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a b s t r a c t 

Network traffic anomaly detection is an important technique of ensuring network security. However, there 

are usually three problems with existing machine learning based anomaly detection algorithms. First, 

most of the models are built for stale data sets, making them less adaptable in real-world environments; 

Second, most of the anomaly detection algorithms do not have the ability to learn new models again 

based on changes in the attack environment; Third, from the perspective of data multi-dimensionality, 

a single detection algorithm has a peak value and cannot be well adapted to the needs of a complex 

network attack environment. Thus, we propose a new anomaly detection framework, and this framework 

is based on the organic integration of multiple deep learning techniques. In the first step, we used the 

Damped Incremental Statistics algorithm to extract features from network traffic; Second, we train Au- 

toencoder with a small amount of label data; Third, we use Autoencoder to mark the abnormal score of 

network traffic; Fourth, the data with the abnormal score label is used to train the LSTM; Finally, the 

weighted method is used to get the final abnormal score. The experimental results show that our HELAD 

algorithm has better adaptability and accuracy than other state of the art algorithms. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

The importance of intrusion detection systems (IDS) is critical

ecause networks can be vulnerable to attacks from internal and

xternal intruders [1,2] . Network traffic anomalies will lead to a

ecline in network communication performance and network ser-

ice interruption. The definition of network anomalies is that the

urrent network traffic is seriously deviating from normal traffic.

etwork anomalies are mainly caused by malicious network at-

acks, e.g. Denial of Service (DoS), Distributed Denial of Service

DDoS), port scan, worm propagation, etc., as well as network con-

guration errors and other exception [3] caused by the interrup-

ion of the line. As a detection system put in place to monitor com-

uter networks, IDS has been in use since 1980s [4] . By analysing

atterns of captured data from a network, IDS helps to detect
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hreats [5] . Traffic anomaly detection has always been the research

irection of network security academics and industry, and many

elated detection methods and systems have been developed. 

The constant change of the attack mode makes it more diffi-

ult to solve the traffic anomaly detection problem. Traditional in-

rusion detection tools, such as rule-based Snort [6] , are no longer

ble to meet the growing demand for network security. We need to

esign a smarter intrusion detection tool. This anomaly detection

ool requires the ability to learn dynamically and requires environ-

ental adaptation to defend against unknown attacks. 

The current mainstream method of traffic anomaly detection is

achine learning. Our design choices will be analyzed from differ-

nt categories of machine learning. 

(1) Machine learning methods can be divided into shallow ma-

hine learning and deep learning according to the number of lay-

rs of neural networks involved: Shallow machine learning [7] has

he advantage of short training time, and deep learning [8] has

tronger representation ability. The trend of GPU [9,10] accelera-

ion methods allow us to choose a deep learning approach. 

https://doi.org/10.1016/j.comnet.2019.107049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.107049&domain=pdf
mailto:wzl@cernet.edu.cn
mailto:zhongy18@mails.tsinghua.edu.cn
https://doi.org/10.1016/j.comnet.2019.107049


2 Y. Zhong, W. Chen and Z. Wang et al. / Computer Networks 169 (2020) 107049 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

m  

t  

a  

d  

o

2

 

t  

a  

t  

m

 

e  

d  

t  

t  

f  

S  

a  

a  

p  

c  

[  

[  

s  

r  

c  

d

 

l  

o  

l  

l

 

w  

l  

t  

i  

a  

W  

o  

c  

(  

p  

i  

d  

m  

t  

t  

a  

r  

a  

i  

s  

D  

u  

q  

c  

(  

w  

t  
(2) Specific classification tasks can be divided into single clas-

sifiers and ensemble learning classifiers: The idea of ensemble

learning is to improve machine learning performance by combin-

ing multiple models, which is better than a single model in com-

mon sense. Ensemble learning is the research hotspot of machine

learning in the field of traffic anomaly detection [11,12] . The en-

semble learning model is superior to the single model in both pre-

dictive power and generalization ability, so ensemble learning is

introduced in the design of our model. 

(3) Choose supervised learning or unsupervised learning: Su-

pervised learning [13,14] interacts with the external environment

through a label-guided approach, so that the trained model can

better integrate into human domain knowledge. Therefore, it is

necessary to incorporate a supervised learning model. 

Based on the above design choices, we have the following chal-

lenges: 

(1) Ensemble learning is well used in the field of anomaly de-

tection. However, deep learning method has not been used as com-

ponent learners [61] of heterogeneous ensemble learning in net-

work intrusion detection. 

(2) Algorithms based on supervised learning require a large

number of labeled training data to obtain good detection results.

However, real network traffic data lacks of a large number of truly

labeled data sets, which makes it difficult to use supervised deep

learning. 

(3) The attack environment of the network changes constantly.

If the model does not have the ability to relearn, the performance

of the detector will decrease. 

(4) Many of the deep learning based anomaly detection models

have not been evaluated with real traffic data. The main manifes-

tation: the training data of anomaly detection model comes from

the idealized data set, for example, the data set has been used for

too long or it is just generated by the attack tool. 

Inspired by the above observations, this paper attempts to ab-

sorb the advantages of heterogeneous ensemble learning and deep

learning techniques and propose a more effective method. 

To summarize, our main contributions in this paper are listed

as follows: 

• We have integrated various deep learning techniques and pro-

posed the Heterogeneous Ensemble Learning Anomaly Detection

(HELAD) algorithm framework. This framework is composed of four

parts: feature dimension reduction, abnormal score generation, ab-

normal score prediction, and anomaly detection result combina-

tion. Each module can choose the appropriate technology accord-

ing to its own design. 

• We apply ensemble learning to anomaly detection. Specif-

ically, the unsupervised Autoencoder and the supervised Long

Short-Term Memory (LSTM) are combined in a heterogeneous way.

The Autoencoder gains the profile of normal network traffic as

one of the base learners, and provides learned RMSE as the label

needed to train the LSTM. The LSTM can detect continuous attacks

well, as it can record historical information and predict whether

the attack will occur next time. In order to be able to use the su-

pervised LSTM, we introduce the concept of a temporary label (TL),

which is generated by an unsupervised Autoencoder. 

• We introduce the concept of retraining time slices to retrain

the model. This time slice is the time required to train the anomaly

detection model in the previous round. We design dynamic thresh-

olds and integrate learning parameters in the model so that the

anomaly detection effect does not degrade. 

• To evaluate the HELAD model, we conduct experiments

on the latest data sets that reflect the real environment. And,

we further evaluate our algorithm by comparing it with differ-

ent state of the art algorithms. The experimental results consis-

tently prove the superiority and competitiveness of our proposed

model. 
[  
The rest of the paper is organized as follows. Section 2 presents

he related work. We present our system model and problem for-

ulation in Section 3 . The model training and strategy optimiza-

ion are presented in Section 4 . We do the experiment and evalu-

te the performance using real traffic trace data in Section 5 . We

iscuss some of the details of our models and experimental meth-

ds in Section 6 . Finally, we conclude our work in Section 7 . 

. Related work 

In this section we review some literature work. Network in-

rusion detection is a classic network security issue. We focus on

nalyzing the related work from four aspects: traditional statis-

ics, machine learning, deep learning and ensemble learning based

ethods. Next we discuss some of the literature for relearning. 

We first discuss the traditional statistics method. There are sev-

ral examples of statistical methods that are widely used in attack

etection [15] . Lee et al. [16] proposed to use several information-

heoretic measures, such as entropy, conditional entropy, rela-

ive conditional entropy, information gain, and information cost

or anomaly detection. Other examples include the Cumulative

um(CUSUM) algorithm [17] , the exponentially weighted moving

verage (EWMA) algorithm [18] , the Holt-Winter algorithm [19] ,

nd so on. Their advantage is that they do not need to know the

rior knowledge of cyber attacks in advance. But most statisti-

al methods rely on the assumption of a static detection process

20] , which is not always realistic. The models in these references

15–20] are more suitable for anomaly detection of scenarios with

mall network environment changes. Our HELAD model incorpo-

ates prior knowledge and deep learning models to respond to

hanging environments. Such prior knowledge is embodied in the

esign of the features. 

Next, we introduce some excellent methods based on machine

earning. The purpose of machine learning is to create explicit

r implicit models. In the field of anomaly detection, machine

earning has the advantages of high detection rate and continuous

earning and updating [21–23] . 

Deep learning [24] is the further development of neural net-

orks. Deep learning uses a subsequent information processing

ayer in some hierarchies for classification or feature representa-

ion. For the strong presentation capabilities, existing IDS can be

mproved based on this latest technology. Many algorithms for

nomaly detection of network traffic are based on deep learning.

e will introduce the Autoencoder and Long Short-Term Mem-

ry (LSTM) that are most relevant to our work. About Autoen-

oder, Shone et al. [25] proposed nonsymmetric deep Autoencoder

NDAE) for unsupervised feature learning. Furthermore, they also

roposed novel deep learning classification model constructed us-

ng stacked NDAEs. Khan et al. [26] proposed a novel two-stage

eep learning model based on a stacked Autoencoder with a soft-

ax classifier for efficient network intrusion detection. Specifically,

heir proposed model is able to learn useful feature representa-

ions from large amounts of unlabeled data and classifies them

utomatically and efficiently. Mirsky et al. [27] proposed a neu-

al network based NIDS which has been designed to be efficient

nd plug-and-play. It accomplishes this task by efficiently track-

ng the behavior of all network channels, and by employing en-

emble of Autoencoders for anomaly detection. On the other hand,

u et al. [28] proposed DeepLog, a deep neural network model

tilizing LSTM, to model a system log as a natural language se-

uence. Wang et al. [29] proposed a novel IDS called the hierar-

hical spatial-temporal features-based intrusion detection system

HAST-IDS), which first learns the low-level spatial features of net-

ork traffic using deep convolutional neural networks (CNNs) and

hen learns high-level temporal features using LSTM. Jiang et al.

30] proposed a novel multi-channel intelligent attack detection
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ethod based on long short term memory recurrent neural net-

orks (LSTM-RNNs). The references [24–27] use Autoencoder for

nomaly detection. Our HELAD model differs from these tasks. In

ur method, Autoencoder has two functions. One is to generate

MSE labels to train LSTM, and the other is to be one of the

ase classifiers. The references [28–30] all use LSTM as part of the

odel. They mainly consider LSTM for feature processing or time

eries establishment, but in our HELAD model, LSTM is used for

MSE prediction. As the labeled data set becomes larger, the pre-

iction effect of LSTM will be better and better. Therefore, combin-

ng the LSTM and Autoencoder in our model to train the threshold

f abnormal scores is better than a single deep learning model. 

In addition, ensemble learning plays an important role in the

eld of anomaly detection [31–33] . In these works, many excellent

nomaly detection methods are based on homogeneous ensemble

earning [34–36] . Ensemble learning is also used in the most rele-

ant paper in our research. However, this is a homogeneous learn-

ng based on stacking [27] . Moreover, the advantages of heteroge-

eous ensemble learning in the field of classification are constantly

eing explored [37] . For these reasons, we hope to seek better het-

rogeneous ways to make ensemble learning work well in the field

f anomaly detection. 

For relearning, we are mainly inspired by the following litera-

ures. Papadimitriou et al. [53] proposed arbitrary window stream

odeling method (AWSOM), which allows sensors in remote or

ostile environments to efficiently and effectively discover inter-

sting patterns and trends. They developed a one-pass algorithm

o incrementally update the patterns. Ippoliti et al. [54] developed

n enhanced dynamic anomaly detector for network traffic, which

se auxiliary set to give online feedback to the model. Its impor-

ance lies in providing anomaly detection based on general traffic

nd keep updating constantly to achieve online adaptation in the

eanwhile. Viegas et al. [55] presented BigFlow, a reliable stream

earning intrusion detection engine that can maintain its accuracy

ver long periods of time. The labeled samples will be sent to an

dministrator periodically for judging, and the wrong-labeled ones

ill be used to re-train the model. Their solution evaluates the
 n  

Fig. 1. The process diagra
lassification reliability, while it allows to incrementally update the

ntrusion detection engine. We conduct comparative analysis, find-

ng that [53] maintains a window and updates the model when

ew instances reach. [54] uses false positives as an update con-

ition. When the false positive rate increases, the auxiliary set is

hanged and the model is retrained. [55] specifies the period of the

pdate. In order to reduce the cost of the update, the models are

ncrementally updated only with instances that were previously

ejected. Because we are dealing with the actual complex net-

ork environment, we are looking forward to updating our HELAD

odel as quickly as possible. So we take the training time as an in-

erval and add as much of the latest labeled data as possible to the

raining. Relearning is part of our model to prevent model degra-

ation. 

To sum up, the developments of deep learning and ensemble

earning have brought new opportunities to the development of

nomaly detection. We adopt these advantages to design a more

ntelligent and adaptable anomaly detection tool. 

. HELAD: Heterogeneous Ensemble Learning Anomaly 

etection model 

In this section, first motivation of this paper are presented.

ext, we provide a basic model description that includes the

eaning of statistical features, the meaning of formulas, and the

ay in which features are expressed. After that, we build the sub-

odel for each part of the HELAD model. Finally, the abnormality

etection result can be obtained by discriminant formula. Fig. 1 de-

ails the training process of the HELAD model and the abnormality

etermination process. 

.1. Motivation 

In this section, we discuss our design choice of feature extrac-

ion and anomaly detection. Feature extraction has an important

mpact on the performance of the machine learning model. The

etwork traffic has the following characteristics: 1) Packets of dif-
m of HELAD model. 
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Fig. 2. Prediction effect of LSTM on mirai dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Element definitions of HELAD model. 

Expression Meaning 

S i S i represents a sequence, the elements of this sequence can be 

the size of the packet, the jitter value, etc. 

d λ( t ) decay function, λ > 0 is the decay factor, and t is the time 

elapsed since the last observation from stream S i 
Statistics ST Statistical characteristics of attributes of network traffic 

ST = { A 1 , A 2 , A 3 , A 4 } 
Aggregated 

AG 

The way network traffic is aggregated 

AG = { B 1 , B 2 , B 3 , B 4 } 
Operation 

OP 

The operation of the formula on the specified property 

OP = { op i ∈ OP , 1 ≤ i ≤ 4| < A i , B i > } 

op 1 op 1 represents the bandwidth of the outbound traffic, and 

statistical feature st 1 operates on the aggregation ag 1 . 

op 2 op 2 represents Outbound and inbound traffic bandwidth, and 

statistical feature st 2 operates on the aggregation ag 2 . 

op 3 op 3 represents Outbound traffic packet rate, and 

statistical feature st 3 operates on the aggregation ag 3 . 

op 4 op 4 represents Inter-packet delay for outbound traffic, and 

statistical feature st 4 operates on the aggregation ag 4 . 

A 1 { μi , σ i } 

A 2 { ∥∥s i , s j 

∥∥, R s i s j , Co v s i s j , p s i s j } 
A 3 { w i } 

A 4 { w i , μi , σ i } 

B 1 { SrcIP, Channel, Socket } 

B 2 { Channel, Socket } 

B 3 { SrcIP, Channel, Socket } 

B 4 { Channel } 

λ∗ { λ1 , λ2 , · · · , λn 1 
} , 

λi represents the i th decay factor. 

f i f i = < λi ∈ λ∗ , st ∈ A i ag ∈ B i | t j , st k , ag k > , 

The original i th feature, the feature is expressed as a triple. 

f 1 f 1 = < λ1 , μi , SrcIP > Statistic μi operate on 

attribute SrcIP as a feature. −→ 

x 0 
−→ 

x 0 = ( f 1 , f 2 , · · · , f n 0 ) 
T , Original feature vector 

−→ 

x R 
−→ 

x R = ( f 1 , f 2 , · · · , f n ) 
T 

Feature vector after dimensionality reduction. −→ 

x L 
−→ 

x L = ( f 1 , f 2 , · · · , f n 0 , RMSE) T 

Feature vector for training LSTM. 

RMSE Root mean square error, 

Method for calculating abnormal scores. 

p Coordinate the weight between the 

predicted and detected values. 

TL The RMSE output by Autoencoder serves as 

temporary training label for the LSTM. 

gp Dynamically changing anomaly detection threshold 

K Environment timer 
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v
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ferent sessions are related; 2) there are many sessions at the same

time; 3) the rate of packet arrival is high. In order to extract fea-

tures efficiently, we decide to use the improved Damped Incremen-

tal Statistics algorithm [27] . 

For example, we analyze a TCP SYN packet in a network that

does not adopt the SYN Cookies [58] defense mechanism. This can

be the network packet generated by the client when it normally

accesses the server. This packet can also be one of millions of

attack packets that cause DoS attack. It depends on the context

of the information. Furthermore, for IP-based video streaming, al-

though the packets are normal, if there is significant jitter in the

traffic, then there may be a man-in-the-middle attack. If the fea-

ture can capture this jitter, then this attack can be detected. We

need contextual information to make the decision and hope that

our features can be incorporated into these metrics that reflect

anomalies in traffic. The Damped Incremental Statistics algorithm

can meet these conditions, which is why we choose it as feature

extraction method. 

The Damped Incremental Statistics algorithm can consider the

relationship between network traffic packets, but cannot consider

the relationship between consecutive attacks. Thus, we discuss the

second question. Is there a way to detect the relationship be-

tween successive attacks. Based on the previous research [11,12] ,

we found that an effective combination of Autoencoder and LSTM

can achieve this idea. The specific analysis is as follows. First, if the

anomaly score calculated by Autoencoder alone is directly classi-

fied, it is equivalent to completely ignoring the relationship of at-

tack behavior between consecutive network traffic packet. This is

a disadvantage of Autoencoder. Second, if a single LSTM network

is used to train an anomaly detector, this network does not ef-

fectively use Autoencoder to characterize anomalous features and

abandon the benefits of ensemble learning. However, the unsuper-

vised nature of Autoencoder can improve the context-independent

detection. Third, LSTM has a recording function for historical sam-

ples. As the labeled data set becomes larger, the prediction ef-

fect of LSTM will be better and better. Therefore, combining the

LSTM and Autoencoder networks to train the threshold of abnor-

mal scores is better than a single neural network. 

We use the mirai 1 dataset in Kitsune [27] to explore the ef-

fects of LSTM predictions. Fig. 2 shows prediction effect of LSTM

on mirai dataset. The x-axis represents the index of packet. The y-

axis represents the value of the anomaly score. The solid line in
1 https://github.com/ymirsky/KitNET-py/blob/master/dataset.zip . 

n  

f  

a  
ark green in the figure is the predicted value of LSTM, and the

ashed line in blue is the value of the actual root mean square er-

or (RMSE). The trend predicted by LSTM is similar to the actual

alue. 

.2. Feature extraction 

We take the Damped Incremental Statistics for feature extrac-

ion [27] . A slight difference from the approach of Kitsune is that

e remove the SrcMAC-IP field and we change the number of fea-

ures per sample (packet). The element definitions of HELAD model

re listed in Table 1 . 

The Damped Incremental Statistics algorithm treats one of the

ttributes of each packet as an unbounded stream. These attributes

an be the count, size, or jitter (inter-packet delay) of the corre-

ponding packets aggregated by the same SrcIP (source IP), Chan-

el (source and destination IPs) and Socket (source and destina-

ion IPs and ports). For a packet attribute stream S , the mean, vari-

nce, and standard deviation of S can be updated by the tuple

f IS = (N, LS, SS) . N represents the total number of network pack-

ts arriving, LS is linear sum, and SS is squared sum. Each time a

ew network traffic packet p i arrives, feature extraction can be per-

ormed according to the feature extraction formula in the table I,

nd the tuple of IS can be updated by IS ← (N + 1 , LS + x , SS + x 2 ) .
i i 

https://github.com/ymirsky/KitNET-py/blob/master/dataset.zip
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Table 2 

Incremental statistics index for IS i, λ in [27] . 

Statistic Notation Calculation 

Weight w w 

Mean μs i LS / W 

Standard deviation σs i 

√ ∣∣SS/W − (LS/W ) 
2 
∣∣

Magnitude ‖ S i , S j ‖ 
√ 

μs i 
2 + μs j 

2 

Radius R S i S j 

√ 

( σs i ) 
2 + ( σs j ) 

2 

Covariance Co v S i S j 
S R i j 

W i + W j 
Correlation Coefficient P S i S j 

Co v S i S j 
σs i 

σs j 
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a

b

b

b

 i is the statistic of p i . The statistics at any time are μs = 

LS 
N , σs 

2 =
 

SS 
N − ( LS 

N ) 
2 | , and σs = 

√ 

σs 
2 . 

In the case of using a sliding window, the memory and run-

ime complexity required for the IS method is O ( n ). For reducing

he complexity to O(1), IS i, λ data structure is used to maintain the

atest snapshot of the feature. The main idea of the Damped In-

remental Statistics algorithm is that the weight of a sample de-

reases with time. The decay model for this weight uses the for-

ula: d λ(t) = 2 −λt , where λ > 0 is the decay factor, and the t is

he timestamp difference between the current packet and the pre-

ious network packet. 

Specifically, IS i,λ = (w, LS , SS , SR ij , t last ) is maintained in real

ime. w is the current weight and one of the one-dimensional fea-

ure calculation methods, which is calculated by first adding one

nd then multiplying by decay value. The first three lines of Table 2

re used to calculate one-dimensional features. t last is the times-

amp of the previous packet. SR ij is the sum of residual products

etween two attribute streams, which is used to calculate two-

imensional features. r i r j represents one of the two-dimensional

eature calculation methods. The methods in the last four rows of

able 2 are used to calculate two-dimensional features. For updat-

ng the IS i, λ in real time, Damped Incremental Statistics has the

ollowing update steps: 

Step 1: Calculate the decay factor, φ ← d λ( t cur − t last ) ; 

Step 2: Calculate IS i, λ ← ( φw, φLS, φSS, φSR, t cur ) and inte-

rate newly arrived packet into data structures IS i,λ ← (w + 1 , LS +
 cur , SS + x i 

2 , SR ij + r i r j , t cur ) ; 

Step 3: t last = t cur , goto Step 1. 

Next we introduce the formation of features. For instance, op 1 
epresents statistical feature st 1 operates on the aggregation ag 1 
n the case of the bandwidth of the outbound traffic. st 1 is from

 1 , where A 1 represents the statistical method. ag 1 is from B 1 ,

here B 1 represents what the packets are aggregated by. There-

ore, the first feature can be represented as f 1 = < λ1 , μi , SrcIP > .

his means that in the case of first decay factor λ1 , statistic μi op-

rates on attribute SrcIP as a feature. 

After selecting the original features 
−→ 

x 0 = ( f 1 , f 2 , · · · , f n 0 ) 
T , we

ntroduce the expression of each sub-model in the HELAD algo-

ithm. The HELAD algorithm has four parts: feature dimension

eduction, abnormal score generation, abnormal score prediction,

nd abnormal detection result combination. 

.3. Feature dimension reduction 

The first is the HELAD-DBN dimension reduction submodel.

here are two reasons why DBN technology is applied to our

odel. First, the DBN has the ability to find good features in in-

omplete information. Second, the DBN can achieve dimension-

lity reduction, so that the efficiency of training Autoencoder is

mproved. This submodel is essentially a multi-layer HELAD-RBM

38] model. Therefore, the focus of our discussion is the training

nd solution of the original feature vector 
−→ 

x 0 in the HELAD-RBM

odel. 
The elements of the HELAD-RBM model are defined as follows.

 0 , m represent the number of neurons in the visible layer and the

idden layer, respectively. 
−→ 

x 0 = ( f 1 , f 2 , · · · , f n 0 ) 
T is the state vec-

or of the visible layer, and 

−→ 

h 0 = ( h 1 , h 2 , · · · , h m 

) T is the state vec-

or of the hidden layer. The vectors 
−→ 

a = ( a 1 , a 2 , · · · , a n 0 ) 
T , 

−→ 

b =
( b 1 , b 2 , · · · , b n 0 ) 

T represent the offset vectors of the visible and

idden layers, respectively. The RBM model is an energy-based

odel. For a given set of states ( 
−→ 

x 0 , 
−→ 

h 0 ), the system energy of

ELAD-RBM can be defined as: 

 

(−→ 

x 0 , 
−→ 

h 0 | −→ 

θ
)

= −
n ∑ 

i =1 

a i f i −
m ∑ 

j=1 

b j h j −
n ∑ 

i =1 

m ∑ 

j=1 

f i w i j h j (1) 

In the formula, 
−→ 

θ represents the parameter set of HELAD-RBM.

 ij is the connection weight between the i th neuron of the visible

ayer and the j th neuron of the hidden layer, b j represents the offset

f the j th neuron of the hidden layer, and a i represents the offset

f the i th neuron of the visible layer. 

To solve this model, we can use the contrast divergence al-

orithm proposed by [39] . The specific DBN dimension reduction

olution can be referred to the literature [40,41] . After HELAD-

BN dimension reduction we get a new feature vector 
−→ 

x R =
( f 1 , f 2 , · · · , f n ) 

T . 

.4. Abnormal score generation 

The second sub-model is the HELAD-Autoencoder anomaly

core calculation model. This submodel calculates the anomaly

core by the value of the loss function. Autoencoder [42] tries to

earn the function S ( x ), which satisfies: S w,w 

′ , b 1 , b 2 ( 
−→ 

x R ) = 

−→ 

x R . Where

, w 

′ , b 1 , and b 2 are model parameters. S ( x ) can be represented in

wo phases. The first is the coding phase from the input layer to

he hidden layer. The second is the decoding phase from the hid-

en layer to the output layer. 

 = f 
(
w 

−→ 

x R + b 1 
)

(2) 

 

y R = g 
(
w 

′ h + b 2 
)

(3) 

The learning goal of this network is 
−→ 

y R ≈ −→ 

x R . In order to recon-

truct the input 
−→ 

x R as much as possible, the root mean square error

RMSE) is used as the loss function: RMSE( 
−→ 

x R , 
−→ 

y R ) = 

√ ∑ n 
i =1 (x i −y i ) 

2 

n .

utoencoder is a special artificial neural network (ANN). Com-

only used way for training an ANN is known as the back-

ropagation algorithm [43] and the activation function we use is

igmoid. 

.5. Abnormal score prediction 

The third sub-model is the HELAD-LSTM anomaly score pre-

iction model. This sub-model predicts the anomaly scores of the

ext three samples based on the anomaly scores of the histori-

al samples. Inspired by [44] , we decide to use LSTM to perform

iming prediction on anomalies. 
−→ 

x L = ( f 1 , f 2 , · · · , f n 0 , RMSE) T is the

riginal feature vector plus the RMSE label (TL). This is a new fea-

ure vector for training HELAD-LSTM which can predict abnormal

cores. 

At training time t , the parameters of HELAD-LSTM are updated

s follows: 

 i 
t = f 

(
w xi 

−→ 

x L 
(t) + w hi b h 

t−1 + w ci b c 
t−1 + σi 

)
(4) 

 f 
t = f 

(
w x f 

−→ 

x L 
(t) + w h f b h 

t−1 + w c f b c 
t−1 + σ f 

)
(5) 

 c 
t = b f 

t × b c 
t−1 + b i 

t × f 
(
w xc 

−→ 

x L 
(t) + w hc b c 

t−1 + σc 

)
(6) 
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Fig. 3. Relationship between internal variables of LSTM unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Searching p and gp by simulated annealing algo- 

rithm. 

Input: 

Data ; //Testing data 

HELAD ; //The parameters are constant 

{ T 0 , r, T f , L }; //The hyper-parameter set. T 0 is the initial value of 

temperature. r is the coefficient for reducing temperature. T f is 

the lowest temperature. L is the amount of searching for every 

value of temperature. 

Output: 

p;//Coordinate the weight between the predicted and detected 

values. 

gp;//Overall threshold, because it is an exponential function, 

only the upper limit 

//Initial phase 

1: T = T 0 ;
2: p 0 = rand() ;//The function, rand(), returns a random floating 

number in (0 , 1) 

3: gp 0 = rand() ;
4: x = (p 0 , gp 0 ) ;
5: f = F 1 − score computed with Data , HELAD , x ; 

//F1-score is the metric (mentioned in Section V-A) 

//Searching phase 

6: while T > T f do 

7: for k = 0 to L − 1 do 

8: x ′ = x + (rand() − 0 . 5 , rand() − 0 . 5) × 0 . 5 k ; 

9: //the formula makes the whole solution domain is in- 

volved 

10: if x ′ [0] < 0 or x ′ [0] > 1 or x ′ [1] < 0 or x ′ [1] > 1 then 

11: continue ;
12: end if 

13: f ′ = F 1 − score computed with Data , HELAD , x ′ ; 
14: if f ′ > f or rand() < e −

|| f ′ − f || 
T then 

15: x = x ′ ;
16: f = f ′ ;
17: end if 

18: end for 

19: T = r × T ;
20: end while 

// x [0] represent the optimal value of p 

// x [1] represent the optimal value of gp 

d  

i  

a  

m  

c  

c  

l  

s

 

i  

s  

m  

u  

t  

t  

l

4

 

s  

f  
b o 
t = f 

(
w xo 

−→ 

x L 
(t) + w ho b h 

t−1 + w co b c 
t−1 + σo 

)
(7)

b h 
t = b o 

t × f 
(
b c 

t 
)

(8)

a k 
t = w k b h 

t 
(9)

Since LSTM is a time series model, 
−→ 

x L 
(t) in the formula is the

representation of 
−→ 

x L at time t. b i 
t , b f 

t , b c 
t , b o 

t represent the input

value of the input gate, the forgetting gate, the memory state, and

the output gate respectively at time t; a k 
t represents the output

value of the network output layer at time t, which is the value of

y ( t ) . We can calculate the values involved in the above formula (4)-

(9) in turn. Fig. 3 indicates the relationship between internal vari-

ables of LSTM unit. Finally, we will get the predicted RMSE values

y (t+1) , y (t+2) , y (t+3) for the three moments t + 1 , t + 2 , and t + 3 ,

and each prediction yields a predicted value. The specific LSTM

network solving algorithm can be found in the literature [45] . 

3.6. Abnormal detection result combination 

In the final step of the model, we use the discriminant for-

mula pe y 0 + (1 − p) e y 1 + y 2 + y 3 to calculate the anomaly detection

score for each packet. We use the simulated annealing algorithm

to optimally select the gp and p values. Specifically, it is shown in

Algorithm 1 . If the value of the anomaly detection score exceeds

the threshold gp , this packet will be recognized as an abnormality.

The specific details are shown in Algorithm 2 . 

3.7. Analysis of heterogeneous ensemble of HELAD model 

Deep learning method has not been used as component learn-

ers of heterogeneous ensemble learning in network intrusion

detection. In addition, HELAD model does not have a more com-

mon ensemble learning mechanism like stacking, voting, etc. We

mainly analyse our heterogeneous model from the perspective

of the ensemble strategy and base classifier selection based on

reference [61] . 

About ensemble strategy, ensemble learning models can be de-

fined as models using multiple learners to do classification, and

there is no need to use specific ensemble methods. So although we
on’t use classic ensemble methods such as stacking, our model

s still an ensemble learner. Our discriminant formula is actually

 variant of weighted averaging method defined as combination

ethods in [61] , which uses the weighted average of the Autoen-

oder and the LSTM outputs as the anomaly score. In terms of base

lassifier selection, we use Autoencoder and LSTM as component

earners, and the advantage of HELAD model is that both base clas-

ifiers are deep learning methods. 

In summary, we propose a new heterogeneous ensemble learn-

ng approach which is different from classic ensemble methods

uch as stacking, where we use the Autoencoder to model nor-

al traffic profile and generate the label to train the LSTM, and

se heuristic algorithm to do weighted averaging with results of

he Autoencoder and LSTM in the final stage. This is essentially

he voting method, which is a method of heterogeneous ensemble

earning. 

. Model training & strategy optimization 

The previous section mainly introduces our model from the per-

pective of technology construction. This section is now elaborated

rom the perspective of specific training details and the optimiza-
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Algorithm 2 HELAD model anomaly detection. 

Input: 

pss i ;//Represents the i -th arriving packet. 

pp 1 ;//Indicates the first network packet required for Autoen- 

coder to generate abnormal score 

tt 1 ;//Indicates the time required for Autoencoder to generate 

abnormal score 

tt 2 ;//Indicates the time of LSTM training 

tt 3 ;//Indicates the parameter adjustment time 

Output: 

Abnormal detection result Y decision 

Training time of the HELAD algorithm t f inal 

//Begin procedure 

//1)Begin Autoencoder training and generate abnormal score 

//Train Autoencoder with labeled data 

1: P P = pp 1 ;// P P adds one at a time to indicate a new packet ar- 

rives. 

2: t = 0 ;// t is used to record timing relationships 

3: for i = 1 to P P do 

4: 
−→ 

x 0 =Feature_Extraction( pps i );//Extracting feature of a sample 

using the Damped IncrementalStatistics algorithm; 

5: 
−→ 

x R =DBN( 
−→ 

x 0 ); 

6: 
−→ 

y R =Autoencoder( 
−→ 

x R ); 

7: T L = RMSE( 
−→ 

x R , 
−→ 

y R ) = 

√ ∑ n 
i =1 (x i −y i ) 

2 

n ; 

8: end for 

9: t = tt 1 ; 

//2)Begin LSTM training 

//Adding T L as a feature to feature vector 
−→ 

x 0 
//Forms a new feature vector 

−→ 

x L 
//Train the LSTM network with 

−→ 

x L 
10: LSTM network construction; 

11: LSTM network training; 

12: t = t + tt 2 ; 

//3)Initial parameter training 

//Use expert-labeled data with abnormal score 

13: Use Algorithm 1 to derive the values of gp and p; 

14: t = t + t t 3 , t f inal = t ; 

//4)Begin online monitoring and data storage 

//PPO represents the arriving packet after time t

15: while P P O ++ do 

16: Autoencoder( P P O )= y 0 ; 

17: LSTM ( P P O -2)= y 1 ; 

18: LSTM ( P P O -1)= y 2 ; 

19: LSTM ( P P O )= y 3 ; 

20: dv = pe y 0 + (1 − p) e y 1 + y 2 + y 3 ; 
21: if dv > gp then 

22: Y decision =abnormal; 

23: else 

24: Y decision =normal; 

25: end if 

26: end while 
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2 https://github.com/cdogemaru/CPIP . 
ion of the effects of the entire model. The training of the model

s to obtain the values of the parameters gp and p in the discrim-

nant function after the neural network is stable. The values of gp

nd p are detailed in Table 2 . All specific training steps can be seen

n Fig. 1 . We divide the overall training model into three stages as

ollows. 

.1. Initialization 

The original small amount of expert annotated (abnormal or

ormal) sample dataset is acquired by Damped Incremental Statis-

ics algorithm to obtain a high-dimensional feature vector 
−→ 

x . Then,
0 
he feature reduction is performed using the DBN to obtain the

eature vector 
−→ 

x R . Next, the feature vector 
−→ 

x R is taken as the in-

ut of the Autoencoder, and then the training of the Autoencoder

s completed. During training, the root mean square error (RMSE)

f each sample reconstruction is accurately recorded. This RMSE is

sed as an anomaly detection score. Next, the RMSE of each sam-

le is added as a feature to the feature vector 
−→ 

x 0 to form a new

eature vector 
−→ 

x L . then, The feature vector 
−→ 

x L is trained as an input

o the LSTM network. After the Autoencoder network and LSTM

etwork training is completed, the data set marked by the expert

s used again. This time it is used to train the values of gp and p .

pecifically, each sample collected will have an output y 0 through

he Autoencoder, and then output y 1 , y 2 , y 3 through the LSTM.

e establish the discriminant formula pe y 0 + (1 − p) e y 1 + y 2 + y 3 and

hen use the label (abnormal or normal) of each sample for pa-

ameter tuning. In this way, we can initialize the values of gp and

 of the HELAD algorithm (the case where the detection rate is the

ighest) by the label marked by the expert. 

.2. Real time traffic detection 

The HELAD anomaly detector has been initialized in the above

tage. Next, the HELAD model can begin to receive actual network

raffic (as indicated by the red arrow). Network traffic continues

hrough the Autoencoder network and the LSTM network, and y 0 ,

 1 , y 2 , y 3 are obtained for each sample taken online. 

Then we can get the value dv of the formula pe y 0 + (1 −
p) e y 1 + y 2 + y 3 . If dv is greater than gp , then decision is yes, which

s an abnormal. On the contrary, it is normal. In this way, online

raffic data is continuously labeled and stored. 

.3. Relearning HELAD model 

At this stage, we can set an environment timer K that the user

an adjust (in the time of this K , the expert can modify the erro-

eous label in the log according to experience, if time and effort

llow). When the cumulative time of K reaches a certain value, we

erge the original expert data with the tagged data in the log. We

hen re-trained the HELAD model by replacing the expert annota-

ion data for the first phase with this new data set. It is important

o note that the anomaly detection detector formed by the last gp

nd p is used for detection before the next retraining is completed.

he reason for this is that the training time and the detection time

re parallel, and there is no waiting time for training. The specific

etails are shown in Algorithm 3 . 

. Experiments & evaluation 

This section covers our experimental results. Our codes are

vailable at the open-source code repository. 2 In order to sys-

ematically evaluate our model, we want to check the following

our points: (1) In what circumstances can our algorithm achieve

he best performance. (2) Whether ensemble learning and the re-

earning function are effective. (3) How does our algorithm com-

are to the performance of other state of the arts algorithms on

ifferent data sets. (4) How does our algorithm compare to the

tate-of-the-art homogeneous ensemble learning algorithms. 

.1. Metrics for evaluating anomaly detection algorithm 

Time consuming is one of the shortcomings of machine learn-

ng. Parallel computing, Graphics Processing Unit and other accel-

ration methods will be used in our future work. Therefore, the

evel we discuss is the effect of anomaly detection in the latest

https://github.com/cdogemaru/CPIP
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Algorithm 3 HELAD strategy optimization algorithm. 

Input: 

Data 0 //Data set marked by experts before the training time 

point 

Data 10 //Labeled data set by last round of HELAD algorithm de- 

tecting 

Data 20 //Labeled data set by this round of HELAD algorithm de- 

tecting 

Data 2 //Data set marked by experts during this round of detec- 

tion 

K //User time timer 

SW // Anomaly detector switch (boolean variable) 

Output: 

gp, p, and new trained Autoencoder and LSTM neural networks 

for each K time period 

//Begin procedure 

1: t =0, SW = t ure ; 

2: T = K;//The value of K is greater than the training time of the 

HELAD algorithm. 

3: flag=true;//If it is the first time, the model will use 2T time. 

4: while SW do 

5: if flag then 

6: while t < T do 

7: t++ ; 

8: Store(HELAD( pss i )) to Data 10 ; 

9: end while 

10: t=0; 

11: while t < T do 

12: t++ ; 

13: Store(HELAD( pss i )) to Data 20 ; 

14: Data = Data 10 + Data 2 + Data 0 ; 

15: Use Data to replace the training data in Algorithm 2; 

16: Updates gp and p; 

17: end while 

18: Dat a 10 += Dat a 20 ; 

19: t=0; 

20: flag=false; 

21: else 

22: while t < T do 

23: t++ ; 

24: Store(HELAD( pss i )) to Data 20 ; 

25: Data = Data 10 + Data 2 + Data 0 ; 

26: Use Data to replace the training data in Algorithm 2; 

27: Updates gp and p; 

28: end while 

29: Dat a 10 += Dat a 20 ; 

30: t=0; 

31: end if 

32: end while 
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3 http://www.fukuda-lab.org/mawilab/index.html . 
4 https://www.unb.ca/cic/datasets/ids-2017.html . 
real network traffic and comparison with other machine learning

algorithms. 

The effectiveness of Machine Learning based anomaly detec-

tion algorithm can be evaluated by the following indicators: Pre-

cision (P): T P 
T P+ F P , Recall (R): T P 

T P+ F N , F1-Score (F1): 2 ×P×R 
P+ R , False Posi-

tive Rate (FPR): F P 
F P+ T N , Area Under Curve (AUC): the area enclosed

by the ROC curve and the coordinate axis. Among them, True Neg-

ative (TN): a measure of the number of normal events rightly clas-

sified as normal ones. True Positive (TP): a measure of the num-

ber of abnormal events rightly classified as abnormal ones. False

Positive (FP): a measure of normal events misclassified as attacks.

False Negative (FN): a measure of attacks misclassified as normal.

We use these five indicators to measure the performance of our

HELAD algorithm. 
.2. Datasets and experimental settings 

.2.1. Datasets 

Two data sets, MAWILab 3 and IDS 2017, 4 are used in this paper.

he experiments are all based on the MAWILab dataset. How ever,

he IDS 2017 dataset will be tested in contrast experiment, which

eans comparison with other algorithms. 

MAWILab [46,47] is a database that assists researchers to eval-

ate their traffic anomaly detection methods. MAWILab annotates

raffic anomalies in the MAWI archive with four different labels:

nomalous, suspicious, notice, and benign. In order to use these

nomaly detection labels marked by different anomaly detector.

e classify the two categories anomalous and suspicious as ab-

ormal and classify benign and notice into normal. Table 3 are ex-

mples of the anomalies we use in our experiments. The first line

dentifies that network _ scan _ SY N is detected by the anomaly de-

ectors. This is a SYN attack, and the original label is anomalous.

hen, the label we give is an abnormal. The sixth line identifies

hat network _ scan _ ICMP _ ecrq is detected by the anomaly detector

ough. This is a ping flood, and the original label is suspicious. The

abel we give is abnormal. 

The IDS2017 data set collection time is from July 3, 2017 to July

, 2017. The data set contains benign traffic and some of the lat-

st common attacks. The format of the data set includes real data

pcap file) and the results of analysis using CICFlowMeter. Gener-

ting real attack scenes is the main task of this data set. This data

et includes attacks such as Brute Force FTP, Brute Force SSH, DoS,

eartbleed, Web Attack, Infiltration, Botnet and DDoS. We use the

riginal packet and its corresponding label to our experiment. 

.2.2. Experiment environment 

In order to use a variety of algorithms more effectively, we use

ython to implement our model. The hardware and software con-

gurations are shown in Table 4 . 

.3. Experimental results & implications 

This section illustrates a group of experiments to verify the ef-

ectiveness of HELAD Model. We study the proposed anomaly de-

ection using MAWILab data for the period of June 3, 2018. Table 5

hows the distribution of the data set. Here, we have a total of

0 0,0 0 0 network traffic packets. All of these packets take about

5 min to collect. Among them, 125,374 network traffic packets

re abnormal. Table 6 illustrates number of labels in training set

including verification set) and testing set. In order to accurately

redict the future real-predictive environment, the predictor must

etain data for events that occur after the event that fits the model

59] . Therefore, for time-series data such as network traffic, we

o not use k-fold cross-validation, but use hold-out. The hold-out

ethod directly divides the data set D into two mutually exclusive

ets. One of the sets is used as the training set S, and the other is

sed as the test set T, ie D = S ∪ T, S ∩ T = 0. After training the model

n S, the test error is evaluated by T, and as evaluation of gener-

lization error. To assess the performance accurately, we use three

artition methods to train and evaluate the data set. Table 7 lists

he comparison result of average P, R, F1 for three partition meth-

ds. Therefore, the latter experiments are based on partition 3 to

rain and evaluate the data set. 

.3.1. In what circumstances can our algorithm achieve the best 

erformance 

In order to confirm in what circumstances can our algorithm

chieve the best performance, we analyze the influence of four fac-

http://www.fukuda-lab.org/mawilab/index.html
https://www.unb.ca/cic/datasets/ids-2017.html
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Table 3 

Example of the anomalies in June 3, 2018. 

Taxonomy Heuristic Original Label Detectors Final Label 

network _ scan _ SY N SYN attack anomalous Hough, PCA Abnormal 

network _ scan _ SY N SYN attack anomalous Hough, Gamma, PCA Abnormal 

network _ scan _ T C P _ RST _ AC K _ response RST attack anomalous Hough, PCA Abnormal 

smal l _ network _ scan _ SY N SYN attack anomalous Gamma Abnormal 

network _ scan _ SY N SYN attack anomalous Hough, KL, PCA Abnormal 

network _ scan _ ICMP _ ecrq Ping flood suspicious Hough Abnormal 

Table 4 

The software and hardware configurations. 

Resource Type Configuration 

Software 

environment 

ubuntu 14.04, 

conda 4.4.10, 

python 3.5.0, 

numpy 1.15.0, 

cython 0.28.5, 

scapy 2.4.0, 

scipy 1.1.0, 

keras 2.2.2, 

tensorflow 1.9.0 

CPU i7-5500 2.40 GHz 

Memory 32G 

Number of server 1 

Table 5 

Number of labels in the MAWILab data set. 

DataSet Abnormal Normal 

300,000 125,374 174,626 

Table 6 

Number of labels in training set and testing set (number/portion). 

partition method Tag Training set Testing set 

partition 

1 

Normal 115,253 59,373 

Abnormal 82,747 42,627 

(Sum) 198,000/66% 102,000/33% 

partition 

2 

Normal 130,969 43,657 

Abnormal 94,031 31,343 

(Sum) 225,000/75% 75,000/25% 

partition 

3 

Normal 152,798 21,828 

Abnormal 109,702 15,672 

(Sum) 262,500/87.5% 37,500/12.5% 

Table 7 

Comparison of average P, R, F1 for different partition method (20 0 features, 30 0,0 0 0 

packets, gp = 0.65, p = 0.8). 

partition method Average 

Precision Recall F1-Measure 

partition 1 0.793 0.837 0.815 

partition 2 0.821 0.860 0.840 

partition 3 0.901 0.880 0.891 
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Fig. 4. Performance of HELAD model under the conditions of 100 features, 300,000 

packets. When the gp value is fixed, observe the effect of p value on the detection 

effect. 

Fig. 5. Performance of HELAD model under the conditions of 100 features, 300,000 

packets. When the p value is fixed, observe the effect of gp value on the detection 

effect. 
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ors (the dimension of the feature, the size of the data set, the

alue of p , and the anomaly detector threshold gp ) on the perfor-

ance of the HELAD algorithm. 

In the case of selecting 100 features: 

Damped Incremental Statistics algorithm is used to sample the

eatures. We set the value of λ to [5,3,1,0.1,0.01] to get the 100-

imensional feature. After using DBN, our features are reduced to

0 dimensions. We use Algorithm 1 to get the optimal values for

p and p . For further detailed analysis, we use the growth step size

ethod to observe the effect of p and gp on the anomaly detection

ffect. In the iteration we found that p is 0.8 or gp is 0.65, and the

bnormality detection result is better. The method of controlling

ariables is used to determine the values of gp and p . As shown in
ig. 4 , we use 30 0,0 0 0 packets and set the value of gp to 0.65 to

bserve the effect of p-value on the detection effect in the HELAD

lgorithm. It can be seen that the Precision, Recall, and F1 value all

each the highest when the p value is 0.8. 

In order to determine the effect of the value of gp on the de-

ection effect in the HELAD algorithm, we conduct the further ex-

eriment. Fig. 5 shows that the F1 value reaches the highest when

he gp value is 0.65. 

After determining the values of gp and p , we verify the effect of

he data set size on the detection of the HELAD algorithm. As can

e seen from Table 8 , when the over all data set size is 30 0,0 0 0,
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Table 8 

Evaluation indicators under different dataset sizes (100 features, gp = 0.65, p = 

0.8). 

Data set size Precision Recall F1-score 

30000 0.761 0.761 0.757 

100000 0.851 0.855 0.853 

300000 0.871 0.864 0.861 
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the average Precision is 0.871, the average recall is 0.864, and the

average of the F1 value is 0.861. When the data set is smaller, the

detection effect is even worse. 

In the case of selecting 200 features: 

In order to verify the effect of the number of features on the

detection of the HELAD algorithm, we set 200 features for each

sample, and the value of λ is [10,5,3,2,1.5,1,0.5,0.2,0.1,0.01]. After

using DBN, our features are reduced to 50 dimensions. 

When the feature is increased to 200 dimensions, the com-

puting power of a single node is limited. So we selected 10,0 0 0,

30,0 0 0, and 10 0,0 0 0 data packets for analysis. Fig. 6 shows the per-

formance of HELAD anomaly detection model under the conditions

of 200 features with the varying p-value. As shown in Fig. 6 , from

the comparison of each subgraph, as the data set expands, the ef-

fect of anomaly detection is getting better and better. This is be-

cause anomaly detection algorithms are based on machine learning

algorithms, which depend on the data set. As shown in Fig. 6 (a),

when the data packet is 10,0 0 0, the value of the Precision is 0.7,

and the p value has not yet played a role. As shown in Fig. 6 (b), in

the case where the data packet is 30,0 0 0, the Precision, Recall and

F1 increase as the p value increases. This shows that the effects of

Autoencoder come into play. So for the selection of p value, we use

the evaluation index of F1 value. When the data packet shown in

Fig. 6 (c) is 10 0,0 0 0, the detection effect is best when the p value

is 0.8. This illustrates that as the further expansion of the data set,

the role of LSTM begins to emerge. It also reveals that LSTM is a

deep learning technology that requires a larger data set if it needs

to work better. 

Fig. 7 reveals the performance of HELAD anomaly detection

model under the conditions of 200 features with the varying gp

value. As shown in Fig. 7 , from the comparison of each subgraph,

the Precision increases as the gp value increases. However, the Re-

call is reversed because there are many false negatives due to an

increase in the threshold. So for the selection of gp value, we use

the evaluation index of F1 value. When the value gp is 0.65, the

comprehensive detection effect is the best. The larger the data set,

the better the detection effect, which is characteristic of the ma-

chine learning algorithm itself. Table 9 shows the effect of different

data sets on the experiment under the 200-dimensional feature. 
Fig. 6. Performance of HELAD anomaly detection model under the conditions of 200 fe

effect. 
Based on the above experiments, we can draw the following

onclusions. In the case of insufficient data (data size 10 0 0 0 0), our

odel can improve the precision by increasing the feature dimen-

ion. In the case where the feature dimension is specified (100-

imensional feature), increasing the dataset size can improve the

recision. We can see that the size of the data set has a greater

mpact than the feature. Therefore, if our model is to achieve good

erformance on the MAWILab dataset, the feature requires 200

imensions, the dataset size is 30 0,0 0 0, the value of gp is 0.65,

nd the value of p is 0.8. If we change the network environment

dataset source), our model will also set the values of these vari-

bles according to the network environment to achieve the best

etection effect. 

.3.2. Whether ensemble learning and the re-learning function are 

ffective 

In order to verify the effectiveness of ensemble learning. We

se MAWILab’s 30 0,0 0 0 data on June 1, 2018 for training and

nother 60 0,0 0 0 data for testing. Through training, we get three

odels: our model, our model without LSTM, and our model with-

ut RMSE. The experimental results are shown in Table 10 . We

an see that our ensemble model is better than a single model for

nomaly detection. 

For verifying the importance of re-learning, we conduct two

ets of experiments on MAWILab, using data from the first three

ays of April, June, July, and September, and intercepting 30 0,0 0 0

ata per day. The first set of experiments is a function of re-

earning. We use the data of the 1st of each month for training,

nd the data of the 2nd and 3rd of the month is used for test-

ng. The second set of experiments do not have the function of re-

earning, that is to say, the training is carried out with the data of

pril 1st, and the latter model is not re-trained, and the data of

he 2nd and 3rd of the four months is used for testing. 

In order to evaluate the detection effect of our HELAD model

hen the network flow characteristics change drastically, we add

ome analytical experiments. We analyze the experimental data for

 days and 0402 stands for the date of collection of the MAW-

Lab data set is April 2. For a better comparison, we count two

ets of data. As shown in Table 11 , the first group is the # select

ata set. This is our experimental data, which contains 30 0,0 0 0

etwork packets. The second group is the # al l data set, which is

 whole day of data. It is about 90 million packets a day, and

he total amount of data is different every day. Previous repre-

ents the number of IP addresses that have appeared in the pre-

ious date. New expresses a completely new IP address. It is im-

ortant to note that each IP address corresponds to multiple net-

ork packets. Table 11 shows changes in the IP address of data

ets on different dates, indicating that the network IP is almost al-
atures. When the gp value is fixed, observe the effect of p value on the detection 
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Fig. 7. Performance of HELAD anomaly detection model under the conditions of 200 features. When the p value is fixed, observe the effect of gp value on the detection 

effect. 

Table 9 

Evaluation indicators under different dataset sizes (200 features, gp = 0.65, p = 

0.8). 

Data set size Precision Recall F1-score 

30000 0.781 0.779 0.779 

100000 0.873 0.879 0.875 

300000 0.901 0.880 0.891 

Table 10 

Evaluation indicators for ensemble learning under MAWILab dataset (200 features, 

30 0,0 0 0 packets, gp = 0.65, p = 0.8). 

Method Precision Recall F1-score 

RMSE 0.812 0.772 0.791 

LSTM 0.782 0.663 0.717 

RMSE + LSTM 0.901 0.880 0.891 

Table 11 

Changes in the IP address of datasets on different dates. 

Date Previous(#select) New(#select) Previous(#all) New(#all) 

0403 3 66087 105,414 14,703,225 

0702 6 59543 214,780 15,492,070 

0703 124 59524 411,137 15,669,049 

0902 10 118285 474,783 15,788,790 

0903 16 94018 601222 15,575,598 

w  

f  

m  

b  

Table 12 

The FPR before and after relearning. 

Date Relearning-FPR Non-relearning-FPR 

0402 0.072 0.072 

0403 0.100 0.100 

0702 0.100 0.104 

0703 0.135 0.118 

0902 0.162 0.197 

0903 0.176 0.181 

r  

b  

a  

a

5
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e  

t  

t  
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n

 

i  

s  

c  

a  

t  
ays changing. Fig. 8 illustrates that traffic volumes vary widely

rom day to day (during the specified time period). The experi-

ental results are shown in Fig. 9 . The model with re-learning is

etter than the model with no re-learning. It also shows that our
Fig. 8. The traffic volumes statistics corresponding to 
e-learning model performs well in the case of severe network tur-

ulence. Table 12 shows that FPR does not change much before

nd after re-learning. This shows that FPR is mainly related to the

lgorithm itself. 

.3.3. How does our algorithm compare to the performance of other 

tate-of-the-art algorithms on different data sets 

we use Isolation Forests (IF) [48] and Gaussian Mixture Mod-

ls (GMM) [49] . IF is an ensemble based method of outlier de-

ection, and GMM is a statistical method based on the expecta-

ion maximization algorithm. Then we use support vector machine

SVM) from [50] , sparse autoencoder finetuned neural network

SAE) from [51] , restricted boltzmann machine fine-tuned neural

etwork (RBM) from [52] and kitsune from [27] . 

We have compared the effectiveness of these methods by work-

ng out the Precision, Recall and F1-score of these models. We can

ee that the Precision of the SVM algorithm is only 0.598. The Pre-

ision of the RBM is slightly better and can reach 0.708. Then there

re SAE and IF, and the detection results are very similar. The de-

ection effect of GMM is also not ideal. Kitsune still perform well
relearning experiment under MAWILab dataset. 
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Fig. 9. Evaluation indicators for relearning under MAWILab dataset (200 features, 30 0,0 0 0 packets, gp = 0.65, p = 0.8). This data set comes from different months. 0402 

represents the detection effect on April 2. 

Table 13 

Evaluation indicators under MAWILab dataset (20 0 features, 30 0,0 0 0 packets, gp = 

0.65, p = 0.8). 

Compared methods Precision Recall F1-score 

SVM 0.598 0.651 0.623 

RBM 0.708 0.714 0.711 

SAE 0.759 0.711 0.734 

IF 0.756 0.724 0.739 

GMM 0.645 0.668 0.657 

kitsune 0.871 0.870 0.870 

HELAD 0.901 0.880 0.891 

Table 14 

Number of labels in the IDS 2017 data set. 

DataSet Abnormal Normal 

300,000 226,618 73,382 

Table 15 

Evaluation indicators under IDS 2017 dataset (200 features, 30 0,0 0 0 packets). 

Compared methods Precision Recall F1-score 

SVM 0.797 0.444 0.768 

RBM 1.000 0.433 0.604 

SAE 1.000 0.961 0.980 

IF 0.997 0.971 0.983 

GMM 0.786 0.694 0.737 

kitsune 0.940 0.998 0.968 

HELAD (gp = 0.65, p = 0.80) 0.941 0.998 0.969 

HELAD (gp = 0.60, p = 0.85) 0.988 0.982 0.985 
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in the 30 0,0 0 0 data packet, with a Precision of 0.871. Our HELAD

algorithm has improved detection effect compared to the kitsune

algorithm. The average performances of different methods are dis-

played in Table 13 . As we can see from the results, our HELAD

model achieves significantly better results compared with other

machine learning based approaches. 

To verify the robustness of the algorithm, we experiment on

IDS 2017 data set. Our experiments on the IDS 2017 data set are

based on partition 3. Table 14 shows the number of labels in the

IDS 2017 data set. The experimental results are shown in Table 15 .

SVM’s Precision and Recall are not high. The comprehensive evalu-

ation index F1 value is only 0.768. The Precision of RBM can reach

1.0 0 0, but the corresponding Recall is very low. This leads to the

fact that the comprehensive evaluation index F1 value is not as

good as SVM. Both SAE and IF performed better in the IDS 2017

data set. This also shows that SAE and IF perform differently for

different environments (data sets). Next is the GMM algorithm, and

the overall performance is not good. The Kitsune algorithm still
erforms very well. Our HELAD algorithm uses a contrasting ap-

roach. The first group ( gp = 0.65, p = 0.80) uses the gp value and

he p value trained directly on the MAWILab data set, and the

econd group ( gp = 0.60, p = 0.85) uses the newly trained gp value

nd p value according to the IDS 2017 data set. Experiments show

hat the comprehensive performance of the second group is better

han other algorithms, and the comprehensive evaluation index F1

an reach 0.985. Comparative experiments verify the environmen-

al adaptability of our algorithm. 

.3.4. How does our algorithm compare to the state-of-the-art 

omogeneous ensemble learning algorithms 

Next, we compare our algorithm with the anomaly detec-

ion algorithm for homogeneous ensemble learning. GradientTree-

oost [56] integrates the gradient tree through the boost ensemble

ethod. BaggingCR [57] integrates the conjunctive rule (CR) classi-

er through the bagging ensemble method. At the same time, we

ave added bagging integration of various basic classifiers SVM, k-

earestNeighbor (KNN), Multilayer Perceptron (MLP). Then, consid-

ring the advantages of Adaboost, we also add the Adaboost en-

emble method using Logistic Regression as the base classifier. For

he sake of fairness, we all use the same features for training. The

xperimental data set is derived from the reselected 30 0,0 0 0 data

ets from IDS2017. This data set is called IDS2017-other. The pur-

ose of re-selecting the data set is to make the experimental data

ore representative. Table 16 shows that our HELAD algorithm has

igher F1 value and AUC, as well as lower FPR. 

In order to measure the performance difference between the

lassification algorithms we use, Quade test and Quade post hoc

est are used to weight how much our model and other state of

he arts algorithms deviate from each other [62] . These tests can

nd differences between classifiers [63] . The ̂ F value is an inter-

ediate process for calculating the p value, and the larger the F̂ 

alue, the smaller the p value. Based on the knowledge of hypoth-

sis testing, we make two hypotheses HA and HB. HA means that

here are no performance differences among the classifiers. HB in-

icates that there are performance differences among the classi-

ers. Table 17 reveals the result of Quade test with all classifiers,

ndicating that the performance of the classifiers is significantly

ifferent ( p < 0.05) in terms of Precision, Recall, F1-score, FPR,

UC. If the result of Quade test is highly significant, the null hy-

othesis HA (the performance of all classifiers is similar) could be

ejected and hypothesis HB should be accepted. Table 18 shows

he results of Quade post hoc test in terms of AUC, indicating that

he difference between BaggingCR and HELAD is most significant.

ecause the lower the p-value, the greater the relative significant.

his significant suggests that if our model continues to ensemble
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Table 16 

Performance comparison between HELAD and other ensemble learning models. 

Compared methods Precision Recall F1-score False Positive Rate AUC 

HELAD (gp = 0.60, p = 0.85) 0.9958 0.9958 0.9958 0.0215 0.9986 

GradientTreeBoost 0.9573 0.9663 0.9618 0.0610 0.9657 

BaggingCR 0.9340 0.9310 0.9320 0.0610 0.9370 

AdaboostLogistic 0.9680 0.9199 0.9433 0.0432 0.9391 

BaggingSVM 0.9646 0.9213 0.9425 0.0480 0.9591 

BaggingKNN 0.9685 0.9495 0.9589 0.0438 0.9662 

BaggingMLP 0.9649 0.9201 0.9419 0.0474 0.9539 

Table 17 

The result of Quade test with all ensemble learning models. 

Precision Recall F1-score False Positive Rate AUC 

̂ F 17.6667 5.3636 6.7778 7.7500 7.7500 

p value 0.0014 0.0302 0.0174 0.0125 0.0125 

Table 18 

The p value of post hoc Quade test for AUC. 

HELAD GradientTreeBoost BaggingCR AdaboostLogistic BaggingSVM BaggingKNN 

GradientTreeBoost 0.2666 − − − − −
BaggingCR 0.0015 0.0052 − − − −
AdaboostLogistic 0.0037 0.0151 0.3938 − − −
BaggingSVM 0.0104 0.0498 0.1158 0.3938 − −
BaggingKNN 0.1767 0.7698 0.0073 0.0222 0.0758 −
BaggingMLP 0.0330 0.1767 0.0330 0.1158 0.3938 0.2666 
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Table 20 

Verify the problem of overfitting (200 features, gp = 0.65, p = 0.8, IDS 2017 dataset- 
aggingCR, our model will perform better statistically. This pro-

ides an expandable space for our model. 

. Discussion 

In this section, we will discuss some of the details of our mod-

ls and experimental methods. 

Q1: Whether e y 0 is needed in the final discriminant formula?

The first question, in HELAD model, the abnormal score cal-

ulated by Autoencoder and the original feature are stitched into

 new vector x L , which is used as an input to the L STM. L STM

raining uses the anomaly score and is affected by this abnormal

core when forecasting. However, our discriminant formula also

onsiders the abnormal score calculated by Autoencoder and the

redicted value of LSTM. In other words, we want to determine

hether e y 0 is needed in the final discriminant formula. We do

he following analysis. We refer to the anomaly score as the LSTM

nput as the ASA (anomaly score A) and the ASB (anomaly score B)

s the discriminant’s anomaly score. The ASA is designed to train

STM so that LSTM can predict abnormal scores based on past

ata. The ASB (that is y 0 in pe y 0 + (1 − p) e y 1 + y 2 + y 3 ) is to calculate

he abnormal score of latest network packet and is one of the judg-

ent conditions for ensemble learning. The functions of the two

bnormal scores are different, so there is no redundancy. Table 19

hows the necessity of e y 0 , because our HELAD model works better

ith considering ASB. 

Q2: Whether the hold-out algorithm we use is over-fitting,

r is there a better evaluation method? 

For second question, the hold-out data set partitioning method

e use is consistent with the processing of time series data. More-
able 19 

hether e y 0 is needed in the final discriminant formula (200 features, gp = 0.65, p 

 0.8, IDS 2017 dataset-other). 

Method Precision Recall F1-score 

HELAD (with e y 0 ) 0.996 0.996 0.996 

HELAD (without e y 0 ) 0.871 0.913 0.891 

o

ver, the same experimental method we use in all experiments

s fair. To further demonstrate the effectiveness of our algorithm,

e have added a set of experiments, which use Forward Chaining

ross-Validation [60] based on IDS2017-other. Forward Chaining

ross-Validation uses the front part of the data set as the training

et and the latter part as the test set. And there are multiple split

oints, which can achieve the purpose of multiple training based

n different partition. Finally, the errors on each partition are aver-

ged to calculate a robust estimate of the model error. We define it

s error-seeking method. We use the method which finds the av-

rage of the various indicators to replace the error-seeking method

n the original paper. The two methods are equivalent. We set up

hree sets of data, and the number of training sets and test sets

re: A (150,0 0 0 ‖ 150, 0 0 0), B (150, 0 0 0 ‖ 150, 0 0 0), C (450, 0 0 0 ‖ 150,

 0 0). Then we average the experimental results of three groups.

able 20 shows that there is a small drop in Precision, Recall, F1-

core, but our algorithm is still performing well. FPR is still the

owest. 

Q3: Whether LSTM performs better in continuous attack de-

ection while Autoencoder performs better in sudden attack? 

For the third question, we assume that Autoencoder gains the

rofile of normal network traffic as one of the base learners, and

rovides learned RMSE as the label needed to train the LSTM,

hile LSTM works well for continuous attacks. In this section we

rove this hypothesis with experimental results. 

We re-extract 40 0,0 0 0 network packets from IDS2017 for exper-

ments to analyze sudden attacks and continuous attacks. We are
ther). 

Compared methods Precision Recall F1-score FPR 

HELAD 0.971 0.972 0.971 0.020 

SVM 0.814 0.696 0.728 0.132 

IF 0.907 0.610 0.678 0.234 

RBM 0.874 0.875 0.869 0.411 

SAE 0.987 0.887 0.933 0.091 

GMM 0.800 0.682 0.709 0.154 
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Fig. 10. Selection of corresponding areas of sudden attacks and continuous attacks. 

Table 21 

The experimental indicator of sudden attack (200 features, gp = 0.65, p = 0.8). 

Compared methods Precision Recall F1-score FPR 

LSTM 0.975 0.952 0.964 0.033 

Autoencoder 0.982 0.982 0.982 0.025 

LSTM + Autoencoder 0.986 0.993 0.989 0.019 

Table 22 

The experimental indicator of continuous attack (200 features, gp = 0.65, p = 0.8). 

Compared methods Precision Recall F1-score FPR 

Autoencoder 0.994 0.979 0.986 0.075 

LSTM 0.996 0.996 0.996 0.043 

LSTM + Autoencoder 0.998 0.997 0.998 0.020 
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using Wednesday’s data, which contains different types of DoS at-

tacks (DoS slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye).

The time period of the selected sudden attack is 25,0 0 0-75,0 0 0,

that is, the period during which the number of attacks gradu-

ally increases. The duration of the continuous attack is 10 0,0 0 0-

150,0 0 0, and the attack frequency is very high. The red dots in

Fig. 10 represent abnormal packets, and the blue dots represent

normal packets. Fig. 10 shows selection of corresponding areas

of sudden attacks and continuous attacks. The X axis represents

the network packet sequence number, and the Y axis represents

the RMSE value of each network packet. The data from 25,0 0 0 to

75,0 0 0 between the two vertical solid lines represent sudden at-

tacks. The data from 10 0,0 0 0 to 150,0 0 0 between the two ver-

tical dotted lines represent continuous attacks. A comparison of

Tables 21 and 22 shows that LSTM does perform better in contin-

uous attack detection while Autoencoder performs better in sud-

den attack. Finally, our HELAD model works best and illustrates the

need for our ensemble approach. 

7. Conclusion 

The network environment is increasingly complex, and as such,

the form of attack is ever-changing. Many of the existing machine

learning related anomaly detection models published previously

are evaluated using data such as KDD, leading to the emergence

of this problem that it is not practical in real-life environments. By

introducing the idea of organic integration of various deep learning

techniques, the HELAD model can better combine LSTM classifier

and Autoencoder classifier. This provides a new idea for the appli-

cation of heterogeneous ensemble learning in the field of anomaly
etection. The advantage is to make it adaptable in the real en-

ironment. Then, latest raw packet data is used in our experi-

ents, which provides a verification idea for the proof of the fu-

ure anomaly detection algorithm. Next, in order to prevent the

egradation of the anomaly detection model we design, we intro-

uce a module for relearning. Experimental results compare Gaus-

ian distribution, SVM, homogeneous ensemble learning and the

atest Kitsune algorithm, which shows the superiority of our algo-

ithm. 
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