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Abstract

Motivation: Many forms of variations exist in the human genome including single nucleotide poly-

morphism, small insert/deletion (DEL) (indel) and structural variation (SV). Somatically acquired SV

may regulate the expression of tumor-related genes and result in cell proliferation and uncon-

trolled growth, eventually inducing tumor formation. Virus integration with host genome sequence

is a type of SV that causes the related gene instability and normal cells to transform into tumor

cells. Cancer SVs and viral integration sites must be discovered in a genome-wide scale for clarify-

ing the mechanism of tumor occurrence and development.

Results: In this paper, we propose a new tool called seeksv to detect somatic SVs and viral integra-

tion events. Seeksv simultaneously uses split read signal, discordant paired-end read signal, read

depth signal and the fragment with two ends unmapped. Seeksv can detect DEL, insertion, inver-

sion and inter-chromosome transfer at single-nucleotide resolution. Different types of sequencing

data, such as single-end sequencing data or paired-end sequencing data can accommodate to

detect SV. Seeksv develops a rescue model for SV with breakpoints located in sequence homology

regions. Results on simulated and real data from the 1000 Genomes Project and esophageal squa-

mous cell carcinoma samples show that seeksv has higher efficiency and precision compared with

other similar software in detecting SVs. For the discovery of hepatitis B virus integration sites from

probe capture data, the verified experiments show that more than 90% viral integration sequences

detected by seeksv are true.

Availability and Implementation: seeksv is implemented in Cþþ and can be downloaded from

https://github.com/qkl871118/seeksv.

Contact: dragonbw@163.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structural variations (SVs) cover more than 50 bp segments involv-

ing DELs, insertions (INSs), duplications, inversions (INVs) and

other complex rearrangements compared with the reference se-

quence. Compared with single nucleotide polymorphism (SNP), SV

accounts for more differences between human genomes because of

the number of covered nucleotides (Baker, 2012). Current methods

are mostly based on high-throughput sequencing (HTS) reads. These

methods can be divided into four categories: depth of coverage

(DOC), paired-end mapping (PEM), split-read (SR) and assembly-

based (AS) method. All these methods have limitations and are un-

suitable for comprehensive SV types. DOC-based methods (Abyzov
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et al., 2011; Szatkiewicz et al., 2013; Xie and Tammi, 2009) assume

that reads are uniform along chromosomes and the number of reads

falling into a region follows the Poisson distribution. cn.MOPS

(Klambauer et al., 2012) models read count through multiple sam-

ples at each genomic position, which is robust to read count vari-

ations caused by technical and biological factors. Read count is an

important signature for variation detection. DOC methods are best

suited for copy number variations, such as duplications and DELs.

PEM-based methods (Abyzov and Gerstein, 2011; Chen et al., 2009;

Hormozdiari et al., 2010; Korbel et al., 2009; Sindi et al., 2009; Qi

and Zhao, 2011) detect SVs according to two signatures: distance

and direction between the mapped paired-end reads. InGAP-sv(Qi

and Zhao, 2011) detects and visualizes SVs according to discordant

paired-end read signals and several features involving local DOC,

mapping quality and associated tandem repeat, which could find

larger INSs and complex SVs with lower false discovery rate. The

detected copy changed and copy invariant variants are of no exact

breakpoint resolution and less power in low complexity region. SR

based methods (Li et al., 2013; Wang et al., 2011; Ye et al., 2009;

Zhang et al., 2016) utilize paired-end reads in which one end read is

uniquely mapped to the reference and the other cannot. The un-

mapped read is supposed to span over breakpoint so that the part of

it can be mapped if split. Sprites (Zhang et al., 2016) uses the whole

unmapped read rather than its clipped part to align to the target se-

quence, which aims to detect DELs with micro homologies or micro

INSs. SR based methods can reach a bp resolution at the cost of re-

stricted detection range of SV size. AS based methods (Alkan et al.,

2011; Chen et al., 2014; Li et al., 2011; Zhuang and Weng, 2015)

should be the best method and robust to detect all types of variation

in theory. In view of the complexity of the genome, such methods

are generally applicable to the detection of variations in simple or-

ganisms and conventional de novo assembly methods are not de-

signed to detect the variations (Zhuang and Weng, 2015). None of

the above four main approaches is comprehensive (Alkan, et al.,

2011), and they are complementary to one another. Current SV de-

tection methods (Bellos et al., 2012; Jiang et al., 2012; Rausch et al.,

2012; Sindi et al., 2012) take advantage of two or three signatures,

which can avoid weakness of a single signature and achieve a good

detection effect. Svclassify (Parikh et al., 2016) combines whole-

genome sequencing data sets from different sequencing technologies,

and the unsupervised machine learning method is employed to geno-

typing SVs and One Class Classification is used to classify candidate

SVs into likely true or false positives, which forms high-confidence

SV and non-SV calls.

However, these methods aim to detect germline genomes based

on a single sample and somatic SV, which can alter normal gene

function (Yang et al., 2013) and lead to tumor formation (Carter

et al., 2012). Somatic SV is implicated in cancer gene overexpression

or underexpression, exhibiting a causative role in cancer initiation.

CREST (Wang, et al., 2011) utilizes soft-clipped reads to precisely

locate breakpoint. It is particularly well suited for detecting somatic-

ally acquired SVs but with some flaws:

CREST calls CAP3 (Huang and Madan, 1999) software to assem-

ble soft-clipped reads based on sequence similarity without consider-

ing the location of its mapped part in the reference genome. Suppose

two soft-clipped reads originate from different sequences, such as

read-M and read-N, in which the red is the soft-clipped sequence.

read-M:CCCTAACCCTAACTGGCGTCCCAAATTGCAAAAGCGTATCA

TGCGGCTACGTATCGTTTT

read-N:CCCTAACCCTAACTGGCGTCCCAAATTGGCTACGTATCGTT

TTAAAAAAAAAAAAAAAA

CREST can obtain a long sequence GCAAAAGCGTATCATGCG

GCTACGTATCGTTTTAAAAAAAAAAAAAAAA as the assembled result,

which should not be simply assembled.

CREST assesses variation types according to single breakpoint

information; thus two breakpoints of one SV may be mistakenly

judged to two different types of variation. For example, a large INS

may be inferred as DEL and INS by error.

In this paper, we propose a new SV detection pipeline named

seeksv which is developed for somatic case-control SV detection but

also can be used for single germline genome analysis. Seeksv does

not depend on any assembly software and uses Burrows-Wheeler

Aligner (BWA) to align the assembled contig back to reference.

CREST uses BLAT for alignment which requires the high configur-

ation of computer. Various detection signals, namely, SR signal, dis-

cordant PEM signal, DOC signal and fragment with both ends

unmatched are comprehensively used by seeksv. Both unmapped

ends may imply breakpoint clues that require attention. Seeksv ex-

tracts the fragment with two ends unmapped from original align-

ment results and invokes COPE (Liu et al., 2012) to obtain a long

single-end read and then aligns back to the reference sequence. In

general paired-end sequencing reads are exploited to analyze SV,

but seeksv accommodates various types of sequencing data, such as

paired-end sequencing reads and single-end sequencing reads. To

the best of our knowledge, seeksv is the first tool to utilize single-

end reads for SV detection. Complex genomes contain many hom-

ologous sequences with maximal similarity, and some SVs would be

missed if breakpoints are located in the homologous region with

multi-alignment. Seeksv develops a rescue model to deal with SVs

located in the repetitive region. When the mode is turned on, seeksv

preserves the detailed results of the multi-alignment to calculate the

position of breakpoints.

The integration of viral sequences and host genomes is a special

SV. Tumor viruses invading host cells may result in cell proliferation

and uncontrolled growth, and eventually induce cell transformation

and tumor formation. The integration relationship between the virus

and host should be analyzed for clarifying the mechanism of tumor

occurrence and development. The SV tool can detect viral integra-

tion sites that are vital for tumor genesis studies. Seeksv possesses

excellent ability to identify viral integration sites with whole-

genome sequencing data or probe capture data. Compared with

traditional research methods, the resolution of seeksv achieves single

base level and simultaneously detects all the integration events with

higher accuracy and efficiency.

2 Materials and methods

2.1 Term description
The following terms and their descriptions are used by the proposed

method.

1. Mate reads: At paired-end sequencing, a fragment will produce

two paired-end reads, namely, read1 and read2; read1 is the

mate read of read2 and read2 is the mate read of read1.

2. Soft-clipped reads: In BWA alignment results, the read at first

alignment fails, but a portion of it is successfully aligned after

applying the mate-SW algorithm. According to the relative pos-

itions of aligned and clipped reads, the soft-clipped read can be

divided into two categories: left soft-clipped read and right soft-

clipped read.

3. Left soft-clipped read: The reads with the left part clipped after

realigning back to the reference sequence.

2 Y.Liang et al.
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4. Right soft-clipped read: The reads with the right part clipped

after realigning back to the reference sequence.

5. Left soft-clipped sequence: Short for left soft-clipped consensus

sequence, merged by left soft-clipped reads that are clipped by

the same junction.

6. Right soft-clipped sequence: Short for right soft-clipped consen-

sus sequence, merged by right soft-clipped reads that are clipped

by the same junction.

Seeksv depends on the input BAM file (Li et al., 2009) to extract

discordant mate reads and soft-clipped reads. The mapping situation

can be divided into four categories, namely (i) concordant mate

reads, in which mate reads r1 and r2 are both mapped and the dis-

tance, orientation and order of mapped are concordant with the ex-

pectation; (ii) discordant mate reads, in which r1 and r2 are both

mapped but at least one of the situations (distance, orientation and

order) is discordant with the expectation; (iii) split mate reads, in

which one of the mate reads is uniquely mapped but the other one is

a soft-clipped read and (iv) unmapped mate reads, in which both of

the mate reads fail to align. Seeksv detects four types of variants:

INS, DEL, INV and inter-chromosome transfer (CTX). The four cat-

egories contain many other types of variants. For example, tandem

duplication is regarded as INS. The PEM and SR signatures from the

second and third categories of the above mentioned SVs are illus-

trated (Supplementary Fig. S1).

Seeksv utilizes soft-clipped reads to locate breakpoint precisely.

Breakpoints are surrounded by some discordant mate reads and

read counts spanning the breakpoint are significantly different.

Extra discordant PEM information and read count data are em-

ployed to verify the reliability of the discovered breakpoint.

2.2 Realign
Soft-clipped reads cannot be mapped to the reference as a whole but

their mate reads are uniquely mapped. Soft-clipped read is distin-

guished according to the CIGAR sign in BAM file. BWA automatic-

ally splits the soft-clipped read into parts to map one of them back

into the reference. The CIGAR field indicates base-level alignment

information, which is very crucial for subsequent soft-clipped read

analysis. As an example, let us use the reference sequence

AGCCTTCAATCCGGTATCAT. If the read is TCATCCAGGCAT,

then the alignment situation is as follows:

reference: AGCCTTCAATCCGGTATCAT

read: TCATCCAGG CAT

The CIAGR would be 3M1D3M1I2M3D3M, and the soft-

clipped read is marked ‘S’ in CIGAR. Sometime the marked soft-

clipped read would be marked ‘S’ by mistake. If the clipped part of

the soft-clipped read is aligned to the reference again, its mapping

position is adjacent with the tail end of the mapped part. This result

indicates that the read should be mapped to the reference with full-

length, but it is marked as a soft-clipped read by mistake. Although

the soft-clipped read will be aligned back to reference after merging,

exogenic virus sequence INS detection depends on breakpoint infor-

mation. Thus the soft-clipped information should be accurate and

realign back to the reference before merging is necessary. If the

clipped part can be successfully mapped to the end of the mapped

part successfully, the clipped information should be discarded and

no longer used to deduce breakpoint. Clipped parts are also con-

sidered as being successfully mapped to the end of its mapped part

within a few bp, which is controlled by the threshold value and can

be adjusted by the user.

2.3 Soft-clipped read assembly
A junction is defined as two regions that are close to each other in

the individual genome but separate in the reference genome

(Supplementary Fig. S2). The soft-clipped read can be left clipped or

right clipped. In general, the mapped part of the clipped read is

closer to its mate unique mapped read (Supplementary Fig. S3.). The

soft-clipped read can be grouped according to the (i) clipped direc-

tion and (ii) mapped coordinate position of its mapped part. The

soft-clipped read with the same clipped direction and close mapped

coordinate position is thought as from one junction and will be

merged into a long consensus sequence if sequence similarity exceeds

a certain threshold. The long consensus sequences from left-clipped

reads are called left-clipped sequences, and right-clipped sequences

are from right-clipped reads. For the long consensus sequence,

seeksv generates k-mer substrings of its mapped part and clipped

part as an atomic unit for matching. In general, the mapped part

should have high similarity to the clipped part of the matched se-

quence and vice versa. The long consensus sequences and their

matched partner sequences together determine a junction. Most

junctions are supported by the two consensus long sequences. Some

special junctions only have unilateral clipped reads (left or right), so

only one long assembled sequence exists. Seeksv needs to align its

clipped part back to the reference, if uniquely mapped; the junction

can also be depicted. Seeksv concludes SV type according to the rela-

tive position and clipped direction of two matched long consensus

sequences. When clipped part of soft-clipped sequence has multiple

locations, all of them would be recorded by seeksv with more strin-

gent filter conditions in order to find SV as much as possible without

decrease of precision. Seeksv revokes a rescue mode to deal with the

following conditions. (i) Clipped part of left soft-clipped sequence

or right soft-clipped sequence has multiple locations, the clipped

part would be used as supporter of SV detected by its matched se-

quence if consistency. (ii) Clipped part of left and right soft-clipped

sequences have multiple locations, seeksv locates the clipped part

with the help of additional information of mapped part of its

matched sequence, the detected breakpoint is also reliable if consist-

ency. Details of the algorithm are shown in Algorithm 1. Each soft-

clipped read ri has four attributes dir, pos, mapped and clipped.

Dir(ri) means the clipped direction of ri. Pos (ri) means the mapped

position of ri.Clipped (ri) means the clipped sequence of ri. Mapped

(ri) means the mapped sequence of ri. Function con() is used to meas-

ure the consistency of the two sequences. Merge() is used to merge

two sequences, and chr() is the chromosome information of the

mapped position, and a is sequence similarity threshold, which is

tunable for users, default is 85%.The input BAM file should be

sorted and virus genome reference sequence is necessary if seeksv is

used for virus integration detection. Algorithm 1 takes the junction

detection procedure of DEL as an example. Steps 1–6 merge the

soft-clipped reads which are considered as from one junction into a

long consensus sequence according to their clipped direction and

mapped coordinate position of mapped part. Steps 7–19 look for

matched soft-clipped sequence and detect junction from the long

soft-clipped sequence set R. Steps 7–10 detect the position of junc-

tion under the condition that clipped part of left soft-clipped se-

quence and right soft-clipped sequence are both uniquely mapped to

the reference genome. Steps 11–19 detect the position of junction

under the rescue mode, steps 11–14 detect junction under the condi-

tion (i); steps 15–19 detect junction under the condition (ii) and they

would be the support information for related junction if consensus

threshold is satisfied. Steps 20–23 detect junction which only have

unilateral soft-clipped sequence, if the clipped part of unilateral soft-

clipped sequence is uniquely mapped, seeksv deduces junction from

Seeksv: an accurate tool for somatic structural variation 3
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the position of its clipped part and mapped part or the unilateral

soft-clipped sequence would be discarded.

Seeksv also corrects inaccurate mapping of soft-clipped reads

automatically. The soft-clipped read appears to be clipped prema-

turely, which should be clipped at position X instead of X�n or

Xþm. The premature clipped read may contain important clues for

junction detection. To solve this problem, seeksv appends some

bases from the clipped part to the mapped part and aligns to the

merged long consensus sequence (Supplementary Fig. S4). If the con-

cordance rate is greater than threshold T, the long sequence is also

supported by the read.

2.4 Paired-end read validation
For candidate SV detected by previous clipped reads, many discord-

ant read pair signatures must be present. To define these discordant

read pairs, traversing all aligned reads to calculate the mean insert

size (L) and SD is necessary. Seeksv searches for discordant read

pairs to support candidate SV with two conditions (Fig. 1):

1. if up_chr ¼= down_chr: mapped length(ML)<L-4�SD or

ML>Lþ4�SD,

2. else: L – 4�SD �jpos2-pos1þ1j þ jpos4-pos3þ1j �
Lþ4�SD.

The eligible read pair is collected as evidence to validate the pre-

vious junction and at least three discordant read pairs are needed

(can be adjusted by user). Seeksv also records the average read depth

of the whole reference and the region near the junction for further

verification.

2.5 Viral integration detection
Viral integration detection is similar to SV detection, except for add-

itional adjustments. The analysis pipeline of viral integration in-

volves the following steps: (i) building mixed reference sequence;

(ii) scanning the alignment results (BAM file) and merging the reads

from the same junction according to the alignment position; (iii) re-

aligning the clipped part of soft-clipped reads back to the mixed ref-

erence sequence; (iv) outputting relevant integrated virus sequence

and total integration results (see Supplementary Material for de-

tails). Seeksv joins the reference sequences of humans and viruses to-

gether to build a mixed reference sequence and realigned soft-

clipped reads back to the new reference sequence to obtain related

virus sequence information. This pipeline cannot only obtain the

high accuracy of the viral integration site information, but also has

the following functions. (i) The pipeline strictly detects and distin-

guishes integration direction of the virus sequence. If the mapped

and clipped parts of the soft-clipped sequence are both positively

aligned back to the reference sequence, the virus integrates into the

genome directly forward. If the mapped part is positive and the

clipped part is negative alignment. The virus sequence is initially in-

verted and then integrates into the host genome. (ii) The pipeline

identifies the micro homologous sequence and its length if it is

within the vicinity of the DNA breakpoint and viral DNA/RNA

breakpoint. (iii) The pipeline detects small fragment INSs around

the viral integration breakpoint (Supplementary Figs S5–S7).

3 Results

To comprehensively evaluate the performance of seeksv, simulated

and real data from the 1000 Genomes Project (1000 Genomes

Project Consortium, 2010a) are tested. Single-end reads are also

simulated to test the performance of seeksv in and out of rescue

mode for comparison. Seeksv, DELLY (Rausch et al., 2012),

CREST and PRISM (Jiang et al., 2012) are conducted based on

simulated data. DELLY and PRISM mainly focus on germline SV

detection. Seeksv and CREST are devoted to somatic SV detection

based on pair samples, but they can also be used for single samples.

Fig. 1. Illustration of discordant read pairs around candidate SVs. Discordant

read pairs can be divided into two conditions according to up_chr and

down_chr are same or not

Algorithm 1 Algorithm to Identify Junction Location

Input: BAM file, Genome reference sequence.

Output: Two position of junction.

1: Extract soft-clipped read set R(r1, r2, � � �, rn).

2: if dirðriÞ ¼ dirðriþ1Þ and maxðlengthðclipped ðriÞÞ; length ð
clippedðriþ1ÞÞÞ � jposðmappedðriÞÞ � posðmappedðriþ1ÞÞj � 5

then

3: if conðri; riþ 1Þ > a then

4: Update:

mappedðriþ1Þ  mergeðmapped ðriÞ;mappedðriþ1ÞÞ
clippedðriþ1Þ  mergeðclipped ðriÞ; clippedðriþ1 ÞÞ
posðriþ1Þ  maxðposðmapped ðriÞÞ;posðmapped ðriþ1ÞÞÞ
Delete ri.

5: end if

6: end if

7: if clipped ðriÞ and clippedðrjÞ are uniquely mapped then

8: if conðmappedðriÞ; clipped ðrjÞÞ > a
and conðclippedðriÞ;mappedðrjÞÞ > a then

9: matchðri; rjÞ
pos1ðjunctionÞ ¼ minðposðmapped ðriÞÞ;posðmappedðrjÞÞÞ
pos2ðjunctionÞ ¼ maxðposðmappedðriÞÞ; posðmapped

ðrjÞÞÞ
10: end if

11: else if clippedðri Þ is uniquely mapped then

12: if conðclipped ðriÞ;mapped ðrjÞÞ > a then

13: Deduce posðmapped ðriÞÞ according to rj and go to

step 8�9.

14: end if

15: else if clippedðriÞ and clippedðrjÞ have multiple locations

then

16: if conðmappedðriÞ; clipped ðrjÞÞ > a
and conðclippedðriÞ;mappedðrjÞÞ > a then

17: As support information for related junction.

18: end if

19: end if

20: Realign unilateral clippedðriÞ to reference genome

21: if clippedðriÞ is uniquely mapped then

22: pos1ðjunctioniÞ ¼ minðposðclippedðriÞÞ; posðmappedðriÞÞÞ
pos2ðjunctioniÞ ¼ maxðposðclippedðriÞÞ; posðmappedðriÞÞÞ

23: end if
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For single sample analysis, seeksv, DELLY, CREST and PRISM are

performed and compared. For pair samples, seeksv and CREST are

run for somatic SV analysis, DELLY and PRISM are conducted to de-

tect somatic genome SV, and then make difference set with germline

SV to obtain somatic SV. For real data from the 1000 Genomes

Project, NA12878 was selected because it has already been analyzed

by many other SV tools. The trio samples (NA19238, NA19239 and

NA19240) were also comparatively analyzed by the above four de-

tection tools. We also apply seeksv to whole-genome sequencing data

from five esophageal squamous cell carcinoma (ESCC) case-control

samples which are sequenced by the Beijing Genomics Institute

(BGI). For viral integration detection, seeksv is performed based on

MyGenostics Company probe and BGI probe sequencing data of five

positive samples to detect integration breakpoints; some of the break-

points are selected to carry out the biological experiments.

3.1 Evaluating seeksv on simulated data
Germline and cancer genomes are simulated based on chr11 of hg19

with three kinds of SVs added, including DEL, INS and INV.

Germline genome derives from the reference genome and cancer

genome derives from germline genome with a minimal difference in

SV, which inherits most of germline SV and derives specific new SV.

The variation ratios are 0.001 and 0.00003, respectively, for germ-

line and cancer genomes. For germline SV simulation, a total of 131

large SVs are generated, including 49 large INSs (36 heterozygous

and 13 homozygous) ranging from 1 Kb to 4 Mb, 53 large DELs (37

heterozygous and 16 homozygous) ranging from 1 Kb to 4 Mb and

29 large INVs (20 heterozygous and 9 homozygous) ranging from

1 Kb to 2 Mb. For somatic SV simulation, a total of 247 large SVs

are generated, including 94 large INSs (62 heterozygous and 32

homozygous) ranging from 1 Kb to 4 Mb, 98 large DELs (64 hetero-

zygous and 34 homozygous) ranging from 1 Kb to 4 Mb and 55

large INVs (35 heterozygous and 20 homozygous) ranging from

1 Kb to 2 Mb. And a total of 116 large SVs only exist in the cancer

genome, including 45 large INSs (26 heterozygous and 19 homozy-

gous) ranging from 1 Kb to 4 Mb, 45 large DELs (27 heterozygous

and 18 homozygous) ranging from 1 Kb to 4 Mb and 26 large INVs

(15 heterozygous and 11 homozygous) ranging from 1 Kb to 2 Mb.

Single-end and paired-end sequencing reads are generated from

germline and cancer genomes under different read length, coverage

and insert size parameter settings with sequence error rate of

0.01.The read is simulated by using the BGI in-house read simula-

tion software called simulate_solexa_reads. The quality profile of

simulated read comes from real sequencing read of BGI. The BWA

(Li and Durbin, 2009) is used to map all simulated reads to the refer-

ence chr11 genome and SAMtools (Li et al., 2009) is used to sort

and index artificially synthesized BAM files. In single-end read

mode, the read length should be better longer than 50 bp. Seeksv is

conducted to detect genome and somatic SVs with general param-

eters. The detected results are compared with simulated ground-

truth SVs and judged to be consistent with simulated events if the

distance between predicted breakpoints and simulated events is

within 50 bp. The receiver operating characteristic curve of DEL,

INV and INS detection under different coverage in single-end mode

and paired-end mode under and without rescue mode are illustrated

(Supplementary Figs S9 and S10). In paired-end read mode, three

another SV detection tools are conducted to compare performance

with seeksv, namely delly_v0.6.1 (Rausch et al., 2012), PRISM_v1.

1.6 (Jiang et al., 2012) and CREST_v1.0 (Wang et al., 2011) using

default parameters. In the detection results of DELLY, lots of pre-

dicted SVs are marked as ‘LowQual’, which would be filtered out

for future analysis. The comparison results of germline SV and som-

atic SV are summarized in Figure 2. The true positive rate (TPR) and

precision (P) are calculated to measure the performance of the above

four detection tools. Reads are simulated under different settings,

which are coverage, insert size and read length. And in each experi-

ment, only one simulated parameter is changed. The default param-

eters are set as coverage is 20�, read length is 100 bp, insert size and

SD is N (500, 30).

In paired-end sequencing mode, all four detection tools achieve

more than 85% TPR on almost all parameter settings for germline

and somatic SVs detection. And seeksv, CREST and PRISM also have

a relatively high precision, but DELLY is about 50% for all parameter

settings. Seeksv achieves high precision, which is outperforming its

peers with a slight decrease in TPR. For DEL and INV detection of

the four detection tools, with the increase of sequencing coverage, the

TPR also increases, but the precision has decreases, and INS detection

is on the contrary. The change in insert size and SD has little effect on

the TPR and precision. For change in read length, the TPR of INS de-

tection is obviously decreases with the increment of read length. The

TPR and precision across all SV types demonstrates that seeksv would

be a better choice for single-end and pair-end reads.

3.2 Evaluating seeksv on data from the 1000 genomes

project
Simulation data are too perfect to show the actual performance of

the detection tools. A real data set is needed to evaluate the

Fig. 2 TPR and P of the four tools to detect simulated SVs of germline and

somatic tumor genomes. The number in the table is represented as TPR/P

form

Seeksv: an accurate tool for somatic structural variation 5
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performance of seeksv. Four sample data sets NA19240, NA19238,

NA19239 and NA12878 are downloaded from the 1000 Genomes

Project. They are all low coverage sequencing data (4�coverage),

which were sequenced in Pilot 1. Given the large scale of chromo-

somal rearrangement of SV and absent gold standard reference set,

only DELs greater than 50 bp detection performance of the 1–22

chromosomes are compared. Seeksv and DELLY are conducted,

which use both discordant mappings and split reads to detect SVs.

Both SVs and ‘LowQual’ filtered SVs predicted by DELLY are ana-

lyzed. The callset released by the 1000 Genomes Project Consortium

(2010b) is considered the gold standard of results, which can be

downloaded from the Database of Genomic Variants (MacDonald

et al., 2014). The predicted results are considered to be consistent if

the predicted SV interval overlaps with gold standard, which is less

strict than simulation data analysis. Although the 1000 Genomes

callset is comprehensive and convincing, it may still miss some ac-

tual DELs in an individual’s genome. Seeksv and DELLY are run

with default parameters, and the results are shown in Figure 3. The

tabular form of predicted SVs of four detection tools is also pre-

sented (Supplementary Table S1).

3.3 Evaluating seeksv on ESCC samples
To demonstrate the performance of seeksv on real tumor datasets,

five whole-genome sequencing ESCC samples are selected; each

sample is sequenced to an average of 40� coverage. Seeksv has iden-

tified a total of 847 SVs, including 178 DELs, 122 INSs, 114 INVs

and 433 CTXs across the five samples (Supplementary Table S1).

ESCC have been analyzed by many research teams (Cheng et al.,

2016; Gao et al., 2014). 5204 SVs from the 31 ESCC samples SVs

have been has identified by Cheng et al., (2016) with an average of

168 SVs per sample. Among SVs detected by seeksv across the five

samples, many of which are located in some well-known ESCC-

associated genes such as CDKN2A, TP53, RB1 and some newly

published ESCC-related genes, including MACROD2, FHIT and

PARK2 (Hu et al., 2016). 1275 DELs and 1074 INVs are extracted

from Cheng’s SV results and compared with the results of seeksv.

140 of 178 DELs from seeksv are overlapping with 1275 DELs from

Cheng, 98 of 114 INVs from seeksv are overlapping with 1074

INVs from Cheng. All these overlapped SVs may be the common

variations shared by ESCC samples which are expected to be further

analyzed.

3.4 Evaluating seeksv on hepatitis B virus integration

data
To verify the performance of seeksv in hepatitis B virus integration

detection, parallel experiments (case–control) with five samples

(695, 728, 807, 815 and 905) infected with HBV are conducted.

The sequencing depth of samples is more than 200�using two HBV

capture probes from MyGenostics and BGI. Seeksv detects HBV

breakpoints based on the two capture platforms. Table 1 lists the de-

tection result of seeksv. The difference in detection results between

the two platforms is compared. For sample 695, seeksv detects 17

breakpoints both from MG Company and BGI, and 13 of them are

overlapping. For samples 807, 905 and 728, seeksv detects more

BGI unique breakpoints, which may be caused by the difference be-

tween the capture platforms. For sample 815, the detection situation

is similar to sample 695, which has the highest percentage of break-

points overlapping.

Some of the detected breakpoints are selected for experimental

verification. As the BGI probe has more unique breakpoints, 20 de-

tected breakpoints from the BGI platform and 18 breakpoints from

MG Company are selected. There are 14 common breakpoints be-

tween them. Six and four remaining unique breakpoints were from

BGI and MG Company, respectively. The verification results are

shown in Table 2.

Among the 14 overlapping breakpoints, 13 of them are experi-

mentally validated and 3 of the remaining 4 MG probe unique

breakpoints are validated. For the BGI probe, six unique break-

points are detected by seeksv, and all of them are validated. Seeksv

has more unique breakpoints, but these unique breakpoints are true.

This finding shows that seeksv possesses very high accuracy. In

terms of the breakpoints that are not detected by seeksv from the

MG probe platform, the detection performance of breakpoints may

be related to the technique of the probe capture. Seeksv shows good

compatibility and stable viral integration detection under different

probe capture platforms. Seeksv can also detect viral integration

breakpoints in the scale of the whole genome.

Fig. 3 Private/common calls of four samples. (A) NA12878. (B) NA19238. (C)

NA19239. (D) NA19240. The cornflower blue area is SV result of baseline,

green area is seeksv, yellow area is DELLY and dark orchid is DELLY after

filtered

Table 1 Detection results of HBV integration

Sample MG_uniq_number Overlapping_number BGI_uniq_number

695 4 13 4

807 2 13 11

815 2 10 2

905 7 6 15

728 0 4 17

All breakpoints have supporting reads �3.

Table 2 Verification results of two probes

Capture platform Total breakpoints Verified Verified rate

MG_probe 18 16 89%

BGI_probe 20 19 95%
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4 Discussion

In this study, we have developed a novel SV calling methodology

that involves DEL, INS, INV and CTX. This methodology can also

detect viral integration breakpoints if users offer a virus reference se-

quence. Seeksv comprehensively uses four different detection signals,

namely, SR signal, discordant PEM signal, DOC signal and the frag-

ment with both ends unmatched to avoid the weakness of a single

signature. Soft-clipped reads cannot be completely mapped into the

reference sequence, but when the read is clipped and partial se-

quence can be mapped uniquely. Soft-clipped-reads are fully used,

which offer base-level breakpoint information. Unlike previous

methods, seeksv merges soft-clipped-reads from the same breakpoint

into a clipped long sequence individually and does not rely on any of

the assembly software. These features reduce configuration require-

ment of the computer for software. In assessing the type of SV,

seeksv is very comprehensive as it combines the information of two

junctions instead of only one junction to make judgments, thereby

greatly reducing the false positive rate. Even if SV is located in the

sequence homology region, which may be missed because of se-

quence similarity, seeksv has a rescue model to reduce the loss as

much as possible. When seeksv is applied to viral integration detec-

tion, it can automatically generate a mixed reference sequence of dif-

ferent populations according to the user’s input. Tables 1 and 2

show that seeksv possesses very high sensitivity and accuracy. Most

of the detected breakpoints are confirmed to be true. Single-end

sequencing data, which usually offer DOC signal and are only

applied to copy number variation detection, can also be used for SV

detection by seeksv. Currently, SV mapping of the human genome

remains insufficient and lacks credibility. Only the use of short reads

to detect the full range of variations is still challenging, especially in

complex areas. The combination of second-generation sequencing

data with third-generation sequencing data, which have the advan-

tages of long read length but with high base-call error, would be a

better strategy.
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