time t . W ∈
W hi,Wms,W hm,W oh,W s− i,W s−o

}T. C is the regularization co-
fficient.

.4. Prediction strategy

This article divides the prediction strategy into the training
hase and prediction phase. In the training phase, our primary
urpose is to learn the trends from historical data. In order to
nable the network to fit the historical data during training better,
e use the data in label as teacher signal to guide the training of
he model. Therefore, we use the actual value as a label in our
raining strategy in Fig. 5a.

However, unlike the training phase, the prediction phase
ainly tests the accuracy of the model prediction. Therefore, we
dopt the method of cyclic prediction. Our prediction for a time
297
Fig. 5. Strategy of training and testing.

period is based on the previous moment’s prediction result, which
is more in line with the actual forecasting process. The strategy
we use in prediction phase is shown in Fig. 5b.

At time t, the output of ŷ(t) consists of q dimensions(as shown
n Fig. 4). These dimensions are the predicted values of each hard-
are indicator we want to predict. Then, we obtain our multi-step
rediction according to the step size we want in advance. The
trategy for obtaining multi-step forecasts is as shown in Fig. 5.

. Improved evaluate metric

The commonly used evaluation criteria in the research of time
eries forecasting are MAE, RMSE, and MAPE. The model estab-
ished in this paper is a multi-output model; as a result, we need
o adjust the original calculation methods of MAE, RMSE, and
APE to a certain extent. This article uses the strategy of averag-

ng the output data when calculating the multi-dimensional out-
ut. The formula for calculating our adjusted error is expressed
s (14), (15), (16).

AE(X, h) =

∑dim
j=1

1
m

∑m
i=1

⏐⏐̂yji − yji
⏐⏐

dim
(14)

MSE(X, h) =

√∑dim
j=1

∑m
i=1

1
m

(̂
yji − yji

)2
dim

(15)

MAPE =

∑dim
j=1

1
m

∑n
i=1

⏐⏐⏐ ŷji−yjiyji

⏐⏐⏐
dim

(16)

The dim in (14), (15), (16) is the dimension of output data
and ŷji is the ith prediction output of jth dimension. yji is the
true value of ith datapoint of jth dimension and m is the length
of data. MAE, RMSE, and MAPE are indicators for judging the
accuracy of models. In many cases, the evaluation criteria of
the model rarely have a consistent optimal situation. Therefore,
how to comprehensively evaluate multiple evaluation criteria is
a problem worthy of study. For example, in our three indicators,
RMSE is greatly affected by outliers. If encounters a few data
points with large deviations, the calculation result of RMSE will be
large, even if the overall fitting effect is good. A relatively simple
way to solve this problem is to comprehensively calculate these
three criteria by adding a summation method which is shown in
(17). We need to set three weights α, β , and γ . However, this
calculation method (17) has the main problem, that is, how to set
an appropriate weight. The results of different weights will make
the final calculation result have an increased deviation. So, it is
too subjective for the researcher to set this weight subjectively
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Fig. 6. The base area of different space tetrahedrons with different colors.

Fig. 7. We start from point A and draw a perpendicular line to BC at point E.
Therefore, AE ⊥ BC .

to prefer a certain criterion perceptually.

S = α ·MAE + β · RMSE + γ ·MAPE (17)

In order to solve the problem that these three evaluation
standards in the comparison model are difficult to be consistent
and optimal, we propose a cartesian coordinate based multi-
standard performance measurement evaluation standard (CMES),
a comprehensive evaluation standard based on space area.

We regard MAE, RMSE, and MAPE as the three axes in the
cartesian coordinate system. The area we calculate is the base
area of space tetrahedron, as shown in Fig. 6.

In this paper, we use three criteria as the three axes in the
spatial rectangular coordinate system. Here, we randomly assume
that MAE is a′, RMSE is b′, and MAPE is c ′. Then we can use (18)
calculate the length of the hypotenuse:

l1 =
√
a′2 + b′2, l2 =

√
b′2 + c ′2, l3 =

√
a′2 + c ′2 (18)

After calculating the lengths of these three hypotenuses, we
an calculate base area of tetrahedron with (19) and (20):

=
l1 + l2 + l3

2
(19)

MES =
√
p (p− l1) (p− l2) (p− l3) (20)

To illustrate the feasibility of this method as a mapping of
hree error standards. We will prove that the base area of the
etrahedron is positively correlated with the length of three axes.
or we need the base area of the tetrahedron, we only focus on
he tetrahedron OABC in the space, as shown in Fig. 7. Here, we
ssume that OA = a, OB = b, OC = c. It is clear that a, b, c ≥ 0
We start from point A, with O as the origin, draw a perpendic-

ular line to BC at point E. Then, AE ⊥ BC and S△ABC = BC ·AE
2 . Since

, B, and C are on the three axes of space rectangular coordinate
ystem respectively, AO ⊥ ∆BOC . As a result, AO ⊥ BC . Because
E ∩AO = A, we can know that BC ⊥ ∆AOE. Therefore, OE ⊥ BC .
298
Fig. 8. Result of proposed evaluated method. MAE, RMSE, MAPE are the
three axes in the cartesian coordinate system. The bottom area of the space
tetrahedron is the comprehensive evaluation.

Obviously, we can get OE = b·c√
b2+c2

, because S△BOC = OE·BC
2 =

BO·OC
2 =

b·c
2 . With AE =

√
AO2
+ OE2

=

√
b2·c2
b2+c2

+ a2, we can get

△ABC =
BC ·AE

2 =

√
b2+c2·

√
b2 ·c2
b2+c2

+a2

2 .
Then calculate the partial derivative of S△ABC to a. We can get

∂S△ABC
∂a > 0. Without loss of generality, if we use the above proof

to draw a vertical line starting from the vertices B and C , we can
still get the result that ∂S△ABC

∂b > 0, ∂S△ABC
∂c > 0. The result of partial

derivative shows that the area of S△ABC increases monotonically
with a, b, and c. Therefore, the larger calculation result of S△ABC ,
the greater overall error; the larger area of S△ABC , the lower
performance of the model. Our calculation of the comprehensive
evaluation of the error can be described in Fig. 8.

If the value of a certain criterion is much larger than the
other two criteria, we can also use the square root result of
this dimension to maintain the balance of the comprehensive
result. By mapping the three axes to space, the linear relationship
between area and axis in-plane described in [17] can be removed
while treating the three criteria equally.

To enable the three evaluations to be better integrated, we
hope that the various dimensions in the expression should not be
too direct. By calculating the base area of the tetrahedron, we use
Eq. (18) to increase the correlation between these three dimen-
sions. Through this approach, we have eliminated the simple cor-
relation between the three dimensions in traditional calculation
methods.

5. Experimental results

In this section, we will examine our model’s performance
with the data collected in an actual cloud environment. We
conducted experiments on our noise reduction algorithm and
our overall prediction model. In addition, ablation experiments
prove that our improvements to the model are effective and
necessary. To verify the usability and robustness of our model un-
der different architectures, we selected a dataset collected from
our cluster based on ARM architecture for the experiment. The
specific description of each dataset is described in subsections A
and B.

5.1. Dataset A: Alibaba Cluster Trace

In this part, we will introduce our experiment based on Al-
ibaba Cluster Trace.1 The Alibaba Cluster Trace Program is pub-
lished by Alibaba Group [38]. This program contains cluster-trace-
v2017 and cluster-trace-v2018. Our experiment uses cluster-
trace-v2018 dataset whose sampling interval is 10 s. However,

1 https://github.com/alibaba/clusterdata.

https://github.com/alibaba/clusterdata
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Fig. 9. Data consolidation strategy.

he sampling interval of cluster-trace-v2017 is 300 s in 12 h. As
result, cluster-trace-v2017 has too little data to train a model
ince it only contains 145 data points for one PM.
Multiple data tables are provided in the dataset. There are

even dimensions of data in the table that provides physical
achine performance data includes CPU utilization, memory uti-

ization, men_gpsb(normalized memory bandwidth), net_in (nor-
alized incoming network traffic), net_out (normalized outgoing
etwork traffic), and disk I/O ([0, 100], abnormal values are of −1
r 101). Each PM has its csv document in this dataset, which is
amed by its machine ID to record its resource utilization. How-
ver, in the raw data, the amount of missing data in mem_gps
nd mkpi is relatively large, resulting in less reference for using
hese two dimensions. Therefore, the dimensions we used in
his experiment were CPU utilization, memory utilization, net_in,
et_out, and disk I/O.

.2. Dataset B: ARM-based Cloud Computing Cluster

In the ARM-based Cloud Computing Cluster, we collect PM re-
ource utilization from our cloud computing cluster. Our cluster is
ade up of five servers based on ARM architecture. The hardware
onfiguration of these five servers is the same. Each server has
Kunpeng 920 CPUs and each CPU contains 48 cores. And the
emory of a server is 256G. The operating system is CentOS7. We
se Openstack as a management platform for our cluster. We use
tress-ng to add load to the cluster. The load we added includes
PU-intensive tasks, memory-intensive tasks, disk I/O-intensive
asks, and net-intensive tasks. Our sampling interval is 5 s. We
sed the collected 10,000 data points for experiments. What we
ollected in the cluster is mainly the utilization of CPU. The CPU
tilization we collected is divided into two dimensions: cpu_user
nd cpu_system. Our data collection software does not directly
ollect the utilization of resources other than the CPU. In addition,
he IO operation simulated by stress-ng will often become an
peration on the memory under the influences of the operating
ystem, which will lead to the inaccurate utilization of memory
nd disk I/O. Therefore, the data we mainly use in our experiment
s the dimension of CPU.

.3. Data preprocessing strategy

The dataset used for time series forecasting is often a continu-
us time series with a large amount of data. It is irrational for us
o train our network with the entire dataset. Therefore, we need
o divide our data into several groups. Our strategy for separating
ata is shown in Fig. 9.
We divide the entire dataset into a training set, a validation

et, and a test set in chronological order. The test set is used to
est the model’s performance, while the validation set is used to
valuate the performance during a stage of training. The training
et is used to train the model. Fig. 9 shows our organization of the
299
Fig. 10. Network usage of Machine 159.

data more intuitively. The proportion of training set, validation
set, and test set in our experiment is about 0.8, 0.1, 0.1. In the
training set, we set the size of the time window as 20 since
this parameter is widely used in many studies. After obtaining
the label of predicted data according to the prediction step, the
starting point of the next group will move back step_move steps.

5.4. Denoise algorithm experiment

To illustrate the superiority of the noise reduction algorithm
used in this article, we evaluated the noise reduction algorithm
under the Alibaba Cluster Trace dataset. We use SNR and RMSE
to evaluate our noise reduction algorithm. SNR is signal to noise
ratio, which is described in (21). SNR is used to measure the ratio
of useful components to noise in the time series before and after
noise reduction. The larger SNR, the better effect.

SNR = 10 log10
Psignal
Pnoise

= 10 log10

∑n
i=1 x

2(i)∑n
i=1 (x′(i)− x(i))2

(21)

We need to process each dimension separately when im-
plementing CPW on PM resource utilization since each has its
feature. As a result, we adopt the calculate method of RMSE, as
shown in (22). RMSE is used to measure the degree of difference
between the calculated sequence and the original sequence. The
lower RMSE, the better performance. If RMSE is large, the cal-
culated sequence is quite different from the original sequence,
and much information will be lost. While a smaller RMSE shows
it closer to the original sequence, and more information in the
original sequence will be kept.

RMSE(X, h) =

√ 1
m

m∑
i=1

(
h
(
x(i) − y(i)

))2 (22)

All the experiments were carried out on a server of Intel(R)
Core(TM) i7-5930K CPU @ 3.50 GHz, 62G memory, and 4 GTX
TiTan X 12G. The experiment environments are open-source ma-
chine learning library Scikit-learn and deep learning framework
Pytorch with CUDA 10.0.

When using the Alibaba Cluster Trace dataset, we have found
that the changes in net_in and net_out are tiny. As we can see
in Figs. 10a and 10b, the net_in and net_out have very small
fluctuations during the given period. They did not even change
in some specific time. This phenomenon will cause infinite value
when calculating SNR using (21).

To solve this problem and evaluate our noise reduction algo-
rithm, we directly used the dimension of CPU utilization in the
experiment. We randomly select the resource utilization of 10
physical machines for the experiment each time and record the
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Table 1
Noise reduction method comparison result of Alibaba Cluster.
Noise reduction method Machine:334 Machine:2020 Average

SNR RMSE SNR RMSE SNR RMSE

SSA 23.1011 2.9780 17.0307 5.6484 20.0103 4.1187
Wavelet 22.3431 3.2496 16.7163 5.8567 19.4022 4.3781
CEEMDAN-WT 29.7308 1.3882 26.1666 1.9730 27.4777 1.6746
CEEMDAN-PE-SSA 27.5247 1.7896 19.6264 4.1893 23.9053 2.6916
CEEMDAN-PE-Wavelet 33.7634 0.8726 27.7386 1.6464 30.3495 1.2405
Table 2
Noise reduction method comparison result of ARM cluster.
Noise reduction method Machine 1 Machine 2 Average

SNR RMSE SNR RMSE SNR RMSE

SSA 21.3618 1.2355 7.1316 10.5429 9.0027 8.4030
Wavelet 17.5213 1.9225 19.4762 2.5453 18.7856 2.1453
CEEMDAN-WT 28.4691 0.5400 28.3489 0.9164 28.2682 0.7258
CEEMDAN-PE-SSA 25.8029 0.7341 25.6593 1.2490 25.6455 0.9988
CEEMDAN-PE-Wavelet 30.7767 0.4176 33.6641 0.4970 32.8425 0.4249
average value of 10 the experiments, which is recorded in the
Average column in Tables 1 and 2. For experiment analysis, due to
space limitations, we take Machine334 and Machine2020 (which
are randomly selected from our experiment machines due to our
limit space) in Dataset A as examples. We randomly selected the
physical machine ID 334, 2020 for detailed comparison. We com-
pare our noise reduction algorithm with WT, SSA, CEEMDAN-WT,
and a variant of our method called CEEMDAN-PE-SSA. CEEMDAN-
WT uses CEEMDAN to decompose the original signal. Then, it
uses Wavelet Transform to denoise each IMF from CEEMDAN.
CEEMDAN-WT can be considered as ablation of CEEMDAN-PE-
Wavelet. In CEEMDAN-PE-SSA, we use SSA to smooth the IMFs
instead of Wavelet Transform.

For fairness, we selected the parameters of noise reduction
algorithm during the experiment. When using SSA, we select the
refactor RP ∈ {4, 5, 6, 7, 8}, time window TW ∈ {30, 35, 40, 45}.
The only one parameter we need to select in Wavelet Transform
and CEEMDAN-WT is wavelet threshold T ∈ {0.04, 0.05, 0.06,
0.07, 0.1}. The parameters we need to select in CEEMDAN-PE-
SSA are embedded dimensions ED, delay time DT , refactor RP ,
time window TW and the threshold of permutation entropy PT
where ED ∈ {6, 7, 8, 9}, DT ∈ {6, 7, 8, 9}, RP ∈ {6, 7, 8, 9},
TW ∈ {30, 35, 40, 45}, PT ∈ {0.4, 0.5, 0.6, 0.7}.

The parameter we need to select in CPW is ED,DT , PT where
PT ∈ {0.7, 0.8, 0.9} and wavelet threshold T ∈ {0.04, 0.05, 0.06}.
In our experiment, the wavelet base is db8. The value range of ED
and DT is the same as CEEMDAN-PE-SSA. The comparison result
is shown in Table 1.

From Table 1, we can see that our noise reduction method
achieves the best result in both SNR and RMSE among the noise
reduction algorithm. The average SNR of CPW is 30.3495, which
is the highest. In contrast, the average RMSE of CPW is 1.2405,
which is lower than other comparison algorithms in this paper.
And there is a negative correlation between SNR and RMSE.
Typically, the algorithm with bigger SNR will have a smaller RMSE
at the same time. CEEMDAN-WT takes second place among the
comparison method. Also, we can tell from Fig. 11 that our noise
reduction algorithm can preserve the information in the original
data as much as possible while smoothing the original data.

Table 2 shows the experiment results of Dataset B. Machine
1 is the controller of our cluster while Machine 2 is one of the
members. We use the CPU usage data of these five servers for
experiments and record the average value of 10 experiments
which is recorded in Average column in Table 2.

From the result of Tables 1 and 2, we can know that CPW
achieves the best performance while CEEMDAN-WT ranked sec-
ond. The performance of SSA in Dataset B is much worse than
300
that in Dataset A. Fig. 12 shows the comparison result among the
five noise reduction methods of Machine 1 in dataset B. We can
see from Fig. 12 that CPW saves the data at the tip better than
the others. It shows that CPW smooths and reduces noise while
retaining the original information more than other comparable
models.

5.5. Model evaluation results

When evaluating the performance of the model, we compare
it with the state-of-art models in time series forecasting. The
Seq2Seq framework has recently been more and more effective
in natural language processing and time series prediction. In the
comparative experiment, we used Seq2Seq-LSTM [39]. This model
uses an attention mechanism between the encoder and the de-
coder. We also used GRU [40] and Seq2Seq-GRU for comparison.
We used GRU to replace the LSTM in Seq2Seq-LSTM for Seq2Seq-
GRU network to test the Seq2Seq framework’s performance in
this scenario.

In addition to comparing the framework of sequence process-
ing, we also need to compare the models of multivariate output.
DM-LSTM [31] is Deep Multi-output LSTM neural network. In
order to illustrate the effectiveness of our denoising algorithm,
we combine Wavelet Transform with DM-LSTM as WT-DM-LSTM.

In the previous part, we selected the parameters of the denoise
methods. In this experiment, we selected the best-performing pa-
rameter combination to experiment. The parameter combination
we selected in CPW is ED = 6,DT = 8, PT = 0.9, T = 0.05. We
first used the networks on the data of one machine for the grid
search. After the searching was completed, the best-performing
parameter combination was used as the setting parameter for our
experiment. From the grid search result, we set the self-feedback
coefficient α as 0.65, the number of hidden layers is 3, and the
number of neurons in hidden layers is 16. In GRU, TG-LSTM,
and DM-LSTM, the number of hidden layers is 3. The number
of neurons in hidden layers is 16. In WT-DM-LSTM, the wavelet
threshold is 0.05, and the wavelet base is db8. For Seq2Seq-LSTM
and Seq2Seq-GRU, the experiment setting is the same as above.

In our experiments, the epoch is 500, the learning rate η is
0.05, batch_size is 128, and the dropout rate is 0.5. The regulariza-
tion coefficient C in our experiments is 1e-5. Since each physical
machine recorded a lot of data, we extracted the data from the
first 8000 time points for experiments. We randomly selected ten
physical machines each time and recorded the average results of
CMES after ten experiments in Table 11. The results of Machine
334 and Machine 2020 are shown in Tables 3 and 4. The resource
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Fig. 11. Denoise result comparison of machine 2020 in Dataset A. Each color represent one noise reduction method.
Table 3
Machine 334 comparison result of dataset A.
Machine_id:334

Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

Seq2Seq-LSTM 0.3665 4.4888 0.0705 1.3707 0.0644 4.9697 0.0891 1.8323 0.6214 4.8121 0.0966 1.9033 0.6692 7.1888 0.1187 2.6612
TG-LSTM 2.6612 3.8585 0.0654 1.1628 0.4937 3.7940 0.0755 1.4142 0.4913 4.9156 0.0909 1.7093 0.5323 8.7686 0.1272 13.7267
DM-LSTM 0.2426 3.6757 0.0548 0.9560 0.4170 4.8930 0.0905 1.5664 0.3159 5.2529 0.0777 1.4315 0.4309 5.3986 0.0865 1.7109
WT-DM-LSTM 0.5141 7.7906 0.1126 2.4643 0.3057 3.3748 0.0610 1.0103 0.3733 3.4795 0.0639 1.1455 0.3564 4.5833 0.0682 1.3714
GRU 0.2899 2.8745 0.0532 0.8718 0.6340 8.8743 0.1407 3.0300 0.3691 5.1454 0.0785 1.5240 0.3691 5.1454 0.0785 1.5240
Seq2Seq-GRU 0.3490 4.6142 0.0738 1.3656 0.4320 5.8444 0.0958 1.8199 0.6137 5.3636 0.1044 2.0489 0.6262 5.8674 0.1054 2.2117
ENN 0.1892 2.5882 0.0414 0.6478 0.2262 3.2813 0.0557 0.8496 0.4073 4.0204 0.0744 1.3350 0.3291 4.4288 0.0736 1.2862
CPW-EAMC 0.1698 2.5048 0.0382 0.5981 0.2446 2.8058 0.0512 0.7851 0.3205 3.6590 0.0605 1.0984 0.3256 3.6408 0.0621 1.1036
Table 4
Machine 2020 comparison result of dataset A.
Machine_id:2020

Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

Seq2Seq-LSTM 0.4674 2.9268 0.0849 1.1371 0.5237 3.6320 0.0960 1.4156 0.4873 3.7720 0.1040 1.4042 0.5167 6.2930 0.1425 2.1256
TG-LSTM 0.4286 3.3383 0.0879 1.1982 0.4996 2.8574 0.0855 1.1568 0.5030 3.0452 0.0903 1.2172 0.5962 4.5812 0.1268 1.8029
DM-LSTM 0.4830 3.0068 0.0886 1.1805 0.5274 2.9321 0.0898 1.2135 0.5169 3.0644 0.0891 1.2402 0.5278 3.8217 0.0977 1.4758
WT-DM-LSTM 0.5300 2.6102 0.0868 1.1169 0.4926 3.0561 0.0909 1.2073 0.5406 3.2300 0.0942 1.3203 0.4063 2.9547 0.0845 1.0650
GRU 0.1590 2.1023 0.0449 0.5112 0.4464 4.2782 0.1026 1.4727 0.5754 4.6986 0.1169 1.8007 0.3589 3.1837 0.0815 1.0557
Seq2Seq-GRU 0.4765 3.3034 0.0938 1.2570 0.4932 3.1321 0.0897 1.2299 0.4786 3.5113 0.0939 1.3176 0.4617 3.3108 0.0888 1.2377
ENN 0.2376 2.2015 0.0538 0.6475 0.1989 3.0471 0.0700 0.7637 0.3241 3.5274 0.0870 1.0842 0.4624 3.5510 0.0905 1.3044
CPW-EAMC 0.1318 2.2080 0.0439 0.4847 0.2325 2.4518 0.0579 0.6949 0.2794 2.6526 0.0651 0.8094 0.3068 3.2497 0.0835 0.9921
Table 5
Machine 1 comparison result of dataset B.
Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

Seq2Seq-LSTM 0.6634 2.4558 0.1907 1.3539 0.9084 3.1559 0.2456 1.7782 0.9441 3.1852 0.2411 1.8052 1.0170 3.2541 0.2466 1.8692
TG-LSTM 0.6918 2.4906 0.1937 1.3831 0.9828 3.2624 0.2411 1.8551 0.8518 3.2364 0.2298 1.7768 0.9270 3.1450 0.2468 1.7829
DM-LSTM 0.7363 2.5619 0.1796 1.4301 0.9422 3.1641 0.2444 1.7969 0.9824 3.2512 0.2417 1.8505 0.9219 3.1512 0.2434 1.7817
WT-DM-LSTM 0.6661 2.3855 0.1906 1.3267 0.9094 3.1328 0.2503 1.7711 0.9108 3.1501 0.2575 1.7821 0.9288 3.2445 0.2397 1.8219
GRU 0.8154 2.6306 0.2170 1.5064 0.9027 2.9327 0.2196 1.6733 1.1015 3.3276 0.2478 1.9376 0.9213 3.1419 0.2432 1.7775
Seq2Seq-GRU 0.7487 2.4344 0.1817 1.4270 0.7985 3.0564 0.2140 1.6717 1.0691 3.7245 0.2456 2.0883 1.2263 4.1183 0.3800 2.400
ENN 0.6653 2.4344 0.1817 1.3437 0.8430 2.9689 0.2220 1.6612 0.9314 3.1396 0.2599 1.7883 11.1818 31.0233 2.4823 24.2579
CPW-EAMC 0.6734 2.3758 0.1813 1.3237 0.8584 2.9369 0.2287 1.6578 0.8905 3.1384 0.2412 1.7607 0.9066 3.0949 0.2429 1.7511
utilization forecasting result comparison between the forecasted
value of CPW-EAMC and the actual value in 3 steps ahead pre-
diction of Machine2020 is shown in Fig. 13. The horizontal axis is
the time axis. We can observe the output of every dimension at
each moment since our model is multi-output.

In Tables 3 and 4, RMSE is much larger than MAE and MAPE.
herefore, as mentioned above, we use the square root of RMSE
o calculate CMES for maintaining the balance of these three
ndexes. From the tables, except for the CPW-EAMC, the over-

ll performance of ENN in the experiment is better, while its
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performance is not stable enough. In Machine 334 and 2020,
WT-DM-LSTM performed the best in the LSTM based network in
most cases. At step 6 of Table 3, GRU achieved the worst perfor-
mance, which showed that gradient explosion might happen in
this experiment.

Tables 5 and 6 are experiment results of two server in dataset
B. We use the same strategy to get the average value of the
models’ performance as in the previous part. The average results
of dataset A are shown in Table 11 while Table 12 records the

average results of dataset B. In Table 11, the average CMES of
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Fig. 12. Denoise result comparison of Machine 1 in Dataset B. Each color represent one noise reduction method. The data shown in this picture is cpu_user.
Table 6
Machine 2 comparison result of dataset B.
Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

Seq2Seq-LSTM 1.5757 3.2349 0.2795 2.0779 1.9216 3.7200 0.3207 2.4311 1.6231 3.3135 0.2894 2.1339 1.7932 3.5895 0.3073 2.3247
TG-LSTM 1.2013 2.5614 0.2033 1.6177 1.3986 3.0414 0.2465 1.9191 1.6679 3.3514 0.2954 2.1679 1.9045 3.8065 0.3079 2.4622
DM-LSTM 1.2499 2.5821 0.2134 1.6452 1.3995 2.9864 0.2420 1.8920 1.6219 3.3369 0.2726 2.1380 2.1025 4.0834 0.3501 2.6739
WT-DM-LSTM 1.1874 2.5544 0.2042 1.6101 1.4363 2.9889 0.2433 1.9052 1.7566 3.5115 0.2988 2.2726 1.8504 3.6757 0.3133 2.3857
GRU 1.1121 2.3992 0.1899 1.5095 1.4659 3.0237 0.2412 1.9302 1.6380 3.5115 0.2988 2.2726 2.0170 4.1658 0.2946 2.6628
Seq2Seq-GRU 1.3115 2.6435 0.2201 1.6951 1.7230 3.3661 0.2896 2.1887 2.1028 4.2748 0.3360 2.7591 1.9145 3.9130 0.3229 2.5231
ENN 1.1097 2.4062 0.1982 1.5139 1.4672 3.2279 0.2632 2.0344 1.5772 3.3908 0.2742 2.1504 1.6014 3.4050 0.2642 2.1610
CPW-EAMC 1.0659 2.3306 0.1894 1.4622 1.3603 2.9276 0.2399 1.8512 1.5550 3.3568 0.2675 2.1247 1.7037 3.5900 0.2943 2.2922
Table 7
Ablation experiment result of Machine 334 in Dataset A.
Machine_id:334

Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

EMC 0.2047 2.9008 0.0455 0.7343 0.2943 3.0779 0.0547 0.9243 0.3559 3.7174 0.0644 1.1736 0.4081 4.1035 0.0756 1.3569
EAMC 0.1943 2.6577 0.0406 0.6690 0.2568 2.7965 0.0489 0.8022 0.3573 3.5425 0.0642 1.1349 0.3321 3.8784 0.0710 1.1706
CPW-EAMC 0.1698 2.5048 0.0382 0.5981 0.2446 2.8058 0.0512 0.7851 0.3205 3.6590 0.0605 1.0984 0.3256 3.6408 0.0621 1.1036
Table 8
Ablation experiment result of Machine 2020 in dataset A.
Machine_id:2020

Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

EMC 0.2294 2.2526 0.0535 0.6471 0.3361 2.6255 0.0712 0.8835 0.3644 2.7963 0.0801 0.9666 0.4557 3.8529 0.0923 1.3751
EAMC 0.1682 2.2658 0.0472 0.5561 0.2369 2.5199 0.0625 0.7174 0.2911 2.6158 0.0655 0.8180 0.3033 3.3507 0.0790 1.0071
CPW-EAMC 0.1318 2.2080 0.0439 0.4847 0.2325 2.4518 0.0579 0.6949 0.2794 2.6526 0.0651 0.8094 0.3068 3.2497 0.0835 0.9921
Table 9
Ablation experiment result of Machine 1 in dataset B.
Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

EMC 0.6998 2.3980 0.1802 1.3453 0.8444 3.1005 0.2608 1.7316 0.9354 3.1259 0.2378 1.7753 0.9144 3.2511 0.2410 1.8182
EAMC 0.7025 2.4640 0.1763 1.3728 0.8988 2.9611 0.2291 1.6866 0.8946 3.1238 0.2496 1.7601 0.9684 3.2202 0.2304 1.8270
CPW-EAMC 0.6734 2.3758 0.1813 1.3237 0.8584 2.9369 0.2287 1.6578 0.8905 3.1384 0.2412 1.7607 0.9066 3.0949 0.2429 1.7511
Table 10
Ablation experiment result of Machine 2 in dataset B.
Network Step:3 Step:6 Step:9 Step:12

MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES MAE RMSE MAPE CMES

EMC 1.0864 2.3534 0.1921 1.4801 1.4295 3.0412 0.2527 1.9309 1.6216 3.4556 0.2642 2.1914 1.8115 3.7999 0.3286 2.4408
EAMC 1.0701 2.3388 0.1894 1.4674 1.3849 2.9880 0.2445 1.8890 1.5902 3.4424 0.2747 2.1790 1.7319 3.6603 0.2923 2.3334
CPW-EAMC 1.0659 2.3306 2.3304 1.4622 1.3603 2.9276 0.2399 1.8512 1.5550 3.3568 0.2675 2.1247 1.7037 3.5900 0.2943 2.2922
302



Y. Zhang, F. Liu, B. Wang et al. Future Generation Computer Systems 130 (2022) 292–306

c
i

Fig. 13. Three steps ahead forecasting results of machine 2020 with CPW-EAMC at each dimension.
Table 11
Average CMES comparison results of 10 machines in dataset A.
Network Step:3 Step:6 Step:9 Step:12

Seq2Seq-LSTM 2.3053 2.6857 2.9305 3.2955
TG-LSTM 1.6918 2.0323 2.4364 2.9645
DM-LSTM 1.1779 1.7956 2.7897 2.4955
WT-DM-LSTM 1.8078 2.0876 2.7006 2.6229
GRU 1.2681 2.2486 2.4695 2.6453
Seq2Seq-GRU 2.2645 2.9746 2.8019 2.8996
ENN 10.2754 1.6484 3.8027 2.2610
CPW-EAMC 1.0053 1.3908 1.7403 1.9354

ENN in step 3 is much higher than other models as the result that
ENN performs unstable. Due to the unstable performance of ENN
in the ten experiments, the average value is large. CPW-EAMC
achieves the best performance in Table 5 at each step. The result
of ENN has a substantial error in step 12. In Table 6, however,
the result of ENN has fewer advantages over our model in step
12, which makes CPW-EMAC ranked second. This phenomenon
shows that the performance of ENN in this scenario is volatile.
Although ENN has fewer advantages over our model in step 12
at Machine 2, CPW-EAMC still performs the best average results.
The experiment results show that as the number of prediction
steps increases, the model’s prediction error expands accordingly.
It is related to our forecasting strategy. Since we use the circular
prediction method in our prediction, the previous prediction error
will be passed on to the next prediction. Therefore, the shorter
prediction steps, the lower error is reflected by the model.

5.6. Ablation experiment

To show the effectiveness of our model improvement, we
onduct ablation experiments on CPW-EAMC. We named the
mproved model gradually removed as follows: (1) EMC: Remove
303
Table 12
Average CMES comparison results of 5 machines in dataset B.
Network Step:3 Step:6 Step:9 Step:12

Seq2Seq-LSTM 1.7181 2.0476 2.0523 2.2003
TG-LSTM 1.6021 1.9903 2.0638 2.1391
DM-LSTM 1.5407 1.9374 2.1048 2.1516
WT-DM-LSTM 1.5845 1.9468 2.0614 2.1341
GRU 1.6705 1.9398 2.0934 2.1702
Seq2Seq-GRU 1.7501 1.9639 2.1893 2.2617
ENN 1.4790 2.3334 2.0672 6.6017
CPW-EAMC 1.4769 1.8436 2.0411 2.1052

Table 13
Average CMES comparison results of 10 machines in ablation experiment of
dataset A.
Network Step:3 Step:6 Step:9 Step:12

EMC 1.2772 2.6281 2.1727 2.2610
EAMC 1.1837 1.6428 2.0440 1.9798
CPW-EAMC 1.0053 1.3908 1.7403 1.9354

Table 14
Average CMES comparison results of 5 machines in ablation experiment of
dataset B.
Network Step:3 Step:6 Step:9 Step:12

EMC 1.4990 1.9242 2.0724 2.1505
EAMC 1.4902 1.8570 2.0623 2.1220
CPW-EAMC 1.4769 1.8436 2.0411 2.1052

CPW and attention mechanism from CPW-EAMC; (2) EAMC: Re-
move CPW from CPW-EAMC. We conduct our ablation experi-
ments on the physical machines in both datasets. As mentioned
above, we use the same strategy to record the average perfor-
mance of models. The average results of ablation experiments in
Dataset A are shown in Table 13 while Tables 7 and 8 record the
detailed result of Machine 334 and Machine 2020 in Dataset A.
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Fig. 14. Ablation experiment comparison result of machine 2020 in three steps ahead prediction. To highlight the details, we only selected 300 data points.
Table 14 shows the average results in Dataset B while Tables 9
and 10 show the detailed ablation experiment results of machine
1 and machine 2 in Dataset B. All tables show a similar trend
in ablation experiments: as the prediction steps increase, the
performance of models decreases.

We can also conclude from the ablation experiment results
that the improved method of our model is adequate and robust.
We can see that as our model improves, deviation decrease at
each step. The CPW algorithm smoothes the data and improves
the robustness and generalization ability of the model. The atten-
tion mechanism can fuse the information of the historical state
and the current moment to the MLP. While retaining the histor-
ical information under long-term dependence, the impact of the
current input at the same time is enhanced, thereby improving
the model’s fitting ability to the data (see Fig. 14).

5.7. Discussion

In this part, we will discuss the cost of models in this paper.
With the help of the tool named Thop2 [41], we can analyze the
loating-point operations (flops), and the number of parameters
params) in each model. Flops and params can be used to calculate
he amount of computation of a neural network. To discuss the
ost of models concisely, we use an input sample of Dataset B for
xperiments. Table 15 records flops, params and training_time of

the models compared in this paper.
As shown in Table 15, the flops and params of TG-LSTM is the

least while its training_time is the longest. The time-consuming
operation in TG-LSTM leads to this phenomenon. With the grad-
ual improvement of the model from the original ENN to EAMC,
the computational cost increases. Nevertheless, our model is still
competitive in terms of overhead compared to other models.

In this scenario, we conducted experiments on ENN and other
prediction networks. We found that the prediction accuracy of
ENN has an acceptable performance with a short training time.
However, the performance of ENN is not stable enough, which

2 Thop:Pytorch-Opcounter. https://pypi.org/project/thop/.
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Table 15
Cost of models with input of Dataset B.

flops params training_time (s)

Seq2SeqGRU 187416576 52012 3308.3
GRU 860209152 16290 4724.2
Seq2Seq-LSTM 302776320 66988 3783.8
TG-LSTM 360448 258 6935.4
DM-LSTM 57212928 21666 1391.4
ENN 2998272 1314 1513.7
EMC 10862592 4482 2296.3
EAMC 21512192 8738 2827.4

is caused by the single-layer neurons of the context layer. With
the use of MLP, this network can remember historical features
in long-time dependency. Therefore, the network can have a
more stable and more accurate prediction. Furthermore, setting a
self-feedback coefficient α can effectively focus attention on the
recent period, enhancing the impact of recent data and improving
the ability to fit sudden changes.

6. Conclusion and future work

We can extract the trend from historical data and predict the
future value of PM resources utilization through time series fore-
casting technology. The resource utilization forecasting of physi-
cal machines can provide the scheduling algorithm with future
information for scheduling decisions. Therefore, the scheduling
algorithm can make a more efficient scheduling decision base on
multi-dimensional predictive information.

For the first time, we propose a noise reduction algorithm
for processing the utilization of PM resources in a cloud data
center and present a MIMO model for PM resource usage pre-
diction. We use CEEMDAN-PE-Wavelet to reduce the noise of
the original physical machine resource utilization data. In order
to enhance the long-term dependency of ENN, we replace the
context layer with a network unit MLP with feature extraction
and memory capabilities. To highlight the influence of the input
data at the current moment, we adopt an attention mechanism

https://pypi.org/project/thop/
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o that the network can pay more attention to learning the fea-
ures of the current moment while maintaining long-term depen-
ence on resource utilization data. Using the physical machine
ata collected by Alibaba Cluster Trace to evaluate the perfor-
ance of the CPW-EAMC model, we can see that the model has
performance improvement compared with the current latest

ime-series processing framework in this scenario.
The resource utilization of physical machines in cloud data

enters has a great relationship with the types of submitted tasks
y users and the scheduling algorithm of data centers. As time
oes by, the historical trends will vary from period to period. It
ill cause the original forecasting model to become unusable.
herefore, we will focus on adapting our network into an on-
ine training model in our future work. With a more accurate
rediction model, the scheduling algorithm can make a more
fficient scheduling strategy to alleviate the waste of data center
esources.
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