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Abstract—With the recent advances in computer vision, age
estimation has significantly improved in overall accuracy. How-
ever, owing to the most common methods do not take into account
the class imbalance problem in age estimation datasets, they
suffer from a large bias in recognizing long-tailed groups. To
achieve high-quality imbalanced learning in long-tailed groups,
the dominant solution lies in that the feature extractor learns
the discriminative features of different groups and the classifier
is able to provide appropriate and unbiased margins for different
groups by the discriminative features. Therefore, in this novel, we
propose an innovative collaborative learning framework (Group-
Face) that integrates a multi-hop attention graph convolutional
network and a dynamic group-aware margin strategy based on
reinforcement learning. Specifically, to extract the discriminative
features of different groups, we design an enhanced multi-hop
attention graph convolutional network. This network is capable
of capturing the interactions of neighboring nodes at different
distances, fusing local and global information to model facial deep
aging, and exploring diverse representations of different groups.
In addition, to further address the class imbalance problem,
we design a dynamic group-aware margin strategy based on
reinforcement learning to provide appropriate and unbiased
margins for different groups. The strategy divides the sample into
four age groups and considers identifying the optimum margins
for various age groups by employing a Markov decision process.
Under the guidance of the agent, the feature representation bias
and the classification margin deviation between different groups
can be reduced simultaneously, balancing inter-class separability
and intra-class proximity. After joint optimization, our architec-
ture achieves excellent performance on several age estimation
benchmark datasets. It not only achieves large improvements in
overall estimation accuracy but also gains balanced performance
in long-tailed group estimation.

Index Terms—Age estimation, imbalanced learning, graph
convolutional network, reinforcement learning.
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I. INTRODUCTION

AGE is one of the most important biometric traits in
faces, and the general precision in age estimation has

seen notable advancements in recent years. It encompasses
a broad spectrum of application scenarios, including social
media, visual surveillance, image retrieval, marketing, and
public safety [1], [2], [3].

Driven by the rapid development of deep learning, age
estimation based on Convolutional Neural Networks (CNN)
achieves promising performance. Rothe et al. [1] utilized a pre-
trained VGG-16 network for face representation learning, then
used the classification probability multiply the corresponding
labels to get a regression result, which is much better than
the single classification or regression methods. Chen et al. [4]
proposed Ranking-CNN, which converted the age estimation
task into a ranking challenge, and obtained age prediction
results by summing the binary classification results. With the
advent of Vision Transformer (ViT) [5], its powerful ability
to globally model dependencies was put into use for face
representation learning. Kuprashevich et al. [6] proposed a
unified dual model Multi Input VOLO (MiVOLO), which
integrated the gender and age estimation tasks in the field
based on the Vision Transformer. Qin et al. [7] proposed
Transformer-based SwinFace, which achieved multi-task face
feature extraction such as age estimation through a shared
backbone and a sub-net for each related task. Moreover,
benefits from the flexibility of Graph Convolutional Neural
Networks (GCN) in processing complex and irregular objects,
GCN achieves performance similar to or even surpassing
that of Transformer in feature extraction. Shou et al. [8]
proposed Masked Contrastive Graph Representation Learning
(MCGRL) to capture the rich structural face information more
flexibly and with low redundancy, which outperformed most of
the CNN and ViT-based methods on age estimation task. These
frontier age estimation researches mainly focus on designing
feature extraction networks for more robust face represen-
tation learning and optimizing age estimation strategies for
more accurate prediction performance, which have achieved
great improvement in the overall age estimation performance.
However, a prominent issue is that these approaches overlook
the issue of imbalanced data distribution, fail to main-
tain balanced performance on long-tailed group recognition
and show significant degradation when encountering specific
scenarios.
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Due to different difficulties in collecting samples from
different age groups, the age estimation datasets imbalance
problem is so severe that the prediction accuracy for some
groups or specific application scenarios is poor. For exam-
ple, in the long-span dataset, MIVIA [9], the number of
images for certain age groups (0.6% for “children”, 4.4% for
“teenager”, and 6.3% for “senior”) is much lower than for
the head age group (88.7% for “adult”), and this imbalanced
distribution leads to biased identification of long-tailed groups.
In many cases, although the tail categories are numerically
small, ignoring them will be costly. Application scenarios
such as grading systems in social media, anti-addiction of
minors in games, searching for lost children in public safety,
and fraud prevention for the elderly. Seldom studies have
focused on long-tailed recognition in age estimation. Bao et
al. [10] designed a two-stage framework that decouples the
learning process into representation learning and classification,
which utilized a balanced sampling dataset to train a balanced
classifier. Deng et al. [11] utilized globally-tuned ResNet-
34 for feature extraction and proposed the variational margin
to minimize the effect of misleading tail sample predictions
for head class. Wang et al. [3] proposed Meta-Set Learning
(MSL) based on RestNet-34 and created an unfair filtering
network to identify and filter the noisy samples, and then
obtained a balanced meta-set for meta-weighting to alleviate
the unfairness between age estimation. Though these tech-
niques mitigate the class imbalance issue to some extent,
they still have some shortcomings: i) Weak in discriminative
feature learning. The CNN-based local feature extraction
[3], [11] or Transformer-based global feature extraction [6],
[7] tends to learn the consistency of most classes, which
is difficult to effectively learn the personalized information
of different samples. In particular, the lack of discriminative
sample mining leads to the over-fitting of minority classes.
ii) Poor in identifying appropriate and unbiased margins
for different groups. Some methods [8], [10] decoupled the
two-stage learning process, which is no explicit control over
the distribution of learned features and hard to provide optimal
margins for different groups from staged extracted features.
Other methods [3], [12] introduced meta-learning for learning
the distribution of imbalanced samples, but meta-learning is
extremely sensitive to noise, making it difficult to flexibly and
stably provide appropriate margins for different groups.

To overcome the above shortcomings for improving the
generalization performance of age estimation, it is necessary
to focus on both discriminative feature extraction of differ-
ent groups and an imbalanced margin learning strategy for
long-tailed classes. In this novel, an innovative collaborative
learning framework (GroupFace) is proposed that integrates a
multi-hop attention graph convolutional network and dynamic
group-aware margin strategy based on reinforcement learn-
ing. To extract the discriminative features among different
age groups, we design an enhanced multi-hop attention
graph convolutional network. It has the capability to capture
the interactions of neighboring nodes at different distances,
effectively extending the receptive field of the graph model.
It also models facial deep aging by fusing local and global
information, thus capturing diverse representations of different

Fig. 1. The illustration of age estimation with class imbalanced learning. Most
face datasets have an imbalanced distribution of race and age groups, such
that the recognition bias is high for the long-tailed groups. Our GroupFace
can achieve a balanced generalization capability for different age groups by
discriminative feature extraction and group-aware margin optimization.

groups. Specifically, to maintain message diversity for deeper
mining of discriminative features, we design an adaptive decay
strategy during graph diffusion to adaptively assign learnable
weights based on different hop distances, randomly drop
messages during message propagation to prevent over-fitting
and incorporate residual blocks in graph convolution to pre-
vent over-smoothing. Moreover, to address the computational
inefficiency of higher-order graph models, we utilize a power
iteration method to approximate the accelerated inverse matrix.

At the same time, to further address the class imbalance
problem, we design a dynamic group-aware margin strat-
egy based on reinforcement learning. We roughly categorize
ages into four groups (“children”, “teenager”, “adult”, and
“senior”), and design a more flexible and stable group-aware
margin loss function. While considering employing a Markov
decision process to identify the optimum margins for various
age groups, we utilize deep q-learning to acquire a strategy
for selecting appropriate group margins. As shown in Fig. 1,
under the guidance of the agent, the representation bias in the
feature space and the margin deviation in the classification
space between different groups can be reduced simultaneously,
while the inter-class separability and intra-class proximity be
improved, then achieving a balanced generalization ability.
The resulting adaptive and unbiased margins for different
age groups are more conducive to subsequent accurate age
classification and regression from coarse to fine.

Finally, through joint optimization, the group-aware margin
policy will guide and facilitate our whole age estimation
architecture GroupFace. The contributions to this novel are
concluded as follows:
• We propose an innovative collaborative learning frame-

work (GroupFace) that integrates a multi-hop attention
graph convolutional network and a group-aware margin
strategy, which focuses on both discriminative feature
extraction of different groups and an imbalanced margin
learning strategy for long-tailed classes.

• To achieve more discriminative representation learning,
we propose an enhanced multi-hop attention graph con-
volutional network fusing local and global information to
model aging changes in faces and design adaptive decay
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diffusion, random message dropping, and power iteration
methods to enhance the graph model.

• To overcome the imbalanced distribution problem, we
propose a dynamic group-aware margin strategy based
on reinforcement learning with a more flexible and stable
margin loss function. The balanced generalization ability
is achieved by facilitating the search for optimal margins
for different age groups through reinforcement learning.

• Extensive experiments have shown that our architecture
not only provides a significant improvement in overall
estimation accuracy but also balances performance in
long-tailed groups.

II. RELATED WORK

In this section, we first present an overview of the frontier
research on Graph Neural Networks. Then we review some
studies in the general and imbalanced age estimation. Finally,
we provide a brief description of reinforcement learning.

A. Graph Neural Network

Graph Neural Networks and their variants extend deep
networks from regular grids to non-Euclidean graph-structured
data, showing great potential in areas such as action recog-
nition [13], social media [14], traffic prediction [15] and
computer vision [16].

Existing models mainly adhere to a message-passing struc-
ture, aggregating information from adjacent nodes in a direct
connection. Graph Convolutional Neural Network (GCN) [17]
aggregated the representations of their one-hop neighbor nodes
in a recursive manner and in the process normalized the
weights of the edges using the Laplace matrix. On the other
hand, Graph Attention Network (GAT) [18] introduced a
multi-head self-attention mechanism that dynamically dis-
cerned the significance of various neighboring nodes, thus
discarding the fixed neighbor weight settings in traditional
methods. To address the challenges of processing large graph
data, GraphSAGE [19] proposed an efficient batch training
algorithm that ensures constant computational and memory
complexity regardless of the graph size, which significantly
improved the scalability of large graphs. However, these meth-
ods restrict information extraction to the local neighborhood,
limiting deep feature extraction and representation of the graph
model.

Since the use of multiple single-hop message-passing lay-
ers might lead to a decline in model efficacy due to the
effects of Laplace smoothing, multi-hop graph networks have
been put forth to address this issue by capturing informa-
tion from the k-hop neighborhood vicinity. Simplified Graph
Convolutional Network (SGC) [20] utilized powers of the adja-
cency matrix to generate multi-hop neighbor representations.
Abu-El-Haija et al. [21] designed MixHop, a mixed-hop GNN
that broadens the receptive field by reiterating the feature
representations of neighbors at varying distances. Wang et
al. [22] proposed Multi-hop Attention Graph Neural Network
(MAGNA) to deal with the over-smoothing problem by graph
attention and diffusion methods, but fixed decay weights make
it inflexible for different nodes at the same distance. In this

work, we pay attention to the optimization of the multi-hop
model to obtain more discriminative face features.

B. General Age Estimation

Age estimation becomes a challenging task due to many
internal and external factors, and the mainstream works
for general age estimation have focused on two direc-
tions: designing more robust feature extraction models [8],
[23] and optimizing more accurate age prediction strate-
gies [24], [25]. Zhang et al. [23] proposed C3AE to train
multi-scale images using cascade networks to make full
use of contextual information. Shin et al. [24] developed
a new sequential regression technique named Moving Win-
dow Regression (MWR), integrating the notion of relative
rank and establishing both local and global relative regres-
sors to attain the rho-rank in the whole and specific rank
ranges. Chen et al. [25] presented the Delta Age AdaIN
(DAA), comprising components such as a facial encoder, DAA
operation, binary code mapping, and age decoder module.
Shou et al. [8] proposed the new representation frame-
work Masked Contrastive Graph Representation Learning
(MCGRL), which can learn face structure and semantics
flexibly.

These techniques designed for general age estimation tasks
have enhanced the overall precision. However, overlooking
the long-tailed distribution of age datasets, their performance
deteriorates severely when it comes to younger and older
individuals.

C. Imbalanced Age Estimation

The imbalanced distribution of data is widespread in real
life. There has been quite a bit of groundwork in the visual
imbalanced learning species to address such problems, which
can be categorized into two main types: data level [10], [26]
and algorithm level [27], [28]. The data level balances the class
distribution by resampling the training data, but this tends to
destroy the original expression. The algorithm level improves
the importance of minority classes by improving existing algo-
rithms, including cost-sensitive learning, ensemble learning,
and other methods.

However, studies dealing with imbalanced age estimation
are still scarce, and ignoring the marginalized is disastrous
and costly in some scenarios. Bao et al. [10] decoupled face
representation learning and age classification at the data level
by training a balanced classifier separately from a balanced
dataset obtained by class-balanced sampling. Deng et al.
[11] proposed variational margins at the algorithm level to
mitigate the misleading tail-sample prediction in the head
class. Wang et al. [29] carefully created an unfair filtering
network under a meta-learning paradigm that utilizes meta-
re-weighting interventions to reduce training bias caused by
category imbalance. Bao et al. [30] proposed Pixel-level
Auxiliary learning (PA) and Feature Rearrangement (FR) to
better utilize the facial features, while Adaptive Routing (AR)
was devised to select the appropriate classifiers to improve the
long-tailed recognition.

In this work, we consider both the discriminative feature
extraction and the imbalanced learning to achieve a balanced
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Fig. 2. The overall framework of our proposed imbalanced learning method GroupFace. Face images are segmented into patches as nodes, and then a
multi-hop attention graph convolutional network will fuse global and local information to model deep facial aging for capturing the discriminative features
of different groups. Through joint optimization, the dynamic group-aware margin strategy based on reinforcement learning will identify the optimum margins
for various age groups to mitigate the bias of imbalanced learning.

performance for the long-tailed groups while improving the
overall accuracy.

D. Reinforcement Learning

Reinforcement learning mimics the human decision-making
process training agents to learn trial-and-error-based strategies
by maximizing cumulative rewards in dynamic environments.
In addition to applications such as robot control and gaming,
reinforcement learning has recently been successfully applied
to several visual recognition tasks. Lin et al. [31] modeled
a sequential decision-making process to classify the images,
and devised more rewards for the minority category. Liu et al.
[32] presented fair loss, which is a margin-aware reinforcement
learning-based loss function to learn an adaptive margin. Wang
et al. [29] proposed a reinforcement learning-based Racial
Balancing Network (RL-RBN) to find the most suitable margin
for non-Europeans and can reduce the skewness of feature
dispersion among races. In this work, a dynamic group-aware
margin strategy based on reinforcement learning is designed
with a more flexible and stable margin loss function for
imbalanced age estimation.

III. PRELIMINARIES

In this section, we will elaborate on our proposed imbal-
anced learning framework GroupFace consisting of the
Enhanced Multi-hop Attention Graph Convolutional Network
and Dynamic Group-aware Margin Optimization. The overall
pipeline is shown in Fig. 2.

A. Enhanced Multi-Hop Attention Graph Convolutional
Network

Aging changes between facial key points profoundly affect
the accuracy of age estimation. However, common GCNs only
focus on one-hop nodes to aggregate information from local
domains, and simply deepening the network easily leads to
over-smoothing issues. To improve the model for capturing

Fig. 3. The illustration of the main designs of EMAGCN to capture
discriminative features fusing global and local information.

the long dependencies between distant nodes, we introduce a
multi-hop approach to expand the graph model receptive field.

Specifically, following [22], we address some of the short-
comings of multi-hop networks with enhancements. The main
design of our Enhanced Multi-hop Attention Graph Convolu-
tional Network (EMAGCN) is shown in Fig. 3. Since previous
work aggregating different distance information with fixed
weights tends to introduce higher-order noise and degrade the
performance, EMAGCN employs an adaptive decay strategy
to adaptively learn useful information. We also randomly drop
messages during message propagation to prevent over-fitting,
and incorporate residual blocks in graph convolution to prevent
over-smoothing. Finally, to address the problem of inefficient
computation of dense matrices for higher-order graph models,
we utilize a power iteration method to approximate the inverse
matrix for acceleration.

1) Graph Construction: Formally, consider that an input
face image of shape H×W×3, we segment it into N equal size
patches and each patch is transformed into feature embedding

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 18,2025 at 01:12:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: GroupFace: IMBALANCED AGE ESTIMATION BASED ON MULTI-HOP ATTENTION GRAPH CONVOLUTIONAL NETWORK 609

Fig. 4. The illustration of EMAGCN blocks. In the schematic above, the
relations between multi-hops are obtained by attention diffusion.

xi ∈ R
d utilizing the convolution-based patch embedding

methods [16], where d denotes the feature dimensions. Regard-
ing these patches representations X = {x1, x2, . . . , xN}

as nodes V = {v1, v2, . . . , vN}, we employ the K-Nearest
algorithm [33] to calculate the neighbors N (vi) of each node
to build the edge. Then we obtain a graph representation
G = (V , E , A, M), where E is the set of all edges between
nodes, A denotes the adjacency matrix represented relation,
M is the message matrix of the message-passing GNNs.
The Ai j is initialized to 1 when nodes i to j have edges,
otherwise to 0, while D =

P
j Ai j = {d1, . . . , dN} denotes

the degree matrix, di denotes the edge weight sum of node vi.
The M = {m1, . . . , mN} are first initialized based on each
node’s own feature vector, and during each layer of message
passing, updates the message matrix based on the features
and edges of its neighboring nodes. Specifically, The message
matrix propagate from node i to node j at l-th layer can be
formulated as M(l)

i j = AGG j∈N(i)(h
(l)
i , h

(l)
j , ei j), where hi is the

hidden representation of node vi.
2) Multi-Hop Attention Diffusion: Similar to Graph

Attention Network (GAT) [18], the first step is computing the
attention values for all edges, the attention value of nodes i to
j can be calculated as:

αi j = σ
�

aT
(l) tan h

�
W (l)

i h(l)
i ‖ W (l)

j h(l)
j

��
(1)

where h(l)
i denotes the node i embedding at l-th layer, and

h(0)
i = xi. aT

(l), W (l)
i and W (l)

j are the learnable weights shared
by l-th layer, σ(·) is the LeakyReLU activation function and ‖
denotes the concatenation operation.

For all edges of l, we calculate 1-hop correlation by Eq. 1,
then obtain an attention value matrix:

S i j =

(
αi j, i f Ai j = 1
−∞, otherwise

(2)

We further apply softmax operation on S i j to acquire the
attention matrix at l-th layer:

A(l)
i j = so f max

�
S i j
�

(3)

3) Adaptive Decay Aggregation: Subsequently, we utilize
the graph diffusion method to compute the attention among
nodes that lack a direct connection. As shown in the upper two
schematics in Fig. 4, computing multi-hop attention allows
creating attention shortcuts between nodes without explicit

connection, utilizing the attention dependent on both their
previous layer representation and the path relations between
the nodes, thus effectively capturing long-distance interactions.
However, as the distance increases, the correlation between
nodes becomes weaker and weaker, which tends to introduce
useless information or noise. To overcome this weakness, we
employ an adaptive decay strategy that separates semantic
correlations of the network from different hops and assigns
adaptive learnable decay weights, the power of the K-hop
attention matrix is formulated as:

A =

KX
k=0

Āk � δk (4)

where Āk is the power of attention matrix, such as Āk
i j

represents the relational path number from node i to j of
maximum length k, which can increase the receptive domain
of attention. The δk = {δ1, . . . , δk} denotes the adaptive
learnable attention decay factor adjusted by a Sigmoid function
δk = 1

1+e−ωk , where ωk is the weight parameter learned by the
model during the training process. Since the attention decay
factor is adaptive rather than fixed, the learned weights are
different for different hops and paths with different levels of
importance, thus providing more flexibility in learning useful
information while suppressing noisy information. Then the
attention diffusion AD(·) to updated graph representation can
be defined as AD(·) = AH(l).

Furthermore, the attention diffusion equation for each indi-
vidual head i is computed distinctly as follows:

H̃(l) = MS A
�
Ĥ(l), G

�
=
�
‖Mi=1 headi

�
Wh

headi = AD
�
G, H̃(l), Θi

�
, Ĥ(l) = LN

�
H(l)� (5)

where MS A(·) is the multi-head self attention, AD(·) denotes
the attention diffusion, LN(·) is the layer normalization for
stabilizing the computation procedure, Wh is a parameter
matrix and Θi is the parameter of the i-th head.

With attention diffusion, the receptive domain of the graph
model is enlarged and global and local information are effec-
tively captured, while the decay strategy reduces redundant
information from distant nodes.

4) Enhanced Information Propagation: During the node
information propagation process, we randomly drop some
messages [34] for enhancement to maintain the diversity of
topological information as well as to prevent the training of
long-tailed samples from over-fitting. Unlike the previous drop
methods, DropMessage directly drops the message matrix M.
By dropping the message matrix with drop ratio %, the process
can be elaborated as:

M̃i j =
1

1 − %
εi jMi j (6)

where εi j ∼ Bernoulli(1 − %) denotes an independent mask
determining whether a reservation will be made. Thus node
representation is updated based on node feature information
and messages from multi-hop neighbors, which can be repre-
sented as:

h(l+1)
i = h(l)

i + M̃i (7)

Moreover, considering the significant increase in the com-
putation of dense matrices generated by the multi-hop graph
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Fig. 5. The illustration of different margin losses. GroupFace employs the
dynamic group-aware margin loss, which can adaptively provide suitable and
unbiased margins for different age groups.

model, we introduce a power iteration method to estimate the
inverse matrix, thereby attaining linear complexity accelerating
training, and reducing computational overhead. The specific
computational procedure can be calculated as:

H(n) = QT H(n−1) + H(1)

= QnX + Qn−1X + . . .+ Q2X + QT X (8)

where Q = ÃD̃−1 is a row normalization instead of standard
Laplacian smoothing normalization and n is the iterations.
When n tends to infinity, the matrix hierarchy (I − Q)−1

converges to I + M + M2 + . . .+ Mn−1 + Mn.
Finally, EMAGCN propagates all information into the face

features through the process of graph convolution, as shown in
Fig. 4, which contains a fully connected feed-forward sublayer,
add layer normalization and residual connections to achieve a
more expressive information propagation process:

H̃(l+1) = H̃(l) + H(0),

H(l+1) = σ
�

LN
�
H̃(l+1)�W (l)

1

�
W (l)

2 + H̃(l+1) (9)

where σ(·) denotes the LeakyReLU activation function, LN(·)
is the layer normalization and W (l)

1 ,W
(l)
2 are the different

trainable weight.

B. Dynamic Group-Aware Margin Loss

Large margin loss functions based on softmax are often
used to train feature extractors to make learned features more
discriminative. A unified form is defined as:

L = −
1
N

NX
i=1

log
e f (θyi ,m)

e f (θyi ,m) +
nP

j,yi

es cos θ j

(10)

where yi is the label index, m denotes the margin, and θyi

denotes the angle between the weight and feature vector of
the j-th classifier.

However, most margins [35], [36] use fixed values, which
are not flexible enough for real-life complex classification and
have a large bias for category imbalance, so many studies [37],
[38] have begun to explore adaptive margins.

Considering the poor generalization ability of long-tailed
groups, we introduce the idea of dynamic adaptive into
imbalanced age estimation to improve the large margin loss,
which can be shown in Fig. 5. Our goal is to explore the
adaptive margins between different classes, which can be

guided by subsequent reinforcement learning, and the angular
margins can be adjusted by the loss function automatically. By
balancing the margins between different classes, it is realized
that the majority class will not converge with too large a gap,
while the minority class will converge to the majority class
with a smaller gap. Following the [38], we design a dynamic
group-aware margin loss to balance the additional margins
between different classes, which can be formulated as:

LDGM = −
1
N

NX
i=1

log
eai(t)(θ j−hi(t))2

+ki(t)

eai(t)(θ j−hi(t))2
+ki(t) +

nP
j,yi

es cos θ j

(11)

where ai(t), hi(t) and ki(t) are the adaptive margin parameters
associated with different groups, which can be determined in
the reinforcement learning training stage.

By converting the cosine function to a quadratic function,
model over-fitting can be avoided and it helps to reduce the
computation overhead. Three learnable parameters make the
margins more adaptive between different groups, thus enhanc-
ing the inter-class discrimination and intra-class compactness
of age estimation features.

C. RL-Based Dynamic Group-Aware Margin Optimization

Inspired by [29] and [32], we conceptualize the problem of
identifying suitable adaptive margins within the framework of
a Markov Decision Process (MDP). With state st as input, the
Q-value Q(st, a) is estimated by the deep Q-learning network
(DQN), where the agent will be trained to use different actions
at to adapt the margins for each state. In turn, the environment
will give the action a reward r(st, at), and then update the state
by st+1. The training objective of deep Q-learning is to seek
the optimal function Q∗, which indicates that the agent can
obtain the highest cumulative reward value by adjusting the
margins of each iteration with policy π.

1) State: The dynamic group-aware margin is adaptively
adjusted to the number of images in different groups, inter-
class, and intra-class distance, which is defined by the triple
{G, Dinter, M}. We divide the age groups into four categories
G = {0, 1, 2, 3} where Children (group 0), Teenager (group 1),
Adult (group 2) and Senior (group 3). M is equivalent to
the dynamic group-aware margin. Since the number of the
Adult age group in most age datasets is the largest, we keep
the margin of Adult as the anchor and achieve imbalanced
learning by adjusting the angular skewness of the long-tailed
age groups with respect to the head class Adult. Dinter denotes
the deviation of the inter-class distance between age group i
of the long-tailed classes and the head class Adult, which can
be expressed as:

Dinter = |di
inter − d2

inter |

di
inter =

1
Ni

NiX
i=1

max
k=1:Ni

cos (xk, xi) (12)

where di
inter is the inter-class distance of i-th age group,

d2
inter denotes the inter-class distance of the head class Adult.

Moreover, cos(·, ·) represents the cosine distance function, Ni
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is the i-th age group’s number and xi denotes the feature center
of i-th age group.

Assuming that different age groups have different require-
ments for margins, these requirements may vary depending
on their Dinter. When the bias is large, long-tailed groups
may require larger margins to improve their generalization
ability. In addition, to make the space of states discrete, we
let Dinter and M identified to discrete space D and M, where
D = {d1, d2, . . . , dnD} and M = {m1,m2, . . . ,mnM}.

2) Action: Depending on the different state, there are three
types of action spaces A = {−1,O,+1}, where O means keep
the same, −1 means shrink to a constant value κ and +1 means
expand to a constant value κ.

We train the agent to make better decisions while tak-
ing action a obeying the cumulative reward π∗(s, a) =

arg maxa Q(s, a). For instance, if at time step t the agent opts
to execute action −1 based on the Q value and the state
st = {3, d1, m1}, the margin of the Senior will be updated
to m2 = m1 − κ.

3) Reward: The reward function r(st, at) is set to motivate
the agent to take a better action at at state st. We expect that
the long-tailed classes have close generalization ability of the
head class Adult, then the age estimation biases of the different
groups are balanced, and so we utilize the deviation of the
inter-class and intra-class distances to form the rewards. The
deviation of intra-class distances between age group i of the
long-tailed classes and the head class Adult can be expressed
as:

Dintra = |di
intra − d2

intra|

di
intra =

1
Ni

NiX
i=1

cos (xk, xi) (13)

where di
intra denotes the intra-class distance of i-th age group,

d2
intra denotes the intra-class distance of the head class Adult.

Ni is the number of i-th age group, and xi denotes the feature
center of i-th age group. Combining the deviation of the inter-
class and intra-class distances together, the reward to adjust
the margin can be formulated as:

r (st, at) = Rt+1 −Rt

R = − (Dintra + Dinter) (14)

4) Deep Q-Learning: It is employed to seeks the optimal
function Q∗ to guide the agent acquiring the highest cumula-
tive reward value. During the training process, we iteratively
change the Q-function to update the model by minimizing the
loss:

LDQN = Est ,at‖yt − Q (st, at)‖2

yt = Eπ
�
rt + γmax Q

�
st+1, at+1|st, at

��
(15)

where yt is the target Q value, γ is the discount factor,
yt−Q(st,at) denotes the deviation error at t-th step and a future
reward γmax Q(st+1, at |st, at).

5) Training Network: The samples are used as inputs to
train the DQN, and the agent dynamically adapts the mar-
gin through actions for different groups. After traversing all
the states through continuous iterative updating, the optimal
group-aware margin policy will be obtained.

Then the group-aware margin policy will guide and optimize
our overall age estimation network, including robust extraction
of face features and accurate classification of age groups.
Our age estimation method starts with age classification at
smaller intervals through the four age groups, and the clas-
sification results are further regressed to obtain predicted
values.

In the multi-classification process, for the i-th element
output zi, softmax is employed for age grouping to g categories
with Gi = S o f t max(zi) = ezi

gP
j=1

ez j
. After the softmax operation,

the predicted age with label yi is calculated by the expectation
ŷi = E =

P|g−1|
i=0 yi.Gi. The joint two-stage estimation loss

consists of cross-entropy loss and average absolute loss, which
is formulated as:

LGroupFace = λLCE + (1 − λ) LMAE (16)

IV. EXPERIMENT

In this section, we present our experiments in detail, which
will be organized around the following questions:

RQ1: How effective and robust is our method under general
age estimation?

RQ2: Can our method achieve balanced generalization
performance in long-tailed age estimation?

RQ3: How do the key designs and hyperparameters in the
architecture affect the performance?

A. Datasets

1) Morph-Ii: The dataset [39] is a widely used age estima-
tion benchmark comprising 55,134 facial images from 13,617
individuals, ages spanning from 16 to 77. It also provides
demographic details like gender, race, and glasses usage. In
our experiments, we used two protocols in our evaluation.
Setting I [40]: The entire dataset is randomly segmented into
two distinct sections, with 80% allocated for training and 20%
reserved for testing. Setting II [41]: Based on a subset of 5493
facial images of European ethnicity, the subset was randomly
segmented into two sections: 80% and 20% for training and
testing.

2) UTK-Face: The dataset [42] is a large-scale, long age-
span (from 0 to 116 years) face dataset. Collected in an
unconstrained setting, it includes over 20,000 images labeled
with gender, age, and ethnicity, capturing a broad spectrum of
variations. In our work, we randomly select 80% and 20% for
training and testing.

3) Chalearn LAP 2015: The dataset [43] is a competi-
tive dataset released at the ChaLearn LAP Challenge 2015
and contains 4699 face images with annotations averaged
from at least 10 users. It is divided into training (2476
images), validation (1136 images), and testing (1079 images)
subsets.

4) CACD: The dataset [44] is a vast dataset from 2,000
celebrities with 163,446 images aged 14 to 62. Due to esti-
mated age annotations, it has more noise. In our experiments,
we cleansed the noise and utilized 1800 celebrities for training,
and 80 and 120 for validation and testing.
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TABLE I
THE SUMMARY OF WIDELY-USED AGE ESTIMATION DATASETS. SOME DETAILED INFORMATION IS FROM [45]

5) MIVIA: The dataset [9], derived from the CAIP compe-
tition and sourced from VGGFace2, contains 575,073 images
labeled with ages from 1 to 81 using “knowledge distillation.”
With the test set pending release, MIVIA was split into
458,752 and 114,688 images for training and validation.

B. Evaluation Metrics

1) MAE (Mean Absolute Error): It is defined as the average
distance between the actual and predicted age, which is
formulated as:

MAE =
1
N

NX
i=1

|yi − ŷi| (17)

where yi and ŷi are the true and predicted age values of the
i-th sample, respectively, and N is the amount of test images.

2) ε-Error (Normal Score): The age in the CLAP-2015
dataset is labeled as the mean of different people, and the
true age in the data contains two attributes, mean and vari-
ance. Thus considering these factors can be a more accurate
measure, which is calculated as:

ε = 1 −
NX

i=1

exp
�
−

(yi − ŷi)2

2σ2
i

�
(18)

where yi and ŷi denote the true and predicted age values of the
i-th sample, respectively, N is the amount of test images, and
σ2

i is the labeled standard deviation. The smaller the ε-error,
the more accurate the age estimate.

3) AAR (Age Accuracy and Regularity): To further evaluate
the performance of the model under imbalanced or long-tailed
distributions, we introduce the protocol of [9] and [10]. This
metric can assume values between 0 and 10, weighted with
70% MAE (accuracy) and 30% σ (regularity) contributions,
which can be formulated as:

AAR = max (0; 7 − MAE) + max (0; 3 − σ) ,

σ =

vuuut nP
j=1

�
MAE j − MAE

�2

n
. (19)

where n is the number of age groups, MAE is the mean abso-
lute error of the entire test set, σ denotes the standard deviation
of different age groups, and MAE j is the MAE computed for
the sample whose actual age is in the j-th age group.

C. Implementation Details

We first utilize the face landmark algorithm MTCNN [46]
to detect and align each face image, and then crop them to
224 * 224. During the training process, the samples are

augmented with translations, color dithering, and random
rotations. The starting learning rate was established at 0.0001
for the entirety of the experiments and attenuated using a
cosine annealing strategy. We used the Adam optimizer [47]
with parameters for weight decay and momentum configured
to 0.0005 and 0.9, respectively. Each model underwent training
on NVIDIA RTX 3090 GPUs using PyTorch.

D. Comparisons With The State-of-the-Art Methods (RQ1)

To validate the efficacy of our proposed GroupFace, detailed
experiments are conducted on three face image datasets. For
the characteristics of different datasets, we utilize appropriate
experimental settings and evaluation criteria to compare them
with state-of-the-art methods (SOTAs).

1) Comparisons on Morph II: On the most popular
restricted datasets, TABLE II lists the avenue year, backbone
network, and number of parameters for the SOTAs. Our
method achieves the MAEs of 2.09 and 1.86 (with IMDB-
WIKI dataset pre-trained weights) under Setting I, which
outperforms PML [11], DCT [48], and MSL [3] that also
consider imbalanced learning. It is inferior to GLAE [30]
pre-trained on extra datasets using MS-CELEB-1M, TAA-
GCN [49], MetaAge [50], and MWR [24] without using extra
datasets but is able to achieve similar performance to the
SOTAs with the IMDB-WIKI dataset weights. It is worth
noting that compared to the commonly used age estimation
pre-training dataset IMDB-WIKI, MS-CELEB-1M is far supe-
rior to it in terms of the number and quality of images. So a
high-quality pre-training dataset and three excellent network
designs enabled GLAE [30] to achieve a performance that
far exceeded the best of others. Under Setting II, our method
achieves the second-best MAE 2.01 with the IMDB-WIKI
dataset weights, which approaches the GLAE. In addition, our
network has 8.6 M parameters, which is smaller than these
methods with the highest prediction accuracy.

2) Comparisons on UTK-Face: We test the performance of
GroupFace on an unconstrained large-scale dataset spanning
ages 0 to 116. TABLE III shows that our GroupFace achieves
the second-best MAE of 4.32 and performs far better than pre-
vious methods with a smaller number of parameters of 8.6M.
Note that MSL [3] uses a deeper ResNet-34, and MWR [24]
uses a larger VGG-16, both of which effectively reduce the
MAE. Andrey Savchenko [55] uses a more compact network
MobileNet-v2, which has the lowest number of parameters but
lacks in performance.

3) Comparisons on ChaLearn LAP 2015: We further
compare our method with the SOTAs on the unrestricted
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TABLE II

COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON MORPH II. (* INDICATES USED THE IMDB-WIKI DATASET FOR PRE-TRAINING,†
INDICATES USED THE MS-CELEB-1M DATASET FOR PRE-TRAINING, AND ‘↓’ INDICATES THE SMALLER IS BETTER)

TABLE III
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON UTK-FACE.

(* INDICATES USED THE IMDB-WIKI DATASET FOR PRE-TRAINING,
AND ‘↓’ INDICATES THE SMALLER IS BETTER)

TABLE IV

COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON CHALEARN
LAP 2015. (* INDICATES USED THE IMDB-WIKI DATASET FOR PRE-

TRAINING, † INDICATES USED THE MS-CELEB-1M DATASET FOR
PRE-TRAINING, AND ‘↓’ INDICATES THE SMALLER IS BETTER)

competitive dataset CLAP 2015. TABLE IV shows our results,
where we achieve the third best MAE of 2.91 after GLAE [30]
and DCT [48], and the best ε-error of 0.239, while the parame-
ter count of 8.6M is the smallest among these methods. GLAE

TABLE V

COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON CACD.
(* INDICATES USED THE IMDB-WIKI DATASET FOR PRE-TRAINING,
† INDICATES USED THE MS-CELEB-1M DATASET FOR PRE-

TRAINING, AND ‘↓’ INDICATES THE SMALLER IS BETTER)

designed Adaptive Routing (AR) to select suitable classifier for
improving the long-tailed recognition while maintaining the
head class. However, our method achieves similar performance
with the help of the IMDB-WIKI dataset while GLAE with
the help of MS-CELEB-1M, indicating that GroupFace is also
effective in handling samples with large variance.

4) Comparisons on CACD: We also compare our Group-
Face with the SOTAs on the large dataset CACD, which
originates from web crawling with a lot of noisy data and large
variations in face background and illumination. As shown in
TABLE V, our framework achieves an optimal performance
of 4.07 MAE with IMDB-WIKI dataset pre-trained weights.
Compared with GLAE [30], MSL [3] and DCT [48], the
amount of parameters is nearly halved thanks to the flexibility
of the graph model, although our model only reduces 0.02
MAE. Clearly, the results show that our GroupFace is capable
of unconstrained age estimation and robust feature extraction
in samples containing more noise.
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TABLE VI

THE LONG-TAILED GENERALIZATION ANALYSIS ON THREE LONG-RANGE AND IMBALANCED AGE ESTIMATION DATASETS.
(‘↓’ INDICATES THE SMALLER IS BETTER, WHILE ‘↑’ INDICATES THE LARGER THE BETTER)

Our GroupFace strikes a great improvement which proba-
bly owing to: i) GroupFace effectively integrates Enhanced
Multi-hop Graph Convolutional Networks (EMAGCN) and
reinforcement learning-based group-aware margin strategy,
focusing on both discriminative feature extraction for dif-
ferent groups and imbalanced learning for the long-tailed
class. ii) The graph model is more flexible in dealing
with complex irregular objects that effectively model aging
changes in the face, and reduces the learning of exces-
sive redundant information thus making the model more
compact.

E. Long-Tailed Generalization Analysis (RQ2)

To extra evaluate the generalization performance of our
architecture GroupFace in different age groups, we consider
evaluating the long-tailed age estimation on three imbalanced
datasets. Our experiments categorize the samples into four
groups: children (0-12), teenager (13-17), adult (18-65), and
senior (66+). In most datasets, adult is treated as the head
class, while children, teenager, and senior are treated as the
tail classes.

Specifically, as shown in TABLE I, MORPH II with an
age span of 16-77, lacks the children group and has a
teenager group of about 20%, with the tail class concen-
trated in senior at about 1.7%. For CACD ranging 16-62
years, it missing the children and senior groups, so these
datasets are not used in the long-tailed experiment. In addition,
the Chalearn LAP 2015 dataset is also not used in that
experiment considering that the data distribution imbalance
is relatively insignificant and contains only 7591 images. In
contrast, both UTK-Face and MIVIA are large-scale datasets
with long age spans and significant long-tailed distributions,
which are appropriate for evaluating the imbalanced learning
performance of the models. And we perform the generalization
analysis on the Morph II dataset without the help of external
dateset, while the analysis on the UTK-Face and MIVIA
datasets with the help of pre-training on the IMDB-WIKI
dataset.

Following the long-tailed recognition [10], we apply both
MAE and AAR to evaluate the performance of different
age groups. TABLE VI shows the long-tailed recognition
performance of GroupFace with three different datasets, where

TABLE VII

THE LONG-TAILED AGE ESTIMATION COMPARISONS ON MIVIA
DATASET. (‘↓’INDICATES THE SMALLER IS BETTER,

WHILE ‘↑’INDICATES THE LARGER THE BETTER)

Baseline utilizes one-hop GCN and sofmax for classification
without margin optimization. It is obvious that our GroupFace
not only has a large improvement in the overall MAE but
also has a significant improvement in the group MAE. Under
two settings of MORPH II, the group MAE gap between our
different classes narrows and σ decreases significantly, with
the AAR reaching as high as 6.64. Meanwhile, our long-
tailed recognition performance improvement is more obvious
in UTK-Face and MIVIA, where the age span and imbalance
are more severe. The lowest σ of 0.77 and the highest
AAR of 7.54 are achieved in MIVIA. This is due to the
effective integration of EMAGCN and dynamic group-aware
margin optimization in GroupFace, which greatly improves the
model’s balanced generalization performance for long-tailed
recognition.

Meanwhile, we compare our GroupFace on the MIVIA
dataset using the same evaluation metrics with the imbalanced
age estimation benchmark GLAE [30]. Because of the dif-
ferent age grouping strategies, we follow GLAE to combine
children and teenager (0-18) in the comparison. As shown
in the TABLE VII, our method underperforms GLAE in the
comprehensive metric AAR, but achieves a lower overall
MAE of 1.68. GLAE utilized the smaller ResNet-18 (11M)
or the better ResNet-50 (23M) as the backbone network, and
designed Adaptive Routing (AR) to select the appropriate
classifiers, which achieved both general and imbalanced age
estimation with excellent results. Our GroupFace utilizes a
more flexible multi-hop graph model (8M) to extract local
and global features, and designs dynamic Group-aware margin
optimization for imbalanced learning, which also achieves
impressive performance.
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TABLE VIII

THE EFFECT OF DIFFERENT KEY COMPONENTS ON TREE IMBALANCED AGE ESTIMATION DATASETS.
(‘↓’ INDICATES THE SMALLER IS BETTER, WHILE ‘↑’ INDICATES THE LARGER THE BETTER)

F. Ablation Studies (RQ3)

To validate the effectiveness and robustness of our archi-
tecture GroupFace, as well as to explore the performance
enhancement of the architecture by different components,
we perform a series of ablation studies across multiple
datasets. And the evaluation of the Morph II dataset is
conducted without the help of external dateset, while the
evaluation of UTK-Face and MIVIA datasets is with the
help of pre-training on the IMDB-WIKI dataset. First, We
roughly divide the architecture into two main components:
the Enhanced Multi-hop Attention GCN (EMAGCN) and the
Dynamic Group-aware Margin Optimization (DGMO), and
conduct initial ablation experiments on these two compo-
nents. Then the different modules and strategies in these
two components are further explored in more detail one by
one.

1) Effect of Key Components: To verify the effectiveness
of the two key components on the entire age estimation
architecture, we set the baseline as a one-hop GCN and
sofmax for classification without margin optimization, and
then compare the gains after adding different components. As
shown in TABLE VIII, the results show that the improvement
of overall MAE using EMAGCN is obvious, while DGMO is
able to significantly reduce σ and improve AAR. Especially
in the case of long age-span imbalanced datasets UTK-Face
and MIVIA, combining the two improves the AAR by 1.65
and 1.78, respectively. This manifests that EMAGCN can
achieve more robust facial feature extraction and capture
the discriminative features of the different groups. DGMO
reduces the skewness of feature representations and achieves a
balanced performance across different groups. Our GroupFace
integrating both can attain joint enhancements in both general
and long-tailed age estimation tasks.

2) Effect of Enhanced Multi-Hop Attention GCN: To
achieve stronger learning of discriminative representations, we
design an enhanced multi-hop graph convolutional network to
model the aging changes of the face and also design Adap-
tive Decay strategy (AD), DropMessage (DM), and Residual
connection (RC) to enhance the graph model. Before exploring
the effects of these designs for deepening the graph model, we
adjust the hop count K and the decay on the UTK-Face dataset
to find the optimal initial hop count. As shown in Fig. 6,
the MAE is significantly reduced when multi-hop neighbors
(K > 1) are adopted. The adaptive decay model reaches the
lowest MAE of 4.32 when K = 4, while the fixed decay model
reaches the lowest MAE of 4.44 when K = 3. Besides, the

Fig. 6. The effect of multi-hop K and adaptive decay for EMAGCN on
UTK-Face dataset.

Fig. 7. The effect of the designed strategy for EMAGCN and the depth of
EMAGCN on the UTK-Face dataset.

MAE of adaptive decay is far smaller than fixed decay in
most multi-hops, which demonstrates that the adaptive decay
strategy can flexibly regulate the degree of attention decay at
different distances and improve the effectiveness of multi-hop
attention diffusion by reducing noise from long-range distance.
However, the performance gradually goes down as K increases
after reaching the minimum. This may be due to the fact that
when the number of hops is too large, aggregating information
about neighbors that are too far away introduces more noise
than useful information. Therefore, we set the multi-hop count
K to 4 and utilize adaptive decay in our experiments.

Based on the optimal hop count K = 4, we continue
to investigate how much the designed method and strategy
improve the multi-hop attention GCN. The comparisons of
DM+RC, w/o DM, and w/o RC at different network layers
were obtained by removing some components separately. The
results are shown in Fig. 7, DropMessage (DM) helps to
keep the diversity of the message delivery while preventing
over-fitting, and Residual connection (RC) can maintain initial
information while preventing over-smoothing. The combina-
tion of the two is more beneficial to keep the performance of
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TABLE IX
THE EFFECT OF DIFFERENT MARGIN LOSSES ON THE UTK-FACE DATASET. (‘↓’ INDICATES THE SMALLER

IS BETTER, WHILE ‘↑’ INDICATES THE LARGER THE BETTER)

the deep network, while with a maximum gap of 0.14 or 0.17
MAE without DM or RC, respectively.

3) Effect of Margin Loss Function: To investigate the effi-
cacy of our adaptive margin loss on imbalanced age estimation,
we compare the experiments using different margin losses on
the long-span UTK-Face dataset. As shown in TABLE IX, the
large margin loss functions CosFace and ArcFace with fixed
values can effectively lower the overall MAE compared to
the ordinary sofmax. ElasticFace, which can flexibly change
the margins, shows significant improvement in the overall
performance as well as the performance of different groups.
And benefit from the excellent adaptive margin loss function
and the dynamic optimization of reinforcement learning, our
GroupFace, which can recognize different groups very well,
improves the overall recognition accuracy and also effectively
achieves a balanced generalization performance. We achieve
the lowest overall MAE of 4.32 and the highest AAR of 4.86.

4) Effect of RL-Based Group-Aware Margin Optimization:
In dynamic group-aware margin strategy, the number of sam-
ples of different age groups is used as the classification of
head or tail classes, and the head class Adult is regarded
as the anchor point. The rest of the classes are regarded as
long-tailed classes, which are categorized into Minor Class,
Sub-minor Class, and Moderate Class according to the number
of samples from smallest to largest. The above categorization
varies according to the distribution of age groups in different
datasets. In the UTK-Face dataset, the head class is Adult, and
the long-tailed classes are Minor Class (Teenager), Sub-minor
Class (Senior), and Moderate Class (Children) respectively.
The margin of the head class Adult is kept constant after
selecting the optimal margin, while the other classes are guided
by reinforcement learning to dynamically adjust the margin to
minimize the angular skewness between the long-tailed class
and the head class. As shown in Fig. 8, a part of the strategy for
different age groups of the trained agent is demonstrated. We
can find that the long-tailed classes tend to increase the margin
by the head class adult, where the Minor Class (Teenager)
increases the largest margin, and the Sub-minor Class (Senior)
and Moderate Class (Children) increase the similar margin.
Having a larger inter-class deviation leads to an increase in
the margin, since a larger intra-class distance usually reflects
an imbalanced performance in recognizing the group, and
thus an increased margin is essential to bolster the group’s
generalization capability. This demonstrates the adaptability

Fig. 8. The examples of RL-based group-aware margin strategy from trained
agents on the UTK-Face dataset. For the state st = {G, Dinter , M}, each
grid denotes an action at = {−1,O,+1} to adjust group margins. Dinter is
represented as d1 < d2 < d3 < d4, while M is corresponding to discrete
spaces {0.2, 0.4, 0.6, 0.8}.

and reliability of our strategy in identifying long-tailed groups,
which can dynamically find appropriate margins for different
age groups, reducing the skewness of feature representations
between different groups and balancing intra-class proximity
and inter-class separability.

G. Qualitative Results

We select the samples of different age groups on the long-
span, large-scale UTK-Face dataset for example demonstration
of results. As shown in Fig. 9, our GroupFace performs well in
all four age groups and achieves balanced generalization per-
formance in long-tailed recognition. The blue numbers show
that our method improves significantly in children, teenager
and senior, which is attributed to the mining of discriminative
facial features from different age groups, as well as the group-
aware margin optimization. The red numbers show some of the
failed samples, which may be caused by exaggerated facial
expressions, heavy makeup, and so on.

H. Feature Visualization

We further compare the learned feature distributions from
Baseline and our GroupFace on UTK-Face dataset by
t-SNE visualization. For a fair comparison, Baseline uses a
normal one-hop GCN and sofmax for classification without
margin optimization. From Fig. 10(a), it can be seen that the
features learned by the Baseline are more dispersed, and the
margin overlaps, which is not sufficiently distinguishable for
different age groups. While from Fig. 10(b), it can be observed
that our GroupFace has a more compact feature distribution
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Fig. 9. The examples of age estimation results using our GroupFace on UTK-Face dataset. The ground truth label is the black number, the reliable estimation
results are shown in the blue number, and the poor estimation results are shown in the red number.

Fig. 10. The t-SNE visualization of the Baseline and our architecture
GroupFace.

compared to Baseline, and the margins of different age groups
are clearly distinguished. This indicates that GroupFace is
effective in extracting the discriminative features of different
age groups and providing appropriate and unbiased margins for
different groups, balancing inter-class separability and intra-
class proximity, which also demonstrates that GroupFace is
very effective for imbalanced age estimation.

V. CONCLUSION

In this novel, we have presented an innovative collabo-
rative learning framework GroupFace, which integrates an
Enhanced Multi-hop Attention Graph Convolutional Network
(EMAGCN) and a dynamic group-aware margin strategy based
on reinforcement learning. The EMAGCN fuses local and
global information to model aging changes in faces, which
can achieve more discriminative representation learning. In
addition, the dynamic group-aware margin strategy based
on reinforcement learning provides appropriate and unbiased
margins for different groups, which can balance inter-class
separability and intra-class proximity. Extensive experiments
have shown that our GroupFace not only provides a signif-
icant improvement in overall estimation accuracy but also
balances performance in long-tailed groups. For future work,
we are interested in further improving the effectiveness and
generalizability of imbalanced learning with the help of the
language-image pre-training method.
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