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Abstract— Fine-grained attack detection is an important net-
work security task. A large number of machine learning/deep
learning(ML/DL) based algorithms have been proposed. How-
ever, attacks not present in the training set pose a challenge
to the model (open-set problem). Further, ML/DL based models
face the problem of adversarial attacks. Despite the large amount
of work attempting to address these problems, there are still
some challenges as follows. First, the open-set problem in fine-
grained attack detection is difficult to solve because there is no
effective representation of the distribution of unknown attacks.
Second, in the open set environment, how the fine-grained attack
detection model resists the adversarial attack is a more difficult
problem. For example, the presence of unknown attacks poses a
challenge for adversarial defense. For these reasons, we propose
the RFG-HELAD model, which consists of a K classification
model based on deep neural network (DNN) with contrastive
learning (CL), and a K + 1 classification model combining a
generative adversarial networks (GAN) with two discriminators
and deep k-nearest neighbors (Deep KNN). Among them, Deep
kNN uses latent features from GAN and contrastive learning
as input, which is essentially a distance-based out-of-distribution
detection algorithm used to determine unknown attacks. The
large category of unknown attacks has been added to the K
classification, so it is a K + 1 classification. To further improve
the robustness of the RFG-HELAD model, we perform Fourier
transform as well as feature fusion on the features, and also
conduct adversarial training on the K classification model.
Generative adversarial training of our GAN model can implicitly
defend against adversarial attack. Experiments show that our
model is superior to other state-of-the-art (SOTA) models in the
presence of unknown attacks as well as under adversarial attacks.
Especially, our model improves the accuracy by at least 18.7%
over the corresponding SOTA model with adversarial defense.
Further, we discuss the grounded deployment of the model and
demonstrate its feasibility.

Index Terms— Network anomaly detection, adversarial attack,
unknown attack detection, ensemble learning, fine-grained attack
detection.
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I. INTRODUCTION

HE continuous upgrading of network technologies and the

increasing size of networks are bringing new challenges
to cybersecurity. Network traffic anomalies can lead to reduced
network performance or complete unavailability. The more
common network anomalies are mainly generated by network
packets or flows with malicious attacks. For example, scanning
attacks, botnets, Denial of Service (DoS) attacks, Distributed
Denial of Service (DDoS) attacks etc. Also, network miscon-
figurations and sudden outages can cause network anomalies.
Another aspect that we need to focus on is unknown attacks.
According to CrowdStrike’s cybersecurity analysis,! the scale
of network attacks is expanding significantly, and the types
of zero-day attacks are increasing. A zero-day attack is an
attack in which an undiscovered or undisclosed vulnerability is
exploited to gain illegal access to the target system or network.
Effective network anomaly detection becomes more important,
which means that anomaly detection algorithms can quickly
distinguish not only known attacks, but also unknown attacks,
thus providing a strong guarantee for network security and
network availability.

The first intrusion detection system (IDS) was proposed for
detecting host attacks [1]. It was able to detect intrusions,
infiltrations, and other forms of computer misuse. Subse-
quently, considerable progress was made in intrusion detection
models, and rule matching based intrusion detection algo-
rithms were proposed. Representative works are Snort [2] and
Suricata [3], which cannot detect attacks outside the scope of
application of the rules. To keep up with the rapidly evolving
technology, machine learning/deep learning based anomaly
detection models are flourishing [4], [54]. However, because
the problem of network traffic anomaly detection itself is
very complex, there are many assumptions that are not close
to reality [5]. For example, fine-grained anomaly detection
model ACID (adaptive clustering based intrusion detection)
does not consider how to deal with unknown attacks [19].
Fine-grained means that the attacks are classified at a more
precise level, which corresponds to multiclassification. Most
algorithms [8], [9], [10], [11] perform binary classification,
which cannot efficiently complete attack classification and
determination. In contrast, fine-grained attack classification
can provide enough diagnostic information to effectively guide
security experts in addressing threats. In real-world network
attack environments, fine-grained attack detection is an open
set problem and new attacks continue to emerge. Open-set
problem means that the identification in the real world is open

]https://www.crowdstrike.com/global—threat—report/, 2023.
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set, i.e. the identification system should reject unknown/unseen
categories when testing [25]. This means that the attacks seen
in the tests may not have been present in the training. Exist-
ing fine-grained attack detection algorithms that can detect
unknown attacks are constantly being proposed [21], [22],
[29], but the following challenges still exist.

e The open-set problem in fine-grained attack detection
is difficult to solve because there is no effective repre-
sentation of the distribution of unknown attacks. Effective
representation means that the distributions of the training and
test sets do not mismatch [56]. Known attack distributions are
relatively easy to learn through the training set. Therefore,
existing algorithms for solving this problem are unsatisfactory
due to the inability to capture the distribution of unknown
attacks more accurately.

(1) Unknown class detection models based on restricted
scenarios. For example, AutoloT [29] and DeviceMien [57]
use Kolmogorov-Smirnov test and probabilistic framework,
respectively, to detect unknown IoT devices. However, these
customized methods are not applicable to unknown attack
detection.

(2) Distance-based unknown attack detection model. For
example, KCC [30] uses negative samples to assist in deter-
mining the boundaries of known categories and discriminates
unknown attacks by the distance between the test sample and
the center of the known category. The introduced negative
samples do not represent the distribution of unknown attacks
and are not effective for detection. Moreover, it has side effects
in some network environments. The fundamental reason is that
this type of work does not distance the unknown attacks from
the known ones.

(3) Unknown attack detection models based on extreme
value theory. For example, CVAE-EVT [21] and OpenIDS [31]
use extreme value theory to determine unknown attacks. When
the real unknown attack distribution only partially conforms to
the extreme value theory, the improvement in the detection of
unknown attacks will be insignificant (compared to the model
without unknown attack processing module).

e In the open set environment, how the fine-grained
attack detection model resists the adversarial attack is a
more difficult problem. At present, there is no corresponding
research work to solve this problem.

(1) The presence of unknown attacks poses a challenge
for adversarial defense. In an open-set environment, unknown
attacks exist only in the detection phase, which is not present
in the training phase. This leads to drawbacks of directly
using traditional adversarial defense methods like adversarial
training. For example, the detection model after adversarial
training may not be able to recognize unknown attacks with
perturbations. Further, due to the diversity of perturbations,
there exist some special perturbations that can misclassify
known attacks to unknown attacks [15].

(2) Adversarial defense strategies impact the detection
effectiveness of fine-grained attack detection models, which
poses design challenges. First, known attacks face the
dilemma of compromising between defense -effectiveness
and detection accuracy [59]. Then, the implementation of
fine-grained detection models for adversarial defense in
open-set environments needs to be considered holistically.
This should consider not only the effectiveness of the defense,
but also the impact of the defense strategy on the effectiveness
of unknown attack detection.
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Based on the above challenges, we propose the
RFG-HELAD model (A Robust Fine-Grained Network
Traffic Anomaly Detection Model Based on Heterogeneous
Ensemble Learning). To cope with the open-set problem under
fine-grained attacks, we propose the RFG-HELAD* model,
which covers both K classification model detection and
K + 1 classification model detection. To ensure the detection
effect, we customize a fine-grained K classification detection
framework. This framework consists of optimal features for
different scenarios, normalization, DNN for matching with
traffic, and contrastive learning. The corresponding techniques
inside this framework can all be replaced to improve the
detection results. We propose a K + 1 classification model
for unknown attack detection. The model contains two
components, GAN with two discriminators and DNN with
contrastive learning [34]. Designed based on DCGAN [6],
GAN with two discriminators possesses the ability to
recognize potential unknown attacks, which we call RPGAN.
The hidden features of the two components are fused and then
the results are fed into Deep kNN for decision making on
unknown attacks. In the modeling, Deep kNN is innovatively
used as a heterogeneous ensemble learning approach. This
effectively pulls apart the distribution of known and unknown
attacks, as well as dynamically learns the distribution of
potential unknown attacks, which in turn ensures accurate
localization of unknown attacks.

Specifically, for known attacks, contrastive learning
increases the distance between attack categories and decreases
the distance within attack categories. That is, each attack
category forms its own cluster that is constantly close to
each other. Unknown attacks are not essentially in the same
category as all other known attacks. The proximity movement
within the known attack categories indirectly increases the
distance between the distributions of known and unknown
attacks. And, RPGAN (GAN with two discriminators) can
reduce the KL divergence and inverse KL divergence between
the real data distribution and the data distribution generated
by the generator, thus effectively enhancing the generalization
performance of the GAN model. RPGAN treats the known
categories (known attacks + benign traffic) in the network
traffic as one macroscopic category, and the distribution of
unknown attacks learned with generative adversarial training
as another macroscopic category. With this generative adver-
sarial training, the distance between the distributions of the
two macroscopic categories is further increased in order to
better discriminate the unknown attacks. The determination
of the unknown attack distribution requires the participation
of known attacks in the training, which also shows that our
algorithm has the ability of dynamic learning. The potential
unknown attack distribution can be determined based on the
corresponding known attack network environment.

To address the problem of fine-grained attack detection
models against adversarial attacks in an open-set environ-
ment, we propose a comprehensive hierarchical progressive
adversarial defense strategy (CHPDD). In the known attack
defense part, we organically combine several defense strategies
in the order of the data processing flow. Specifically, Fourier
transform enhances the difference after perturbation at the
feature level. Hidden space compression (a manifestation of
the efficacy of contrastive learning in adversarial defense)
reduces the space that can be perturbed at the distribution
level after the feature form is determined [14]. Adversarial
training is the perturbation of the determined features to train
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TABLE I
DETAILED COMPARISON OF EXISTING NETWORK ANOMALY DETECTION ALGORITHMS
K/K+1 Model Fine-grained  Adversarial attack  Open-set ~ Generality Code
ACID [19] yes no no some yes
SCADA [13] no(*) no no some no(classic)
K FARE [20] yes no no yes yes
DNN-kKNN [12] no(*) no no yes yes
1DCNN [18] no yes no no no
KS test based (K + 1) AutoloT [29] yes no yes no yes
77777777777777 openmax(DNN)+centerloss [23] ~~ yes ~ no  yes  yes  yes
EVT based (K + 1) CVAE-EVT [21] yes no yes some yes
OpenIDS [31] yes no yes some no
77777777777777777 scalableNIDS[22] ~ yes =~ no  yes  some  yes
. . CADE [24] no(*) no es some es
Distance based (K + 1) KCC [30] yes no zes some }rllo
Our model yes yes yes yes yes

yes means the corresponding attribute is considered; no means the corresponding attribute is not considered; EVT means extreme value theory
some means the corresponding attribute is partially considered; no(*) means that the corresponding attribute can be extended by modification.
K indicates that no unknown attacks are considered, while K + 1 considers unknown attacks; KS test means Kolmogorov-Smirnov test.

the model and enhance the robustness of the model. These
are combined in a logical sequence from raw data, data
distribution, and model training. The intrinsic connection is
that the processing of the hidden space compression takes
into account the changes in the distribution due to the Fourier
transform. Adversarial training also perturbs the features of
the Fourier transform. These are essentially to reduce the
likelihood that the perturbations will cause the classifier to
misclassify samples. Regarding the unknown attack defense,
in order to incorporate all the defense properties of the defense
part of the known attack, we ensemble the hidden layer
output of the K classification model in the final judgment
of the unknown attack. Further, the generative adversarial
training of our RPGAN model has been able to implicitly
defend against adversarial attacks while addressing the prob-
lem of recognizing unknown attacks with perturbations. This
is because the ideal generator naturally spoofs the discrimi-
nator, which makes the discriminator robust to this spoofing
(covering the effect of perturbation). Finally, the design of
adversarial defense strategies can be complemented with the
RFG-HELAD* model. That is, RFEG-HELAD* and CHPDD
together form the RFG-HELAD model.
The contribution of our paper is summarized as follows.

« Novel fine-grained network traffic attack detection
with adversarial defense for open set environments.
We propose the RFG-HELAD model, which is formed
by unknown attack detection module RFG-HELAD*
and adversarial defense strategy CHPDD. To the best of
our knowledge, this is the first attempt to fuse multiple
machine learning/deep learning models (DNN, GAN
with two discriminators, Deep kNN, contrastive learning)
into a single framework in a heterogeneous ensemble
learning manner to address the problem of co-existing
unknown and adversarial attacks in fine-grained attack
detection scenarios.

« Multi-aspects high detection performance. We test our
model on several data sets (UKM [43], NSLKDD [44],
Kitsune [8]). Experiments show that our model performs
better than SOTA K classification models (FARE [20],
CADE [24], ACID [19], SCADA [13], DNN-kNN [12])
and K + 1 classification models (scalable-NIDS [22],
CVAE-EVT [21]), and also has good adversarial robust-
ness. In fine-grained attack detection scenarios with both
unknown and adversarial attacks, our model improves

the accuracy by at least 18.7% over the corresponding
SOTA model with adversarial defense. Meanwhile, our
RFG-HELAD model has good generalization.

o Complete fine-grained attack detection system and
open source.” We implement an open source fine-grained
attack detection system and discuss the grounded
deployment of the model and demonstrate its feasibility.

The rest of the paper is organized as follows. We summarize

the related work in Section II and provide background and
problem scope in Section III. Section IV introduces our
RFG-HELAD model. Experimental evaluations and analyses
are shown in Section V. In Section VI, we first discuss
model-related issues, followed by limitations and future work.
Section VII concludes our work.

II. RELATED WORK

With the development of network technology, network
traffic is increasing. The packets reached per second are
gigantic [7]. To process this data quickly, network packet
header-based or flow-based anomaly detection models are
constantly evolving. Among them, machine learning and deep
learning based models are dominant. These intrusion detec-
tion models can be classified as binary [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18] or multi-classified
(fine-grained anomaly detection) [19], [20], [21], [22], [23]
according to the class of classification. The main idea of binary
classification attack detection models (e.g., HELAD [9]) is to
construct a model of normal traffic and to treat any traffic
that deviates from the normal model as an attack during the
detection phase. Multi-classification attack detection models
(e.g., our RFG-HELAD) are to learn the distribution of each
attack category that can be recognized in the detection phase.
These two types of work address different issues. We present a
systematic summary of recent work on ML/DL-based network
anomaly detection. TABLE I shows detailed comparison of
existing network anomaly detection algorithms. We compare
anomaly detection models in terms of several properties.
For example, whether this is a fine-grained attack detection
algorithm or whether this algorithm handles the open set
problem. It can be seen that for the SCADA algorithm [13],
the fine-grained property is no(*). This indicates that this
algorithm is not a fine-grained algorithm in the original paper,

2https://github‘com/RFG-HELAD/RFG-HELAD
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but can be modified with the final output layer to achieve
fine-grained attack detection. Specifically, we present related
work on unknown attack detection and adversarial attack and
defense in intrusion detection.

A. Unknown Attack Detection

The importance of unknown attack detection is being con-
tinuously demonstrated. Therefore, a large amount of work
has emerged. We highlight the following algorithms [21],
[22], [23], [24], [29], [30], [31], [52], [53]. Openmax [23]
overcomes the limitations of softmax and enables the neural
network to detect unknown attacks. Reference [22] proposed
Open Set Classification Network (OCN) to detect unknown
attacks, OCN is based on convolutional neural network with
nearest class average (NCM) classifier. It is designed with two
new losses to jointly optimize it, including Fisher loss and
maximum mean difference (MMD). Reference [21] combined
the fine-grained known/unknown intrusion detection problem
as a two-stage minimization problem. The first phase is to
seek a scoring criterion that minimizes the empirical risk of
misclassification of known attacks. The second phase is to
find another scoring criterion to minimize the identification
risk of inferring an unknown attack. In the second stage
extreme value theory is further used to build model the distri-
bution of reconstruction errors to distinguish unknown attacks.
Reference [29] proposed a novel IoT device identification
model named AutoloT, which updates itself automatically
when new types of devices are plugged in. Their unknown
attack detection algorithm is mainly based on KS testing. This
model is customized for iot traffic data. The disadvantage
of these methods is that they cannot accurately capture the
distribution of unknown attacks.

B. Adversarial Attack and Defense in Intrusion Detection

Similar to us, these works [58], [59], [60] also study
anomaly detection as well as adversarial related theories (e.g.
GAN, game theory) and address specific problems in each
subfield separately. The difference between our paper and
these works is that we focus on how to effectively defend
against adversarial attacks in network traffic anomaly detec-
tion. The problem of adversarial attacks in the IDS domain has
received much attention in recent years [32]. We present sev-
eral more representative works. Reference [33] systematically
evaluated ML-based NIDS for adversarial robustness, which
can better provide analytical guidance for our real defense
model. Reference [16] presented Whisper, an ML-based real-
time malicious traffic detection system that achieves high
accuracy and high throughput by exploiting frequency domain
features. In particular, attackers cannot easily interfere with
the frequency domain features, and thus Whisper is robust to
various evasive attacks. Reference [18] investigated an attack
detection method based on simple and lightweight neural
networks and using frequency domain features to enhance
robustness. All of these adversarial defence methods are done
based on binary classification algorithms and fine-grained
adversarial defense needs to be considered. Further, fine-
grained adversarial defense work in open-set environments is
not yet available.

Based on the above analysis, we would like to propose
a new robust fine-grained anomaly detection model based
on ensemble learning [46]. This model can detect unknown
attacks, as well as defend against possible adversarial attacks.
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to one unknown attack within the specified time slice.
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III. BACKGROUND AND PROBLEM SCOPE

In this section, we first define the problem. Then we describe
our motivation for using ensemble learning.

A. Problem Definition

We know that cyber attacks are complex, and new attacks
are constantly emerging. Therefore, our model should be
constantly iteratively updated. It is not known how many
unknown attacks there are in the actual scenario. Since the
classifier cannot complete the classification of uncertain cat-
egories, we temporarily treat all unknown attack categories
reached in the specified time period in our model as one
new attack major category. This new attack major category
is then given to the network security administrator to analyse
and give fine-grained labels. These new fine-grained labelled
data sets are used to update model. There may be multi-
ple unknown attacks arriving in a time period. Once it is
discovered that our model detects an unknown attack, a fine-
grained labeling process is required by the network security
administrator. This one or more new attacks are then added to
the retraining. This process is repeated over time. Meanwhile,
our fine-grained attack detection models are developed based
on deep learning and will face the problem of adversarial
attacks. Based on the above analysis, our research problem
is defined as shown below. our goal is to achieve accurate
classification of known attacks, detection of one new attack
major category, and defence against adversarial attacks within
specified time period. The fine-grained labelling of unknown
attacks is outside the scope of our study.

To facilitate the evaluation of the model’s performance,
network traffic from the specified time periods were selected
for the experiments. We divide the network traffic collected
during this time period into two data sets in chronological
order. The former is treated as training set after experimental
setup, and the latter is treated as test set directly. Specifically,
we assume that there are (K — 1) classes of known attacks
and benign traffic in the training set and K — 1 + L kinds of
attacks and benign traffic in the test set (K > 1 and L > 0).
Our goal is to accurately identify K known classes including
attacks and benign traffic, as well as to identify all L species as
unknown attacks denoting as (K + 1)¢h class, and to be able
to defend against adversarial attacks. Fig. 1 shows the flow
chart of our research scope on intrusion detection models.

B. Motivation

Our core idea is to ensemble DNN with contrastive learning
and GAN model with two discriminators using Deep kNN as
a heterogeneous ensemble method. We state the motivation of
this idea in the perspective of solving challenges. Fig. 2 shows
correspondence diagram between motivations and system
components. We show the linkages at the macro level through
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the four modules (feature processing module, attack distri-
bution learning module, unknown attack localization module,
adversarial defense module). It can be seen that the modules
are interconnected and support each other. To better understand
the motivation part, we introduce expressions like Part 1. For
example, Part 1 belongs to the known attack distribution learn-
ing in the attack distribution learning module, which needs
to be realized by the DNN+CL components in our model.
DNN-+CL is used for known attack classification which is
composed of DNN and contrastive learning. The robustness of
the DNN+CL component needs to be supported by the hidden
space compression (another function of contrastive learning)
and adversarial training in Part 4. The relationship between
other modules can be analyzed similarly. The detailed linkages
can be seen in the following specific analysis.

(1) The motivation to address challenge 1 is analyzed as
follows. 1) Closed set detection is the basis of open set detec-
tion. The basic detection process for closed sets is as follows.
The first step is feature extraction followed by normalization.
Then a classifier needs to be selected. For classification tasks,
representation learning can optimize the performance of the
classifier. We select the contrastive learning in representation
learning. In order to ensure the detection effect, we need to
customize a fine-grained K classification detection framework,
which consists of optimal features for different scenarios,
normalization, DNN for matching with network traffic, and
contrastive learning. The optimal features can be selected
according to the scenario. We illustrate the advantages of
our framework using basic DNN models suitable for net-
work traffic. Obviously, other better classifiers can be chosen.
Contrastive learning can distance different classes and further
reduce misclassification. This combination improves the gener-
alization of the model at three levels: raw data representation,
distribution shift, and the degree of matching between the
model and the data distribution. Also, the three parts of the
combination are convenient to extend to adversarial defense.
This part learns the optimal K classification (known attack
detection) and the distribution of known attacks. (Part 1)

2) The open-set problem in fine-grained attack detection is
difficult to solve because there is no effective representation
of the distribution of unknown attacks. Inspired by open-
GAN [37], which uses primitive GAN networks to augment
unknown categories, we propose RPGAN (or GAN with
two discriminators) to dynamically learn the distribution of
potential unknown attacks. Unlike openGAN, we do not need
to have a small number of unknown categories in training
because of the inaccessibility of unknown attacks in real
scenarios. Motivated by D2GAN [36], RPGAN adds a dis-
criminator that uses the inverse KL divergence to compute the
loss on top of the original discriminator, which can rationally
utilize the complementary statistical properties of the two
discriminators. The use of two discriminators increases the
diversity of the learned distributions and in turn improves the
generalization performance. The generalization performance
refers to the fact that the model obtained from the training
samples can also be well adapted to the testing samples.
Enhancing the generalization performance of the GAN model
implies that the GAN-based latent layer features have general-
ization, which means that Deep kNN using latent layer features
also enhances the generalization when deciding unknown
attacks, thus improving the detection of unknown attacks.
Further, as we mentioned earlier, the RPGAN model has the
ability to learn dynamic unknown attack distributions based on
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known attacks. This part learns the distribution of potentially
unknown attacks in RPGAN during the generative adversarial
training process. The learned distribution is based on known
attacks, so it is characterized as an existential possibility and
has limited representational capabilities. (Part 2)

3) After learning the distributions of known and unknown
attacks, a rational decision of unknown attacks is needed.
The distributions of known and unknown attacks from the
Part 1 and Part 2 are combined into a new feature, and then
the Deep kNN distance algorithm is used to determine the
unknown attacks. We can view this combination of features
from two perspectives. First, with features representing the
distribution of known attacks, the model is less likely to
misclassify known attacks as unknown attacks. Second, with
features that represent the distribution of unknown attacks,
it is less likely to allow unknown attacks to be misclassified
as known attacks. This part can accurately localize unknown
attacks (unknown attack detection) based on ensuring the
effectiveness of known attack detection. (Part 3)

(2) The motivation to address challenge 2 is analyzed as
follows. 1) To address the impact of defense strategies on
attack detection, we adopt a complementary philosophy. First,
we try to choose components that both improve detection
performance and enhance robustness. For example, contrastive
learning can both improve the detection effect and reduce the
perturbed space. RPGAN can both learn the distribution of
potential unknown attacks and defend against unknown attack
perturbations. Second, the defense is strengthened according
to each part of the optimal detection process, which makes our
defense more comprehensive. Specifically, Fourier transform,
hidden space compression (contrastive learning), adversarial
training are all expanded from the three aspects of the attack
detection process for Part 1. (Part 4)

2) To address the challenges posed by the emergence of
unknown attacks to the adversarial defense, we have to fully
incorporate all the defense properties of the known attack part
as well as the advantages of coping with perturbations in the
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training of the GAN network itself (adversarial training of
generator and discriminator). (Part 5)

(3) To summarize, Part 1 and Part 3 together are fine-grained
attack detection for open-set environments. Our ensemble
learning model can better detect unknown attacks on the basis
of good detection of known attacks. Meanwhile, the compo-
nents inside the ensemble learning model can be extended to
adversarial defense more easily, which meets the demand of
fine-grained attack detection model against adversarial attacks
in open-set environments. Therefore, it is sensible to ensemble
DNN with contrastive learning and GAN model with two
discriminators using Deep kNN as a heterogeneous ensemble
method to design robust fine-grained attack detection models.

IV. RFG-HELAD MODEL

In this section, we first explain the systematic structure of
our model. Then, we specify the details of the model.

A. The Structure Diagram of RFG-HELAD Model

We propose the RFG-HELAD model, which is formed by
unknown attack detection module RFG-HELAD* and adver-
sarial defense strategy CHPDD. This is shown in Fig. 3. The
input to the model can be either flow data or raw packet data.
After the feature extraction, normalization [55] is then used
to obtain the original feature form. This is done by centering
the data by the minimum and then scaling by the extreme
difference (maximum - minimum). The data is shifted by the
minimum of one unit and will be converged to between [I,
0]. The original features and their Fourier transformed forms
are combined into the final features. Then the K model (DNN
with contrastive learning) and RPGAN models are trained.
Our RPGAN network adds a discriminator to the DCGAN
infrastructure, and this discriminator uses inverse divergence
to compute the loss. The specific RPGAN structure is shown
in Fig. 4. Next, K model is adversarial trained using the
final features. And the hidden layer features generated in the
training phase are saved and used as input to Deep kNN.
The distance matrix D7y of the original training set is thus
constructed, which is used to calculate threshold and will be
described subsequently.

In the test phase, the extracted features are fed directly into
the discriminator D and K model to generate the hidden layer
features of the current sample. This hidden layer feature is then
compared to the training set to calculate the distance vector.
A threshold is used to determine if the attack is unknown.
If it is an unknown attack, then it needs to be checked by a
network security administrator. If not, perform a known attack
classification. Considering that some network environments
will not have adversarial attacks, we can avoid the tradeoff [47]
between accuracy and adversarial defence by not enabling the
defence part CHPDD. That is, we can use the RFG-HELAD*
model alone.

B. Details of the Model

1) Feature Engineering (Optimal Feature+Normalization):
Feature engineering has a significant impact on detection per-
formance. For data in pcap form, we use Damped Incremental
Statistics as feature extraction method [8] because it is an
excellent method [8], [9]. The extracted features are further
processed using the normalization to obtain the final features.
For data in the form of flow, we use normalization to obtain the
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final features directly because it can represent flow data more
efficiently. In summary, if there is a better feature extraction
method based on flow and pcap, it can also be incorporated
into our feature extraction framework: excellent feature extrac-
tion method + normalization. The feature extraction method
can be left empty. After processing in our feature extraction
framework, it can fit well with our DNN+CL model.

2) DNN++CL (Evolving DNN+-Class Distribution Optimiza-
tion Techniques): In this part, we introduce combination
evolving DNN+CLass distribution optimisation techniques.
To demonstrate the superiority of this combination, we choose
a simple DNN as K classification model, and contrastive
learning as class distribution optimisation techniques. The
simplest DNN is chosen because it is a better match to the
traffic (Details can be found in the Part 8 of Appendix.).
CL method is recognized as a method that can improve the
classification effect, which could increase the distance between
classes and decrease the distance within classes. We describe
the combination DNN+CL in detail.

Our DNN model has a total of 4 layers. The output of the
third layer we denote as DN N3(x;). x; is the i-th input sample
(final feature in Fig. 3). The projection space of the third layer
of the DNN is denoted as & € R?. In our model we have
h; = DN N3(x;). First, we present the cross-entropy loss for
multiclassification based on DNN, where M is the number of
test samples and N is the number of labels.

| MoN
ECEZ—ﬂZZ)’jiIOg)”'j\i (D
j=1i=l
In multiclassification, y;; is used to indicate the true label
of a sample. y;; = 1 means that the label of the j-th sample
is i. yj; = 0 means that the label of the j-th sample is not i.
yji is used to indicate the predicted label of the sample.

Next we describe the loss of contrastive learning [34], [35].

-1
Lo = 2 g

Jjel

exp(hj-hp/tcL)

log
PEZP(:j) 2acac) exp () - ha/TcL)
(2)

Here, 7cp is a temperature parameter and [ is the set of
sample numbers. A(j) = I\{j} stands for the set of numbers
except for j. P(j) = {p € A(j) : yp = y;} and the meaning
of y, = y; is that the labels numbered p and j are the same.
|P (j)| is its cardinality. k;, h,, and k, are the projections of
the corresponding numbers onto the third layer of the DNN’s
hidden space, respectively.

The loss of the K classification model can be obtained
below.

£K7model = [/CE + £CL (3)

At the end of the training of the DNN+CL model, we can
obtain the hidden layer features Hid; <~ (DNN + CL)p(x;).
In the testing phase, this step leads to the K classification
result @Resl.

3) RPGAN (Recognize Potential Distribution of Unknown
Attacks): Inspired by D2GAN [36] and DCGAN [6],
we design RPGAN, which uses two discriminators (D1(x)
and D»(x)) and a generator. RPGAN can learn the potential
distribution of unknown attacks well. About Di(x), a high
score is awarded if x is drawn from the data distribution
Paata, and a low score is given if it is generated from the
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Fig. 4. The framework diagram of our designed RPGAN model.

generator distribution Pg. Conversely, Dy(x) returns a high
score for x generated from Pg and gives a low score for
samples drawn from Pgu,. D1 and D, do not share their
parameters. We control the diversity of the generated samples
by the value of A. A more formalised minimax optimization
problem is shown below.

min max J (G, Dy, D)
G Di,D;
= Ex~ Py [10g D1(X)] + Ex~pg [ D1(G(X))]

+ Ex~ Py [~ D2(X)] + A x Expg [log D2(G(x))]  (4)

Regarding the solution of this optimization problem, we first
fix G and then maximise J (G, D1, D). The optimal dis-
criminators D} and D) can be obtained. Next, we fix
D1=D7},D>=Dj, and substitute them into equation (4). The
following expression can be obtained.

J (G, D}, D}) = =1+ A(logr — 1)
+ DL (Paatall PG) + A DKL (PG || Pdata)
(5)

dis(/y.4,)  dis(l;,15) -

* 95% of {score’} needs to be covered, so the threshold ¢ is 4.

@ Distance matrix Dyy* is used to determine if the test sample is an unknown attack.

Hidpieq= test sample = T*

g %7 By column === Faiss
dl's(ll’[) ascending 1|21 k=1 5> threshold &
Dy*=|dis(5,,[%) | = D,*=|6| =» ° ’
. I* is marked as an unknown attack.
dis(Z,. I*) 7
Fig. 5. Calculating distance matrix with decision unknown attacks using
Faiss.

Dxr, (Pdatall Pc) and Dxp (Pg || Pyata) are the KL divergence
and inverse KL divergence between the data and the gener-
ator distribution, respectively. These divergences are always
non-negative and are only zero if Pg = Pg4:4. This achieves
an optimal solution to the optimization problem.

At the end of the training of the RPGAN, we can obtain the
hidden layer features Hid; via discriminator D; and Hid, <
(GAN — D)p(x:).

4) Deep kNN(Ensemble Learning to Decide Unknown
Attacks): Deep k-nearest neighbors (Deep kNN) have shown
great advantages in anomaly detection [38], [39]. We use
it as an ensemble learning approach. Specifically, we define
the input data for model deep k-nearest neighbors as L, =
(4,1, ...,1;). The elements in IL,, are derived from the fusion
of features from Hid; and Hid,.

In the testing phase, the test sample after feature extraction
is I*. We calculate the Euclidean distance ||l; — I*||,, where
I, € L,. We arrange the obtained Euclidean distances in
increasing order to obtain L] (1.0, ....1,), and the
decision function of the unknown attack is as follows.

M (k) = 1{—r (I') > 6} (6)

where r; (I*) = ||l* -1 H is the distance to the k-th nearest
neighbor and 1{-} is the indicator function which means
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that when the input is True, the output is 1, and when the
input is False, the output is 0. This is used to determine
unknown attacks. The threshold § is usually chosen so that a
high proportion of known attack data (e.g., 95%) is correctly
classified. This can be selected in the validation set. The
threshold is independent of the unknown attacks. We use a
library named Faiss® for efficient nearest neighbour search.
Specifically, faiss.IndexFlatL2 is used as an indexing method
for Euclidean distances. Fig. 5 illustrates the process of
calculating the distance matrix with decision unknown attacks
using Faiss. The distance matrix Dy is calculated using Faiss,
which is calculated in RAM and is faster. In the testing phase,
this step leads to the K 4 1 classification result @Res2.

5) CHPDD(Explicit Methods of Adversarial Defence:
Fourier Transform of Features and Adversarial Training of
Models): Hidden space compression (contrastive learning) of
CHPDD is the implicit adversarial defence method and has
already been described in the previous part. Next, we present
the other two explicit components of adversarial defence. The
expression for the Fourier transform [40], as shown below.

+00 )
g(k) = / g(e > 1 ()
—0o0
g is some specified function that depends on time ¢ and
g is the Fourier transform. Here, i represents the imaginary
unit and k is the frequency. For periodic data sampling, the
following discrete Fourier transform can be used.

N-1
DFTy = ) gae "IN, ®)

n=0

gn means g for the n-th sample. The Fourier transform
provides the frequency spectrum for the entire measurement
time period. We use the Short Time Fourier Transform (STFT)
and implement it using a third-party library, librosa.*

The adversarial training [41] is to add a perturbation Ax
to the original input sample x to obtain the adversarial sample,
and then train it, and the problem can be abstracted into such
a model:

mgaxP(y | x + Ax; 9) ©)]
where y is the ground truth and 6 is the model parameter.
It means that the parameter maximizes the probability of
predicting y even under the perturbation.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

To explore the effectiveness of our model, we introduce
a series of experiments. We first introduce the data set and
experimental configuration. Then we validate our model and
analyze the experimental results in the order of the main
research questions and uncover the insights behind the exper-
imental results. Our code is available for download. The main
questions we study are as follows.

e How does the performance of our algorithm on the
fine-grained classification submodel (K classification), com-
pared with other state-of-the-art algorithms?

e How does our algorithm’s K classification submodel
perform in the cases of adversarial attack?

3Faiss: https://github.com/facebookresearch/faiss
4librosa: http://librosa.org/
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e How does our model perform in an environment with
unknown attacks and without adversarial attack, compared
with other state-of-the-art algorithms (K + 1 classification)?

e How does our algorithm perform in the presence of
unknown attacks and adversarial attack, comparing multiple
metrics with other top algorithms?

e Are the individual components of our model effective
(ablation experiments)?

A. Datasets

We use three data sets, NSLKDD2009 [44], Kitsune2018
[8], and UKM2020 [43]. These three data sets represent the
most classical, relatively new pcap-based, and relatively new
flow-based network attack detection dataset, respectively. The
data set selected in this way has better heterogeneity and
representativeness.

NSLKDD2009 is a classic data set. This data set includes
four broad categories of attacks, Probe, R2L, U2R, and Dos.
Each broad category contains multiple attacks. For example,
Probe includes attacks such as ipsweep, nmap, etc., and Dos
includes attacks such as pod, smurf, etc. Here 41 feature
fields are directly provided and we use normalization directly.
NSLKDD2009 can also be noted as NSL or NSLKDD.

Kitsune2018 includes four major categories of attacks:
reconnaissance, Man in the Middle, Denial of Service, and
botnets. Of these, the more fine-grained categories of attacks
within the major categories will be presented in the specific
data set used. The pre-feature extraction is done using Kit-
sune’s own feature extraction method. This data set is the raw
network traffic. The dimensionality after feature extraction is
100. Kitsune2018 can also be noted as Kitsune.

UKM?2020 is a relatively new data set, which encompasses
four types of attacks, namely DoS, ARP poisoning, exploits,
and scanning. This data set represents the attacks in the new
network environment. Here 46 feature fields are provided
directly and we use normalization directly. UKM2020 can also
be noted as UKM.

B. Evaluation Metrics

Accuracy of multiclass classification is used as the main
evaluation metric. We define the accuracy of K classification
as ACC-K, and the accuracy of K +1 classification as ACC-(K
+ 1). To illustrate that the use of accuracy is representative,
we also evaluate other metric [55]: Area Under Curve (AUC),
avg_Precision which means weighted average Precision as
P, avg_Recall as R, and avg_F; as F1. Weighted average
means that calculate metrics for each label, and find their
average, weighted by support (the number of instances for each
label). AUC is essentially a binary classification evaluation
metric. We treat unknown attacks as positive examples, and
known attacks and normal traffic as negative examples. To
better assess generalizability, some of the experiments calcu-
late the average of individual result, denoted as AVG.

Then, we introduce two representative metrics for binary
class classification for experimental evaluation [55]. These
include: true positive rate (TPR), false positive rate (FPR).
In order to make these metrics usable on multiclassification
experiments, we need to modify the metrics. Specifically,
TPRs are calculated for each category in the multiclassifica-
tion, and then the average of these TPRs is calculated, which is
denoted as TPR_a. FPR_a is analyzed similarly. On the other
hand, the known and unknown attacks are counted as positive
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TABLE I
DEFINE THE CORRESPONDENCE BETWEEN THE EXPERIMENTAL ENVIRONMENT AND OUR MODEL

K classification (known classification)

K + 1 classification (known classification + unknown detection)

adversarial attack (with adversarial defence) RFG-HELAD-K

RFG-HELAD-(K+1)

no adversarial attack (no adversarial defence) RFG-HELAD*-K

RFG-HELAD*-(K+1)

samples and the benign traffic as negative samples. The FPR
obtained in this case is called FPR_2. For better analysis,
we introduce false negative rate (FNR) [55] in this scenario,
denoted as FNR_2. Lower FNR and FPR are better. For
other metrics, the higher the value, the better.

C. Experimental Settings

1) Specific Experimental Environment: We use python to
implement our model and comparison algorithm. We select
the fine-grained categories of attacks in the dataset for our
experiments. Regarding the core experiment, we have two
types of data sets. The first category is the K classification
experimental data sets (without unknown attack): UKM (train-
ing set: 8923, test set: 2226, 5 categories), NSL (training set:
123059, test set: 16179, 8 categories), Kitsune (training set:
810000, test set: 90000, 10 categories). The second category is
the K + 1 classification experimental data sets (with unknown
attack): UKM (training set: 8923, test set: 2578, training set
5 categories, test set 8 categories), NSL (training set: 6000,
test set: 3000, training set 3 categories, test set 6 categories),
Kitsune (training set: 30000, test set: 10000, training set
6 categories, test set 10 categories). Each instance is a labeled
record of the dataset. Since the comparison algorithms vary in
complexity, we reduce the amount of data in second category
for a fair comparison. Also, in order to minimize the effect of
imbalance on the individual algorithms (focusing on the core
problem), we extract a relatively balanced data set. See Part
4 of Appendix for specific details and analysis. We use the
hold-out method for time series data. The hold-out approach
directly divides the data set D into two mutually exclusive sets.
One of the sets is used as the training set U, and the other is
used as the test set V,i.e. D =U UV, UNV = ¢. In the
temporal order, all samples of the training set are in front
of the test set. All results of our experiments are averaged
over 5 times. To make it easier to understand, we define
the correspondence between the experimental environment and
our model, which is shown in TABLE II.

2) Hyperparameter Configuration of Our Model: Our
parameters are divided into three main parts, corresponding
to DNN with contrastive learning, GAN, and deep k-nearest
neighbours. The specific meanings of the parameters and their
assignments are as follows. () DNN+CL: contrastive learning
parameters suploss = 0.7, learning rate of DNN Irl = le-2,
fourier parameters n_fft = 52, hop_len = 64; ) GAN: noise
vector dimension of GAN z_dim = 100, weights of the two
generators lamda = 0.1, learning rate of GAN Ir2 = 0.0001;
@ Deep kNN: hidden layer vector dimension (consistent for
DNN and GAN) hid_dim = 64, nearest neighbor parameter
k = 1. The thresholds represent distances and do not have a
great meaning in themselves, so they are not shown here.

D. Baseline Model

1) K Classification: Regarding the K classification, two
classes of models are selected for comparison. The first
class is the classical machine learning/deep learning mod-
els. This includes one-dimensional CNNs (onedCNN), MLPs,

TABLE III
K CLASSIFICATION EXPERIMENTAL RESULTS (ACC-K)

model NSL Kitsune UKM AVG
onedCNN 0.970 0.812 1.000 0.927
MLP 0.968 0.808 0.997 0.924
LSTM 0.966 0.858 0.996  0.940
DNN 0.968 0.928 0.996 0.964
CNN 0.960 0.766 1.000 0.908
ACID 0910 0.676 0.949 0.845
SCADA 0.969 0.929 0.997 0.965
FARE 0.962 0.928 0.998 0.963
DNN-KNN 0.969 0917 0.998 0.961
ours ( RFG-HELAD*-K) ¢  0.970 0.944 1.000 0.971

TABLE IV

ABLATION EXPERIMENTS OF OUR DEFENSE MODEL IN THE

CASE OF FGSM ADVERSARIAL ATTACK AND UKM DATASET
(EPSILONS=12/255,ACC-K). ADVT STANDS FOR ADVERSARIAL

TRAINING. CLEAN_TEST STANDS FOR ACCURACY IN
RFG-HELAD  WITHOUT  ADVERSARIAL  ATTACKS.
ADV_TEST  REPRESENTS THE ACCURACY OF
RFG-HELAD IN THE PRESENCE OF ADVERSARIAL
ATTACKS
model clean_test adv_test AVG
DNN 0.996 0.719 0.857
DNN+advT 0.996 0.719 0.857
DNN+STFT 0.988 0.893 0.940
DNN+advT+STFT 0.988 0.893 0.940
DNN+CL 1.000 0.772 0.886
DNN+CL+advT 0.991 0.789 0.890
DNN+CL+STFT 0.975 0911 0.943
DNN+CL+advT+STFT(ours) @  0.969 0.940 0.954

® DNN+CL+advT+STFT(ours) means RFG-HELAD-K;

LSTMs, DNNs, and CNNs [4]. The second category is excel-
lent fine-grained attack detection methods, which includes
ACID [19], SCADA [13], FARE [20], and DNN-kNN [12].
ACID consists of multiple kernel networks. SCADA in the
original paper is a binary classification algorithm, which
is a combined model of classical LSTM and DNN. Thus,
this can be easily changed to a multi-classification model.
FARE uses the labels determined by multiple unsuper-
vised models for auxiliary classification, which are originally
unsupervised and semi-supervised models. For a fair com-
parison, we fed all the training set labels into FARE to
make it a fully supervised model. We use six clustering
algorithms [55] kmeans, AgglomerativeClustering, Spectral-
Clustering, MBkmeans, FeatureAgglomeration, and Affini-
tyPropagation to form 30 clustering results. To maintain
heterogeneity, each clustering algorithm is reused with a
different parameter configuration. DNN-kNN in the original
paper is a binary classification algorithm, which is a combined
model of classical KNN and DNN. This also can be changed
to a multi-classification model.

2) K + 1 Classification: We evaluate the effectiveness of
K + 1 classification, which means that all unknown attacks
are detected as one large class. In this case, we choose
three types of comparison algorithms. The first category is
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TABLE V

DETECTION EFFECTIVENESS OF UNKNOWN ATTACK PROCESSING
ALGORITHMS IN KNOWN ATTACKS (ACC-K). NSL(3:3) REPRESENTS
A TRAINING SET WITH 3 KNOWN CATEGORIES AND AN ACTUAL
TEST ENVIRONMENT WITH 3 KNOWN AND 3 UNKNOWN
CATEGORIES. HERE IS THE DETECTION OF KNOWN
ATTACKS, SO THE UNKNOWN ATTACKS IN THE TEST
SET ARE REMOVED. SO, THE TRAINING SET
AND TEST SET OF NSL ARE 3 CATEGORIES.
OPENMAX(DNN)-C REFERS TO
OPENMAX(DNN)+CENTERLOSS [23]

NSL Kitsune UKM
model (3:3)  (6:4)  (5:3)
DNN(softmax) 1.000 0.970 0.996
CNN(softmax) 1.000 0.970 1.000
openmax(DNN) [23] 1.000 0.970 1.000
scalable-NIDS [22] 0970 0.778 0.829
CADE [24] 0.993 0.947 0.972
CVAE-EVT [21] 0.998 0.982 0.999
openmax(DNN)-C [23] 1.000 0.983 1.000
capnet [26] 0.997 0.666 0.994
gcm [28] 0.998 0.979 0.998
cgdl [27] 0.998 0.980 0.976
RFG-HELAD*-K 1.000 0.984 1.000

the model without unknown attack detection. This type of
model can only perform K classification. These algorithms
are standard baselines, which include DNN, CNN, DNN+CL.
The second category is the state-of-the-art models for unknown
attacks in the field of network anomaly detection. These
include openmax(DNN), scalable-NIDS, CADE, CVAE-EVT,
openmax(DNN) with centerloss. openmax based on CNN is
the pioneering work in the field of open set identification.
In our experiments, CNN-based openmax does not perform
as well as DNN-based openmax. Thus, we choose DNN-
based openmax method for comparison. The third class of
comparison algorithms are excellent open-set problem recog-
nition algorithms in the field of computer vision, which include
capnet [26], cgdl [27], and gcm [28].

E. Answers to Key Questions and Analysis of Experimental
Results

We conduct a series of experiments in this section to verify
our model.

1) How Does the Performance of Our Algorithm on
the Fine-Grained Classification Submodel (K Classification),
Compared With Other State-of-the-Art Algorithms: In this
section, we compare our model with traditional machine learn-
ing/deep learning algorithms and SOTA fine-grained attack
detection algorithms. As you can see from the TABLE III,
the original DNN has a better detection performance for such
type of time-series data as traffic. This is because DNNs
have superiority in network traffic classification (Part 8 of
Appendix). CNN, as an excellent classification algorithm,
achieves good results with an accuracy of 1.000 in the UKM
data set. However, with the complexity of the data set, the
convolutional pooling layer loses some important information
for non-image data. Furthermore, the CNN model is more
sensitive to imbalanced data. In contrast, DNN is less sen-
sitive to imbalance, which is also an advantage. DNN-KNN
and SCADA are ensemble learning methods that generally
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TABLE VI

K + 1 CLASSIFICATION (WITH UNKNOWN ATTACK) RESULTS (ACC-(K
+ 1)). NSL(3:3) REPRESENTS A TRAINING SET WITH 3 KNOWN CAT-
EGORIES AND AN ACTUAL TEST ENVIRONMENT WITH 3 KNOWN
AND 3 UNKNOWN CATEGORIES. A IMPLIES A TOP3 ALGORITHM
ON THE UKM DATA SET. THE ORIGINAL OPENMAX(CNN)
CoULD NOT BE TRAINED IN OUR DATA SET CONFIGU-

RATION
model NSL  Kitsune UKM
(3:3) (6:4) (5:3)
DNN+CL(softmax) 0.499 0.591 0.859
DNN(softmax) 0.499 0.580 0.859
CNN(softmax) 0.499 0.580 0.859
openmax(DNN) [23] 0.661 0.754 0.878A
scalable-NIDS [22] 0.603 0.820 0.727
CADE [24] 0.847 0.589 0.837
CVAE-EVT [21] 0.559 0.590 0.864A
openmax(DNN)-C [23] 0.748 0.767 0.836
capnet [26] 0.819 0.554 0.861
gcm [28] 0.499 0.573 0.862
cgdl [27] 0.583 0.844 0.846
RFG-HELAD*-(K+1) 0.928 0.918 0.948A

outperform the use of a single classifier. However, there is
still room for performance growth due to the lack of distribu-
tion optimization. FARE is an unsupervised/semi-supervised
algorithm. For a fair comparison, we use all the labels in the
training set. It can be found that it can infinitely approximate
the detection effect of DNN. To evaluate the generality of the
model for different data sets, we calculate the average of the
results of the three data sets in the last column of the table.
NSL is classical and there is a large amount of work based
on this data set. We directly normalize the original data set
to get features and observe the relative performance between
classifiers. There are many ways to perform even better on this
data set, e.g., more processing can be done at the feature level.
Experimental results show that our K classification model
(DNN-+CL) achieves the best detection results. Experimental
results show that different complex scenarios, our customized
K model can effectively guarantee the performance and play
a fundamental role.

2) How Does Our Algorithm’s K Classification Submodel
Perform in the Cases of Adversarial Attack: To verify
the effectiveness of adding defence components, we design
ablation experiments to observe the contribution of each
component to the CHPDD defence strategy. Specifically,
we conduct experiments on both fast gradient sign method
(FGSM) [41] and projected gradient descent (PGD) [42] adver-
sarial attack models. Our model has relatively good robustness
in both attack environments. As shown in TABLE IV, when
the test set is all perturbed data (i.e. adv_test), the accuracy
of DNN alone is 0.719, while the accuracy of DNN-+CL
is 0.772. This shows that contrastive learning can improve
robustness by compressing the low-dimensional space. The
accuracy of our DNN+CL model improves to 0.911 after
adding STFT, which is a significant improvement and shows
that the STFT plays a key role. Finally, adding adversarial
training to the DNN+CL+STFT model improves the accuracy
to 0.940, which indicates that adversarial training can also
improve robustness, but not significantly. That is, adversarial
training can improve the robustness of the model to some

Authorized licensed use limited to: Tsinghua University. Downloaded on June 05,2024 at 02:16:16 UTC from IEEE Xplore. Restrictions apply.



ZHONG et al.: RFG-HELAD: A ROBUST FINE-GRAINED NETWORK TRAFFIC ANOMALY DETECTION MODEL

5905

TABLE VII
COMPREHENSIVE METRICS COMPARISON BETWEEN OUR RFG-HELAD* MODEL AND THE TOP3 MODEL IN THE THREE DATA SETS(TABLE VI)
Data set model P R F1 AUC TPR_a FPR_a FPR 2 FNR 2 ACC-(K+1)
CVAE-EVT 0.830 0.860 0.810 0473 0.825 0.059 0.001 0.316 0.864
UKM openmax(DNN) 0.900 0.880 0.880 0.827 0.829 0.036 0.075 0.125 0.878
____ __ REGHELAD*-(K+l) 0.960 0.950 0.950 0.953 0.950 _ 0.011 0053 _ 0.014 _ 0948
CVAE-EVT 0.412 0589 0468 0474 0.841 0.065 0.012 0.023 0.590
Kitsune openmax(DNN) 0.632 0.754 0.679 0.770 0.675 0.056 1.000 0.000 0.754
______ REGHELAD*«(K+I) 0922 0918 0919 0938 0928 0.015 0058 _ 0.010 _ 0918
CVAE-EVT 0471 0559 0489 0.556 0.612 0.165 1.000 0.000 0.559
NSL openmax(DNN) 0.774 0.661 0.648 0.786 0.799 0.107 0.038 0.250 0.661
RFG-HELAD*-(K+1) 0.929 0.928 0.928 0.940 0.938 0.026 0.058 0.032 0.928
TABLE VIII

COMPREHENSIVE METRICS COMPARISON BETWEEN OUR RFG-HELAD MODEL AND TOP3 MODEL UNDER UKM DATASET (TABLE VI) AND THE
PRESENCE OF FGSM ADVERSARIAL ATTACK. () STANDS FOR PRESENCE ADVERSARIAL TRAINING

model P R F1 AUC TPR_a FPR_a FPR 2 FNR 2 ACC-(K+1)

CVAE-EVT(® 0.610 0.700 0.650 0.521 0471 0.121 0.098 0.628 0.704

CVAE-EVT 0.580 0.540 0.540 0.544 0.489 0.124  0.363 0.398 0.539

openmax(DNN)(D 0470 0.690 0.560 0.500 0.166 0.166 0.000 1.000 0.685

openmax(DNN) 0.840 0.700 0.730 0.785 0.588 0.067 0.286 0.083 0.696

RFG-HELAD-(K+1) 0.900 0.890 0.890 0.809 0.847 0.030 0.070 0.100 0.891
TABLE IX

ABLATION EXPERIMENTS(ACC-(K + 1)). THE LAST LINE REPRESENTS OUR RFG-HELAD*-(K + 1) MODEL. THE COMPONENTS OF ADVERSARIAL
DEFENCE HAVE BEEN DISCUSSED IN THE PREVIOUS PART OF EXPERIMENTS AND WILL NOT BE DISCUSSED HERE. GAN-FEA AND CL-FEA
REPRESENT THE HIDDEN LAYER FEATURES GENERATED BY GAN AND DNN+CL, RESPECTIVELY

Model  component Data set
Combination method DNN+CL DCGAN RPGAN GAN-fea CL-fea Deep kNN UKM NSL  Kitsune
1) N4 X X X X X 0.859 0.499 0.591
2) N4 v X X X X 0911 0.850 0.852
3) N4 X N4 X X X 0.920 0.858 0.865
4) V4 X V4 V4 X V4 0.932  0.952 0.840
5) v X 4 X V4 v 0946  0.941 0.820
6) v X 4 Vv V4 v 0.948 0.928 0.918

extent. However, the Fourier feature transformation is more
effective in enhancing the robustness of our model. Experi-
ments show the correctness of following the detection process
sequentially to enhance robustness. Looking at the DNN+CL
and DNN+CL+advT+STFT models of clean_test, it can be
seen that the accuracy of RFG-HELAD-K (with adversarial
defence) decreases a little in the absence of adversarial attacks.
This is because using adversarial defence in the absence of
an adversarial attack will degrade detection performance [47].
This suggests that there are also scenarios where RFG-
HELAD¥* is used alone. Similar analysis can be done for the
PGD experiments in Part 5 of Appendix.

3) How Does Our Model Perform in an Environment With
Unknown Attacks and Without Adversarial Attack, Compared
With Other State-of-the-Art Algorithms (K + 1 Classification):
We first test the unknown attack detection algorithm in a
K classification scenario. As shown in TABLE V, almost
most of the models achieved good classification results, which
indicates the effectiveness of feature extraction for each data
set. Next, to verify that our unknown attack detection model
is valid (K + 1 classification), we first compare it with
K -class classifiers that cannot handle unknown attack. Sec-
ond, we compare with the SOTA unknown attack detection
algorithm. All models used for comparison are fed with
the same features as our model. As you can see from the
TABLE VI, CVAE-EVT and DNN+opemax achieve good
detection results on the UKM data set. But on the Kitsune

data set, scalable-NIDS and cgdl algorithms perform better.
Our model performs the best on all data sets and the minimum
ACC-(K + 1) of our algorithm can reach 0.918. This indicates
that our method is effective and has good generality. CADE
detects unknown attacks by contrastive learning and distance
algorithms. The results become poor when the distribution of
unknown attacks is complex. The shortcoming of scalable-
NIDS, which is also distance-based, is that it does not
distance the unknown attack from the known ones. Regarding
CVAE-EVT, we drop the clustering part of CVAE-EVT in
order to be consistent with other methods. When the real
unknown attack distribution only partially conforms to the
extreme value theory, the improvement in the detection of
unknown attacks will be insignificant. Algorithms in this
category including CVAE-EVT,openmax(DNN) + centerloss,
openmax(DNN). cgdl, gcm. capnet can detect unknown classes
very well in the domain of images. However, the model is too
customized and not very suitable for unknown attack detection
in the field of network anomaly detection.

Further, to verify whether ACC-(K + 1) can respond well
to the detection performance of unknown attacks, our model
and top 3 algorithms are compared on three data set for
more metrics. In an environment with unknown attacks and
without adversarial attack, we use the RFG-HELAD*-(K+1)
model. As you can see from TABLE VII, our detection model
performs best on almost all metrics. In particular, regarding
the evaluation of false positives in fine-grained attacks, FPR_a
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is more reasonable. Our model has the lowest FPR_a. Fur-
thermore, the FPR_2 metrics for binary classification do not
fully reflect the multi-classification attack detection, which
can only be used as a reference value. For example, CVAE-
EVT has a low FPR_2, but a very high FNR_2. Therefore,
it is reasonable to use accuracy as the main assessment
indicator.

4) How Does Our Algorithm Perform in the Presence of
Unknown Attacks and Adversarial Attack, Comparing Multiple
Metrics With Other Top Algorithms: We evaluate the overall
RFG-HELAD model in the presence of unknown attacks and
adversarial attack. Specifically, we choose the top 3 algorithms
to experiment on UKM data set. As you can see from the
TABLE VIII, regarding ACC-(K + 1), we are at least 18.7%
higher than the case of two SOTA algorithms with adversarial
training, which indicates our RFG-HELAD-(K + 1) model can
effectively cope with these problems. Similarly, comparing to
other models, our model has the lowest FPR_a.

5) Are the Individual Components of Our Model Effective
(Ablation Experiments): We have previously verified the valid-
ity of the components of the adversarial defence, and next we
verify the validity of the components of the RFG-HELAD*-
(K + 1) model which does not take into account the adversarial
defence. We conduct model ablation experiments on three data
sets. TABLE IX shows ablation experiments of our RFG-
HELAD*-(K + 1) model. The first row is DNN+CL, which is
a baseline model for K class classification. The second row is a
separate addition of a DCGAN and output of the discriminator
is used directly as a judgement for unknown attacks. RPGAN
(GAN with two discriminators) are used in the third row,
which obviously increases the generalization performance of
the model. Fourth row indicates the hidden layer features are
generated using only GAN (input to Deep kNN). The fifth
row represents the hidden layer features generated using only
contrastive learning (input to Deep kNN). The last row denotes
the complete our RFG-HELAD*-(K + 1) model. For the first
three rows, when Deep kNN is not selected we discuss it in two
cases. The first row is the classification result using DNN+CL
directly. The second and third rows are cases where DNN-+CL
and GAN models are combined. In this case we first use the
discriminator of GAN to directly discriminate whether it is an
unknown attack or not, and then use DNN+CL to classify the
known attacks.

As can be seen from TABLE IX, the detection performance
of the last row is better than that of the first three rows, which
illustrates the effectiveness of ensemble learning. In particular,
on the NSL data set, the accuracy using the hidden layer fea-
tures of GAN alone can reach 0.952. There are three specific
reasons for this. Firstly, the NSL data set is simpler and it is
easier to learn an effective feature representation. Secondly,
NSL data set has a 3:3 ratio of known attacks to unknown
attacks, which is the case where the number of unknown
attacks is high. GAN performs better for the case where there
are more unknown attacks. For the more complex Kitsune data
set, the performance gains from ensemble learning are clear.
Overall, ensemble learning is necessary in the model, as are
the other components.

F. Analysis of Issues Related to Model Runtime and
Deployment

1) How Efficient is Our Model in the Existing Hard-
ware Environment: We use a server with Intel(R) Xeon(R)
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TABLE X

EVALUATION OF OUR MODEL HARDWARE REQUIREMENTS ON UKM’s
2578 TESTING SET

Component  Memory Memory (%) CPU (%) Test time

DNN+CL 513.2MB 0.4% 9.2% 0.643s

GAN 1,1553MB  0.9% 13.9% 1.070s

Deep kNN  385.IMB 0.3% 3.9% 0.272s
TABLE XI

EVALUATION OF OUR MODEL HARDWARE REQUIREMENTS ON UKM’S
8923 TRAINING SET. TOE DENOTES THE TIME TO TRAIN AN EPOCH.
WT HERE DENOTES THE TIME WHEN THE MODEL IS WELL
TRAINED

Component Memory Memory (%) CPU (%) TOE WT(epochs)
DNN+CL 2,052.8MB  1.6% 28.1% 2.577s  36.564s(15)
GAN 9,750.8MB  7.6% 40.7% 9.235s  31.133s(3)
Deep kNN 385.1MB 0.3% 4.7% 0.456s  0.456s(-)

Gold 5218 CPU @ 2.30GHz and 128G of RAM as the
device. The type of GPU we use is GTX 1080Ti. We perform
the tests using UKM’s 8,923 training set and 2,578 testing
set and record the maximum values of CPU and memory
usage. Our model is divided into three parts and executed
sequentially. Therefore, we perform the tests separately. As can
be seen from TABLE X and TABLE XI, our model requires
a relatively low percentage of memory and a slightly higher
CPU, which is acceptable.

2) Regarding Runtime, How Does Our Algorithm Compare
to Various Top 3 Algorithm: In real applications, the training
of the model can be done offline, and we are concerned
about the speed of detection. So, let’s first analyze the time
complexity of the detection part. Suppose the training set has
m packets and the test set contains n packets. In the detection
phase, the time for a single packet to run on DNN+CL (storing
the hidden features) is 77, and the time for a single packet to
run on GAN (storing the hidden features) is 75. The time
to compute the pairwise packet distances in the Deep kNN
module is 731, while the time for the threshold judgment
of each packet is T3;. Also with respect to Deep kNN, the
number of elements in the selected subset of the training set
used for distance calculation is m; (1 <= my; <= m). The
overall time complexity of the detection part is O(Ty * n +
T> % n+mg*n*T31 +n*T3). For all the above experiments,
our my is equal to m. When the size of the training set is
large, a representative mg can be selected for retrieval. For
example, for samples in the training set that are very close
together, only one is selected. The m; is chosen only in the
third stage of our model (Deep kNN), so it does not affect the
representation ability of known and unknown attacks. The m
are chosen to be representative, so the distances calculated are
also differentiated. Overall, the choice of mg does not affect
the performance. Further, in the real world, the training sets
are manually handpicked data that is very limited. The actual
network traffic for testing is always continuous and massive.
Thus, m « n is satisfied. In our future work, we may consider
controlling the size of m; to a multiple of constant related
to the number of attack categories with full consideration of
intra-class concept drift.

Detection accuracy and speed are both important metrics.
To evaluate the detection speed of our algorithm, we compare
it with top3 algorithms in each of the three scenarios. As can
be seen from TABLE XII, TABLE XIII, and TABLE XIV, our
detection speeds are all superior. In particular, in TABLE XIV,
the test set is used twice. The test set here is a splice of the
original test set and the test set after the perturbation, which is
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TABLE XII

TEST TIME COMPARISON BETWEEN OUR RFG-HELAD*-K MODEL AND
THE TOP3 MODEL IN THE UKM DATA SET (CONSISTENT WITH
TABLE III’S CONFIGURATION, UKM’s 2226 TESTING SET)

model DNN Scada RFG-HELAD*-K
Test time 0.300s 1.073s  0.324s
TABLE XIII

TEST TIME COMPARISON BETWEEN OUR RFG-HELAD*-(K + 1) MODEL
AND THE TOP3 MODEL IN THE UKM DATA SET (CONSISTENT WITH
TABLE VII’S CONFIGURATION, UKM’Ss 2578 TESTING SET)

CVAE-EVT  openmax(DNN)

Test time  2.129s 2.566s
e Here, ours means RFG-HELAD*-(K+1);

model ours

1.985s

TABLE XIV

TEST TIME COMPARISON BETWEEN OUR RFG-HELAD-(K + 1) MODEL
AND TOP3 MODEL UNDER UKM DATA SET. N/Y STANDS FOR
WHETHER OR NOT ADVERSARIAL TRAINING WAS USED (CONSIS-
TENT WITH TABLE VIII’S CONFIGURATION, USING UKM’s
2578 TESTING SET TWICE)

CVAE-EVT(N/Y) openmax(DNN)(N/Y)

Test time  4.305s/4.317s 5.139s/5.187s
e Here, ours means RFG-HELAD-(K+1),;

model ours

3.821s

equivalent to the original test set being used twice. The reason
for this setup is to be closer to the real situation (even if there
is a adversarial attack, the traffic without adversarial attack
will still be captured in the test traffic). All of the above are
the test times for corresponding test set. We use TCP Flood in
ukm to test the DDoS detection time. There are 121 records
in TCP Flood in the test set. Test time of our RFG-HELAD*-
K is 0.017s, and the test time of our RFG-HELAD*-(K +
1) is 0.301s. According to the longer test time of our RFG-
HELAD*-(K + 1) model, the test time of a single flow is
0.002s, which indicates that our model has a fast detection
speed.

3) How are Our Models Deployed: Our attack detection is
currently offline, similar to [33], and we can use traffic replay
to verify the landable deployment of our algorithm. Our traffic
is not altered in any way and can obviously be replayed online.
The specific online deployment detection scheme is shown in
Fig. 6. We can use virtual machines and Dockers to simulate
the experiments referring to [8] and [33], which simulates the
experimental platform for the Kitsune data set. Then, we use
Tcpreplay and Tcplivereplay to replay on the testbed.

As you can see, every part of our process is landable.
This proves that our model is fully deployable. Regarding
the packet throughput, we can refer to Kitsune [8] for the
analysis of feature extraction efficiency. The speed in its orig-
inal paper is relatively substantial. Regarding the case where
the data source is flow, we just change the corresponding
feature extraction part. The detection speed and advantages
of our model have been demonstrated in Section-V-F-I and
Section-V-F-II. Because the adversarial defense is costly, the
cost is to affect the detection accuracy in the environment
without adversarial attacks. Therefore, our adversarial defense
module is optional.

4) Does Our Model Require Retraining: The trained model
has limitations to some extent. This is because network
attacks are constantly evolving and changing. For this reason,
we should update the model when unknown attacks are
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Fig. 6. Deployment diagram of our model.

detected and analyzed manually. We perform experimental
validation on the UKM data set. Our accuracy is 0.948 (ACC-
(K 4+ 1)) in the case of 5 train 8 test, where 5 train 8 test means
that there are 5 categories in the training set and 8 categories
in the test set and that all categories in the training set appear
in the test set. After that, we retrain and our accuracy is 0.998
(ACC-(K + L)) in the case of 8 train 8 test. This illustrates
the need for retraining.

VI. DISCUSSIONS

In this section, we first discuss issues related to the model.
Then, we discuss the limitations and future work.

A. Discussion of Model-Related Issues

Q1: Is the distribution of unknown and known attacks
well distinguishable in our model detection?

In order to explore the intuition behind the detection mecha-
nism, we quantitatively analyze the distributional features for
unknown and known attacks. We set up two sets of experi-
ments to show that the distribution of unknown attacks can be
relatively well distinguished from that of known attacks (using
Euclidean distance calculation of features). For the first set of
experiments, we set up the following: 1) Compute multiple
distances between known attacks in the test set and known
attacks in the training set, 2) Calculate multiple distances
between unknown attacks in the test set and known attacks
in the training set. Multiple distances include closest, farthest
and average. We introduce the distance calculation method by
taking an unknown attack as an example. An unknown attack
sample in the test set finds the closest sample in the training
set and distance dis; is obtained. All the unknown attack
samples in the test set are calculated in this way to obtain an
array of distances. We sort this array in ascending order and
then denote it as arrayy. The smallest distance in arrayy
is the closest and the largest is the farthest. The average
value of the array is the average distance. Next, we compute
the cumulative distribution function based on arrayy in both
cases(unknown/known). The features used here are our com-
bined CL-fea+GAN-fea features. The experimental results are
shown in TABLE XV and Fig. 7. It is clear that the distance
from unknown attacks in the test set to known attacks in the
training set is much larger. This makes it easier to distinguish
between unknown and known attacks.

For the second set of experiments, we compute the average
distance between unknown and known attacks in the test set.
Unlike the previous method of distance calculation, we calcu-
late the distance between each sample of unknown attacks
and each sample of known attacks in the test set. These
distances are averaged and the result is denoted as direct
average distances. We set up different features for comparison.
Specifically, we observe the following three cases: GAN-fea,
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TABLE XV

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

CALCULATE THE DISTANCE BETWEEN KNOWN/UNKNOWN ATTACKS IN
THE TEST SET AND KNOWN ATTACKS IN THE TRAINING SET

Data set Category  Closest Farthest ~ Average

UKM Known 3.576e-06  0.280 0.001

____ _ _ Unknown 3.840c-04 0.558  0.085
Kitsune Known 0.001 0.308 0.021
) Unknown  0.004 0.812 0.233

) &STLﬁ ~ Known  0.000 ~ 0.076 = 2.245¢4
Unknown 1.070e-04  0.586 0.026

TABLE XVI

COMPUTE THE DIRECT AVERAGE DISTANCE BETWEEN UNKNOWN AND
KNOWN ATTACKS IN THE TEST SET IN THE CASE OF DIFFERENT

FEATURES
Case UKM Kitsune NSL
CL-fea 0.633 1.146 0.963
GAN-fea 0.198 0.162 0.094
CL-fea+GAN-fea (ours) 0.713  1.166 0.985
TABLE XVII

PERFORMANCE OF OUR MODEL UNDER DIFFERENT UNKNOWN ATTACK
TYPE RATIOS (ACC-(K + 1), UKM DATA SET). 5:3 MEANS FIVE
KNOWN ATTACK TYPES AND THREE UNKNOWN ATTACK TYPES.
KNOWN/UNKNOWN REPRESENTS THE NUMBER OF KNOWN

AND UNKNOWN ATTACKS IN THE TEST SET
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Proportions  Known/unknown RFG-HELAD*-K  our*-(K+1)
8:0 2578/0 0.998 0.998
7:1 2470/108 0.959 0.980
6:2 2349/229 0.908 0.955
5:3 2226/352 0.859 0.948
4:4 2110/468 0.818 0.952

10

Distance from the known attacks in the training set (Kitsune)

(b) Kitsune

—— Unknown attack (test set)

0.8

Known attack (test set)

e Here, our*-(K+1) means RFG-HELAD*-(K+1);

CL-fea, and CL-fea+GAN-fea(ours). The experimental results
are shown in TABLE XVI. It is obvious that the distance
increases after the combination, which is more beneficial to
distinguish the known attacks from the unknown ones. These
two sets of experiments further illustrate the generalization
and effectiveness of our model in open-set scenarios. Our
model can separate unknown and known attacks well and
achieve better detection results. The essence of this is that the
components of our model, DNN+CL and RPGAN, can learn
well the distributions used to distinguish between known and
unknown attacks.

Q2: How does our model perform with varying propor-
tions of known and unknown attack types?

In the previous experiments, we have well demonstrated
our superiority over other SOTA algorithms. Here, we use
the UKM data set to test the effectiveness of our model
in detecting unknown attacks at different ratios of unknown
attack types. If the unknown attack types are larger than
the known attack types and most of the attacks have to be
manually relabeled, then it makes less sense to detect the
unknown attacks. Therefore, we set the maximum unknown
attack type ratio to 0.5 (in the case of 4:4). As shown in
TABLE XVII, our model has good detection results under
various unknown attack type ratios.

Q3: How does our model perform in other data sets?

In the preceding experiments, we have sufficiently demon-
strated the effectiveness of our model’s adversarial defense.
To understand how well our model detects on other data sets,
we add K and K + 1 experiments and compare our model to

06
04 £

02

Cumulative distribution function

10 10 107 107* 1077 107t 10°
Distance from the known attacks in the training set (NSL)

(c) NSL
Fig. 7. Distance between known/unknown attacks in the test set and known
attacks in the training set.

the top3 comparison algorithms. We add CICIDS2018 [45] and
TON2019 [61] data sets for experiments. The training set of
CICIDS2018 is [Benign,SSH-Bruteforce, DoS-Hulk] [12000,
4000, 10000] and the test set is [Benign, SSH-Bruteforce,
DoS-Hulk, Infiltration] [3249, 346, 1697, 4238]. What follows
is the number of attacks. The training set of TON2019 is
[backdoor, ddos, dos, injection, normal] [ 800 800 800 800
5600] and the test set is [backdoor, ddos, dos, injection,
normal, password, scanning, xss] [200 200 200 200 1400
200 200 200]. As shown in TABLE XVIII and TABLE XIX,
our model has excellent performance, which suggests that our
model has good detection performance in other data sets as
well.

Since the CICIDS2018 dataset is more specific in terms
of the collection time of each type of attack, we further
evaluate the detection speed of our model. We test it using the
full attack data of SSH-Bruteforce, DoS-Hulk, and Infiltration
in the CICIDS2018 data set. As shown in TABLE XX, the
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TABLE XVIII

K CLASSIFICATION EXPERIMENTS ON OTHER DATA SETS (ACC-K,
DROPPING UNKNOWN ATTACKS)

model CICIDS2018(3:1)  TON2019(5:3)
DNN 1.000 1.000
SCADA 1.000 1.000
ours ( RFG-HELAD*-K)  1.000 1.000
TABLE XIX

K + 1 CLASSIFICATION EXPERIMENTS ON OTHER
DATA SETS (ACC-(K + 1))

model CICIDS2018(3:1) TON2019(5:3)
RFG-HELAD*-K 0.555 0.787
CVAE-EVT 0.555 0.783
openmax(DNN) 0.555 0.880
ours(RFG-HELAD*-K+1)  0.994 0.924

TABLE XX

COMPARISON OF DATA COLLECTION TIME WITH THE DETECTION TIME
OF OUR MODEL IN CICIDS2018 DATA SET

Attacks Number Collection time Detection time
SSH-Bruteforce 187,589 90 min 76s
DoS-Hulk 461,912 34 min 189s
Infiltration 68,871 155 min 32s
TABLE XXI
VALIDATING THE PERFORMANCE OF OUR MODEL ON LARGE KITSUNE
DATA SET
model P R F1 AUC ACC-(K+1)
RFG-HELAD*-K 0.800 0.860 0.820 0.449 0.856
ourse 0.940 0930 0.930 0.995 0.934

Setup: Train: 733582 Test-known:82114 Test-unknown: 7886
e Here, ours means RFG-HELAD*-(K+1);

detection time of our model is less than the data collection
time, which further indicates the superiority of our model’s
detection speed.

Q4: How do our models perform in the case of unknown
attacks and large data sets?

We use the large Kitsune data set of 900,000 for K +
1 experiments. As shown in TABLE XXI, our RFG-HELAD*
model detection can achieve an accuracy of 0.934, which is
better than the small data set (0.918 in TABLE VI). The
experiment illustrates that a large amount of data can slightly
improve the detection effect.

QS5: Our model uses FGSM and PGD as adversarial
attack, does this affect the evaluation of defense perfor-
mance?

Both feature-level adversarial attacks and traffic-space
adversarial attacks are essentially perturbations to bypass the
classifier’s detection. The actual adversarial attacks generated
at the traffic level have more constraints [33]. Moreover,
feature-level attacks are generally more effective because they
are not constrained at the physical level. Therefore, the choice
of feature level for the adversarial attack does not affect our
evaluation of the adversarial robustness.

B. Limitation and Future Work

For space reasons, some of our model-related issues were
not included in the design framework. This leaves our frame-
work extensible.
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The first one is attack class imbalance, which is a classic
problem for network traffic anomaly detection [48]. Similar
to [49], our future work can use data augmentation methods
to generate categories with small amount of data.

The second one is the label acquisition problem. Many
works use semi-supervised methods [10], [17], [29], and our
model can be combined with more general semi-supervised

methods, such as Mean teacher [50] and Mixmatch [51].

VII. CONCLUSION

Network attack detection is an important network man-
agement task. The continuous changes in the network attack
environment make anomaly detection more and more difficult.
Among them, fine-grained attack detection is an important tool
for attack detection and analysis. As technology upgrades,
new attacks are constantly emerging, which places higher
requirements on detection models. Current mainstream detec-
tion models are based on ML/DL, which can potentially have
the problem of adversarial attacks. For this reason, we propose
the RFG-HELAD model, which integrates a currently effective
deep learning model (RPGAN) with a technique (adversarial
defense using STFT in IDS) that can well solve the above
problem. Experiments show that our model outperforms other
SOTA models and can be well used in practical grounded
scenarios. Specifically, in the presence of unknown and adver-
sarial attacks, the accuracy of our model improves by at
least 18.7% compared to the corresponding SOTA model with
adversarial defense. In the future, our work will be positioned
on the problem of data augmentation.
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