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A B S T R A C T

In recent years, the rapid evolution of large vision–language models (LVLMs) has driven a paradigm shift in mul­

timodal fake news detection (MFND), transforming it from traditional feature-engineering approaches to unified, 

end-to-end multimodal reasoning frameworks. Early methods primarily relied on shallow fusion techniques to 

capture correlations between text and images, but they struggled with high-level semantic understanding and 

complex cross-modal interactions. The emergence of LVLMs has fundamentally changed this landscape by en­

abling joint modeling of vision and language with powerful representation learning, thereby enhancing the ability 

to detect misinformation that leverages both textual narratives and visual content. Despite these advances, the 

field lacks a systematic survey that traces this transition and consolidates recent developments. To address this 

gap, this paper provides a comprehensive review of MFND through the lens of LVLMs. We first present a historical 

perspective, mapping the evolution from conventional multimodal detection pipelines to foundation model-driven 

paradigms. Next, we establish a structured taxonomy covering model architectures, datasets, and performance 

benchmarks. Furthermore, we analyze the remaining technical challenges, including interpretability, temporal 

reasoning, and domain generalization. Finally, we outline future research directions to guide the next stage of 

this paradigm shift. To the best of our knowledge, this is the first comprehensive survey to systematically docu­

ment and analyze the transformative role of LVLMs in combating multimodal fake news. The summary of existing 

methods mentioned is in our Github: https://github.com/Tan-YiLong/Overview-of-Fake-News-Detection.

1 . Introduction

The rapid proliferation of fake news across online platforms has 

emerged as a formidable societal challenge [1], undermining public trust 

[2], destabilizing democratic discourse, and exacerbating global crises 

such as the COVID-19 pandemic and geopolitical conflicts [3,4]. Unlike 

early waves of misinformation, which were predominantly textual, 

modern fake news campaigns increasingly exploit multimodal content 

combining manipulated images [5], misleading videos [6], and textu­

ally coherent yet semantically deceptive captions [7,8]. This growing 

reliance on cross-modal deception renders traditional unimodal detec­

tion techniques inadequate and motivates a shift toward Multimodal 

Fake News Detection (MFND) [9,10].

Multimodal fake news detection seeks to uncover inconsistencies be­

tween text, image, video, and other modalities to assess the veracity 

of online information [11]. However, the complex interplay between 

modalities, such as subtle semantic mismatches [12], visual entail­

ment contradictions, and temporal or contextual incoherence, presents 

formidable challenges [13,14]. Early MFND methods typically relied on 

late fusion architectures or shallow cross-modal alignment, which lacked 

the semantic depth and reasoning capacity to capture nuanced deception 

strategies [15].

Importantly, the notion of cross modal inconsistency in MFND is 

not ad hoc, but rooted in well documented limitations of vision–lan­

guage pretraining (VLP) models. Prior work shows that even large-scale 

VLP models exhibit systematic weaknesses in fine grained semantic 

alignment, particularly for linguistic negation, attribute ownership, and 

spatial relations [16]. These limitations are especially consequential for 

fake news detection, where deceptive content often maintains surface 

level coherence while violating latent semantic constraints across modal­

ities. As demonstrated by Wang et al. [16], such inconsistencies cannot 
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be reliably identified through naive cross-modal similarity alone, reveal­

ing the brittleness of multimodal alignment without explicit linguistic 

grounding. This observation provides a theoretical basis for MFND, as 

many forms of multimodal misinformation intentionally exploit these 

alignment blind spots.

The emergence of Large Vision–Language Models (LVLMs) has fun­

damentally changed this landscape [17]. Built upon advances in large 

language models (LLMs) and pre-trained visual encoders [18,19], as 

shown in Fig. 1, LVLMs such as CLIP [20], BLIP-2 [21], Flamingo [22], 

Kosmos-1 [23], LLaVA [24], and GPT-4V [25] offer unified architec­

tures capable of joint cross-modal representation learning and reasoning 

[26]. These models demonstrate impressive zero-shot and few-shot per­

formance on tasks such as image–text matching [27], visual question 

answering [28], and multimodal entailment making them well-suited 

for high-level fake news detection that demands semantic grounding and 

cross-modal verification [29].

Nevertheless, the application of LVLMs to MFND remains fragmented 

and lacks a systematic understanding. Existing studies vary widely in 

how they integrate LVLMs, differing in architectural design, supervi­

sion strategy [30], task formulation [31], and training cost [32]. To 

unify this landscape, we propose a novel three branch taxonomy that 

categorizes current MFND approaches using LVLMs into three distinct 

paradigms: (1) Parameter freezing applications. These methods uti­

lize pre-trained LVLMs without modifying their internal parameters 

[33]. Techniques such as in-context learning [34], prompt-based adap­

tation [35], or lightweight classification heads are employed on top of 

frozen backbones [15]. This paradigm is particularly attractive for re­

source constrained or real-time applications, offering fast deployment 

and high generalization at the cost of task specific adaptation [36]. 

(2) Parameter tuning applications. These approaches involve full 

or partial fine tuning of the LVLMs to enhance task alignment [11]. 

Techniques include full model fine tuning [37], adapter insertion [38], 

prefix tuning [39], or low rank adaptation (e.g., LoRA) [40]. Tuning 

allows the model to capture domain specific semantics [41], subtle 

modality inconsistencies [42], and contextual cues critical to accurate 

fake news detection, albeit with higher computational and data require­

ments [43]. (3) Reasoning paradigm applications. This new paradigm 

focuses on how LVLMs engage in structured, multi step reasoning to 

enhance the accuracy of fake news detection. Approaches under this 

paradigm emphasize the use of multi agent systems or explicit reasoning 

pipelines that sequentially analyze multimodal evidence and the claim. 

Methods such as agent-based reasoning [44], which breaks down rea­

soning into distinct sub-tasks like evidence retrieval and contradiction 

analysis, and prompting-based reasoning [45], which guides the model 

through reasoning via carefully crafted prompts, are key examples. 

The reasoning paradigm enables a deeper understanding of complex 

misinformation, leveraging the strengths of both large pre-trained mod­

els and task-specific reasoning strategies. However, it typically incurs 

higher inference costs and complexity, requiring more elaborate model 

architectures and robust reasoning pipelines [46].

In this survey, we offer the first comprehensive and structured 

review of how large vision–language models are being utilized for mul­

timodal fake news detection. The contributions made in this paper are 

summarized as follows:

• New taxonomy: We propose a novel three-branch taxonomy for 

applying large vision language models (LVLMs) to multimodal 

fake news detection (MFND), dividing existing methods into three 

main categories: (1) parameter-freezing applications, (2) parameter-

tuning applications, and (3) reasoning-paradigm applications. This is 

the first comprehensive survey to systematically document and ana­

lyze the transformative role of LVLMs in combating multimodal fake 

news, incorporating the latest advancements in structured reasoning 

and agent-based strategies.

• Comprehensive review: We systematically review the evolution 

from unimodal to multimodal approaches, analyze representative 

LVLMs-based architectures, and compare their performance and 

design principles across visual-textual misinformation detection 

benchmarks.

• Unified framework: We build a structured analytical frame­

work that encompasses model design, task formulation, training 

paradigms, and evaluation criteria. By aligning the strengths and 

limitations of parameter-freezing, parameter-tuning, and reasoning-

based approaches, we provide guidance for selecting appropriate 

LVLM strategies under different resource and robustness constraints, 

helping to navigate the challenges of real-time and resource-

constrained applications.

• Benchmark and evaluation: We summarize and compare publicly 

available datasets in MFND, highlighting their modality composition, 

annotation strategy, and real-world complexity. In addition, we 

examine current evaluation metrics and identify key gaps.

Fig. 1. A chronological overview of representative LVLMs is presented, highlighting the rapid growth of this field.
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• Research challenges and future directions: We identify open 

problems in LVLM-based MFND, including multimodal hallucina­

tion, cross-modal bias, and data scarcity in misinformation domains. 

We further propose promising directions for future research, in­

cluding counterfactual generation for cross-modal reasoning, and 

knowledge-enhanced LVLM adaptation.

This paper is organized as follows: Section 2 introduces the back­

ground and preliminary knowledge. Section 3 outlines the multimodal 

fake news detection paradigm based on LVLM. Section 4 introduces 

widely used benchmark datasets. Section 5 reviews evaluation met­

rics. Section 6 compares the experimental results of different methods. 

Section 7 discusses the advantages and challenges of LVLM in this field. 

Section 8 points out future research directions. Section 9 concludes the 

paper.

2 . Preliminary information

2.1 . Traditional single-modal fake news detection

Problem definition. Early approaches to fake news detection pre­

dominantly relied on a single modality [47,48], typically focusing on 

either textual or visual content [49,50]. In these methods, fake news 

is formulated as a binary classification problem over a single input 

space [51]. Let 𝑥𝑡 denote textual features extracted from news articles 

[52], and 𝑥𝑣 represent visual features derived from associated images 

[53]. The single-modal fake news classifier can generally be defined as 

F𝑠𝑚 ∶ 𝑥 → {0, 1}, where 𝑥 ∈ {𝑥𝑡, 𝑥𝑣} and the output {0, 1} corresponds 

to the labels real and fake [54].

Text-based methods. Traditional text-based approaches typically 

leverage linguistic and semantic features [55], such as word 𝑛-grams, 

syntactic patterns [56], or semantic embeddings [57]. Given a text se­

quence 𝑇 = {𝑤1, 𝑤2,… , 𝑤𝑛}, an embedding model 𝜙(⋅) maps words into 

a continuous space [58], yielding the representation as follows:

𝑋𝑇 = 𝜙(𝑇 ) ∈ R𝑑 (1)

where 𝑑 is the embedding dimension. A classifier 𝑓𝜃  (e.g., logistic re­

gression, SVM, or neural network) then predicts the probability of being 

fake as follows:

𝑃 (𝑦 = 1|𝑇 ) = 𝜎(𝑓𝜃(𝑋𝑇 )) (2)

with 𝜎(⋅) denoting the sigmoid function. The model is trained using the 

standard binary cross-entropy loss as follows:

L𝑡𝑒𝑥𝑡 = −
𝑁
∑

𝑖=1

[

𝑦𝑖 log𝑃 (𝑦𝑖|𝑇𝑖) + (1 − 𝑦𝑖) log(1 − 𝑃 (𝑦𝑖|𝑇𝑖))
]

(3)

Image-based methods. Visual single-modal methods focus on de­

tecting inconsistencies or manipulations in images [59,60]. A typi­

cal approach involves extracting features from an image 𝐼  using a 

convolutional neural network (CNN) [3] or vision Transformer (ViT) 

[61] as follows:

𝑋𝑉 = 𝜓(𝐼) ∈ R𝑘 (4)

where 𝜓(⋅) is the feature extractor. The classifier 𝑔𝜃  then computes as 

follows:

𝑃 (𝑦 = 1|𝐼) = 𝜎(𝑔𝜃(𝑋𝑉 )) (5)

These methods aim to capture visual artifacts such as unnatural textures 

[62], illumination mismatches [63], or traces of generative adversarial 

networks (GANs) [64].

Limitations. Although single-modal detection has achieved early 

success, it suffers from several critical limitations [65]. Text-only meth­

ods often fail when the news content appears linguistically coherent 

but is paired with misleading images [66]. Similarly, image-only meth­

ods cannot account for manipulative narratives conveyed by text [67]. 

Formally, if fake news involves a cross-modal inconsistency [68,69], i.e.,

(𝑇 , 𝑉 ) ∈ D𝑓𝑎𝑘𝑒, 𝜙(𝑇 ) ≉ 𝜓(𝑉 )

then any function F𝑠𝑚 defined on a single modality is inherently in­

sufficient [70]. This limitation motivates the shift toward multimodal 

approaches, where joint reasoning over text and vision becomes essen­

tial [71].

2.2 . Multimodal fake news detection

Problem definition. Let M = {𝑡, 𝑣} denote the set of available 

modalities (e.g., text 𝑡, image/video 𝑣). A multimodal set is 𝑥 =
{𝑥𝑚}𝑚∈M, associated with a focal claim 𝑐 and optional external con­

text 𝜅 (e.g., knowledge bases, timelines, provenance) [72]. The goal of 

Multimodal Fake News Detection (MFND) is to infer a veracity label 

𝑦 ∈ {0, 1} (with 1 meaning fake) together with a structured, referable 

rationale 𝑅 grounding the decision in cross-modal evidence [73,74]. We 

formalize a reasoned prediction as follows:

(𝑦̂, 𝑅̂) = arg max
𝑦∈{0,1}, 𝑅∈R

𝑃𝜃
(

𝑦,𝑅 ∣ 𝑥, 𝑐, 𝜅
)

(6)

where 𝜃 parameterizes the large vision–language model (LVLM), and R
denotes the space of executable explanations (textual justifications with 

pointers to spans, frames, and regions).

2.3 . Multimodal fake news reasoning

Principled dimensions of deception. We posit a principled, tri­

adic decomposition of multimodal deception into three interacting yet 

distinct dimensions (i.e., Authenticity, Consistency, and Intent) that 

together determine veracity and the structure of model explanations 

[75]. Authenticity quantifies media-level integrity via forensic evidence 

and generative priors [76]. Consistency measures cross-modal seman­

tic agreement between claim, text, image/video, and audio embeddings 

[59]. Intent captures manipulative or persuasive framing, decoupled 

from factuality, through stylistic, pragmatic, and source cues. These di­

mensions target complementary failure modes, including (i) deepfaked 

or altered media with otherwise aligned captions; (ii) truthful media 

paired with misleading text; and (iii) technically accurate content ar­

ranged to steer beliefs. Relying on any single dimension is insufficient; 

instead, we fuse calibrated posteriors within an interpretable surrogate 

to produce both the veracity label and a grounded rationale [77]. This 

decomposition provides a unifying lens across news articles, social posts, 

memes, and videos, and it aligns naturally with LVLM-based reasoning 

that constructs evidence graphs and referenceable explanations [78]. 

Below we will introduce the principles of each dimension.

Media authenticity. This dimension targets whether a medium in 𝑥
has been synthetically generated or altered. Let 𝑝nat and 𝑝alt be (implicit) 

likelihoods under natural and altered media manifolds, respectively (in­

stantiated by generative/forensic priors) [79]. A generic forgery score 

for a visual stream 𝑥𝑣 is as follows:

𝑆𝐹 (𝑥𝑣) = − log 𝑝nat(𝑥𝑣) + log 𝑝alt(𝑥𝑣)

𝐹 = 𝜎
(

𝜙𝐹 (𝑆𝐹 (𝑥𝑣))
)

∈ [0, 1]
(7)

where 𝜙𝐹  calibrates the score and 𝜎 is a sigmoid. 𝐹  indicates tampering 

signals (e.g., seam/lighting inconsistencies, GAN fingerprints, lip-sync 

drift).

Cross-modal inconsistency. This dimension captures contradic­

tions between modalities (e.g., the caption asserts “Category 5 hur­

ricane” while the video depicts calm weather). Let 𝑔𝑚 ∶ X𝑚 → R𝑑
embed each modality into a shared semantic space [13]. For any pair 

(𝑚, 𝑛) ∈ M:

𝐷𝑚,𝑛(𝑥) = 1 − sim
(

𝑔𝑚(𝑥𝑚), 𝑔𝑛(𝑥𝑛)
)

(8)
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𝐷 = max
(𝑚,𝑛)∈M

𝐷𝑚,𝑛(𝑥) ∈ [0, 1] (9)

where sim can be cosine similarity or an entailment-based score from 

a caption→NLI pipeline. Large 𝐷 signals cross-modal contradiction or 

missing supporting evidence [80].

Manipulative intent. Distinct from factuality, this dimension eval­

uates whether content is crafted to steer beliefs via rhetorical devices 

(e.g., cherry-picked visuals, loaded language, fear appeals) [65]. We 

model intent as a latent probability as follows:

𝐼 = 𝑃𝜃
(

manipulative ∣ 𝑥, 𝑐, 𝜅
)

= 𝜎
(

𝜙𝐼
(

𝜓𝑡(𝑥𝑡), 𝜓𝑣(𝑥𝑣), 𝜓𝑎(𝑥𝑎), 𝑢
)

)

∈ [0, 1]
(10)

where 𝜓∙ extracts stance, sentiment, emotional arousal, propaganda 

patterns, and 𝑢 encodes source-level priors.

Joint decision. The veracity decision should couple these dimen­

sions while remaining explanation-seeking [81]. A factorized formula­

tion is as follows:

𝑃𝜃(𝑦, 𝐹 ,𝐷, 𝐼 ∣ 𝑥, 𝑐, 𝜅) ∝ 𝜓𝑌 (𝑦 ∣ 𝑥, 𝑐, 𝜅)𝜓𝐹 (𝐹 ∣ 𝑥)

𝜓𝐷(𝐷 ∣ 𝑥, 𝑐)𝜓𝐼 (𝐼 ∣ 𝑥, 𝑐, 𝜅)𝜓𝐶 (𝑦, 𝐹 ,𝐷, 𝐼)
(11)

where 𝜓𝐶  enforces structural compatibilities (e.g., severe tampering or 

strong cross-modal contradictions raise the prior for 𝑦=1, while high 

𝐼  alone is not conclusive) [26]. A transparent decision surrogate is as 

follows:

𝑠(𝑥, 𝑐, 𝜅) = ℎ𝜃(𝑥, 𝑐, 𝜅) + 𝜆𝐹𝐹 + 𝜆𝐷𝐷 + 𝜆𝐼𝐼

𝑦̂ = 𝟙
[

𝜎(𝑠(𝑥, 𝑐, 𝜅)) > 𝜏
]

(12)

where ℎ𝜃  captures claim-conditioning and external verification (e.g., 

retrieval-augmented grounding), and 𝜆∙ balances the three dimensions.

Definition of reasoning in MFND. Reasoning is the construction of 

a grounded evidence graph 𝐺 = (𝑉 ,𝐸) and a minimal rationale 𝑅 ⊆ 𝑉
such that a verifier 𝑉check confirms sufficiency [81] and faithfulness as 

follows:

𝑃𝜃
(

𝑦 ∣ 𝑥, 𝑐, 𝜅, 𝑅
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
sufficient

−𝑃𝜃
(

𝑦 ∣ 𝑥, 𝑐, 𝜅,∅
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
baseline

≥ 𝜖

𝑃
(

𝑅is used by 𝜃)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

faithful

≥ 1 − 𝛿
(13)

where 𝑅 consists of modality-aligned snippets (text spans, frames, re­

gions) and explicit cross-modal relations (support/contradiction) that 

can be referenced and verified [9].

Learning objective. Supervision is naturally multi-task, promoting 

veracity accuracy, forensic robustness, semantic alignment, and intent 

recognition [82], while rewarding concise, grounded explanations as 

follows:

L = 𝓁cls(𝑦, 𝑦̂)
⏟⏞⏟⏞⏟

veracity

+𝛼 𝓁𝐹
(

𝐹 , 𝐹
)

⏟⏞⏞⏟⏞⏞⏟
authenticity

+𝛽 𝓁𝐷
(

𝐷, 𝐷̂
)

⏟⏞⏞⏟⏞⏞⏟
consistency

+𝛾 𝓁𝐼
(

𝐼, 𝐼
)

⏟⏞⏟⏞⏟
intent

+𝜂 𝓁exp(𝑅, 𝑅̂)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

grounded rationale

(14)

where 𝛼 controls the relative importance of the content-level forgery 

detection loss 𝓁𝐹 , which focuses on identifying tampered or synthetic 

media, 𝛽 weights the cross-modal consistency loss 𝓁𝐷, encouraging the 

model to detect semantic misalignments between modalities [83], 𝛾
adjusts the manipulative intent recognition loss 𝓁𝐼 , which measures 

whether the content is strategically framed to mislead or persuade, 𝜂
regulates the explanation generation loss 𝓁exp, ensuring that the model 

outputs interpretable and faithful rationales 𝑅 grounded in multimodal 

evidence [84].

2.4 . Positioning of large vision-language models

Unified parameterization. LVLMs provide a single probabilistic 

program to instantiate the factorization in Eq. (11) and the reasoned 

prediction [85] in Eq. (6). Let 𝜙𝑡, 𝜙𝑣 be modality encoders and let 𝑟𝜅 (𝑐)
denote a retrieval operator over external context 𝜅 conditioned on claim 

𝑐. We define claim-aware token streams

𝑡 = Pack(𝑥𝑡, 𝑐), 𝑣̃ = Patch(𝑥𝑣), 𝜅̃ = 𝑟𝜅 (𝑐) (15)

and a cross-modal aggregator A𝜃  (multi-head cross-attention over con­

catenated tokens) that yields a joint representation as follows:

𝑍 = A𝜃

(

𝜙𝑡(𝑡), 𝜙𝑣(𝑣̃), 𝜙𝑡(𝜅̃)
)

∈ R𝑑 (16)

Concretely, the authenticity, consistency [86], and intent scores are 

realized by LVLM heads, which are mathematically expressed as follows:

𝐹 = 𝜎
(

𝑤⊤𝐹𝑍 + 𝑏𝐹
)

, 𝐼 = 𝜎
(

𝑤⊤𝐼𝑍 + 𝑏𝐼
)

𝑔𝑡(𝑥𝑡) = 𝑊𝑡𝜙𝑡(𝑡), 𝑔𝑣(𝑥𝑣) = 𝑊𝑣𝜙𝑣(𝑣̃)

𝐷̂ = 1 − sim
(

𝑔𝑡(𝑥𝑡), 𝑔𝑣(𝑥𝑣)
)

(17)

The claim-conditioned verifier ℎ𝜃  is implemented to fuse content 

evidence with retrieved context as follows:

ℎ𝜃(𝑥, 𝑐, 𝜅) = 𝑤⊤𝑌𝑍 + 𝑏𝑌 (18)

Cross-modal alignment pretraining. To make sim(⋅, ⋅) meaningful, 

LVLMs optimize contrastive alignment [87] between 𝑔𝑡 and 𝑔𝑣:

Lalign = −
𝑁
∑

𝑖=1
log

exp
(

⟨𝑔𝑡(𝑥
(𝑖)
𝑡 ), 𝑔𝑣(𝑥

(𝑖)
𝑣 )⟩∕𝜏

)

∑𝑁
𝑗=1 exp

(

⟨𝑔𝑡(𝑥
(𝑖)
𝑡 ), 𝑔𝑣(𝑥

(𝑗)
𝑣 )⟩∕𝜏

)

(19)

This objective ensures that 𝐷 faithfully reflects cross-modal consistency.

Claim-conditioned verification and retrieval grounding.

External context 𝜅 is integrated by a differentiable retriever as follows:

𝑟𝜅 (𝑐) = Top𝐾
(

argmax
𝑑∈𝜅

sim(𝑞(𝑐), 𝑘(𝑑))
)

(20)

with query encoder 𝑞(⋅) and key encoder 𝑘(⋅) sharing parameters with 

𝜙𝑡. The retrieved snippets are injected as memory tokens, allowing ℎ𝜃  to 

realize the claim-conditioning term and to reduce spurious correlations 

in 𝐹 , 𝐷̂, 𝐼 .

Evidence-consistent rationale generation. Let 𝑅 = (𝑟1,… , 𝑟𝐿) de­

note a textual rationale augmented [31] with pointers 𝜋 to evidence 

units (text spans, frames, regions) from the evidence graph 𝐺 = (𝑉 ,𝐸). 
LVLMs generate 𝑅 with an autoregressive head over 𝑍 as follows:

𝑃𝜃(𝑅 ∣ 𝑥, 𝑐, 𝜅) =
𝐿
∏

𝑡=1
𝑃𝜃(𝑟𝑡 ∣ 𝑟<𝑡, 𝑥, 𝑐, 𝜅),

𝑃𝜃(𝜋𝑡 = 𝑢 ∣ 𝑟≤𝑡, 𝑥, 𝑐, 𝜅) = softmax
(

⟨𝑞𝑡, 𝜈(𝑢)⟩
)

, 𝑢 ∈ 𝑉

(21)

where 𝑞𝑡 is the decoder query at step 𝑡 and 𝜈(𝑢) is the node embedding 

of the evidence unit 𝑢. By training Eqs. (21) jointly, the LVLM yields 

rationales that satisfy the sufficiency/faithfulness criteria via explicit 

grounding [88].

Decision surrogate and calibration. Plugging LVLM heads into 

Eq. (12) gives the following:

𝑠(𝑥, 𝑐, 𝜅) = ℎ𝜃(𝑥, 𝑐, 𝜅) + 𝜆𝐹𝐹 + 𝜆𝐷𝐷̂ + 𝜆𝐼𝐼

𝑦̂ = 𝟙
[

𝜎(𝑠) > 𝜏
]

(22)

where the weights (𝜆𝐹 , 𝜆𝐷, 𝜆𝐼 ) are learned by post-hoc calibration to 

respect the compatibility potential 𝜓𝐶  in Eq. (11):

min
𝜆𝐹 ,𝜆𝐷 ,𝜆𝐼 ,𝜏

E
[

𝓁cls

(

𝑦, 𝟙[𝜎(𝑠) > 𝜏]
)]

+ Ω
(

𝜆𝐹 , 𝜆𝐷, 𝜆𝐼
)

, (23)

with a regularizer Ω that discourages over-reliance on any single dimen­

sion.
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Media authenticity with generative priors. To instantiate 𝑝nat and 

𝑝alt, LVLMs either distill forensic experts into a head over 𝑍, or use a 

learned energy surrogate [76] as follows:

𝑆𝐹 (𝑥𝑣) ≈ 𝐸𝜃(𝑥𝑣) = − log
∑

𝑧
exp

(

− E𝜃(𝑥𝑣, 𝑧)
)

𝐹 = 𝜎
(

𝜙𝐹 (𝐸𝜃(𝑥𝑣))
)

(24)

where E𝜃  is an amortized energy over latent codes 𝑧 (e.g., visual artifacts, 

frequency cues). This provides a practical bridge to Eq. (7) within the 

LVLM.

Training objective. The multi-task learning is realized by aug­

menting it with alignment and instruction-following terms [89] as 

follows:

LLVLM = 𝓁cls(𝑦, 𝑦̂)
⏟⏞⏟⏞⏟

veracity

+𝛼 𝓁𝐹 (𝐹 , 𝐹 )
⏟⏞⏞⏟⏞⏞⏟
authenticity

+𝛽 𝓁𝐷(𝐷, 𝐷̂)
⏟⏞⏞⏟⏞⏞⏟
consistency

+𝛾 𝓁𝐼 (𝐼, 𝐼)
⏟⏟⏟

intent

+𝜂 𝓁exp(𝑅, 𝑅̂)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

grounded rationale

+ Lalign + LLM + Lptr

(25)

where LLM is the next-token negative log-likelihood for rationale gen­

eration and Lptr is a cross-entropy over pointers 𝜋 to evidence nodes 

[90].

3 . Taxonomy

We classify multimodal fake news detection methods into three 

paradigms, namely Parameter-Frozen Paradigm, Parameter-Tuning 

Paradigm, and Reasoning Paradigm. The Parameter-Frozen Paradigm 

relies on zero-shot or few-shot prompting without updating the model’s 

parameters, ensuring that the backbone model remains fixed. In con­

trast, the Parameter-Tuning Paradigm involves adapting the model’s 

parameters through full fine-tuning or parameter-efficient techniques 

such as adapters, prefix tuning, and Low Rank Adaptation (LoRA). 

Finally, the Reasoning Paradigm categorizes methods based on the type 

of reasoning employed, with prompting-based reasoning conducting im­

plicit reasoning within a single inference pass and agent-based reasoning 

involving explicit, structured, multi step interactions for veracity reason­

ing. This classification is illustrated in Fig. 2, providing a comprehensive 

framework for understanding the distinct approaches in multimodal fake 

news detection.

3.1 . Parameter-frozen paradigm

In the parameter-frozen paradigm, the backbone LVLM remains un­

changed, and task adaptation is realized purely through prompting and 

in-context specification [156]. This setting is particularly attractive for 

multimodal fake news detection because it avoids expensive fine-tuning 

on large models, and it enables rapid transfer across datasets and plat­

forms with heterogeneous news formats [75]. Let 𝑋 = {𝑥𝑡, 𝑥𝑖, 𝑥𝑣} denote 

text, image, and video inputs after modality-specific encoding or serial­

ization into model-acceptable inputs, and let I denote a task instruction 

template that defines the goal (e.g., “Determine whether the given news is 

fake or real and justify the decision with cross-modal evidence.”) [157]. The 

model produces a distribution over label strings given the constructed 

Fig. 2. Taxonomy of multimodal fake news detection and veracity reasoning. We systematically categorize multimodal fake news detection methods according to 

their parameter adaptation paradigms, including full fine-tuning, parameter-efficient tuning, prompting-based inference, and agent-based reasoning. This taxonomy 

provides a structured overview of state-of-the-art approaches and clarifies how different parameter interaction strategies are leveraged for multimodal veracity 

assessment [91,92,97–103,105–108,111–114,117–120,127,128,130–132,135,137,139,146,155].
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prompt Π(𝑋,I) as follows:

𝑃Θ(𝑦 ∣ 𝑋,I) =
∑

𝑠∈𝜈(𝑦)
𝑃Θ(𝑠 ∣ Π(𝑋,I)) (26)

where Θ are frozen parameters and 𝜈(𝑦) is a verbalizer mapping each 

class 𝑦 (e.g., fake, real) to one or more label strings. The final decision is 

𝑦̂ = argmax𝑦 𝑃Θ(𝑦 ∣ 𝑋,I).
Mechanistic view under frozen parameters. From a mechanis­

tic perspective, parameter-frozen LVLMs perform multimodal fake news 

detection by integrating visual tokens and textual instructions into a 

unified autoregressive reasoning process, rather than relying on ex­

plicit cross modal classifiers. Since model parameters remain unchanged, 

prompts act as the primary interface for controlling how multimodal ev­

idence is attended to, decomposed, and compared. Different prompting 

strategies induce distinct reasoning behaviors [129]. Direct classifica­

tion prompts typically encourage holistic judgments, which may obscure 

fine grained semantic inconsistencies such as mismatched object at­

tributes, quantities, or spatial relations. In contrast, structured prompts 

that explicitly request visual entity extraction, attribute comparison, 

or step by step reasoning promote finer grained alignment between 

visual evidence and textual claims [158]. Chain-of-thought prompt­

ing further externalizes intermediate reasoning states, reducing over 

reliance on language priors and improving sensitivity to subtle cross-

modal discrepancies. This mechanism distinguishes parameter-frozen 

LVLMs from traditional multimodal pipelines, where inconsistency de­

tection is enforced through explicit similarity objectives or supervised 

heads. In frozen LVLMs, fine grained semantic inconsistency detection 

emerges implicitly from prompt guided reasoning trajectories, highlight­

ing the central role of inference time design in determining detection 

robustness.

Zero-shot learning. Zero-shot multimodal fake news detection relies 

solely on natural-language instructions without task-specific examples 

[159]. As shown in Fig. 3, a well-engineered prompt serializes hetero­

geneous evidence into a structured context that highlights cross-modal 

credibility cues while minimizing spurious correlations [160]. In LLM-

based pipelines, non-text modalities are first converted into textual 

evidence snippets, e.g., image captions, entity–relation triples, and video 

scene summaries through auxiliary encoders, and concatenated with raw 

news articles using role tags (e.g., <Text>, <Image-Caption>, <Video-
Scene>)). In LVLM-based pipelines, raw embeddings are passed along­

side textual tokens, but the model is still queried through instructions 

[65]; hence Eq. (26) applies with Π(⋅) injecting modality tokens or 

connector-produced embeddings. To reduce prompt sensitivity and 

improve robustness, zero-shot systems commonly employ instruction 

variants and prompt ensembling with majority voting or probability av­

eraging, self-consistency with reasoning where latent rationales 𝑟 are 

sampled and marginalized as follows:

𝑃Θ(𝑦 ∣ 𝑋,I) ≈
∑

𝑟∈R
𝑃Θ(𝑦 ∣ 𝑟,𝑋,I)𝑃Θ(𝑟 ∣ 𝑋,I) (27)

and contextual calibration subtracts a prior estimated from a content-

free prompt to alleviate label-word frequency bias. Zero-shot decoding 

can output both a veracity label (fake or real) and an explanation, 

providing weak but valuable interpretability for auditing fake news 

decisions [161].

Representative methods have instantiated these principles in di­

verse ways. For instance, MRCD [116] introduces a zero-shot multi 

round collaborative framework that iteratively generates hypotheses, 

retrieves external evidence, and refines predictions without supervised 

fine tuning. This approach effectively supports the detection of emerging 

fake news while enhancing decision explainability. Additionally, MRCD 

leverages collaborative evidence gathering, which improves robustness 

by facilitating cross source information validation and hypothesis re­

finement. LEMMA [122] adapts this paradigm by leveraging exemplar 

driven fusion pipelines in a zero-shot setting, showing that multi­

modal alignment and reasoning can be improved without task specific 

supervision. This model introduces an innovative approach by using ex­

emplar based learning to guide reasoning, enabling better performance 

in resource constrained settings. MiRAGe [121] improves cross modal 

alignment in zero-shot scenarios through synthetic data augmentation 

and augmented connectors, enhancing multimodal reasoning. By syn­

thesizing additional data, MiRAGe reduces the dependency on manually 

curated datasets, making it highly effective for scaling fake news detec­

tion across diverse domains. Similarly, M3A [93] integrates text, image, 

and domain adaptation features via large scale pre-training, achiev­

ing transferability across diverse disinformation benchmarks without 

task specific fine tuning. This model demonstrates the power of large 

scale pre-training, allowing it to generalize effectively across multiple 

fake news detection challenges. KAI [104] proposes a knowledge en­

hanced interpretable network that leverages a large language model to 

generate target specific analytical perspectives, which are integrated 

through a bidirectional knowledge guided neural generation system. 

Fig. 3. Zero-shot learning framework for multimodal fake news detection. The architecture integrates direct prediction and reasoning mechanisms to process text 

and image inputs. It employs a multi-query generation module to formulate news-related queries based on the input’s title and keywords. These queries are filtered 

for topical relevance and used to extract evidence from external sources. If external knowledge is deemed necessary, the system verifies the authenticity of both 

text and image inputs. The extracted evidence, along with the initial predictions, is refined through a reasoning process to produce the final output. This end-to-end 

approach enables the detection of fake news without prior training on labeled data, leveraging the complementary strengths of direct reasoning and external evidence 

integration [122].
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This enables zero-shot stance detection with improved interpretability, 

making KAI particularly suitable for real world applications that demand 

transparency and explainability in decision-making processes.

Few-shot learning. Few-shot multimodal fake news detection aug­

ments the instruction with 𝑘 demonstration pairs {(𝑋𝑖, 𝑦𝑖)}
𝑘
𝑖=1 injected 

into the prompt as in-context exemplars. The predictive distribution is 

as follows:

𝑃Θ(𝑦 ∣ 𝑋∗,I,D𝑘) =
∑

𝑠∈𝜈(𝑦)
𝑃Θ(𝑠 ∣ Π(𝑋∗,I,D𝑘)) (28)

where the selection of 𝐷𝑘 is crucial. Effective strategies balance rel­

evance to the query and diversity across news topics and modalities 

[6,162], often via embedding-based retrieval with determinantal or 

max–min objectives to avoid redundancy [163]. Demonstrations should 

expose the model to prototypical cross-modal inconsistencies (e.g., 

text–image mismatch, fabricated video snippets, or misleading multi­

modal narratives) and discourse contexts (e.g., satire, conspiracy, and 

propaganda) that are underrepresented in pre-training [32]. Ordering 

also matters: placing task definition first, then structured exemplars 

(“context → rationale → label”), and finally the query tends to re­

duce hallucination [148]. For classification with free-form generation, a 

rationale-then-verbalizer template that first elicits a short explanation 𝑟
and then constrains the final answer to 𝜈(𝑦) often improves calibration 

and stability [74]. When label spaces differ across datasets, dynamic ver­

balizers provide a principled bridge by defining synonyms per class and 

aggregating token probabilities [55].

Representative few-shot systems in fake news detection operational­

ize these principles through diverse mechanisms. For instance, AAR 

[123] demonstrates that incorporating adaptive exemplars enables mod­

els to align retrieved evidence with news claims under limited su­

pervision. By dynamically selecting relevant exemplars, AAR allows 

for effective alignment of multimodal evidence, even in settings with 

scarce labeled data, thus improving robustness in detecting inconsisten­

cies. SearchLVLMs [124] show that few-shot multimodal demonstrations 

can guide large vision–language models to detect subtle inconsistencies 

between text and images by leveraging retrieval augmented exem­

plars. The integration of retrieval augmented learning in SearchLVLMs 

allows for more precise detection of fine grained inconsistencies, effec­

tively enhancing model sensitivity to cross-modal discrepancies, such as 

conflicting visual cues or ambiguous textual claims. DriftBench [125] 

extends few-shot evaluation by systematically assessing model robust­

ness under limited exemplars and distribution shifts, providing insights 

into adaptability against evolving disinformation patterns. This frame­

work facilitates a deeper understanding of how models perform under 

real world conditions where training data may vary, highlighting the 

importance of model adaptability to shifting distributions in fake news 

contexts. FKA-Owl [126] further enhances robustness by integrating 

structured attention over curated demonstrations, revealing that hier­

archical exemplar design mitigates the impact of noisy or adversarial 

content. This model’s hierarchical attention mechanism helps filter out 

noise and adversarial influences, ensuring that models remain reli­

able even when presented with imperfect or misleading evidence. At a 

broader scale, FakeSV-VLM [38] exemplifies few-shot adaptability by ex­

ploiting cross source and cross event multimodal exemplars, improving 

generalization without necessitating full model fine tuning. By lever­

aging cross source and event specific data, FakeSV-VLM improves the 

model’s transferability across diverse contexts, ensuring more effective 

detection across different types of disinformation. Collectively, these 

systems highlight that few-shot learning strikes a pragmatic balance be­

tween efficiency and adaptability, making it a compelling paradigm for 

fake news detection in scenarios where annotated data is limited but 

multimodal evidence must be effectively utilized.

3.2 . Parameter-tuning paradigm

Unlike the parameter-frozen paradigm that keeps Θ fixed, the 

parameter-tuning paradigm updates part or all of the LVLM parameters 

Θ to enhance domain specialization [164], multimodal calibration [59], 

and interpretable reasoning [165]. Let each modality encoder be 𝜙𝑡, 𝜙𝑣
for text, vision inputs, and let A𝜃  denote the cross-modal aggregator. 

Given a multimodal dataset as follows:

D = {(𝑥𝑖, 𝑐𝑖, 𝑦𝑖, 𝑅𝑖)}
𝑁
𝑖=1 (29)

where 𝑥𝑖 = {𝑥𝑡, 𝑥𝑣} are paired modalities [18], 𝑐𝑖 is the claim, 𝑦𝑖 ∈ {0, 1}
is the veracity label [41], and 𝑅𝑖 the annotated rationale, parameter 

tuning seeks the optimal Θ that minimizes a task-aligned multi-objective 

loss as follows:

L𝑡𝑢𝑛𝑒(Θ) = L𝐿𝑉 𝐿𝑀 + 𝜆𝑟𝑒𝑔‖Θ − Θ0‖
2
2 (30)

where L𝐿𝑉 𝐿𝑀  follows Eq. (25) and Θ0 is the pretrained initialization, 

acting as a regularizer to prevent catastrophic forgetting.

Mechanistic view under parameter-tuning paradigm. From a 

mechanistic perspective, the parameter-tuning paradigm enhances the 

multimodal reasoning capabilities of LVLMs by fine tuning a subset of 

model parameters, allowing for a more flexible integration of text and 

image modalities. Unlike traditional models that treat text and images as 

separate inputs, LVLMs in this paradigm jointly optimize the parameters 

of both the textual and visual encoders through cross modal aggregators. 

This enables the model to better capture fine grained semantic incon­

sistencies between text and image, such as mismatched attributes or 

spatial relations. The effectiveness of this mechanism is largely driven 

by the choice of prompting strategy. Direct classification prompts en­

courage holistic judgments, which may overlook subtle mismatches, 

whereas structured prompts (e.g., entity extraction, attribute compar­

ison, or step-by-step reasoning) guide the model to attend to specific 

details, improving the alignment between the visual and textual data. 

Furthermore, chain-of-thought prompting externalizes intermediate rea­

soning steps, reducing over reliance on language priors and enhancing 

the model’s sensitivity to cross modal discrepancies. Through the fine 

tuning of model parameters and strategic prompting, the parameter-

tuning paradigm allows LVLMs to implicitly detect fine grained semantic 

inconsistencies, offering a more adaptive and robust approach compared 

to traditional methods.

Full-parameter tuning. Full fine-tuning unfreezes all LVLM com­

ponents [166], including modality encoders 𝜙𝑡, 𝜙𝑣, aggregator A𝜃 , and 

decision heads (𝑤𝐹 , 𝑤𝐷, 𝑤𝐼 , 𝑤𝑌 ). The optimization jointly refines the 

authenticity [167], consistency [86], and intent estimators as follows:

𝐹 = 𝜎(𝑤⊤𝐹𝑍 + 𝑏𝐹 )

𝐷̂ = 1 − sim(𝑔𝑡(𝑥𝑡), 𝑔𝑣(𝑥𝑣))

𝐼 = 𝜎(𝑤⊤𝐼𝑍 + 𝑏𝐼 )

ℎ𝜃(𝑥, 𝑐, 𝜉) = 𝑤⊤𝑌𝑍 + 𝑏𝑌

(31)

and the calibrated decision surrogate remains as follows:

𝑠(𝑥, 𝑐, 𝜉) = ℎ𝜃(𝑥, 𝑐, 𝜉) + 𝛼𝐹𝐹 + 𝛼𝐷𝐷̂ + 𝛼𝐼𝐼 (32)

During training, all parameters receive gradients [168] from L𝐿𝑉 𝐿𝑀 , 

enabling domain-specific adaptation [169] as follows:

L𝐿𝑉 𝐿𝑀 = 𝑙𝑐𝑙𝑠(𝑦, 𝑦̂) + 𝜆𝐹 𝑙𝐹 (𝐹 , 𝐹 ) + 𝜆𝐷𝑙𝐷(𝐷, 𝐷̂) + 𝜆𝐼 𝑙𝐼 (𝐼, 𝐼)

+ 𝜆𝑅𝑙𝑒𝑥𝑝(𝑅, 𝑅̂) + L𝑎𝑙𝑖𝑔𝑛 + L𝐿𝑀 + L𝑝𝑡𝑟
(33)

To stabilize optimization [145], practical implementations adopt stage-

wise unfreezing, mixed-precision gradient checkpointing, and curricu­

lum fine-tuning (progressing from single-claim to multi-evidence rea­

soning) [170]. Full tuning allows LVLMs to internalize complex cross-

modal contradictions and high-level intents but requires significant 

computational and data resources [26].

Recent full-tuning approaches in multimodal fake news detection 

have demonstrated both the strengths and limitations of this paradigm 
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[171]. For instance, IMFND [133] established the foundation by fully 

fine tuning pretrained multimodal transformers on paired text-image 

datasets [172], achieving strong results in capturing cross modal in­

consistencies in news content. By optimizing all parameters, IMFND 

improves the model’s ability to learn fine grained interactions between 

text and images, significantly enhancing its capacity to identify mislead­

ing content. Building on these successes, video oriented systems such as 

MDAM3 [122] extended full parameter tuning to spatiotemporal news 

verification, showing that large scale video pretraining coupled with 

end-to-end optimization yields significant gains in detecting deepfake 

based misinformation [173]. MDAM3 pushes the boundaries of video 

based fake news detection by effectively incorporating both temporal 

and spatial cues, improving the model’s robustness against dynamic ma­

nipulations often found in deepfake content. More recent models such 

as DIFND [134] and TRUST-VL [138] scale this strategy by integrat­

ing multimodal evidence with reasoning rich supervision, demonstrating 

that fully updating all parameters enhances both interpretability and ro­

bustness against adversarial news [165]. These models exemplify how 

reasoning guided updates allow for better disambiguation of complex 

multimodal evidence, improving both the model’s generalization and 

its ability to handle adversarial inputs in fake news scenarios. Similarly, 

MACAW [136] leverages parameter intensive optimization to jointly 

model discourse level attention and multimodal alignment [174], high­

lighting the effectiveness of full-tuning for handling long context and 

linguistically nuanced misinformation [55]. By modeling discourse level 

attention, MACAW improves the model’s ability to capture long range 

dependencies and subtle language nuances, which are critical in under­

standing and detecting misinformation embedded in lengthy articles or 

complex narratives.

While these systems highlight the versatility and strong performance 

of full-parameter tuning in fake news detection, they also expose its 

substantial computational costs [162], which motivates ongoing explo­

ration [175] of more efficient alternatives such as parameter-efficient 

tuning.

Parameter-efficient tuning. To alleviate the prohibitive cost of full 

fine-tuning while preserving most of its performance benefits [176], 

parameter-efficient tuning (PET) has become a practical strategy for 

multimodal fake news detection [168]. In this paradigm, the backbone 

of large vision–language or video–language models is kept frozen, 

while lightweight modules, such as Adapter-tuning [177], LoRA [40], 

Prefix/Prompt-tuning [178,179], or gating mechanisms (e.g., IA3 [180], 

BitFit [181]) are optimized to capture domain-specific patterns. For mul­

timodal news involving text, images, and videos, PET allows detectors 

to emphasize subtle lexical manipulations, visual tampering artifacts, 

and temporal inconsistencies without incurring the high computational 

overhead of updating the entire model. Recent advances such as QLoRA 

[182] further improve scalability by quantizing the frozen backbone to 

4-bit while training LoRA adapters in higher precision, enabling efficient 

deployment at scale. Moreover, PET is often combined with connector 

tuning or selective unfreezing of higher Transformer layers to enhance 

discourse-level reasoning [183] and cross-modal alignment under con­

strained resources [184]. Specifically, parameter-efficient tuning keeps 

most of Θ frozen and introduces a small trainable subset Θ′ through 

lightweight modules [185] as follows:

Θ′ = {𝐴𝑎𝑑𝑎𝑝𝑡𝑒𝑟, 𝑃𝑝𝑟𝑒𝑓𝑖𝑥, 𝐿𝐿𝑜𝑅𝐴} (34)

Each module injects learnable low-rank or prefix parameters into the 

transformer blocks of A𝜃  or modality encoders as follows:

𝑍′ = A𝜃+Θ′ (𝜙𝑡(𝑡), 𝜙𝑣(𝑣̃), 𝜙𝑡(𝜉)) (35)

The downstream heads (𝑤𝐹 , 𝑤𝐷, 𝑤𝐼 , 𝑤𝑌 ) are fine-tuned on 𝑍′, while 

the frozen backbone retains general cross-modal alignment from pre-

training. The loss function remains Eq. (33) but with gradient flow 

restricted to Θ′. Regularization such as orthogonality or low-rank 

constraints on LoRA matrices (rank 𝑟 ≪ 𝑑) ensures stable adaptation:

min
Θ′

L𝐿𝑉 𝐿𝑀 (Θ′) + 𝛽‖𝐴𝐿𝑜𝑅𝐴𝐴⊤𝐿𝑜𝑅𝐴 − 𝐼‖2𝐹 (36)

Recent PET-based systems have demonstrated the practicality of 

parameter-efficient tuning in multimodal fake news detection [19]. 

For instance, E2LVLM [140] employs selective adaptation to integrate 

retrieved textual and visual evidence, significantly reducing training 

overhead while maintaining cross domain generalization. E2LVLM’s 

selective adaptation approach allows the model to adapt only rele­

vant parts of the pretrained model, ensuring efficient use of resources 

while still achieving strong performance across diverse domains and 

multimodal data. LVLM4FV [141] and M-DRUM [142] extend PET 

strategies to evidence driven verification, incorporating lightweight 

adapters into frozen LVLMs to efficiently capture cross modal reasoning 

under limited supervision. These models demonstrate that by incorpo­

rating lightweight adapters, it is possible to enhance model efficiency 

and generalization without the need for extensive fine tuning, offer­

ing a scalable solution for multimodal fake news detection. As shown 

in Fig. 4, MMKD [143] illustrates how PET can unify multimodal rep­

resentation learning with knowledge guided reasoning, showing that 

adapter based modules can approximate the gains of full tuning while 

remaining computationally efficient. MMKD’s approach of combining 

knowledge guided reasoning with PET allows the system to maintain 

interpretability and efficiency, providing a lightweight yet powerful 

solution for multimodal reasoning. Domain specific adaptations, such 

as LVLM4CEC [144], demonstrate that parameter efficient designs can 

preserve sensitivity to subtle context event correlations when anno­

tated multimodal corpora are scarce. LVLM4CEC’s ability to adapt to 

domain specific nuances without relying heavily on large annotated 

datasets highlights its effectiveness in specialized fake news detection 

tasks, particularly in resource constrained environments. Cross-SEAN 

[145] illustrates how adapter based architectures can be tuned along­

side frozen backbones to support cross lingual and rationale grounded 

debunking. Cross-SEAN’s cross lingual capabilities enhance its versatility 

in addressing fake news in multiple languages, while rationale-grounded 

debunking adds a layer of interpretability by explaining the model’s 

reasoning process. Collectively, these systems exemplify how PET tech­

niques balance the high performance of full parameter tuning with 

the scalability required for real-world deployment, underscoring their 

growing role in advancing multimodal fake news detection [169].

3.3 . Reasoning paradigm

At both the system and cognitive levels, multimodal fake news de­

tection methods employ distinct reasoning strategies. Prompting-based 

reasoning operates at the system level by implicitly guiding the model’s 

reasoning process through instructions or prompts. In contrast, agent-

based reasoning functions at the cognitive level by structuring reasoning 

as an explicit sequence of coordinated sub-tasks, simulating a more 

deliberate and human like approach to decision-making.

Mechanistic view under reasoning paradigm. From a mechanis­

tic perspective, the reasoning paradigm in LVLMs offers a significant 

advancement over traditional models in detecting fine grained semantic 

inconsistencies between text and images. In prompting-based reason­

ing, LVLMs use task-specific prompts to guide the model’s reasoning 

in a single inference pass, which contrasts with traditional methods 

that typically rely on separate pipelines for text and image processing. 

However, while prompting-based methods enable efficient, zero-shot 

generalization, they may obscure subtle mismatches between textual 

and visual evidence, especially when using direct classification prompts. 

In contrast, structured prompts such as those for entity extraction or 

step-by-step reasoning allow LVLMs to more explicitly align and detect 

discrepancies in object attributes, quantities, and spatial relationships, 

improving the model’s sensitivity to fine grained inconsistencies. On 

the other hand, agent-based reasoning decomposes the detection pro­

cess into a sequence of explicit tasks performed by specialized agents, 
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Fig. 4. Parameter-efficient tuning architecture for multimodal fake news detection. The framework operates in two stages: global knowledge learning and comple­

mentary knowledge fusion. In the first stage, a student model with 7 billion parameters is trained alongside two adapters, processing visual and textual inputs to 

identify relevant entities and search options. The second stage integrates the student model with the adapters to enhance reasoning. Knowledge acquisition is achieved 

through two vision-language models, Qwen2-VL and InternVL, which provide predictions and rationales for the input image. Multi-teacher knowledge distillation 

follows, where the student model and adapters align their predictions and rationales, facilitated by LoRA and DPO techniques to refine the model’s outputs [143].

which interact to refine the reasoning process. This approach provides 

greater transparency and interpretability compared to prompting-based 

reasoning, allowing for more deliberate, human like decision-making. 

It also facilitates error localization and enables strategies like counter 

argumentation, which are essential for handling complex, long context 

misinformation. By combining these two paradigms, LVLMs are able to 

surpass traditional models in robustness and interpretability, providing a 

more flexible and effective approach to multimodal fake news detection.

Prompting-based reasoning. Prompting-based reasoning methods 

treat multimodal fake news detection as a single pass inference prob­

lem, where reasoning is implicitly induced through carefully designed 

prompts, instructions, or constraints, without the need for explicit inter­

mediate decision states or tool driven interactions. Given multimodal 

evidence 𝑥 = {𝑥𝑡, 𝑥𝑣} and a claim 𝑐, the model directly produces a 

veracity prediction:

𝑦̂ = 𝑓Θ(𝑥𝑡, 𝑥𝑣, 𝑐;P) (37)

where 𝑥𝑡 and 𝑥𝑣 represent the textual and visual modalities of the multi­

modal evidence, respectively, and 𝑐 denotes the claim whose veracity is 

being assessed. P is a task specific prompt encoding reasoning cues, such 

as cross modal consistency, credibility, or relevance of the evidence.

This paradigm leverages the emergent reasoning capabilities of large 

vision–language models (LVLMs) or language models, using prompt 

engineering to guide the model toward detecting semantic inconsisten­

cies, fabricated visual evidence, or misleading narratives. Representative 

approaches include ICD [45] and CAPE-FND [147], which mitigate mul­

timodal hallucination and calibration errors through instruction level 

constraints, ensuring that models provide more accurate interpretations 

by imposing explicit guidance on reasoning pathways. These systems 

enhance the reliability of LVLMs by constraining the model’s outputs 

to adhere more strictly to logical reasoning patterns, reducing the oc­

currence of hallucinations in multimodal content. NRFE [148] and IFAI 

[149], which employ confidence aware or feedback enhanced prompt­

ing to improve robustness, further address the challenge of multimodal 

inconsistency by adjusting the confidence levels in the model’s out­

put. NRFE utilizes feedback loops to refine reasoning accuracy, while 

IFAI focuses on boosting robustness in video based fake news detec­

tion through the strategic use of feedback enhanced prompts that guide 

the model’s attention toward more reliable features. Specifically, IFAI 

addresses challenges in fake news video detection by constructing multi­

modal prompts through prompt engineering to semantically understand 

news videos and generate auxiliary information from the perspectives 

of video style, content, and information matching. The video informa­

tion interactor enables small models to effectively learn supplementary 

knowledge from LVLMs, while the key information selector evaluates 

the importance of inference rationales, thus improving the efficiency 

of utilizing knowledge from LVLMs. This mechanism significantly im­

proves the model’s capacity to discern subtle discrepancies between 

video content and textual narratives, enhancing detection performance 

in dynamic, real-world contexts. Recent works, such as DIFAR [150] and 

LIFE [153], demonstrate that structured prompts can replicate reasoning 

behaviors typically associated with explicit reasoning pipelines. DIFAR 

introduces a robust framework for prompt guided reasoning, leverag­

ing structured prompts to replicate the reasoning steps commonly used 

in traditional, explicit pipelines, while LIFE focuses on long term effec­

tiveness by applying structured prompt templates that align multimodal 

evidence over extended interactions. Benchmarks like MFC-Bench [151] 

and generative frameworks such as LLM-GAN [152] highlight both the 

potential and limitations of prompt induced reasoning, especially under 

adversarial or distribution shifted conditions. These benchmarks demon­

strate that, while prompt based methods show significant promise in 

handling a wide range of multimodal scenarios, challenges remain in 

maintaining consistent reasoning under adversarial settings or when the 

distribution of data shifts significantly from the training conditions.

Despite their efficiency and strong zero-shot generalization, 

prompting-based methods inherently combine perception, reasoning, 

and decision-making within a single inference pass. This monolithic 

approach limits controllability and interpretability, particularly when 

dealing with complex, multi hop misinformation.

Agent-based reasoning. Unlike prompting-based reasoning, which 

relies on implicit reasoning in a single inference step, agent-based 

reasoning explicitly decomposes the multimodal fake news detection 

process into a sequence of structured, multi step tasks. This paradigm 

involves multiple specialized agents, each performing a distinct sub-

task such as evidence retrieval, cross modal verification, contradiction 

detection, and final adjudication. These agents interact with one an­

other to refine the reasoning process, ensuring that the detection system 

can handle complex scenarios requiring in-depth analysis. Formally, the 

inference process is modeled as a sequence of agent interactions:

S𝑡+1 = A𝑘(S𝑡, 𝑥, 𝑐), 𝑘 ∈ {1,… , 𝐾} (38)

where S𝑡 represents the intermediate reasoning state at time step 𝑡, and 

A𝑘 denotes a task-specific agent responsible for executing a particular 

sub-task.
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Systems like FactAgent [44] and TED [154] exemplify the agent-

based reasoning paradigm by coordinating multiple agents that iter­

atively verify claims using multimodal evidence, allowing for explicit 

control over the reasoning order and the selection of relevant evidence 

at each step. This coordination of agents enables more flexible and inter­

pretable reasoning processes, as each agent can specialize in evaluating 

a particular type of evidence, whether textual, visual, or audio, and can 

adaptively select the most relevant information for the task at hand. 

These systems enable better traceability of the reasoning process, en­

suring transparency and accountability in decision-making by offering 

a detailed log of the steps each agent took in reaching its conclusion. 

Furthermore, agent-based frameworks like SheepDog [19] and ARG [75] 

take this approach further by introducing adversarial or debate-style 

agents, which can engage in counter-argumentation, helping the sys­

tem improve robustness against false or manipulated narratives. The 

adversarial agents engage in a structured exchange of opposing view­

points, forcing the system to critically evaluate evidence from different 

perspectives and refine its reasoning, thus enhancing its ability to detect 

inconsistencies or biases in the evidence. By simulating a back-and-

forth debate, these agents can identify subtle inconsistencies in the 

evidence, improving the system’s ability to handle misleading or de­

ceptive content. More recent architectures, such as FACTGUARD [46], 

have integrated tool-augmented agents that not only reason about the 

evidence but also maintain structured memory and rationale supervi­

sion. FACTGUARD introduces a memory mechanism that allows agents 

to retain and reference previous reasoning steps, making it possible to 

build a more coherent and structured argument over time. This approach 

enhances interpretability by providing clear, human readable reasoning 

traces that explain how conclusions are reached. Furthermore, these sys­

tems demonstrate improved generalization under complex, long-context 

misinformation scenarios, where the model must synthesize and analyze 

large volumes of data over extended reasoning chains. By incorpo­

rating memory and rationale supervision, these systems can maintain 

contextual continuity across longer interactions, improving the accu­

racy of fake news detection in scenarios where misinformation evolves 

gradually.

While agent-based reasoning systems are computationally more de­

manding and involve greater system complexity, they provide several 

key advantages. These include enhanced transparency, the ability to 

modularize reasoning processes, and improved error localization, all 

of which make agent-based methods highly suited for high stakes 

applications such as judicial decision-making, legal analysis, and evi­

dence intensive fake news verification. By ensuring that each step in 

the reasoning process is explicitly documented and accountable, agent-

based systems offer a level of trustworthiness and flexibility that is 

critical in real-world verification tasks.

4 . Popular benchmark dataset

In recent years, the research progress in multimodal fake news de­

tection has benefited greatly from the continuous construction and 

availability of high-quality datasets. Datasets not only provide a basis 

for model training and evaluation, but also largely define the boundaries 

and difficulty of research problems. Starting from early social media ru­

mor detection datasets such as Twitter15 [186] and Twitter16 [187], 

researchers have gradually expanded from single text or image modali­

ties to multimodal resources integrating text, images, videos and social 

context, and have continuously improved data scale, modality diver­

sity and annotation precision, thereby promoting the development of 

more complex detection tasks that are closer to real-world scenarios. As 

shown in Fig. 5, looking back at the related work from 2015 to 2025, we 

can observe that dataset construction demonstrates the following four 

development trends as follows:

• Data scale expansion: Early datasets such as LIAR [66], Weibo 

[188], and PHEME [189] typically contained only a few thousand to 

tens of thousands of examples and were primarily used for training 

and validating small-scale models. As research deepened, subsequent 

datasets (such as M3A [93], Fakeddit [190], and NewsCLIPpings 

[191]) expanded to hundreds of thousands or even millions of ex­

amples, facilitating the application of deep learning and large-scale 

pre-trained models, and supporting the systematic evaluation of 

complex models at varying data scales.

• Modal diversity: Initially, data was primarily text-based. 

Subsequently, images (such as Weibo [188] and GoodNews 

[192]), image-text alignment data (such as NeuralNews [193] and 

COSMOS [7]), and multilingual content (such as MM-COVID [194] 

and CHECKED [195]) were introduced, and further expanded to 

include audio, video, and social interaction information (such as 

M3A [93] and MDAM3-DB [196]). This increased modal diversity 

not only provides the model with richer learning signals but also 

better reflects the complex spread of disinformation on real social 

platforms.

• Task dimension expansion: Early research focused primarily on 

binary classification tasks (authenticity and fake identification), 

but recent datasets have gradually expanded to support multi-class 

labeling (such as LIAR [66] and Fakeddit [190]), tampered region 

localization (such as DGM4 [88] and MFND [197]), image-text 

inconsistency detection (such as COSMOS [7] and NewsCLIPpings 

[191]), and AI-generated content recognition (such as MiRAGeNews 

[121] and MMFakeBench). This expansion of task dimensions has 

greatly increased the challenge and application value of detection, 

enabling research to cover diverse objectives, from coarse-grained to 

fine-grained, and from discriminative to generative.
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Fig. 5. Timeline of multimodal fake news detection datasets.
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Table 1 

Publicly available benchmark datasets in multimodal fake news detection.

Datasets Year Modality Available at

Twitter15 [186] 2015 Text,Image https://github.com/majingCUHK/Rumor_RvNN?tab=readme-ov-file

Twitter16 [187] 2016 Text,Image https://github.com/majingCUHK/Rumor_RvNN?tab=readme-ov-file

PHEME [189] 2016 Text,Image https://www.kaggle.com/datasets/usharengaraju/pheme-dataset

LIAR [66] 2017 Text https://www.kaggle.com/datasets/yuktibishambu/liar-dataset-labeled

FakeNewsNet [198] 2017 Text,Image https://github.com/KaiDMML/FakeNewsNet

Weibo [188] 2017 Text,Image https://github.com/plw-study/MRML?tab=readme-ov-file

GoodNews [192] 2019 Text,Image https://github.com/furkanbiten/GoodNews

FA-KES [199] 2019 Text https://www.kaggle.com/datasets/mohamadalhasan

MultiFC [199] 2019 Text,Image https://huggingface.co/datasets/pszemraj/multi_fc

Fakeddit [190] 2020 Text,Image https://github.com/entitize/fakeddit

NeuralNews [193] 2020 Text,Image https://drive.google.com/file/d/1vD4DtyJOIjRzchPtCQu-KPrUjgTiWSmo/view

MM-COVID [194] 2020 Text,Image https://drive.google.com/drive/folders/1gd4AvT6BxPRtymmNd9Z7ukyaVhae5s7U

CoAID [200] 2020 Text https://github.com/cuilimeng/CoAID

NewsCLIPpings [191] 2021 Text,Image https://github.com/g-luo/news_clippings?tab=readme-ov-file

COSMOS [7] 2021 Text,Image https://shivangi-aneja.github.io/projects/cosmos/

CHECKED [195] 2021 Text,Image https://github.com/cyang03/CHECKED/tree/master/dataset

Weibo21 [164] 2021 Text,Image https://github.com/kennqiang/MDFEND-Weibo21

CHEF [201] 2022 Text https://github.com/THU-BPM/CHEF?tab=readme-ov-file

MC-Fake [202] 2022 Text https://github.com/qwerfdsaplking/MC-Fake

MuMiN [203] 2022 Text,Image https://mumin-dataset.github.io/

DGM4 [88] 2023 Text,Image https://huggingface.co/datasets/rshaojimmy/DGM4

IFND [204] 2023 Text,Image https://www.kaggle.com/datasets/sonalgarg174/ifnd-dataset

MR2 [205] 2023 Text,Image https://github.com/THU-BPM/MR2

Mocheg [206] 2023 Text,Image https://github.com/PLUM-Lab/Mocheg

FakeSV [207] 2023 Text,Vedio https://github.com/ICTMCG/FakeSV

FACTIFY 2 [208] 2023 Text,Image https://github.com/surya1701/Factify-2.0?tab=readme-ov-file

MiRAGeNews [121] 2024 Text,Image https://huggingface.co/datasets/anson-huang/mirage-news

M3A [93] 2024 Text,Image,Audio,Vedio https://github.com/FinalYou/M3A?tab=readme-ov-file

HFFN [142] 2024 Text,Image –

VERITE [209] 2024 Text,Image https://github.com/stevejpapad/image-text-verification

FakeTT [210] 2024 Text,Vedio https://github.com/ICTMCG/FakingRecipe/tree/main?tab=readme-ov-file

MFND [197] 2025 Text,Image https://github.com/yunan-wang33/sdml

MMFakeBench [211] 2025 Text,Image https://huggingface.co/datasets/liuxuannan/MMFakeBench

MDAM3-DB [196] 2025 Text,Image,Audio,Vedio –

DriftBench [125] 2025 Text,Image –

• Cross-language and cross-domain adaptation: With the 

widespread global spread of disinformation, the need for cross-

language and cross-domain detection has become increasingly 

prominent. Some datasets (such as MM-COVID [194], Weibo21 

[164], and CHEF) focus on multilingual, cross-topic, and cross-

domain authenticity detection. These datasets not only enrich the 

training corpus but also provide important support for research on 

model transferability and cross-cultural adaptability.

Overall, dataset evolution over the past decade has seen a gradual 

transition from early rumor detection to complex cross-modal disin­

formation identification. These datasets have continuously improved 

in terms of authenticity annotation granularity, modal coverage, cross-

lingual adaptability, and generative content detection. These datasets 

not only provide a solid experimental benchmark for the research com­

munity but also drive the field’s progress from traditional classification 

tasks to more complex multi-task, multi-modal, and multi-lingual ap­

proaches, forming a relatively complete evolutionary trajectory and 

research ecosystem. Table 1 lists 32 fake news detection benchmark 

datasets. We analyze the release time, modality, and open-source URL 

of each dataset. Next, we briefly introduce each dataset.

4.1 . Overview of benchmark datasets

Twitter15. The Twitter15 dataset [186], created by crawling two 

rumor-tracking websites, Snopes1 and Emergent,2 collects 2299 news 

items published up to March 2015. After screening, it contains 94 true 

news items and 446 false news items. To obtain tweets related to an 

1 snopes.com
2 emergent.info

event, a keyword-based query was constructed, and a web crawler was 

used to obtain the complete history. This was then sampled and cross-

checked by researchers. Furthermore, real events were collected using 

Twitter’s free data stream and a clustering algorithm. The final dataset 

contains 421 true events and 421 false events.

Twitter16. The Twitter16 dataset [187], based on Snopes,3 an online 

rumor-debunking service, collects 778 events from March to December 

2015, 64% of which are rumors. Researchers extracted and optimized 

keywords to obtain relevant tweets, supplemented with public datasets, 

ultimately creating a balanced dataset containing 498 rumors and 494 

non-rumors, which is widely used in rumor detection research.

PHEME. The PHEME dataset [189], constructed through a combi­

nation of automated crawling and manual verification, covers tweets, 

comments, and user interaction data, such as retweets and likes, re­

lated to specific events. Its multi-dimensional information structure and 

high-quality annotations, including the differentiation of rumor types, 

provide a rich resource for rumor detection, information dissemina­

tion analysis, and user behavior research, supporting machine learning 

model training and cross-event comparative research.

LIAR. LIAR [66] is a multimodal fake news detection dataset con­

structed in 2017. It contains 12,836 manually annotated sentences from 

PolitiFact, covering a variety of contexts including news, speeches, 

interviews, advertisements, and social media. The dataset provides fine-

grained authenticity annotations (six-category labels) and rich meta­

data, including speaker identity, context, and historical credibility. It 

is suitable for research in disinformation detection, credibility analysis, 

and multimodal modeling, providing an important benchmark resource 

in the field.

3 snopes.com
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FakeNewsNet. The FakeNewsNet dataset [198] is a multidimen­

sional data repository containing two fact-checking datasets based on 

Politifact and Gossipcop, covering news content, social context, and spa­

tiotemporal information. Constructed by the FakeNewsTracker system, 

this dataset aims to advance open research questions in the field of fake 

news research.

Weibo. The Weibo dataset [188], built from Weibo’s official rumor-

busting system and Xinhua News Agency news sources, covers verified 

rumor and non-rumor posts from 2012–2016. The dataset contains ap­

proximately 40,000 tweets with images, including text, images, and 

social context. The dataset is deduplicated and quality-screened using 

the LSH algorithm, and the training/test set is split into an 8:2 ra­

tio based on event clustering to minimize data leakage. This dataset 

provides an authoritative and high-quality benchmark for multimodal 

rumor detection.

GoodNews. The GoodNews dataset [192], sourced from The New 

York Times, contains over 460,000 news images, corresponding articles, 

and headlines, making it one of the largest multimodal news resources 

available. The average article length exceeds 650 words, 97% of head­

lines contain named entities, and 68% contain human names, fully 

demonstrating the complexity and semantic relevance of news text. This 

dataset not only supports news image and text generation and alignment 

tasks but also provides a core data source for building multimodal fake 

news detection benchmarks such as NeuralNews. Because approximately 

half of the news texts exceed 512 tokens, GoodNews presents significant 

challenges for long-text modeling, multimodal alignment, and named 

entity recognition.

FA-KES. The FA-KES dataset [199], constructed for diverse media 

coverage of the Syrian war, utilizes a semi-supervised annotation process 

and fact-checking mechanism to collect approximately 804 English news 

articles (with a nearly balanced distribution of true and false news). Its 

rich structured information (including title, date, source, etc.) and reli­

able label generation process provide a solid foundation for fake news 

detection, especially for research on meta-learning, weak supervision, 

and multi-feature fusion models in few-shot scenarios. Its significant 

generalizability makes it suitable for dataset construction and algorithm 

validation in other military conflict scenarios.

MultiFC. The MultiFC dataset [199], collected from 26 English-

language fact-checking websites, covers 34,918 naturally occurring 

factual claims, accompanied by supporting evidence, context, and rich 

metadata, all annotated by professional journalists. Its core features in­

clude the entities involved in the claims, contextual information, and 

multi-dimensional metadata. These additional attributes significantly 

improve model performance in automated claim verification tasks. 

MultiFC provides a solid foundation for the development and evaluation 

of fact-checking models.

Fakeddit. The Fakeddit dataset [190], constructed from 22 Reddit 

subreddits, covers topics ranging from politics to everyday life and con­

tains over one million posts. It undergoes a multi-stage review process 

and employs distant supervision to provide 2/3/6 classification labels. 

The data includes text, images, metadata, and comments, with approx­

imately 64% of the samples being multimodal, supporting research on 

multimodal and hierarchical fake news detection.

NeuralNews. The NeuralNews dataset [193], built on the GoodNews 

dataset, covers approximately 128,000 real and machine-generated 

news articles, divided into four categories (combinations of real/gener­

ated articles and headlines). The machine-generated content, generated 

by models such as Grover and entity-aware image caption models, 

includes text, images, and headline information. Its multimodal and 

fine-grained design provides a more realistic and challenging benchmark 

for detecting machine-generated news, and is of great significance for 

advancing research in multimodal fake news detection.

MM-COVID. MM-COVID [194] is a multilingual, multimodal dataset 

for COVID-19 fake news detection. It covers six languages and contains 

3981 fake news items and 7192 real news samples. The data was col­

lected from February to July 2020 and comes from sources including 

social media, traditional media, blogs, and fact-checking organizations. 

This dataset integrates multimodal content, preserves user interactions, 

and retains timestamp information. It supports cutting-edge tasks such as 

cross-language detection, multimodal fusion, and social and spatiotem­

poral feature analysis, providing key support for building efficient and 

generalizable fake news detection models.

CoAID. CoAID [200] is a multimodal dataset for detecting COVID-

19 health disinformation. It covers 4251 news articles and statements, 

296,000 user tweets and replies, and 926 social media posts collected 

from real-world online environments between December 2019 and July 

2020. CoAID supports a variety of tasks, including multimodal fake news 

detection and social contextual propagation analysis, providing a critical 

data foundation for building efficient and generalizable disinformation 

identification models in real-world scenarios.

Weibo21. The Weibo 21 dataset [164] was released in 2021 

and covers 4488 fake news and 4640 real news from 9 differ­

ent fields(i.e., Science, Military, Education, Disasters, Politics, Health, 

Finance, Entertainment, Society). The dataset was created by collecting 

fake news and real news on Sina Weibo between December 2014 and 

March 2021.

NewsCLIPpings. The NewsCLIPpings dataset [191], built on 

VisualNews, addresses the problem of mismatched images and mislead­

ing headlines. By generating forged samples using multiple strategies 

and combining them with CLIP filtering, we have generated 1111,828 

balanced image–text pairs. This dataset is challenging and avoids uni­

modal bias, making it a popular tool for evaluating the performance of 

multimodal models in image–text inconsistency detection.

COSMOS. COSMOS [7] is a typical multimodal dataset focused on 

detecting contextual inconsistencies between images and captions to 

support research on disinformation detection. The dataset consists of 

160,000 training samples, 40,000 validation samples, and 1700 test sam­

ples. Each image is assigned up to 10 bounding boxes, and the data is 

primarily sourced from news websites and the Snopes platform. Unlike 

traditional annotation methods, COSMOS does not directly use contex­

tual misuse annotations during training, but only incorporates them 

during evaluation. This significantly increases the challenge of the task 

and enhances the generalization capabilities of the model. This dataset 

provides a high-quality benchmark for multimodal disinformation de­

tection, and is of great significance for comparative studies and method 

evaluation.

CHECKED. CHECKED [195] is the first Chinese multimodal dataset 

for COVID-19-related fake news detection, covering 2104 samples col­

lected from Weibo between December 2019 and August 2020, including 

344 fake news and 1760 real news. The dataset integrates multimodal 

information such as text, images, and videos, and provides large-scale 

social context data, including more than 1.86 million reposts, 1.18 mil­

lion comments, and 56.85 million likes. CHECKED provides important 

benchmark experimental support for multimodal fake news detection, 

propagation behavior analysis, and early identification.

CHEF. CHEF [201] is a multi-domain Chinese dataset for evidence-

based fact-checking, covering politics, public health, science, society, 

and culture. The dataset contains 10,000 manually verified true claims, 

each accompanied by manually curated and annotated evidence col­

lected from the internet, including text and some images and videos, to 

ensure the reliability and accuracy of the annotations. The data source 

comes from six Chinese fact-checking and news websites (e.g., Piyao, 

TFC, MyGoPen, Jiaozhen, and Cnews), and is divided into a training 

set of 5754 claims, a validation set of 666 claims, and a test set of 666 

claims. Multiple rounds of annotation and verification ensure annotation 

consistency, with a Fleiss Kappa of 0.74.

MC-Fake. The MC-Fake dataset [202], collected from Twitter, covers 

28,334 news events across five major themes: politics, entertainment, 

health, COVID-19, and the Syrian War. This dataset is unique in that 

it provides both news text and rich social context, including tweets, 

retweets, replies, user attributes, and their social connections. Compared 

to existing content-based fake news benchmarks, MC-Fake complements 
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existing content-based fake news benchmarks by incorporating social 

context and relationship networks. This provides a new experimental 

platform for studying the cross-modal characteristics of fake information 

and holds significant potential for open research.

MuMiN. The MuMiN dataset [203], built on Twitter, covers 41 lan­

guages. It integrates multimodal information, including tweets, replies, 

users, images, articles, and hashtags, spanning over a decade and 

covering a wide range of topics and events. This dataset offers signif­

icant advantages in scale, diversity, and cross-linguality, providing a 

large-scale benchmark for studying cross-modal modeling, cross-lingual 

propagation, and the long-term evolution of disinformation.

DGM4. The DGM4 dataset ([88]) is a large-scale dataset for detecting 

and localizing multimodal media manipulation. Built on VisualNews, it 

covers real-world sources from The Guardian, BBC, USA Today, and The 

Washington Post. It contains 230,000 news image and text samples, in­

cluding 77,426 pairs of original images, 152,574 pairs of manipulated 

images (e.g., face swaps, attribute edits, and text replacements), and 

32,693 pairs of hybrid images. The dataset is constructed with a distri­

bution of nine manipulation categories. All samples are annotated with 

fine-grained and sentimentally balanced annotations, making it more 

challenging than existing datasets and suitable for multimodal forgery 

detection and localization research.

IFND. The IFND dataset [204] covers multimodal news related to 

India between 2013 and 2021, totaling 56,868 text and image samples. 

Real news comes from mainstream media outlets such as Times Now 

News and The Indian Express, while false news is collected by author­

itative fact-checking platforms such as Alt News and Boom Live and is 

manually verified for labeling accuracy. To alleviate the category im­

balance, researchers introduced an intelligent enhancement algorithm 

to generate semantically plausible false statements and, based on LDA 

topic modeling, categorized the news into five major categories: elec­

tions, politics, COVID-19, violence, and others. IFND is widely used for 

performance evaluation of machine learning and deep learning mod­

els, expanding the research boundaries of multimodal disinformation 

detection.

MR2. The MR2 dataset [205] consists of two subsets, Weibo and 

Twitter, covering both text and image news, and provides external 

evidence retrieved from the internet for both modalities. The dataset 

supports both Chinese and English, covers multiple fields including 

politics, society, technology, and entertainment, and contains a rich 

collection of text, images, and webpage information, enabling a more 

realistic reflection of the cross-platform rumor propagation and verifi­

cation process. With its bilingual nature and multimodal design, MR2 

provides an important benchmark for the training and evaluation of 

multimodal rumor detection models, making it particularly suitable for 

lightweight CNN experiments and content moderation scenarios.

Mocheg. The Mocheg dataset [206], constructed from fact-checked 

claims from PolitiFact and Snopes, contains 15,601 truth-labeled claims, 

along with 33,880 text paragraphs and 12,112 images as evidence. 

This dataset is unique in that it provides both textual and image ev­

idence, supporting, for the first time, evidence retrieval, multimodal 

fact-checking, and explanation generation within a single, end-to-end 

framework. As a key benchmark for multimodal fact-checking, Mocheg 

is not only suitable for validating model detection capabilities but also 

provides a systematic evaluation platform for interpretability research.

FakeSV. The FakeSV dataset [207] is the largest Chinese short-video 

benchmark for multimodal fake news detection, containing rich social 

context information. It includes news video content, user comments, and 

publisher profiles, providing a comprehensive view of the dissemination 

environment of short video news. FakeSV enables multimodal analysis 

by jointly leveraging visual, textual, and social modalities, addressing 

the limited exploitation of multimodal correlations in prior works. In 

addition to fake/real labels, the dataset supports exploratory analysis of 

fake news propagation characteristics across content and social dimen­

sions. To establish baseline performance, the authors further introduce a 

multimodal detection model named SV-FEND, which adaptively exploits 

cross-modal correlations and social contextual cues to enhance detection 

accuracy. Overall, FakeSV bridges the gap between multimodal content 

understanding and social behavior analysis, offering a valuable resource 

for future research on fake news detection in short video platforms.

FACTIFY 2. The FACTIFY 2 dataset [208] is a large-scale multimodal 

fact-checking benchmark that extends FACTIFY 1 by incorporating new 

data sources and adding satire news articles, resulting in 50,000 addi­

tional data instances. Each sample consists of textual claims paired with 

visual content, enabling research on multimodal verification. Similar to 

its predecessor, FACTIFY 2 categorizes samples into three broad labels—

support, no-evidence, and refute—with sub-categories that reflect the 

entailment between text and image. The dataset provides a foundation 

for developing and evaluating models that jointly reason over textual 

and visual information. Baseline experiments using BERT and Vision 

Transformer architectures achieve a test F1 score of 65%, highlighting 

the challenge of multimodal fact verification.

MiRAGeNews. The MiRAGeNews dataset [121] is a multimodal 

benchmark designed specifically for AI-generated fake news detection. It 

contains 12,500 pairs of real and generated image–headline examples. 

Real examples are sourced from The New York Times articles in the 

TARA dataset, while the fake ones are generated using GPT-4 headlines 

and Midjourney V5.2 images, ensuring the content is highly realistic 

and misleading. This dataset includes training, validation, and cross-

generator/publisher test sets, emphasizing the model’s generalization 

capabilities.

HFFN. Guided by the core principles of “human-centeredness” and 

“factual relevance,” the HFFN dataset [142] comprises multimodal 

samples consisting of image–text pairs covering entertainment, sports, 

politics, and other fields. These samples are generated through image 

manipulation, text manipulation, and fact manipulation, and are ac­

companied by detailed human annotations. This significantly enhances 

the research value of fake news detection models in both authenticity 

judgment and manipulation reasoning.

VERITE. VERITE [209] is a dataset designed specifically for multi­

modal disinformation detection, aiming to address the unimodal bias 

commonly found in existing datasets. Constructed from real-world news 

and social media image and text pairs, VERITE ensures that detection 

relies on cross-modal information rather than unimodal shortcuts by 

balancing modalities and eliminating asymmetric multimodal disinfor­

mation.

M3A. M3A [93] is a large-scale multimodal disinformation dataset 

covering text, images, audio, and video. Collected from 60 leading news 

outlets worldwide, the dataset contains 708,425 real news items and 

6,566,386 fake news items. It provides multi-category, fine-grained topic 

and sentiment annotations and serves as a unified benchmark for vari­

ous disinformation detection tasks, such as out-of-context detection and 

deepfake detection. This dataset aims to promote the development of 

robust multimodal disinformation analysis techniques.

FakeTT. The FakeTT dataset [210] is an English-language bench­

mark specifically designed for fake news detection on short video 

platforms. It contains a large collection of short videos paired with tex­

tual descriptions, user comments, and video metadata, capturing the 

rich but heterogeneous multimodal information inherent in short-form 

content. Unlike previous datasets that focus mainly on content analysis, 

FakeTT emphasizes the creative process behind video production, pro­

viding insights into material selection and editing patterns commonly 

found in fake news videos. In addition to real/fake labels, FakeTT sup­

ports research on creative-process-aware detection, enabling models to 

learn from sentimental, semantic, spatial, and temporal cues in video 

content. Together with the existing Chinese FakeSV dataset, FakeTT 

provides a comprehensive resource for developing and evaluating multi­

modal models that consider both content and production characteristics 

in fake news detection on short video platforms.

MFND. The MFND dataset [197] (released on May 11, 2025) con­

tains 125,000 multimodal news samples across four combinations: real 

image-real text (RIRT), fake image-real text (FIRT), real image-fake text 
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Fig. 6. Instructions for constructing the MMFakeBench dataset. (a) AI-generated images support text authenticity distortion. (b) Visual authenticity distortion is 

caused by generating images that conflict with facts. (c) Cross-modal consistency distortion is caused by text/image editing [211].

(RIFT), and fake image-fake text (FIFT). The fabricated content is con­

structed using 11 advanced generative techniques, including StyleGAN3 

for synthesized images and multimodal large models (LVLMs) for text 

generation. In addition to true and fake labels, MFND also provides la­

bels for image and text manipulation detection and precise annotation 

of manipulated image regions. Compared to existing datasets, MFND 

is more authentic to real-world communication scenarios and supports 

multi-task research such as detection and localization.

MMFakeBench. As shown in Fig. 6, the MMFakeBench dataset 

[211] (released in 2025) collects multimodal disinformation samples 

from various sources, covering both image and text modalities. The 

dataset provides complete annotations for each sample, including text 

content, image path, source information, and binary and multi-class 

labels. As a mixed-source multimodal disinformation detection bench­

mark, MMFakeBench is particularly suitable for evaluating the perfor­

mance of large-scale vision–language models in multimodal fake news

detection.

MDAM3-DB. MDAM3-DB [196] is a comprehensive multimodal dis­

information detection benchmark consisting of 90,000 text, image, 

video, and audio samples. This dataset not only supports disinformation 

detection and modal inconsistency modeling across multimodal inputs, 

but also covers various deception scenarios, including AI-generated 

content, factual conflicts, and cross-modal mismatches. MDAM³-DB 

was built by integrating an interpretable analysis module driven by a 

large-scale visual-language model (LVLM). Its usability and practical 

performance were validated through systematic user studies. MDAM3-

DB provides a solid foundation for promoting more comprehensive, 

transparent, and trustworthy disinformation detection research.

DriftBench. The DriftBench dataset [125] contains 16,000 news ar­

ticles with images and text, covering six major topics. It focuses on 

simulating two typical scenarios: genre drift and evidence drift. Its 

tasks cover authenticity verification, adversarial evidence detection, and 

cross-variant consistency reasoning. DriftBench not only reveals the vul­

nerabilities of LVLM in the GenAI era but also provides a key benchmark 

for research on robustness and generalization methods.

4.2 . Comparison and taxonomy of misinformation datasets

To comprehensively understand the landscape of misinformation 

datasets, Table 2 categorizes 32 representative benchmarks across three 

major axes of veracity distortion: (i) Textual Veracity Distortion, (ii) 

Visual Veracity Distortion, and (iii) Cross-modal Consistency Distortion. 

Each axis captures different aspects of misinformation generation, 

ranging from textual fabrication to visual manipulation and semantic 

inconsistency between modalities. Specifically:

(i) Textual veracity distortion. This category involves falsified or 

manipulated textual content that misrepresents facts. Datasets 

such as Twitter15/16, LIAR, and FakeNewsNet primarily focus 

on this dimension, providing annotated claims and news state­

ments labeled as true, false, or unverified. Some recent datasets, 

including FA-KES and GoodNews, extend this by incorporating 

AI-generated or repurposed text samples to simulate emerging mis­

information patterns. These resources enable fine-grained studies 

on linguistic cues, contextual framing, and source reliability.

(ii) Visual veracity distortion. The second dimension focuses on vi­

sual manipulations, including photo editing, compositional blend­

ing, and AI-synthesized imagery. Datasets such as Fakeddit, 

NeuralNews, and MM-COVID explicitly mark images that have 

been Photoshop-edited (PS-edited) or generated by diffusion and 

GAN-based models. Unlike textual datasets, these visual corpora 

are often multimodal, pairing each image with a corresponding 

textual caption or headline, thus supporting research in multi­

modal forgery detection and image–text alignment. This line of 

datasets becomes increasingly important with the rise of genera­

tive models producing hyper-realistic yet fabricated content.

(iii) Cross-modal consistency distortion. Cross-modal distortion 

refers to semantic or factual mismatches between modalities, 

for example, when the text claims an event that the image 

does not depict. Datasets such as Weibo, FakeNewsNet, and 

COSMOS explicitly annotate image–text repurposing or editing 
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Table 2 

Comparison of misinformation datasets across three categories of distortion: textual veracity, visual veracity, and cross-modal consistency.

inconsistencies, making them valuable for multimodal reasoning 

tasks. More recent datasets like M3FD and VERITE further in­

troduce controlled repurposing and image–text editing tasks to 

support explainable evaluation.

In summary, as summarized in Table 2, most early rumor datasets 

(e.g., Twitter15/16, PHEME, LIAR) emphasize textual veracity classi­

fication, whereas later benchmarks gradually incorporate visual and 

cross-modal distortions to reflect real-world misinformation complex­

ity. Notably, datasets such as MM-COVID, M3FD, and DriftBench cover 

all three dimensions, providing a holistic platform for evaluating multi­

modal reasoning and robustness. The trend indicates a paradigm shift 

from single-modality rumor detection toward comprehensive multi­

modal misinformation understanding.

5 . Evaluation metrics

In multimodal fake news detection, evaluation metrics not only 

serve as fundamental tools to assess model performance but also 

guide research progress. Unlike traditional text classification tasks, 

fake news detection involves high-risk, cross-modal, and adversarial 

characteristics. Therefore, its evaluation framework must systematically 

consider classification performance, robustness and generalization, 

cross-modal consistency, and interpretability and user perception. The 

following subsections provide a structured overview of commonly used 

metrics, along with mathematical definitions.

In the evaluation of multimodal fake news detection systems, par­

ticularly those framed as classification problems, standard performance 

metrics provide essential insights into model behavior across diverse 

and often imbalanced datasets. Given the binary or multi-class nature 

of fake news categorization (e.g., real vs. fake, or fine-grained labels 

such as satire, misleading, fabricated), the following metrics are widely 

adopted to quantify predictive efficacy.

Accuracy measures the proportion of correctly classified instances 

among all predictions.

Accuracy = TP + TN
TP + TN + FP + FN

(39)

where TP, TN, FP, and FN denote true positives, true negatives, false 

positives, and false negatives, respectively. More specifically, TP is the 

number of samples that are actually “fake news” and are correctly judged 

as “fake news” by the model, TN is the number of samples that are actu­

ally “real news” and are correctly judged as “real news” by the model, 
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FP is the number of samples that are actually “real news” but are mistak­

enly judged as “fake news” by the model, FN is the number of samples 

that are actually “fake news” but are mistakenly judged as “real news” 

by the model. While intuitive, accuracy can be misleading under class 

imbalance, a common scenario in fake news datasets, where genuine 

news often dominates.

To address this limitation, Precision and Recall offer class-specific 

perspectives as follows:

Precision = TP
TP + FP

, Recall = TP
TP + FN

(40)

Precision reflects the reliability of positive predictions (i.e., how many 

flagged items are truly fake), whereas recall indicates coverage (i.e., 

how many actual fake instances are detected). In safety-critical appli­

cations like misinformation mitigation, high recall is often prioritized to 

minimize undetected disinformation.

F1 Score harmonizes precision and recall via their harmonic mean 

as follows:

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(41)

This single-value metric is especially informative for imbalanced set­

tings, as it penalizes extreme disparities between precision and recall.

For multi-class fake news taxonomies (e.g., distinguishing clickbait, 

deepfake, conspiracy), Macro-F1 and Micro-F1 extend the F1 score 

to aggregate performance across all classes. Macro-F1 computes the 

unweighted mean of per-class F1 scores, treating all classes equally 

regardless of size as follows:

Macro-F1 = 1
𝐶

𝐶
∑

𝑖=1
F1𝑖 (42)

where 𝐶 is the number of classes. This metric highlights model 

performance on minority classes, which is crucial when rare but high-

impact misinformation types must be identified.

Conversely, Micro-F1 aggregates TP, FP, and FN globally before 

computing precision and recall, effectively weighting each class by its 

frequency:

Micro-F1 =
2 ⋅

∑𝐶
𝑖=1 TP𝑖

2 ⋅
∑𝐶
𝑖=1 TP𝑖 +

∑𝐶
𝑖=1 FP𝑖 +

∑𝐶
𝑖=1 FN𝑖

(43)

Micro-F1 thus reflects overall instance-level performance and aligns 

closely with accuracy in balanced scenarios, but remains robust to label 

skew through its grounding in contingency counts.

6 . Experimental performance

Due to the heterogeneous nature of multimodal misinformation 

detection benchmarks, this survey follows the original evaluation pro­

tocols, baseline selections, and metrics defined in the corresponding 

benchmark papers, rather than enforcing a unified setting across all 

datasets. The use of different proprietary LVLM baselines (e.g., GPT-4V 

in Tables 3–5 and GPT-4o-mini in Table 7) reflects dataset-specific evalu­

ation objectives and historical contexts. In particular, GPT-4V is adopted 

in earlier benchmarks as a representative high-capacity LVLM, whereas 

GPT-4o-mini is used in DriftBench to reflect deployment-oriented eval­

uation under controlled diversity and distribution shift, consistent with 

the original benchmark design. Each table therefore constitutes a self-

contained evaluation environment, where all compared methods share 

the same reference baseline, ensuring fair within-benchmark compar­

ison. Similarly, evaluation metrics are retained as defined by each 

dataset to account for differences in task formulation, class imbalance, 

and annotation granularity. Metrics such as macro-F1, accuracy, AUC, 

Table 3 

Binary overall results of different models on the MM-FakeBench validation and test set with the comparison of standard prompting (Standard) 

and proposed MMD-Agent framework. The best results are bolded.

Model name Language model Prompt method Validation (1000) Test (10000)

F1 Precision Recall ACC F1 Precision Recall ACC

Human evaluation 54.9 56.6 57.8 56.8 – – – –

LVLMs with 7B parameter

Otter-Image [212] MPT-7B Standard 7.9 4.1 4.5 7.9 8.6 32.4 5.0 8.6

MiniGPT4 [213] Vicuna-7B Standard 40.4 38.2 45.7 63.1 41.7 41.0 47.4 65.2

InstructBLIP [95] Vicuna-7B Standard 14.7 30.8 13.2 8.1 16.1 40.5 14.2 8.8

Qwen-VL [214] Qwen-7B Standard 43.6 50.6 44.9 60.3 44.0 51.6 45.2 60.5

VILA [215] LLaMA2-7B Standard 41.2 35.0 50.0 70.0 41.2 35.0 50.0 70.0

PandaGPT [216] Vicuna-7B Standard 24.6 60.6 50.5 30.9 24.1 61.7 50.4 30.6

mPLUG-Owl2 [217] LLaMA2-7B Standard 47.2 64.9 52.3 70.6 48.7 71.1 53.3 71.4

BLIP2 [94] FlanT5-XL Standard 41.2 35.0 50.0 70.0 41.2 35.0 50.0 70.0

LLaVA-1.6 [218] Vicuna-7B Standard 48.1 48.2 48.5 59.5 52.5 53.0 52.6 62.5

LVLMs with 13B parameter

Standard 41.1 35.0 50.0 70.0 41.1 35.0 50.0 70.0

VILA [215] LLaMA2-13B MMD-Agent 56.5 62.2 56.9 70.3 56.6 64.3 57.2 71.2

Standard 41.1 35.0 49.9 69.9 41.1 35.0 49.9 69.8

InstructBLIP [95] Vicuna-13B MMD-Agent 51.3 53.4 54.0 53.1 47.9 50.1 50.1 49.9

Standard 31.6 63.4 53.6 35.5 30.6 64.9 53.4 34.9

BLIP2 [94] FlanT5-XXL MMD-Agent 51.5 53.4 54.0 53.6 51.8 54.0 54.7 53.5

Standard 41.1 35.0 50.0 69.7 42.3 57.3 50.1 69.5

LLaVA-1.6 [218] Vicuna-13B MMD-Agent 51.8 66.7 54.6 71.4 50.2 67.3 53.9 71.3

LVLMs with 34B parameter

Standard 62.9 67.1 70.0 63.4 64.3 68.8 71.7 64.8

LLaVA-1.6 [218] Nous-Hermes-2 -Yi-34B MMD-Agent 67.2 70.4 66.0 75.1 68.1 71.1 67.0 75.6

Proprietary LVLMs

Standard 72.3 72.1 72.8 75.6 74.2 73.5 76.9 76.4

GPT-4V [96] ChatGPT MMD-Agent 74.0 73.4 75.5 76.8 72.8 72.4 75.4 75.0
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Table 4 

Performance comparison of baseline methods on the Twitter and Fakeddit dataset. We show the results of eight 

different baseline methods. Additionally, we present the results of two ablation studies: one without initial-stage 

inference, and the other without resource distillation and evidence extraction. The best two results are bolded and 

underlined.

Dataset Method Accuracy Rumor Non-Rumor

Precision Recall F1 Precision Recall F1

Twitter Direct (LLaVA [218]) 0.605 0.688 0.590 0.635 0.522 0.626 0.569

CoT (LLaVA [218]) 0.468 0.563 0.231 0.635 0.441 0.765 0.560

Direct (InstructBLIP [95]) 0.494 0.751 0.171 0.277 0.443 0.902 0.599

CoT (InstructBLIP [95]) 0.455 0.813 0.067 0.112 0.428 0.921 0.596

Direct (GPT-4 [115]) 0.637 0.747 0.578 0.651 0.529 0.421 0.469

CoT (GPT-4 [115]) 0.667 0.899 0.508 0.649 0.545 0.911 0.682

FacTool (GPT-4 [115]) 0.548 0.585 0.857 0.696 0.273 0.082 0.125

Direct (GPT-4V [96]) 0.757 0.866 0.670 0.756 0.673 0.867 0.758

CoT (GPT-4V [96]) 0.678 0.927 0.485 0.637 0.567 0.946 0.709

 LEMMA [122] 0.824 0.943 0.741 0.830 0.721 0.937 0.816

w/o initial-stage infer 0.809 0.932 0.736 0.823 0.699 0.919 0.794

w/o visual retrieval 0.781 0.953 0.672 0.788 0.652 0.949 0.773

Fakeddit Direct (LLaVA) 0.663 0.588 0.797 0.677 0.777 0.558 0.649

CoT (LLaVA [218]) 0.673 0.612 0.400 0.484 0.694 0.843 0.761

Direct (InstructBLIP [95]) 0.726 0.760 0.489 0.595 0.715 0.892 0.793

CoT (InstructBLIP [95]) 0.610 0.685 0.190 0.202 0.604 0.901 0.742

Direct (GPT-4 [115]) 0.677 0.598 0.771 0.674 0.776 0.606 0.680

CoT (GPT-4 [115]) 0.691 0.662 0.573 0.614 0.708 0.779 0.742

FacTool (GPT-4 [115]) 0.506 0.476 0.834 0.606 0.624 0.232 0.339

Direct (GPT-4V [96]) 0.734 0.673 0.723 0.697 0.771 0.742 0.764

CoT (GPT-4V [96]) 0.754 0.858 0.513 0.642 0.720 0.937 0.814

LEMMA [122] 0.828 0.881 0.706 0.784 0.800 0.925 0.857

w/o initial-stage infer 0.803 0.857 0.692 0.766 0.786 0.891 0.830

w/o visual retrieval 0.792 0.818 0.675 0.740 0.778 0.883 0.854

Table 5 

Performance metrics for different misinformation types in MDAM3-DB, comparing direct prompt queries with results obtained using the proposed 

MDAM3 framework. The best two results are bolded and underlined.

Model Process Fact-conflicting AI-generated Offensive OOC

Acc AUC AP Acc AUC AP Acc AUC AP Acc AUC AP

InstructBLIP [95] Direct 0.481 0.492 0.498 0.360 0.389 0.385 0.612 0.639 0.634 0.493 0.496 0.496

MDAM3 0.580 0.644 0.638 0.766 0.798 0.797 0.746 0.783 0.779 0.607 0.654 0.652

BLIP2 [94] Direct 0.467 0.484 0.479 0.355 0.367 0.359 0.621 0.688 0.685 0.472 0.484 0.480

MDAM3 0.589 0.651 0.646 0.764 0.823 0.814 0.747 0.778 0.768 0.617 0.662 0.654

LLaVA [24] Direct 0.503 0.512 0.509 0.398 0.402 0.399 0.631 0.696 0.688 0.622 0.639 0.635

MDAM3 0.712 0.761 0.760 0.787 0.852 0.849 0.795 0.848 0.839 0.728 0.773 0.761

VILA [215] Direct 0.484 0.490 0.489 0.323 0.365 0.358 0.611 0.656 0.652 0.615 0.626 0.624

MDAM3 0.730 0.756 0.755 0.754 0.796 0.774 0.750 0.768 0.764 0.712 0.769 0.758

GPT-4V [96] Direct 0.611 0.684 0.667 0.483 0.491 0.488 0.744 0.754 0.747 0.637 0.664 0.646

MDAM3 0.853 0.912 0.908 0.886 0.924 0.919 0.891 0.895 0.894 0.729 0.784 0.776

and AP are selected to best reflect the primary evaluation goals of 

the corresponding benchmarks, and unifying them would risk obscur­

ing task-specific performance characteristics. Accordingly, this survey 

does not aim to conduct direct numerical comparisons across differ­

ent tables. Instead, cross-dataset analysis is performed at the level 

of modeling paradigms and reasoning mechanisms, while numerical 

comparisons are restricted to within-dataset settings under consistent

protocols.

6.1 . Results on MM-FakeBench

Table 3 provides a comprehensive evaluation of binary detection 

performance for various large vision–language models (LVLMs) on the 

MM-FakeBench benchmark, comparing both validation and large scale 

test settings. The results highlight the significant role of model size 

and inference strategies in detecting different types of misinformation 

distortions.

Smaller models with 7B parameters generally struggle with 

performance, as reflected by macro-F1 scores below 50. These mod­

els exhibit limitations in addressing cross modal inconsistencies, which 

are critical for distinguishing between authentic and fabricated con­

tent. For instance, Otter-Image, MiniGPT4, and InstructBLIP show poor 

precision and recall, indicating their difficulty in recognizing relevant 

evidence across text and image modalities. This can be attributed to 

their inability to handle complex textual veracity distortions, which 

often involve rumor laden text that is challenging to separate from 

supporting images. When the model size increases to 13B parameters, 

performance improves significantly. Models like VILA and InstructBLIP 

achieve macro-F1 scores above 50 in validation, although they still fall 

short of human-level performance (F1 = 54.9). The introduction of the 

MMD-Agent framework notably enhances the models’ ability to handle 

visual veracity distortions, such as fact conflicting images. The MMD-

Agent framework employs a structured reasoning process that combines 
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Table 6 

Performance comparisons for different types of misinformation on the Pheme and Twitter16 datasets are conducted. Results are presented for 

various methods, including SLM, zero-shot and few-shot LLM, and a hybrid LLM+SLM approach. The best performance value for each metric is 

denoted by bolded.

Category Method Pheme Twitter16

Acc Precision Recall F1 Acc Precision Recall F1

SLM RoBERTa [219] 0.714 0.777 0.695 0.734 0.644 0.649 0.641 0.645

EANN [47] 0.744 0.738 0.745 0.741 0.641 0.621 0.741 0.676

M3FEND [220] 0.746 0.747 0.746 0.746 0.642 0.608 0.816 0.697

FTT [116] 0.754 0.748 0.764 0.756 0.651 0.649 0.720 0.683

LLM (zero-shot) Llama2-7B [19] 0.505 0.498 0.697 0.581 0.496 0.501 0.494 0.498

Llama3-8B [116] 0.535 0.518 0.770 0.620 0.562 0.574 0.531 0.552

GPT3.5 [221] 0.503 0.500 0.714 0.586 0.583 0.585 0.571 0.578

LLM (few-shot) Llama2-7B [19] 0.528 0.511 0.894 0.650 0.590 0.598 0.584 0.591

Llama3-8B [222] 0.549 0.524 0.961 0.679 0.622 0.607 0.717 0.658

GPT3.5 [221] 0.520 0.507 0.850 0.635 0.621 0.609 0.705 0.653

LLM+SLM ARG[75] 0.743 0.741 0.779 0.760 0.705 0.698 0.710 0.704

MRCD Llama2+RoBERTa [116] 0.772 0.765 0.775 0.770 0.732 0.717 0.619 0.664

GPT3.5+RoBERTa [116] 0.781 0.735 0.821 0.778 0.768 0.752 0.734 0.743

Llama3+RoBERTa [116] 0.788 0.700 0.900 0.786 0.772 0.765 0.775 0.770

Llama3+FTT [116] 0.814 0.788 0.841 0.814 0.794 0.768 0.782 0.774

Improvements Impr. RoBERTa [219] +7.4% / +20.5% +5.2% +12.8% +11.6% +13.4% +12.5%

Impr. FTT [116] +6.0% +4.0% +7.7% +5.8% +14.3% +11.9% +13.2% +12.1%

Table 7 

Performance comparison of LVLM-based multimodal misinformation detection methods under the DI_OT setting within Controlled News 

Diversity. Since DI_OT applies to both real and fake instances, we report results (in percentages) for this category as a representative example 

[224,225].

multi step reasoning and confidence calibration, helping the models to 

better differentiate genuine content from misleading visual cues. For 

example, VILA’s F1 score increases from 51.1 to 56.5, and InstructBLIP’s 

score rises from 51.3 to 56.1, showing the substantial impact of these in­

ference enhancements. At the 34B scale, Nous-Hermes-2 demonstrates 

strong performance with a macro-F1 of 62.9 in validation, which in­

creases to 67.2 when paired with MMD-Agent. This shows that while 

model size contributes to performance, it is the targeted application of 

inference strategies like those in MMD-Agent that enables models to ef­

fectively address cross modal consistency distortion. MMD-Agent refines 

the model’s reasoning by enhancing the alignment between text and 

images, particularly when there are discrepancies such as image/text 

repurposing or AI-generated content. These refinements lead to more ro­

bust detection performance across various distortion types, ensuring the 

model better handles inconsistencies between the modalities. Finally, 

GPT-4V, a proprietary LVLM, sets a high benchmark with a macro-F1 

of 72.3 in validation and 74.2 on the test set under standard prompt­

ing. When enhanced with the MMD-Agent framework, it reaches a 

macro-F1 of 74.0 in validation and 72.8 in testing, narrowly outperform­

ing human evaluation. The improvements in both precision and recall 

reflect how MMD-Agent fine tunes the reasoning process to address 

specific distortions, particularly in visual textual misalignments, making 

the model more reliable and accurate in multimodal misinformation 

detection.

The results underscore that simply increasing model capacity is not 

enough. The integration of the MMD-Agent framework, with its ad­

vanced inference strategies such as multi step reasoning, confidence 

calibration, and adaptive visual amplification, consistently enhances 

model performance. This framework allows the models to effectively ad­

dress different types of distortions, highlighting the importance of struc­

tured reasoning and adaptive refinement in achieving high accuracy in 

multimodal misinformation detection.

6.2 . Results on twitter and fakeddit

Table 4 compares the performance of LEMMA with several base­

line methods on the Twitter and Fakeddit datasets, both of which are 

widely used benchmarks for multimodal misinformation detection. The 

results underscore the importance of structured reasoning and modular 

architectures in improving performance across these datasets.

On the Twitter dataset, LEMMA achieves an accuracy of 0.824 and 

an F1 score of 0.816, significantly outperforming the best perform­

ing baseline, GPT-4V with Chain-of-Thought (CoT), which attains an 

accuracy of 0.757 and an F1 score of 0.758. This improvement is 
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observed consistently across both rumor and non-rumor classification 

tasks. Specifically, in the rumor category, LEMMA achieves a preci­

sion of 0.943 and a recall of 0.741, compared to GPT-4V’s 0.866 and 

0.670, respectively. In the non-rumor class, LEMMA maintains a preci­

sion of 0.721 and a recall of 0.937, demonstrating its superior balance 

and robustness. The results also highlight a common issue with baseline 

methods, such as FacTool, which show high recall but suffer from low 

precision. This indicates a tendency to overfit to superficial cues, such as 

sensational language or common visual patterns, leading to a high rate 

of false positives.

On the Fakeddit dataset, LEMMA maintains strong generalization 

performance with an accuracy of 0.828 and an F1 score of 0.857, once 

again outperforming all baseline methods. Even the powerful GPT-4V 

model, under direct prompting, achieves only an accuracy of 0.734 and 

an F1 score of 0.740. The CoT variant of GPT-4V improves slightly but 

still lags behind LEMMA by a significant margin. Notably, LEMMA’s per­

formance remains stable across both datasets, with minimal variance in 

precision and recall, suggesting its effectiveness in capturing cross modal 

evidence without over-relying on domain-specific artifacts or superficial 

cues.

The ablation studies further validate LEMMA’s design choices. 

Removing the initial stage inference module reduces accuracy to 0.781 

on Twitter and 0.803 on Fakeddit, underscoring the critical role of 

early filtering in improving efficiency and reducing noise. Similarly, ex­

cluding visual retrieval results in a performance drop, highlighting the 

importance of integrating external visual knowledge to support decision-

making. These results confirm that LEMMA’s strength lies not only in its 

underlying model capacity but also in its modular architecture, which 

enables systematic evidence assessment and calibrated decision-making. 

Compared to prior work, LEMMA avoids the instability observed in mod­

els like FacTool, which often exhibit sharp fluctuations in precision recall 

trade offs due to sensitivity to input phrasing or image composition. 

LEMMA, on the other hand, consistently maintains high scores across 

multiple metrics, demonstrating its ability to balance confidence and 

completeness in explanation generation. This balanced performance en­

sures that it minimizes both false positives and false negatives, making 

it particularly well suited for real-world applications where reliability 

and fairness are paramount.

6.3 . Results on MDAM3-DB

Table 5 presents a comparison of various models on the MDAM3-

DB dataset, highlighting the performance improvements achieved by 

integrating the MDAM3 framework across different misinformation 

types, including fact conflicting content, AI-generated content, offensive 

content, and out-of-context (OOC) information.

When analyzing the direct application of large visual-language mod­

els (LVLMs) without the MDAM3 framework, we observe that models 

such as BLIP2 and InstructBLIP perform poorly on certain types of mis­

information, particularly in detecting factual conflicts and AI-generated 

content. For instance, BLIP2 achieves an accuracy of 0.467 in detecting 

fact conflicting content and 0.355 for AI-generated content. Similarly, 

InstructBLIP shows limited performance, with an accuracy of 0.481 for 

fact conflicting content and 0.360 for AI-generated content. These results 

suggest that while these models perform reasonably well in identify­

ing offensive content and cross modal inconsistencies, they struggle to 

verify factual authenticity reliably, often misclassifying synthetic con­

tent as real. This can be attributed to their lack of structured reasoning 

capabilities, which hinders their ability to make accurate distinctions 

in complex multimodal contexts. In contrast, GPT-4V demonstrates the 

strongest baseline performance across all tasks, particularly in handling 

complex semantics and multimodal information. However, the intro­

duction of the MDAM3 framework leads to substantial improvements. 

For example, in AI-generated content detection, GPT-4V’s accuracy 

rises from 0.483 to 0.886, and its AUC improves from 0.491 to 0.924. 

These results underscore the critical role of MDAM3 in correcting model 

biases, enhancing fact checking capabilities, and improving classifica­

tion accuracy. The framework’s ability to integrate external knowledge 

and apply structured reasoning is particularly effective in overcoming 

the challenges faced by models like BLIP2 and InstructBLIP, leading 

to notable improvements in their detection capabilities. For example, 

InstructBLIP’s accuracy for detecting fact conflicting content improves 

from 0.481 to 0.580, and BLIP2 sees a similar improvement, with its ac­

curacy rising from 0.467 to 0.589. Additionally, MDAM3 demonstrates 

remarkable versatility across multiple types of misinformation. Models 

like LLaVA and VILA show considerable improvements in both accu­

racy and AUC for detecting offensive and fact conflicting content after 

integrating MDAM3. Notably, VILA’s performance jumps from an accu­

racy of 0.484 to 0.730 in fact conflicting content detection, and LLaVA’s 

accuracy increases from 0.503 to 0.712 for the same task. These im­

provements highlight MDAM3’s ability to enhance model performance 

across a range of challenging misinformation types, reinforcing its adapt­

ability and robustness. The ablation studies also provide insight into 

the specific contributions of MDAM3. For instance, the removal of the 

MDAM3 framework leads to significant drops in performance across 

all models, particularly in complex tasks like AI-generated content 

detection and fact conflicting content. These findings emphasize the im­

portance of structured reasoning and external knowledge integration in 

improving detection accuracy and reducing model bias.

The MDAM3 framework not only addresses the limitations of individ­

ual models in specific tasks but also incorporates external information 

through a structured reasoning process, resulting in significant im­

provements in the performance of multimodal misinformation detection 

systems. The observed gains across a variety of metrics, including ac­

curacy, AUC, and AP, highlight that MDAM3 offers a comprehensive 

and reliable solution for detecting and mitigating different types of 

misleading information.

6.4 . Results on pheme and twitter16

Table 6 presents a performance comparison across different misinfor­

mation types on the Pheme and Twitter16 datasets, using various models 

including small language models (SLMs), large language models (LLMs) 

in both zero shot and few shot settings, and the hybrid LLM+SLM 

framework of MRCD.

SLM-based approaches, such as RoBERTa and FTT, demonstrate mod­

erate performance on both datasets, with accuracy values of 0.754 

on Pheme and 0.651 on Twitter16. These models struggle to gener­

alize across newly emerging events due to their limited contextual 

understanding, particularly when facing dynamic misinformation that 

requires up-to-date knowledge. This is especially evident in their subop­

timal performance on complex misinformation types, such as emerging 

rumors or evolving fake narratives, where deeper reasoning and con­

textual adaptation are essential. In contrast, LLM based methods, like 

Llama2-7B and GPT-3.5, even under few shot settings, exhibit lim­

ited adaptability, with accuracies remaining below 0.63 across both 

datasets. Their performance underscores the challenges LLMs face in 

rapidly evolving domains without explicit domain-specific supervision. 

Although these models show some improvement over SLMs, they remain 

less effective at handling nuanced and domain-specific misinformation 

compared to hybrid approaches that combine the strengths of both 

model types. The MRCD framework, by integrating LLMs and SLMs 

through multi round collaboration, achieves a substantial performance 

boost, particularly in the detection of dynamic and heterogeneous mis­

information. For instance, integrating Llama3 with FTT results in the 

best performance, achieving an accuracy of 0.814 on Pheme and 0.794 

on Twitter16, surpassing the strongest standalone SLM baseline by 

7.4% and 12.8%, respectively. This improvement is not only observed 

in accuracy but also across precision, recall, and F1 scores, demon­

strating MRCD’s balanced enhancement in both detection reliability 

and robustness. The synergy between LLMs’ broad generalization and 

reasoning capacity and SLMs’ domain specific precision allows MRCD 
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to excel in detecting both emerging and context specific misinforma­

tion types, which single model paradigms struggle to address. Further 

analysis of the results shows that MRCD’s multi round collaborative 

learning mechanism enables dynamic retrieval and application of rele­

vant knowledge, refining the detection process iteratively. This enables 

the system to continuously adapt to evolving misinformation, a crucial 

factor in real-world fake news detection scenarios. The improvement of 

over 20% in performance metrics, such as precision and recall, especially 

in the context of domain specific fake news detection, underscores the 

importance of such an approach. Additionally, the hybrid approach mit­

igates the shortcomings of single model methods, such as overfitting to 

superficial cues or failing to capture emerging trends in misinformation.

These results confirm that MRCD’s collaborative architecture, com­

bining LLMs with SLMs, offers a powerful solution for tackling the 

complexities of dynamic and evolving misinformation. By dynamically 

retrieving and integrating the most relevant knowledge, MRCD not only 

improves detection performance but also ensures that fake news detec­

tion systems remain adaptable to new and emerging threats in rapidly 

changing information environments.

6.5 . Results on DriftBench

Table 7 presents a comparison of various LVLM based misinforma­

tion detection methods under the DI_OT setting within Controlled News 

Diversity. The results underscore the vulnerability of current systems 

to GenAI-driven content variation, which can significantly affect model 

performance, particularly when models are exposed to diversified news 

content with stylistic and semantic shifts.

Models like GPT-4o-mini and Claude-3.7-Sonnet, which perform well 

under realistic conditions, suffer notable declines in performance when 

exposed to diversified content. For example, GPT-4o-mini’s accuracy 

drops from 83.3% to 64.4%, and its recall for real news falls sharply from 

75.6% to 35.7%, illustrating how stylistic and semantic changes can 

severely impair factual verification. Similarly, Claude-3.7-Sonnet experi­

ences a decline in accuracy from 88.3% to 72.4%, with a substantial drop 

in recall for fake news. These results emphasize a common challenge in 

current LVLMs, which is their inability to maintain reliable reasoning 

across diverse multimodal content, especially when the content deviates 

from the distribution encountered during training. In contrast, models 

like SNIFFER and LEMMA exhibit more stability in the face of content 

diversification, though their F1 scores still decline by more than 10% 

across both real and fake categories. This indicates that while these 

models are somewhat resilient to content variation, they still struggle 

with reasoning consistency, particularly when handling complex distor­

tions such as those induced by GenAI driven content heterogeneity. The 

integration of multilevel drift scenarios in DriftBench reveals a critical 

gap in current detection systems, which is their inability to effectively 

generalize across evolving distributions. Models that excel in controlled 

conditions such as GPT-4o-mini and Claude-3.7-Sonnet fail to maintain 

their performance when confronted with content that deviates stylisti­

cally or semantically. This underscores the need for new frameworks 

capable of adapting to such shifts, stabilizing cross-modal reasoning, 

and ensuring consistent misinformation detection in rapidly changing 

information environments. Notably, LEMMA and SNIFFER demonstrate 

relatively stable performance in these challenging scenarios. This re­

silience can be attributed to their architectural focus on robust evidence 

retrieval and adaptive reasoning processes. However, even these models 

face limitations when dealing with the broader variations introduced by 

GenAI, underscoring the necessity for frameworks that integrate multi 

modal, multi round reasoning and continuous adaptation. These findings 

point to the need for more robust multimodal misinformation detection 

systems capable of addressing the challenges posed by GenAI driven 

content diversification.

The results from DriftBench underscore the need for developing 

frameworks capable of mitigating multi level drift, stabilizing rea­

soning across diverse contexts, and enhancing the reliability of fake 

news detection in the face of dynamic, GenAI induced misinformation. 

While models like LEMMA outperform most others, they still highlight 

the gaps that must be addressed to achieve robust and generalizable 

misinformation detection across a wide range of content types.

6.6 . Results on FakeSV and FakeTT

Table 8 presents a performance comparison of various models, 

including both traditional unimodal and state-of-the-art multimodal 

frameworks, on the FakeSV and FakeTT datasets. The results empha­

size the importance of robust multimodal reasoning and the challenges 

posed by different types of distortions, such as visual manipulation, cross 

modal inconsistency, and AI generated content.

Models such as BLIP2 and InstructBLIP, which are general pur­

pose vision–language models (VLMs), demonstrate limited capability in 

handling complex cross modal reasoning. These models achieve accu­

racies of 70.85% and 78.41% on FakeSV, respectively, which reflects 

their difficulty in capturing subtle semantic and visual inconsistencies 

between text and images. The root cause of these limitations lies in 

their architecture, which lacks the specialized modules required for fine 

grained multimodal alignment. Specifically, these models struggle with 

detecting visual distortions, such as manipulated images, or reconciling 

discrepancies between textual claims and visual evidence, making them 

less effective at handling nuanced misinformation types. In contrast, 

more sophisticated multimodal models like TikTec and FANVM intro­

duce explicit feature alignment mechanisms, improving their ability to 

Table 8 

Performance comparison on two datasets. Best results are shown in bold.

Model FakeSV FakeTT

ACC M-F1 M-P M-R ACC M-F1 M-P M-R

GPT-4o-mini [223] 68.08 68.05 69.88 69.49 61.54 61.20 64.41 65.89

GPT-4.1-mini [223] 70.30 70.25 70.61 70.87 49.16 48.54 62.50 59.70

Qwen2.5-VL [226] 64.21 60.79 64.55 61.52 45.82 45.31 56.69 55.42

InternVL2.5 [110] 64.39 57.89 68.52 60.50 46.82 45.29 64.92 59.23

InternVL2.5-MPO [110] 65.13 61.07 66.46 62.12 43.14 40.84 61.90 56.23

ViT [61] 70.85 70.66 70.64 70.91 64.88 62.59 62.54 63.80

BERT [227] 78.41 78.25 78.17 78.52 70.90 69.00 68.71 70.60

TikTec [228] 73.06 72.79 72.73 72.93 66.56 65.55 66.50 68.62

FANVM [229] 79.88 78.91 80.98 78.42 71.91 70.85 71.21 73.90

SV-FEND [207] 80.81 80.19 81.08 79.84 77.26 75.55 74.94 77.13

FakingRecipe [210] 84.69 84.39 84.57 84.25 79.26 77.53 76.86 78.89

CA-FVD [230] 85.79 85.28 86.57 84.78 81.61 80.26 79.50 82.17

ExMRD [231] 86.90 86.52 87.31 86.13 84.28 83.13 82.27 85.19

FakeSV-VLM [38] 90.22 89.97 90.55 89.64 89.30 87.98 87.80 88.17
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detect cross modal inconsistencies. These models achieve better perfor­

mance with accuracy scores of 73.06% and 79.88%, respectively, on 

FakeSV. However, they still fall short in addressing the challenges of 

fine grained factual verification. Their performance plateaus at around 

86.90% accuracy on FakeSV and 84.28% on FakeTT, indicating that 

while they can capture basic cross modal correlations, they still strug­

gle with more complex distortions like those introduced by generative 

adversarial techniques or cross modal contradictions. The FakeSV-VLM 

framework introduces a significant advancement with its Progressive 

Mixture of Experts (PMOE) architecture, which enables adaptive expert 

collaboration for multimodal authenticity verification. By leveraging 

specialized experts for different tasks, FakeSV-VLM demonstrates supe­

rior performance, achieving 90.22% accuracy and 89.97% macro-F1 on 

FakeSV, and 89.30% accuracy with 87.98% macro-F1 on FakeTT. These 

gains can be attributed to the system’s ability to dynamically select the 

most relevant experts for each specific misinformation task. The frame­

work also incorporates an Alignment-driven Event Checking (ADEC) 

module, which captures subtle semantic and visual inconsistencies that 

are crucial for detecting fabricated content, particularly in short videos. 

This combination of expert reasoning and cross modal alignment allows 

FakeSV-VLM to outperform both traditional and LVLM based models 

by a large margin. The performance improvements in FakeSV-VLM can 

be explained by the integration of adaptive expert collaboration and 

the ability to handle multimodal distortions across different types of 

misinformation. The PMOE architecture allows the system to select spe­

cialized experts based on the task at hand, providing a tailored approach 

to each misinformation type, whether it involves visual manipulation, 

cross modal inconsistency, or semantic distortions. The ADEC module 

further enhances the system’s robustness by identifying and correcting 

subtle inconsistencies that traditional models fail to capture.

The results from FakeSV-VLM indicate that the combination of struc­

tured reasoning, dynamic expert collaboration, and deep multimodal 

alignment is crucial for achieving state-of-the-art performance in mul­

timodal misinformation detection. While general-purpose models like 

BLIP2 and InstructBLIP perform well in simpler scenarios, they struggle 

with the complexities introduced by evolving misinformation tactics. 

The success of FakeSV-VLM highlights the importance of integrating 

task-specific adaptability and fine-grained reasoning capabilities in fu­

ture misinformation detection systems, ensuring that they can handle a 

wide range of distortion types with high accuracy and interpretability.

6.7 . Results on multiple in-domain and out-of-domain datasets

Table 9 compares the performance of TRUST-VL and other baseline 

VLMs across both in-domain and out-of-domain datasets, highlighting 

the ability of various models to handle different types of misinformation 

distortions, including textual, visual, and cross-modal inconsistencies. 

The results clearly demonstrate that while general purpose VLMs exhibit 

certain strengths, they face significant limitations in effectively address­

ing complex multimodal misinformation, particularly in the presence of 

advanced distortions like cross-modal inconsistencies or AI-generated 

manipulations.

Models such as BLIP2 and InstructBLIP, despite showing relatively 

high performance in some cases, struggle significantly with specific 

distortion types. These models often misclassify cross modal or AI-

generated distortions as genuine content, leading to substantial drops in 

accuracy. For example, BLIP2’s performance on datasets like MOCHEG 

and VERITE is markedly lower, as it fails to capture the nuanced in­

consistencies between text and supporting visual content, especially in 

cases where visual veracity is distorted. These results suggest that the 

standard training and prompting strategies used by these models are 

insufficient for tackling complex visual and cross modal distortions, 

highlighting a clear gap in their ability to adapt across varied dis­

tortion types. In contrast, TRUST-VL, which introduces the Question 

Aware Visual Amplifier (QAVA) module for adaptive visual representa­

tion enhancement, shows substantial improvements across all datasets, 

including both in-domain and out-of-domain settings. By dynamically 

adjusting the visual representations based on contextual textual cues, 

TRUST-VL excels in addressing both textual veracity distortions (e.g., 

rumor-laden text) and visual veracity distortions (e.g., fact conflicting 

images). Its performance on Factify2, achieving near perfect accuracy, 

underscores its ability to handle specific types of distortion, particularly 

in scenarios involving high level visual manipulations. The model’s aver­

age accuracy of 86.16%, surpassing the second best model by +8.42%, 

reflects the strength of its unified reasoning approach, which effectively 

integrates structured textual and visual reasoning. Moreover, TRUST-

VL’s robustness is evident in out-of-domain datasets like MOCHEG and 

Fakeddit-M, where traditional models like GPT-4o show severe perfor­

mance degradation. These models fail to generalize effectively when 

faced with data that deviate from their training distribution, particu­

larly in domains with cross-modal inconsistencies. TRUST-VL, however, 

maintains strong performance in these settings, demonstrating that its 

training paradigm, which combines reasoning based instruction with 

multimodal alignment, allows it to generalize better to unseen data. 

This performance is further amplified by its integration of the QAVA 

module, which optimally balances textual and visual cues for more ac­

curate cross modal reasoning, ensuring that the model adapts well across 

a wide range of distortions.

The stark contrast in performance between TRUST-VL and other 

models reveals the limitations of traditional approaches, particularly in 

their inability to maintain robustness across distortion types. The success 

Table 9 

Performance (%) comparison between TRUST-VL and other baseline VLMs across in-domain and out-of-domain datasets. The best score is bolded, and the second-best 

score is underlined.

Methods Avg. Acc. In-domain Out-of-domain

MMFakeBench Factify2 DGM4-Face NewsCLIPpings MOCHEG Fakeddit-M VERITE

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

General-purpose VLMs

BLIP2 [94] 53.36 37.40 34.45 54.30 42.38 47.70 34.35 50.14 34.28 62.50 57.16 70.75 70.19 50.75 37.35

InstructBLIP [95] 58.41 57.30 56.38 66.83 66.48 50.40 48.66 53.85 50.71 63.25 60.85 64.75 62.83 52.50 49.60

LLaVA [24] 60.25 62.60 61.72 79.59 79.10 46.41 38.14 45.87 48.54 66.50 64.71 68.00 66.67 52.75 49.80

xGen-MM 62.20 65.40 62.77 86.03 86.04 50.10 49.68 59.87 59.18 59.50 56.32 60.00 53.45 54.50 54.41

LLaVA-NeXT [87] 62.35 71.60 65.99 79.60 79.09 53.40 52.21 59.86 59.37 58.25 52.52 59.00 52.36 54.75 54.57

Qwen2-VL [109] 69.85 67.00 66.28 89.40 89.37 48.10 41.63 70.94 69.91 66.25 64.57 77.25 76.96 70.00 68.94

GPT-4o [223] 76.16 83.10 80.88 88.37 88.21 57.14 49.24 86.51 86.51 77.00 76.81 73.50 73.12 67.50 67.57

o1 [232] 77.74 83.90 82.41 96.90 96.90 50.06 38.06 86.80 86.54 81.50 81.38 73.25 73.07 71.75 71.66

Misinformation detectors

MMD-Agent [211] 56.11 69.10 48.68 71.03 69.35 48.30 48.29 53.06 41.12 54.25 43.72 42.25 42.24 54.75 47.00

SNIFFER [34] 61.17 51.40 51.33 61.00 55.97 47.20 37.96 88.85 88.85 53.75 50.73 53.50 51.13 72.50 72.02

LRQ-FACT [233] 66.60 71.30 74.00 86.63 89.79 41.80 44.14 68.19 73.45 66.25 69.25 67.25 71.77 64.75 68.32

TRUST-VL [138] 86.16 87.30 85.42 99.50 99.50 88.50 88.39 90.35 90.35 82.75 82.58 82.50 82.20 73.75 73.61
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of TRUST-VL highlights the necessity of integrated, adaptive models that 

not only scale across model sizes but also incorporate more sophisticated 

reasoning strategies. This work establishes a new benchmark for multi­

modal misinformation detection, setting a precedent for future models 

that aim to achieve both high accuracy and generalization capabilities 

across diverse distortion types.

7 . Future directions

While Large Vision–Language Models (LVLMs) have demonstrated 

remarkable capabilities in understanding and reasoning over multi­

modal content, their application to the nuanced and adversarial domain 

of fake news detection remains nascent and fraught with unresolved 

challenges. Drawing from the limitations and gaps identified in this 

survey, we outline several high-impact research directions that are crit­

ical to advancing the field toward robust, trustworthy, and deployable 

systems.

7.1 . Causal and counterfactual reasoning for explainable detection

Current large vision–language models (LVLMs) detect fake news by 

learning statistical patterns from massive image–text datasets. While 

effective on benchmark tasks, these models often rely on superficial 

correlations rather than genuine evidential reasoning. For example, 

an LVLM may incorrectly associate certain visual styles, such as low-

resolution images, particular color tones, or recurring backgrounds, with 

“fakeness” merely because these features frequently appear in the false 

examples within its training data. Similarly, it may link emotionally 

charged language (e.g., “shocking,” “you won’t believe”) or particular 

news sources to misinformation, even when the underlying claim is fac­

tually accurate. This reliance on non-causal cues leads to two critical 

failures. First, the model’s decisions become brittle: when confronted 

with novel manipulation tactics or content from underrepresented do­

mains, performance degrades sharply. Second, and more importantly, 

the model lacks the ability to explain why a piece of content is classified 

as false based on concrete inconsistencies between visual and textual ev­

idence, such as mismatched timestamps, manipulated objects, or claims 

that contradict the visible context. Without such reasoning, the system 

remains a black box, unsuitable for high-stakes applications like jour­

nalism, legal review, or public policy. Standard LVLMs are optimized to 

maximize predictive accuracy on observed data without distinguishing 

between causal features that make a claim false and correlated fea­

tures that simply co-occur with falsity in the training distribution. This 

limitation arises from inherent biases in real-world fake news datasets, 

which mirror historical disinformation patterns, platform-specific mod­

eration rules, and cultural contexts. As a result, the model often learns 

superficial associations, such as treating content from certain regions or 

containing protest imagery as deceptive, rather than reasoning about 

whether the visual evidence genuinely contradicts the accompanying 

text. In essence, today’s LVLMs answer the question “What usually goes 

with fake news?” instead of “What proves this specific claim is false?”

To address this limitation, future LVLMs should be explicitly de­

signed to perform causal and counterfactual reasoning, enabling them 

to identify which elements of the multimodal input contribute to the ve­

racity judgment and to evaluate how modifying those elements would 

affect the final decision. A crucial step is to disentangle causally relevant 

signals, such as temporal inconsistencies, object mismatches, or seman­

tic contradictions, from confounding factors like source bias, stylistic 

patterns, or demographic correlations. This can be accomplished by 

training LVLMs across diverse environments, including news from differ­

ent countries, platforms, or time periods, and ensuring that their internal 

representations of evidence remain consistent even when confounding 

factors vary. Methods such as invariant risk minimization and domain-

adversarial training can be adapted to reduce the model’s dependence 

on environment-specific cues while maintaining its ability to detect gen­

uine cross-modal factual inconsistencies. Another effective strategy is to 

enhance training with counterfactual examples, which are modified ver­

sions of real multimodal samples where only non-essential attributes 

are changed. For example, an image in a fake news instance can be 

replaced with a visually similar but factually neutral photo while keep­

ing the misleading text intact. A causally aware model should retain its 

“fake” prediction only if the textual claim remains unsupported by the 

new image. Conversely, if a true claim is paired with a manipulated 

image implying falsity, the model should detect the inconsistency and 

revise its judgment accordingly. Creating such counterfactual examples 

through image editing, text paraphrasing, or retrieval from verified me­

dia archives offers direct supervision for teaching the model to focus 

on the truly causal factors underlying veracity assessment. Finally, ad­

vancing in this direction requires the development of evaluation metrics 

that go beyond traditional accuracy. A causally competent model should 

demonstrate counterfactual consistency, meaning its predictions change 

only when causally relevant evidence is altered and remain stable when 

irrelevant features such as font style or background scenery are modi­

fied. Furthermore, the model’s explanations, including the image regions 

it highlights and the textual phrases it emphasizes, should align with 

human judgments of what constitutes decisive evidence. Collaborations 

with fact-checking organizations can support the creation of such eval­

uation benchmarks, ensuring that models are evaluated on genuine 

reasoning ability rather than statistical pattern recognition.

7.2 . Adversarially robust and out-of-distribution generalization

Fake news is not a static phenomenon but an adversarial and adap­

tive process. Malicious actors continuously refine their strategies to 

evade detection, exploiting the very patterns that current LVLMs depend 

on. Early misinformation often involved simple image–text mismatches, 

whereas modern disinformation campaigns employ more sophisticated 

techniques such as context swapping, where real images are reused with 

fabricated captions; deepfakes with semantic alignment, which generate 

synthetic media that coherently supports false narratives; and multi­

modal prompt injection, which crafts inputs that subtly mislead LVLMs 

toward incorrect conclusions. These tactics are intentionally designed 

to maintain surface-level plausibility while eroding factual integrity, 

revealing the inherent fragility of existing models. Compounding this is­

sue is the distributional shift inherent in real-world deployment. LVLMs 

trained on historical datasets, which are often dominated by English-

language content from a few major platforms, tend to struggle when 

confronted with news from underrepresented regions, emerging social 

media formats (e.g., short videos, memes), or novel event types (e.g., 

pandemics, geopolitical crises). In such out-of-distribution (OOD) sce­

narios, models frequently default to spurious heuristics or fail silently, 

producing high-confidence but incorrect predictions. The root cause lies 

in the passive learning paradigm of most LVLMs: they are optimized for 

average-case performance on fixed, curated datasets, not for worst-case 

robustness or adaptability. Their representations are highly sensitive to 

input perturbations that preserve semantics to humans but alter model-

internal features, such as minor color shifts, object repositioning, or 

synonym substitutions. Moreover, because training data rarely includes 

examples of how fake news evolves over time, models lack mecha­

nisms to recognize or adapt to new manipulation strategies. Crucially, 

standard evaluation protocols mask this vulnerability. Benchmarks like 

FakeNewsNet or Weibo21 consist of static snapshots of past misinforma­

tion, offering no test of a model’s ability to generalize to future or unseen 

attack vectors. As a result, reported performance often overestimates 

real-world effectiveness.

To address these challenges, future work must move beyond static 

training and embrace proactive robustness by design. Below are sev­

eral interlinked strategies that can significantly improve generalization 

under adversarial pressure and distribution shifts. First, LVLMs should 

be trained not only on clean examples but also on realistic adversarial 

variants that mimic actual disinformation tactics. This requires develop­

ing perturbation models tailored to multimodal content. Specifically, for 

Computer Science Review 60 (2026) 100893 

22 



W. Ai, Y. Tan, Y. Shou et al.

images, apply context-preserving modifications such as object removal 

or replacement using diffusion-based inpainting, adjustments to light­

ing or color tone, and the generation of subtle deepfakes that maintain 

overall scene coherence. For text, apply meaning-preserving manipu­

lations such as paraphrasing that introduces subtle false implications, 

substituting key entities with misleading alternatives, or inserting plau­

sible yet fabricated details to distort the narrative while maintaining 

fluency. For cross-modal alignment, introduce semantic drift in which 

the image and text remain individually coherent but become jointly de­

ceptive, such as pairing a real photo of a flood with a claim about a 

different location. By training on such augmented data, ideally produced 

through an iterative red-team and blue-team process, LVLMs can grad­

ually learn invariant features that remain robust against manipulation. 

A more principled strategy is to ensure that the model’s internal rep­

resentation of “fakeness” relies only on features that remain consistent 

across diverse environments, such as different news sources, languages, 

or event types. This can be accomplished by partitioning the train­

ing data into multiple environments, for example based on platform, 

country, or time period, and applying algorithms such as invariant risk 

minimization or domain-conflict-aware optimization. These methods en­

courage the model to build decision boundaries that depend on signals 

consistently associated with veracity across all environments rather than 

on environment-specific artifacts. The resulting representation captures 

the fundamental essence of multimodal inconsistency rather than the pe­

culiarities of any single dataset. Finally, robust systems must know when 

they don’t know. LVLMs should be equipped with calibrated uncertainty 

estimation, for instance, via ensemble methods, Monte Carlo dropout, 

or density-based out-of-distribution scoring. When encountering inputs 

that deviate significantly from the training manifold (e.g., a novel meme 

format or a deepfake with unusual artifacts), the model should flag high 

uncertainty and defer to human reviewers or external verification tools, 

rather than outputting a confident but erroneous verdict.

7.3 . Efficient and modular architectures for real-time deployment

While recent large vision–language models (LVLMs) have shown 

impressive performance on curated fake news detection benchmarks, 

their practical usefulness in real-world content moderation remains 

severely limited. The main challenge lies not only in accuracy but also 

in computational efficiency, latency, and adaptability under operational 

constraints. Social media platforms must process millions of multimodal 

posts every minute, including images, short videos, memes, and text 

captions, often on edge devices or within strict response-time limits of 

less than 500 milliseconds per post. Current monolithic LVLMs, which 

contain billions of parameters and rely on complex cross-modal fusion 

mechanisms, are poorly suited for such environments. They demand 

costly GPU clusters, consume large amounts of energy, and lack the flex­

ibility and transparency required for timely updates or inspection when 

new manipulation tactics appear. Moreover, the “one-size-fits-all” archi­

tecture of most LVLMs ignores the heterogeneity of real-world content. 

A breaking news photo, a satirical meme, and a deepfake video demand 

fundamentally different verification strategies, yet today’s models apply 

the same computationally intensive pipeline to all inputs, wasting re­

sources on low-risk or obviously benign content. This mismatch between 

research prototypes and deployment realities creates a critical gap: the 

most accurate models are too slow to be useful, while fast heuristics lack 

the reasoning depth needed for nuanced disinformation.

To bridge this gap, future systems must abandon the paradigm of 

“bigger is better” in favor of intelligent, modular, and adaptive architec­

tures that allocate computational resources only when and where they 

are needed. This requires rethinking both the structure of the model 

and the flow of inference. Instead of applying a full LVLM to every 

post, a more scalable solution is to adopt a multi-stage verification cas­

cade. In the first stage, lightweight screening models such as distilled 

transformers or vision-text co-occurrence filters quickly identify obvi­

ously benign content like personal photos and product advertisements, 

as well as clear violations such as known deepfake signatures or black­

listed sources. These models operate within milliseconds and can filter 

out more than 80% of total traffic. The second stage involves special­

ized verifiers that are activated only for ambiguous or high-risk cases. 

For example, a temporal inconsistency detector can be used when a 

claim references a recent event, while a semantic alignment analyzer fo­

cuses on narrative-heavy posts. Each module is trained for a narrow and 

well-defined subtask and can be independently updated or replaced. The 

third stage is a full LVLM fallback, reserved for rare cases that require 

comprehensive multimodal reasoning, ensuring that high-cost process­

ing is applied only when necessary. This hierarchical design mirrors the 

workflow of human fact-checkers, where rapid preliminary screening 

is followed by more detailed analysis for uncertain or disputed claims. 

Furthermore, not all inputs demand the same level of processing. Early-

exit mechanisms enable the model to produce confident predictions at 

intermediate layers when sufficient evidence has already been gathered, 

avoiding the need to engage deeper and more computationally expensive 

modules. For example, if a meme’s text includes a clearly false statistic 

and the accompanying image offers no conflicting visual evidence, the 

system can terminate the analysis early without performing resource-

intensive cross-attention over visual features. Similarly, input-adaptive 

routing can direct different modalities through tailored subnetworks. A 

text-dominant post (e.g., a quote screenshot) might skip heavy visual en­

coding, while a video-based claim could activate a dedicated temporal 

consistency module. Such routing can be learned jointly with the main 

task or guided by lightweight meta-classifiers. Finally, efficiency must be 

co-designed with hardware constraints. Techniques such as model quan­

tization (reducing numerical precision from 32-bit to 8-bit), structured 

pruning (removing redundant attention heads or feed-forward neurons), 

and knowledge distillation (training small student models to mimic large 

teachers) can drastically reduce model size and latency without sig­

nificant accuracy loss. Crucially, these optimizations should preserve 

the model’s sensitivity to subtle multimodal inconsistencies, avoiding 

aggressive compression that erases fine-grained evidential signals.

7.4 . Inference-time mitigation of multimodal hallucination

Multimodal hallucination represents a critical yet underexplored 

challenge in LVLM based fake news detection. Unlike general reasoning 

errors, hallucinated visual entities, events, or cross modal causal rela­

tions can artificially increase the plausibility of false claims, misleading 

both automated detectors and downstream users by providing high con­

fidence yet unfounded evidence. This issue is especially concerning in 

misinformation scenarios, where models must reason beyond directly 

observable content. Hallucinated visual or textual content can lead to 

the generation of false narratives that appear credible, thereby under­

mining the reliability of detection systems. The problem is compounded 

by the seamless reinforcement of misleading textual claims through mis­

interpreted or manipulated visual content, creating more convincing but 

ultimately false narratives.

While most existing solutions focus on training time alignment or 

data curation, emerging research indicates that inference time mitiga­

tion offers a lightweight, model agnostic alternative to reduce hallu­

cinated reasoning without the need for retraining large scale LVLMs. 

This approach is particularly advantageous for real-world applications, 

where retraining large models on massive datasets can be computa­

tionally expensive and impractical. A prominent example is Instruction 

Contrastive Decoding (ICD) [45], which suppresses generation paths 

dominated by language priors by explicitly contrasting faithful and un­

faithful decoding trajectories. This approach ensures that the model’s 

output remains grounded in both textual and visual modalities, leading 

to more accurate visual grounding and reducing the risk of hallucina­

tions. ICD is especially relevant for fake news detection, where even 

subtle hallucinations such as fabricated visual content or misrepresented 

events can distort veracity assessments by introducing fictitious evi­

dence. Beyond ICD, innovative methods such as Cogsteer [234] have 
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shown considerable promise in mitigating hallucinations during in­

ference. Cogsteer introduces a selective layer intervention mechanism 

that draws inspiration from cognitive processes of attention and filter­

ing. This method guides the model to prioritize relevant, contextually 

accurate information while downplaying less reliable or hallucinated 

details. By intervening at specific layers of the model during inference, 

Cogsteer effectively steers large models toward more grounded, factually 

accurate outputs, significantly reducing the likelihood of generating hal­

lucinated cross modal inferences without requiring large scale retraining 

or additional data curation. The combination of selective layer interven­

tions and contrastive decoding offers a robust strategy for mitigating 

hallucinations across both visual and textual modalities. While ICD ad­

dresses hallucinated textual content, Cogsteer ensures that the model’s 

attention aligns with relevant visual evidence, thus creating a more 

holistic solution to hallucination mitigation. These techniques, when 

combined, form a powerful framework for enhancing the reliability 

of LVLMs in multimodal misinformation detection tasks. Furthermore, 

additional inference time mechanisms, such as evidence-conditioned 

generation and self-consistency verification, provide complementary 

controls to enhance cross modal faithfulness. Evidence-conditioned gen­

eration verifies the consistency of generated content with available, 

trusted evidence during the generation process. Self-consistency verifica­

tion enables models to cross check their outputs against multiple sources 

or versions of the input, ensuring that the generated content aligns with 

verified data. While these techniques have yet to be fully explored in the 

context of multimodal misinformation detection, they offer promising 

avenues for further reducing hallucination rates and improving model 

trustworthiness.

Future research should focus on integrating hallucination aware 

inference strategies such as ICD, Cogsteer, and self-consistency mech­

anisms into LVLM based fake news detectors. Evaluation metrics should 

prioritize faithfulness oriented measures that explicitly quantify evi­

dence grounding and hallucination rates, rather than relying solely on 

end task detection accuracy. These faithfulness metrics would offer a 

more nuanced evaluation of model performance, particularly in complex 

real-world scenarios where identifying hallucinations is just as critical as 

detecting false claims. Incorporating such metrics will significantly ad­

vance the development of more reliable, robust, and trustworthy LVLM 

based systems for multimodal fake news detection.

7.5 . Knowledge-enhanced LVLM adaptation for veracity reasoning

The discussion of knowledge enhanced LVLM adaptation remains 

underdeveloped, despite mounting evidence that integrating contextual 

world knowledge can substantially enhance multimodal reasoning, par­

ticularly in tasks requiring complex, cross modal understanding. Existing 

frameworks often frame knowledge enhancement narrowly, focusing 

primarily on external fact retrieval or static knowledge graph aug­

mentation. However, recent advancements suggest that LVLMs can not 

only leverage structured external knowledge but also dynamically gen­

erate and contextualize world knowledge to improve decision-making 

processes during inference.

A prime example of this is WisdoM [235], which demonstrates the ca­

pacity of LVLMs to generate, contextualize, and fuse commonsense and 

background knowledge with both visual and textual modalities. By ac­

tively eliciting relevant contextual knowledge during inference, WisdoM 

improves multimodal sentiment analysis, especially under ambiguous 

conditions or when context is sparse. This approach goes beyond static 

knowledge integration by enabling models to adjust their knowledge 

based on the immediate reasoning context, leading to more accurate 

multimodal predictions. This dynamic knowledge generation and fusion 

approach has strong implications for veracity reasoning in fake news 

detection. Fake news often presents claims that, while visually plausi­

ble, may be contextually implausible. For instance, claims may involve 

geopolitical contexts or events that require implicit world knowledge, 

such as an understanding of regional political dynamics, typical event 

timelines, or physical plausibility. These forms of knowledge are often 

not directly observable in the visual modality, which makes their in­

tegration crucial for accurate veracity assessments. Building on these 

insights, future research should focus on adapting knowledge enhanced 

paradigms to veracity reasoning tasks. LVLMs must be able to dynam­

ically incorporate both external and internal knowledge contextually 

relevant background information that aids in the identification of false 

claims while maintaining cross modal consistency. Unlike traditional ap­

proaches that treat knowledge as an isolated post hoc component, this 

vision advocates for the seamless integration of knowledge generation 

and grounding mechanisms throughout the model’s reasoning process. 

Such a holistic approach would enable LVLMs to not only detect in­

consistencies between visual and textual cues but also assess whether a 

claim, while visually credible, aligns with contextual knowledge, leading 

to more robust and reliable fake news detection systems.

Knowledge enhanced LVLMs, particularly those capable of dynamic 

knowledge generation and fusion, present significant potential for ad­

vancing multimodal reasoning in fake news detection. By enabling 

LVLMs to distinguish between visually plausible yet contextually false 

claims, this approach offers a promising path toward improving verac­

ity assessment, providing a more comprehensive and accurate solution 

to the challenges posed by multimodal misinformation.

8 . Conclusion

As one of the fastest-growing areas in artificial intelligence, large 

visual-language models (LVLMs) for multimodal fake news detection 

have made significant progress in recent years. Therefore, we provide 

a comprehensive review of this research area. First, we introduce its 

background and motivation and highlight the unique challenges posed 

by LVLMs. Second, we present some preliminary research results, includ­

ing the definition of multimodal fake news, the evolution of traditional 

multimodal methods, and LVLM-based methods. Third, we propose a 

taxonomy of current methods, categorizing them into parameter-frozen 

paradigm and parameter-tuning paradigm. Each paradigm provides a 

complementary perspective on the development of this field. We then 

review representative models within each paradigm, tracing their devel­

opment history and methodological innovations. Fourth, we introduce 

commonly used evaluation metrics in multimodal fake news detection. 

Fifth, we compare the performance of different methods on various 

multimodal fake news detection datasets. Sixth, we summarize several 

commonly used multimodal fake news detection datasets. Finally, we 

outline unresolved challenges and future research directions.

Declaration of competing interest

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 

the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] B. Wang, J. Ma, H. Lin, Z. Yang, R. Yang, Y. Tian, Y. Chang, Explainable fake news 

detection with large language model via defense among competing wisdom, in: 

Proceedings of the ACM Web Conference, 2024, pp. 2452–2463.

[2] S. Mohseni, F. Yang, S. Pentyala, M. Du, Y. Liu, N. Lupfer, X. Hu, S. Ji, E. Ragan, 

Machine learning explanations to prevent overtrust in fake news detection, in: 

Proceedings of the International AAAI Conference on Web and Social Media, vol. 

15, 2021, pp. 421–431.

[3] F. Qian, C. Gong, K. Sharma, Y. Liu, Neural user response generator: fake news 

detection with collective user intelligence, in: International Joint Conference on 

Artificial Intelligence, vol. 18, 2018, pp. 3834–3840.

[4] U.S.S. Varshini, R.P. Sree, M. Srinivas, R.B.V. Subramanyam, Rdgt-gan: robust dis­

tribution generalization of transformers for Covid-19 fake news detection, IEEE 

Trans. Comput. Soc. Syst. 11 (2) (2023) 2418–2432.

[5] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, M. Nießner, 

Faceforensics++: Learning to detect manipulated facial images, in: Proceedings 

of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1–11.

Computer Science Review 60 (2026) 100893 

24 

http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0005
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0005
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0005
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0010
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0010
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0010
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0010
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0015
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0015
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0015
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0020
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0020
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0020
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0025
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0025
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0025


W. Ai, Y. Tan, Y. Shou et al.

[6] S. Abdali, S. Shaham, B. Krishnamachari, Multi-modal misinformation detection: 

Approaches, challenges and opportunities, ACM Comput. Surv. 57 (3) (2024) 1–29.

[7] S. Aneja, C. Bregler, M. Nießner, Cosmos: Catching out-of-context misinformation 

with self-supervised learning, arXiv preprint arXiv:2101.06278, 2021. 

[8] Y. Shou, T. Meng, W. Ai, K. Li, Dynamic graph neural ODE network for multi-modal 

emotion recognition in conversation, in: Proceedings of the 31st International 

Conference on Computational Linguistics, 2025, pp. 256–268.

[9] H. Liu, W. Wang, H. Sun, A. Rocha, H. Li, Robust domain misinformation detection 

via multi-modal feature alignment, IEEE Trans. Inf. Forensics Secur. 19 (2023) 

793–806.

[10] M. Hosseini, A.J. Sabet, S. He, D. Aguiar, Interpretable fake news detection with 

topic and deep variational models, Online Soc. Netw. Media 36 (2023) 100249.

[11] K. Shu, S. Wang, H. Liu, Beyond news contents: the role of social context for fake 

news detection, in: Proceedings of the Twelfth ACM International Conference on 

Web Search and Data Mining, 2019, pp. 312–320.

[12] W. Shang, K. Song, J. Ji, T. Yi, J. Cai, X. Li, Semantic space aligned multimodal 

fake news detection, Inf. Fusion (2025) 103469.

[13] L. Wu, Y. Long, C. Gao, Z. Wang, Y. Zhang, Mfir: multimodal fusion and incon­

sistency reasoning for explainable fake news detection, Inf. Fusion 100 (2023) 

101944.

[14] Y. Shou, H. Lan, X. Cao, Contrastive graph representation learning with adversarial 

cross-view reconstruction and information bottleneck, Neural Networks 184 (2025) 

107094.

[15] J. Xie, J. Liu, Z.-J. Zha, Towards effective and transferable detection for multi-

modal fake news in the social media stream, IEEE Trans. Knowl. Data Eng. (2025).

[16] F. Wang, L. Ding, J. Rao, Y. Liu, L. Shen, C. Ding, Can linguistic knowledge improve 

multimodal alignment in vision-language pretraining? ACM Trans. Multimed. 

Comput. Commun. Appl. 20 (12) (2024) 1–22.

[17] S. Kuntur, A. Wróblewska, M. Paprzycki, M. Ganzha, Under the influence: A survey 

of large language models in fake news detection, IEEE Trans. Artif. Intell. (2024).

[18] Y. Liu, Y. Liu, Z. Li, R. Yao, Y. Zhang, D. Wang, Modality interactive mixture-of-

experts for fake news detection, in: Proceedings of the ACM on Web Conference, 

2025, pp. 5139–5150.

[19] J. Wu, J. Guo, B. Hooi, Fake news in sheep’s clothing: robust fake news detection 

against llm-empowered style attacks, in: Proceedings of the 30th ACM SIGKDD 

Conference on Knowledge Discovery and Data Mining, 2024, pp. 3367–3378.

[20] Y. Zhou, Y. Yang, Q. Ying, Z. Qian, X. Zhang, Multimodal fake news detection via 

clip-guided learning, in: IEEE International Conference on Multimedia and Expo 

(ICME), IEEE, 2023, pp. 2825–2830.

[21] C. Wang, T. Zhang, Multimodal fake news detection based on contrastive learning 

and data augmentation, in: International Conference on Electronic Communication 

and Artificial Intelligence (ICECAI), IEEE, 2024, pp. 343–346.

[22] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, 

K. Millican, M. Reynolds, et al., Flamingo: a visual language model for few-shot 

learning, Adv. Neural Inf. Process. Syst. 35 (2022) 23716–23736.

[23] S. Huang, L. Dong, W. Wang, Y. Hao, S. Singhal, S. Ma, T. Lv, L. Cui, O.K. 

Mohammed, B. Patra, et al., Language is not all you need: Aligning perception 

with language models, Adv. Neural Inf. Process. Syst. 36 (2023) 72096–72109.

[24] H. Liu, C. Li, Y. Li, Y.J. Lee, Improved baselines with visual instruction tuning, 

in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2024, pp. 26296–26306.

[25] H. Lyu, J. Huang, D. Zhang, Y. Yu, X. Mou, J. Pan, Z. Yang, Z. Wei, J. Luo, Gpt-4v 

(ision) as a social media analysis engine, ACM Trans. Intell. Syst. Technol. 16 (3) 

(2025) 1–54.

[26] Y. Chen, D. Li, P. Zhang, J. Sui, Q. Lv, L. Tun, L. Shang, Cross-modal ambiguity 

learning for multimodal fake news detection, in: Proceedings of the ACM Web 

Conference, 2022, pp. 2897–2905.

[27] L. Hu, Z. Chen, Z. Zhao, J. Yin, L. Nie, Causal inference for leveraging image-text 

matching bias in multi-modal fake news detection, IEEE Trans. Knowl. Data Eng. 

35 (11) (2022) 11141–11152.

[28] X. Gao, X. Wang, Z. Chen, W. Zhou, S.C.H. Hoi, Knowledge enhanced vision and 

language model for multi-modal fake news detection, IEEE Trans. Multimed. 26 

(2024) 8312–8322.

[29] L. Peng, S. Jian, Z. Kan, L. Qiao, D. Li, Not all fake news is semantically similar: 

contextual semantic representation learning for multimodal fake news detection, 

Inf. Process. Manag. 61 (1) (2024) 103564.

[30] M. Li, Y. Zhang, H. Xu, X. Li, C. Gao, Z. Wang, Learning complex heterogeneous 

multimodal fake news via social latent network inference, in: Proceedings of the 

AAAI Conference on Artificial Intelligence, vol. 39, 2025, pp. 433–441.

[31] L. Zhang, X. Zhang, Z. Zhou, F. Huang, C. Li, Reinforced adaptive knowledge learn­

ing for multimodal fake news detection, in: Proceedings of the AAAI Conference 

on Artificial Intelligence, vol. 38, 2024, pp. 16777–16785.

[32] L. Zhang, X. Zhang, Z. Zhou, X. Zhang, P.S. Yu, C. Li, Knowledge-aware multimodal 

pre-training for fake news detection, Inf. Fusion 114 (2025) 102715.

[33] Q. Zhang, J. Liu, F. Zhang, J. Xie, Z.-J. Zha, Natural language-centered inference 

network for multi-modal fake news detection, in: Proceedings of the Thirty-Third 

International Joint Conference on Artificial Intelligence, 2024, pp. 2542–2550.

[34] P. Qi, Z. Yan, W. Hsu, M.L. Lee, Sniffer: multimodal large language model for ex­

plainable out-of-context misinformation detection, in: Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 2024, pp. 13052–13062.

[35] W. Hu, Y. Wang, Y. Jia, Q. Liao, B. Zhou, A multi-modal prompt learning frame­

work for early detection of fake news, in: Proceedings of the International AAAI 

Conference on Web and Social Media, vol. 18, 2024, pp. 651–662.

[36] Y. Tong, W. Lu, Z. Zhao, S. Lai, T. Shi, Mmdfnd: Multi-modal multi-domain fake 

news detection, in: Proceedings of the 32nd ACM International Conference on 

Multimedia, 2024, pp. 1178–1186.

[37] J. Yin, M. Gao, K. Shu, W. Li, Y. Huang, Z. Wang, Graph with sequence: Broad-

range semantic modeling for fake news detection, in: Proceedings of the ACM on 

Web Conference, 2025, pp. 2838–2849.

[38] J. Wang, Y. Wang, L. Cheng, Z. Zhong, Fakesv-vlm: Taming vlm for detecting 

fake short-video news via progressive mixture-of-experts adapter, arXiv preprint 

arXiv:2508.19639, 2025. 

[39] X. Xu, X. Li, T. Wang, Y. Jiang, Ample: Emotion-aware multimodal fusion prompt 

learning for fake news detection, in: International Conference on Multimedia 

Modeling, Springer, 2025, pp. 86–100.

[40] E.J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al., Lora: Low-

rank adaptation of large language models, in: International Conference on Learning 

Representations, 2021.

[41] A. Silva, L. Luo, S. Karunasekera, C. Leckie, Embracing domain differences in fake 

news: Cross-domain fake news detection using multi-modal data, in: Proceedings 

of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 557–565.

[42] H. Niu, L. Xie, J. Lin, S. Zhang, Exploring semantic consistency and style diver­

sity for domain generalized semantic segmentation, in: Proceedings of the AAAI 

Conference on Artificial Intelligence, vol. 39, 2025, pp. 6245–6253.

[43] M. Abulaish, M. Fazil, M.J. Zaki, Domain-specific keyword extraction using joint 

modeling of local and global contextual semantics, ACM Trans. Knowl. Discov. 

Data 16 (4) (2022) 1–30.

[44] X. Li, Y. Zhang, E.C. Malthouse, Large language model agent for fake news 

detection, arXiv preprint arXiv:2405.01593, 2024. 

[45] X. Wang, J. Pan, L. Ding, C. Biemann, Mitigating hallucinations in large vision-

language models with instruction contrastive decoding, in: Findings of the 

Association for Computational Linguistics: ACL, 2024.

[46] J. He, H. Zhang, Y. Xiao, W. Guo, S. Yao, R. Liu, Factguard: Event-centric 

and commonsense-guided fake news detection, arXiv preprint arXiv:2511.10281, 

2025. 

[47] Y. Wang, F. Ma, Z. Jin, Y. Yuan, G. Xun, K. Jha, L. Su, J. Gao, Eann: event ad­

versarial neural networks for multi-modal fake news detection, in: Proceedings of 

the 24th ACM Sigkdd International Conference on Knowledge Discovery and Data 

Mining, 2018, pp. 849–857.

[48] L. Cui, S. Wang, D. Lee, Same: sentiment-aware multi-modal embedding for de­

tecting fake news, in: Proceedings of the IEEE/ACM International Conference on 

Advances in Social Networks Analysis and Mining, 2019, pp. 41–48.

[49] D. Khattar, J.S. Goud, M. Gupta, V. Varma, Mvae: multimodal variational autoen­

coder for fake news detection, in: The World Wide Web Conference, 2019, pp. 

2915–2921.

[50] S. Singhal, R.R. Shah, T. Chakraborty, P. Kumaraguru, S. Satoh, Spotfake: A multi-

modal framework for fake news detection, in: IEEE Fifth International Conference 

on Multimedia Big Data, IEEE, 2019, pp. 39–47.

[51] R.K. Kaliyar, A. Goswami, P. Narang, S. Sinha, Fndnet–a deep convolutional neural 

network for fake news detection, Cogn. Syst. Res. 61 (2020) 32–44.

[52] J. Jing, H. Wu, J. Sun, X. Fang, H. Zhang, Multimodal fake news detection via 

progressive fusion networks, Inf. Process. Manag. 60 (1) (2023) 103120.

[53] S. Qian, J. Hu, Q. Fang, C. Xu, Knowledge-aware multi-modal adaptive graph 

convolutional networks for fake news detection, ACM Trans. Multimed. Comput. 

Commun. Appl. 17 (3) (2021) 1–23.

[54] V. Pérez-Rosas, B. Kleinberg, A. Lefevre, R. Mihalcea, Automatic detection of fake 

news, in: Proceedings of the 27th International Conference on Computational 

Linguistics, 2018, pp. 3391–3401.

[55] P.K. Verma, P. Agrawal, I. Amorim, R. Prodan, Welfake: word embedding over 

linguistic features for fake news detection, IEEE Trans. Comput. Soc. Syst. 8 (4) 

(2021) 881–893.

[56] K. Shu, L. Cui, S. Wang, D. Lee, H. Liu, Defend: explainable fake news detection, 

in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 2019, pp. 395–405.

[57] J. Wang, H. Zhang, C. Liu, X. Yang, Fake news detection via multi-scale seman­

tic alignment and cross-modal attention, in: Proceedings of the 47th International 

ACM SIGIR Conference on Research and Development in Information Retrieval, 

2024, pp. 2406–2410.

[58] N. Ruchansky, S. Seo, Y. Liu, CSI: A hybrid deep model for fake news detec­

tion, in: Proceedings of the ACM on Conference on Information and Knowledge 

Management, 2017, pp. 797–806.

[59] J. Xue, Y. Wang, Y. Tian, Y. Li, L. Shi, L. Wei, Detecting fake news by ex­

ploring the consistency of multimodal data, Inf. Process. Manag. 58 (5) (2021)

102610.

[60] H. Wang, Y. Dou, C. Chen, L. Sun, P.S. Yu, K. Shu, Attacking fake news detec­

tors via manipulating news social engagement, in: Proceedings of the ACM Web 

Conference, 2023, pp. 3978–3986.

[61] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F.E.H. Tay, J. Feng, S. Yan, 

Tokens-to-token VIT: training vision transformers from scratch on imagenet, in: 

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, 

pp. 558–567.

[62] Z. Liu, X. Qi, P.H.S. Torr, Global texture enhancement for fake face detection in the 

wild, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2020, pp. 8060–8069.

[63] B. Guo, Y. Ding, L. Yao, Y. Liang, Z. Yu, The future of false information detection 

on social media: new perspectives and trends, ACM Comput. Surv. 53 (4) (2020) 

1–36.

[64] J. Ma, W. Gao, K.-F. Wong, Detect rumors on Twitter by promoting informa­

tion campaigns with generative adversarial learning, in: The World Wide Web 

Conference, 2019, pp. 3049–3055.

[65] X. Zhou, R. Zafarani, A survey of fake news: fundamental theories, detection 

methods, and opportunities, ACM Comput. Surv. 53 (5) (2020) 1–40.

Computer Science Review 60 (2026) 100893 

25 

http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0030
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0030
http://arxiv.org/abs/2101.06278
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0040
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0040
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0040
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0045
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0045
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0045
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0050
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0050
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0055
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0055
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0055
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0060
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0060
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0065
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0065
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0065
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0070
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0070
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0070
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0075
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0075
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0080
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0080
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0080
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0085
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0085
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0090
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0090
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0090
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0095
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0095
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0095
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0100
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0100
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0100
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0105
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0105
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0105
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0110
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0110
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0110
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0115
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0115
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0115
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0120
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0120
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0120
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0125
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0125
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0125
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0130
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0130
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0130
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0140
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0140
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0140
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0145
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0145
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0145
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0150
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0150
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0150
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0155
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0155
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0155
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0160
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0160
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0165
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0165
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0165
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0170
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0170
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0170
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0175
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0175
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0175
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0180
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0180
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0180
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0185
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0185
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0185
http://arxiv.org/abs/2508.19639
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0195
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0195
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0195
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0200
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0200
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0200
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0205
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0205
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0205
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0210
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0210
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0210
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0215
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0215
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0215
http://arxiv.org/abs/2405.01593
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0225
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0225
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0225
http://arxiv.org/abs/2511.10281
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0235
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0235
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0235
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0235
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0240
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0240
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0240
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0245
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0245
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0245
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0250
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0250
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0250
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0255
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0255
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0260
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0260
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0265
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0265
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0265
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0270
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0270
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0270
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0275
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0275
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0275
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0280
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0280
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0280
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0285
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0285
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0285
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0285
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0290
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0290
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0290
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0295
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0295
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0295
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0300
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0300
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0300
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0305
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0305
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0305
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0305
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0310
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0310
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0310
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0315
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0315
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0315
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0320
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0320
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0320
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0325
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0325


W. Ai, Y. Tan, Y. Shou et al.

[66] W.Y. Wang, “Liar, liar pants on fire”: A new benchmark dataset for fake 

news detection, in: Proceedings of the 55th Annual Meeting of the Association 

for Computational Linguistics (Volume 2: Short Papers), Association for 

Computational Linguistics, 2017.

[67] F. Kou, B. Wang, H. Li, C. Zhu, L. Shi, J. Zhang, L. Qi, Potential features fu­

sion network for multimodal fake news detection, ACM Trans. Multimed. Comput. 

Commun. Appl. 21 (3) (2025) 1–24.

[68] Y. Shou, X. Cao, D. Meng, Spegcl: Self-supervised graph spectrum contrastive 

learning without positive samples, arXiv preprint arXiv:2410.10365, 2024. 

[69] S. Hiriyannaiah, A.M.D. Srinivas, G.K. Shetty, G.M. Siddes, K.G. Srinivasa, A com­

putationally intelligent agent for detecting fake news using generative adversarial 

networks, in: Hybrid Computational Intelligence, Elsevier, 2020, pp. 69–96.

[70] F. Yu, Q. Liu, S. Wu, L. Wang, T. Tan, et al., A convolutional approach for misinfor­

mation identification, in: International Joint Conference on Artificial Intelligence, 

vol. 2017, 2017, pp. 3901–3907.

[71] R. Yang, X. Wang, Y. Jin, C. Li, J. Lian, X. Xie, Reinforcement subgraph reasoning 

for fake news detection, in: Proceedings of the 28th ACM SIGKDD Conference on 

Knowledge Discovery and Data Mining, 2022, pp. 2253–2262.

[72] Y. Dun, K. Tu, C. Chen, C. Hou, X. Yuan, KAN: Knowledge-aware attention net­

work for fake news detection, in: Proceedings of the AAAI Conference on Artificial 

Intelligence, vol. 35, 2021, pp. 81–89.

[73] X. Li, J. Qiao, S. Yin, L. Wu, C. Gao, Z. Wang, X. Li, A survey of multimodal fake 

news detection: a cross-modal interaction perspective, IEEE Trans. Emerg. Top. 

Comput. Intell. (2025).

[74] Y. Feng, W. Li, Y. Wang, J. Wang, F. Liu, Z. Han, Contradicted in reliable, replicated 

in unreliable: dual-source reference for fake news early detection, in: Proceedings 

of the AAAI Conference on Artificial Intelligence, vol. 39, 2025, pp. 23896–23904.

[75] B. Hu, Q. Sheng, J. Cao, Y. Shi, Y. Li, D. Wang, P. Qi, Bad actor, good ad­

visor: Exploring the role of large language models in fake news detection, in: 

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp.

22105–22113.

[76] S. Yang, K. Shu, S. Wang, R. Gu, F. Wu, H. Liu, Unsupervised fake news detection 

on social media: A generative approach, in: Proceedings of the AAAI Conference 

on Artificial Intelligence, vol. 33, 2019, pp. 5644–5651.

[77] M.K. Ngueajio, S. Aryal, M. Atemkeng, G. Washington, D. Rawat, Decoding fake 

news and hate speech: A survey of explainable AI techniques, ACM Comput. Surv. 

57 (7) (2025) 1–37.

[78] F. Yang, S.K. Pentyala, S. Mohseni, M. Du, H. Yuan, R. Linder, E.D. Ragan, S. Ji, X. 

Hu, Xfake: Explainable fake news detector with visualizations, in: The World Wide 

Web Conference, 2019, pp. 3600–3604.

[79] M. Huh, A. Liu, A. Owens, A.A. Efros, Fighting fake news: Image splice detection via 

learned self-consistency, in: Proceedings of the European Conference on Computer 

Vision (ECCV), 2018, pp. 101–117.

[80] W. Xu, J. Wu, Q. Liu, S. Wu, L. Wang, Evidence-aware fake news detection with 

graph neural networks, in: Proceedings of the ACM Web Conference, 2022, pp. 

2501–2510.

[81] Y. Jin, X. Wang, R. Yang, Y. Sun, W. Wang, H. Liao, X. Xie, Towards fine-grained 

reasoning for fake news detection, in: Proceedings of the AAAI Conference on 

Artificial Intelligence, vol. 36, 2022, pp. 5746–5754.

[82] A. Choudhary, A. Arora, Linguistic feature based learning model for fake news 

detection and classification, Expert Syst. Appl. 169 (2021) 114171.

[83] H. Shen, X. Li, X. Wang, Y. Dai, T. Wang, G. Bai, Llm-augmented contrastive learn­

ing for misinformation detection in social networks, IEEE Trans. Comput. Soc. Syst. 

(2025).

[84] J. Si, Y. Zhu, D. Zhou, Exploring faithful rationale for multi-hop fact verification via 

salience-aware graph learning, in: Proceedings of the AAAI Conference on Artificial 

Intelligence, vol. 37, 2023, pp. 13573–13581.

[85] L. Wu, L. Wang, Y. Zhao, Unified evidence enhancement inference framework 

for fake news detection, in: Proceedings of the Thirty-Third International Joint 

Conference on Artificial Intelligence, 2024, pp. 6541–6549.

[86] L. Wu, P. Liu, Y. Zhao, P. Wang, Y. Zhang, Human cognition-based consistency 

inference networks for multi-modal fake news detection, IEEE Trans. Knowl. Data 

Eng. 36 (1) (2023) 211–225.

[87] X. Zheng, Z. Zeng, H. Wang, Y. Bai, Y. Liu, M. Luo, From predictions to analyses: 

Rationale-augmented fake news detection with large vision-language models, in: 

Proceedings of the ACM on Web Conference, 2025, pp. 5364–5375.

[88] R. Shao, T. Wu, Z. Liu, Detecting and grounding multi-modal media manipula­

tion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2023, pp. 6904–6913.

[89] Y. Wang, W. Yang, F. Ma, J. Xu, B. Zhong, Q. Deng, J. Gao, Weak supervision 

for fake news detection via reinforcement learning, in: Proceedings of the AAAI 

Conference on Artificial Intelligence, vol. 34, 2020, pp. 516–523.

[90] K. Li, B. Guo, J. Liu, J. Wang, H. Ren, F. Yi, Z. Yu, Dynamic probabilistic graphical 

model for progressive fake news detection on social media platform, ACM Trans. 

Intell. Syst. Technol. 13 (5) (2022) 1–24.

[91] A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. 

Askell, P. Mishkin, J. Clark, et al., Learning transferable visual models from natural 

language supervision, in: International Conference on Machine Learning, PmLR, 

2021, pp. 8748–8763.

[92] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, T. 

Duerig, Scaling up visual and vision-language representation learning with noisy 

text supervision, in: International Conference on Machine Learning, PMLR, 2021, 

pp. 4904–4916.

[93] Q. Xu, H. Chen, H. Du, H. Zhang, S. Łukasik, T. Zhu, X. Yu, M3a: A multimodal mis­

information dataset for media authenticity analysis, Comput. Vis. Image Underst. 

249 (2024) 104205.

[94] J. Li, D. Li, S. Savarese, S. Hoi, Blip-2: Bootstrapping language-image pre-

training with frozen image encoders and large language models, in: International 

Conference on Machine Learning, PMLR, 2023, pp. 19730–19742.

[95] W. Dai, J. Li, D. Li, A. Tiong, J. Zhao, W. Wang, B. Li, P.N. Fung, S. Hoi, Instructblip: 

Towards general-purpose vision-language models with instruction tuning, Adv. 

Neural Inf. Process. Syst. 36 (2023) 49250–49267.

[96] Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, L. Wang, The dawn of lmms: 

Preliminary explorations with gpt-4v (ision), arXiv preprint arXiv:2309.17421, 

2023. 

[97] L. Yao, R. Huang, L. Hou, G. Lu, M. Niu, H. Xu, X. Liang, Z. Li, X. Jiang, C. Xu, Filip: 

Fine-grained interactive language-image pre-training, in: International Conference 

on Learning Representations, 2024.

[98] W. Liu, X. Yang, D. Tao, J. Cheng, Y. Tang, Multiview dimension reduction via 

hessian multiset canonical correlations, Inf. Fusion 41 (2018) 119–128.

[99] Z.-Y. Dou, Y. Xu, Z. Gan, J. Wang, S. Wang, L. Wang, C. Zhu, P. Zhang, L. Yuan, N. 

Peng, et al., An empirical study of training end-to-end vision-and-language trans­

formers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, 2022, pp. 18166–18176.

[100] A. Mukherjee, S. Ghosh, Unite-fnd: Reframing multimodal fake news detection 

through unimodal scene translation, arXiv preprint arXiv:2502.11132, 2025. 

[101] Team, Gemini and Georgiev, Petko and Lei, Ving Ian and Burnell, Ryan and Bai, 

Libin and Gulati, Anmol and Tanzer, Garrett and Vincent, Damien and Pan, Zhufeng 

and Wang, Shibo and others, Gemini 1.5: Unlocking multimodal understanding 

across millions of tokens of context, arXiv preprint arXiv:2403.05530, 2024. 

[102] D. Zhu, J. Chen, X. Shen, X. Li, M. Elhoseiny, Minigpt-4: Enhancing vision-

language understanding with advanced large language models, arXiv preprint 

arXiv:2304.10592, 2023. 

[103] J. Li, D. Li, C. Xiong, S. Hoi, BLIP: Bootstrapping language-image pre-training 

for unified vision-language understanding and generation, in: International 

Conference on Machine Learning, PMLR, 2022, pp. 12888–12900.

[104] B. Zhang, D. Ding, Z. Huang, A. Li, Y. Li, B. Zhang, H. Huang, Knowledge-

augmented interpretable network for zero-shot stance detection on social media, 

IEEE Trans. Comput. Soc. Syst. (2024).

[105] A. Hurst, A. Lerer, A.P. Goucher, A. Perelman, A. Ramesh, A. Clark, A.J. Ostrow, 

A. Welihinda, A. Hayes, A. Radford, et al., Gpt-4o system card, arXiv preprint 

arXiv:2410.21276, 2024. 

[106] Microsoft, Phi-3-vision-128k-instruct, 2024. 

[107] H. Liu, C. Li, Q. Wu, Y.J. Lee, Visual instruction tuning, in: A. Oh, T. Naumann, A. 

Globerson, K. Saenko, M. Hardt, S. Levine (Eds.), Advances in Neural Information 

Processing Systems, vol. 36, Curran Associates, Inc., 2023, pp. 34892–34916.

[108] Mistral AI Team, Pixtral 12b - the First-Ever Multimodal Mistral Model, Tech. rep., 

Mistral, 2024.

[109] P. Wang, S. Bai, S. Tan, S. Wang, Z. Fan, J. Bai, K. Chen, X. Liu, J. Wang, W. Ge, 

Y. Fan, K. Dang, M. Du, X. Ren, R. Men, D. Liu, C. Zhou, J. Zhou, J. Lin, Qwen2-

vl: Enhancing vision-language model’s perception of the world at any resolution, 

arXiv preprint arXiv:2409.12191, 2024. 

[110] Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, M. Zhong, Q. Zhang, X. Zhu, L. 

Lu, et al., Internvl: Scaling up vision foundation models and aligning for generic 

visual-linguistic tasks, in: Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, 2024, pp. 24185–24198.

[111] Z. Wu, X. Chen, Z. Pan, X. Liu, W. Liu, D. Dai, H. Gao, Y. Ma, C. Wu, B. Wang, et al., 

Deepseek-vl2: Mixture-of-experts vision-language models for advanced multimodal 

understanding, arXiv preprint arXiv:2412.10302, 2024. 

[112] X. Chen, Z. Wu, X. Liu, Z. Pan, W. Liu, Z. Xie, X. Yu, C. Ruan, Janus-pro: Unified 

multimodal understanding and generation with data and model scaling, arXiv 

preprint arXiv:2501.17811, 2025. 

[113] GLM, Team and Zeng, Aohan and Xu, Bin and Wang, Bowen and Zhang, Chenhui 

and Yin, Da and Zhang, Dan and Rojas, Diego and Feng, Guanyu and Zhao, Hanlin 

and others, Chatglm: A family of large language models from glm-130b to glm-4 

all tools, arXiv preprint arXiv:2406.12793, 2024. 

[114] A. at Meta, Llama 3.2: Revolutionizing Edge Ai and Vision with Open, Customizable 

Models, Tech. rep, Meta (2024).

[115] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F.L. Aleman, D. Almeida, J. 

Altenschmidt, S. Altman, S. Anadkat, et al., Gpt-4 technical report, arXiv preprint 

arXiv:2303.08774, 2023. 

[116] Z. Zhou, X. Zhang, S. Tan, L. Zhang, C. Li, Collaborative evolution: Multi-round 

learning between large and small language models for emergent fake news detec­

tion, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, 

2025, pp. 1210–1218.

[117] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, 

E.P. Xing, H. Zhang, J.E. Gonzalez, I. Stoica, Judging llm-as-a-judge with mt-bench 

and chatbot arena, arXiv:2306.05685, 2023. 

[118] Z. Cai, M. Cao, H. Chen, K. Chen, K. Chen, X. Chen, X. Chen, Z. Chen, Z. Chen, P. 

Chu, et al., Internlm2 technical report, arXiv preprint arXiv:2403.17297, 2024. 

[119] Mistral AI Team, Mistral 7b the Best 7b Model to Date, Tech. rep., Mistral, 2023.

[120] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, 

F. Huang, et al., Qwen2 technical report, arXiv preprint arXiv:2407.10671,

2024. 

[121] R. Huang, L. Dugan, Y. Yang, C. Callison-Burch, Miragenews: Multimodal realistic 

ai-generated news detection, in: Association for Computational Linguistics, 2024.

[122] K. Xuan, L. Yi, F. Yang, R. Wu, Y.R. Fung, H. Ji, Lemma: towards lvlm-enhanced 

multimodal misinformation detection with external knowledge augmentation, 

arXiv preprint arXiv:2402.11943, 2024. 

[123] X. Zheng, M. Luo, X. Wang, Unveiling fake news with adversarial arguments 

generated by multimodal large language models, in: Proceedings of the 31st 

International Conference on Computational Linguistics, 2025, pp. 7862–7869.

Computer Science Review 60 (2026) 100893 

26 

http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0330
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0330
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0330
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0330
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0335
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0335
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0335
http://arxiv.org/abs/2410.10365
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0345
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0345
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0345
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0350
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0350
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0350
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0355
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0355
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0355
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0360
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0360
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0360
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0365
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0365
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0365
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0370
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0370
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0370
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0375
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0375
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0375
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0375
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0380
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0380
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0380
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0385
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0385
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0385
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0390
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0390
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0390
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0395
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0395
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0395
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0400
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0400
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0400
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0405
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0405
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0405
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0410
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0410
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0415
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0415
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0415
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0420
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0420
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0420
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0425
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0425
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0425
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0430
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0430
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0430
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0435
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0435
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0435
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0440
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0440
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0440
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0445
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0445
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0445
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0450
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0450
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0450
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0455
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0455
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0455
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0455
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0460
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0460
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0460
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0460
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0465
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0465
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0465
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0470
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0470
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0470
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0475
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0475
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0475
http://arxiv.org/abs/2309.17421
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0485
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0485
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0485
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0490
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0490
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0495
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0495
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0495
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0495
http://arxiv.org/abs/2502.11132
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2304.10592
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0515
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0515
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0515
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0520
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0520
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0520
http://arxiv.org/abs/2410.21276
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0535
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0535
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0535
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0540
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0540
http://arxiv.org/abs/2409.12191
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0550
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0550
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0550
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0550
http://arxiv.org/abs/2412.10302
http://arxiv.org/abs/2501.17811
http://arxiv.org/abs/2406.12793
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0570
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0570
http://arxiv.org/abs/2303.08774
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0580
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0580
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0580
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0580
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2403.17297
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0595
http://arxiv.org/abs/2407.10671
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0605
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0605
http://arxiv.org/abs/2402.11943
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0615
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0615
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0615


W. Ai, Y. Tan, Y. Shou et al.

[124] C. Li, Z. Li, C. Jing, S. Liu, W. Shao, Y. Wu, P. Luo, Y. Qiao, K. Zhang, Searchlvlms: A 

plug-and-play framework for augmenting large vision-language models by search­

ing up-to-date internet knowledge, Adv. Neural Inf. Process. Syst. 37 (2024) 

64582–64603.

[125] F. Li, J. Wu, T. Fu, Y. Dong, B. Song, W. Zhou, Drifting away from truth: 

Genai-driven news diversity challenges lvlm-based misinformation detection, arXiv 

preprint arXiv:2508.12711, 2025. 

[126] X. Liu, P. Li, H. Huang, Z. Li, X. Cui, J. Liang, L. Qin, W. Deng, Z. He, Fka-owl: 

Advancing multimodal fake news detection through knowledge-augmented lvlms, 

in: Proceedings of the 32nd ACM International Conference on Multimedia, 2024, 

pp. 10154–10163.

[127] Y. Jiang, T. Wang, X. Xu, Y. Wang, X. Song, D. Maynard, Cross-modal augmentation 

for few-shot multimodal fake news detection, Eng. Appl. Artif. Intell. 142 (2025) 

109931.

[128] W. Gao, M. Ni, H. Deng, X. Zhu, P. Zeng, X. Hu, Few-shot fake news detection via 

prompt-based tuning, J. Intell. Fuzzy Syst. 44 (6) (2023) 9933–9942.

[129] J. Wu, S. Li, A. Deng, M. Xiong, B. Hooi, Prompt-and-align: prompt-based social 

alignment for few-shot fake news detection, in: Proceedings of the 32nd ACM 

International Conference on Information and Knowledge Management, 2023, pp. 

2726–2736.

[130] Y. Ouyang, P. Wu, L. Pan, Cool: Comprehensive knowledge enhanced prompt 

learning for domain adaptive few-shot fake news detection, arXiv preprint 

arXiv:2406.10870, 2024. 

[131] J. Yuan, C. Chen, C. Hou, X. Yuan, Fskd: Detecting fake news with few-shot 

knowledge distillation, in: International Conference on Advanced Data Mining and 

Applications, Springer, 2023, pp. 421–436.

[132] X. Liu, C. Liu, Z. Zhang, C. Li, L. Wang, Y. Lan, C. Shen, Stablept: Towards 

stable prompting for few-shot learning via input separation, in: Findings of the 

Association for Computational Linguistics: EMNLP, 2024, pp. 9259–9273.

[133] Y. Jiang, Y. Wang, Imfnd: In-context multimodal fake news detection with large 

visual-language models, Knowl.-Based Syst. (2025) 113880.

[134] K. Yan, M. Liu, Y. Liu, R. Fu, Z. Wen, J. Tao, X. Liu, Debunk and infer: Multimodal 

fake news detection via diffusion-generated evidence and llm reasoning, arXiv 

preprint arXiv:2506.21557, 2025. 

[135] X. Shen, M. Huang, Z. Hu, S. Cai, T. Zhou, Multimodal fake news detection 

with contrastive learning and optimal transport, Front. Comput. Sci. 6 (2024)

1473457.

[136] W.U. Yin, Z. Zhang, W.A.N.G. Fuling, Y. Luo, H. Xiong, N. Tang, Detecting out-of-

context misinformation via multi-agent and multi-grained retrieval, 2025. 

[137] A. Bhattacharya, D. Brahma, S. Nagaje, A. Asati, V. Verma, S. Biswas, Can out-of-

domain data help to learn domain-specific prompts for multimodal misinformation 

detection? in: IEEE/CVF Winter Conference on Applications of Computer Vision 

(WACV), IEEE, 2025, pp. 2808–2817.

[138] Z. Yan, P. Qi, W. Hsu, M.L. Lee, Trust-vl: An explainable news assistant for general 

multimodal misinformation detection, arXiv preprint arXiv:2509.04448, 2025. 

[139] J. Lai, X. Yang, W. Luo, L. Zhou, L. Li, Y. Wang, X. Shi, Rumorllm: A rumor large lan­

guage model-based fake-news-detection data-augmentation approach, Appl. Sci. 14 

(8) (2024) 3532.

[140] J. Wu, Y. Fu, N. Yu, G. Fu, E2lvlm: Evidence-enhanced large vision-language 

model for multimodal out-of-context misinformation detection, arXiv preprint 

arXiv:2502.10455, 2025. 

[141] S. Tahmasebi, E. Müller-Budack, R. Ewerth, Multimodal misinformation de­

tection using large vision-language models, in: Proceedings of the 33rd ACM 

International Conference on Information and Knowledge Management, 2024, pp.

2189–2199.

[142] R. Jin, R. Fu, Z. Wen, S. Zhang, Y. Liu, J. Tao, Fake news detection and manipula­

tion reasoning via large vision-language models, arXiv preprint arXiv:2407.02042, 

2024. 

[143] F. Zeng, W. Li, W. Gao, Y. Pang, Multimodal misinformation detection by learning 

from synthetic data with multimodal llms, in: EMNLP Conference on Empirical 

Methods in Natural Language Processing, Findings of EMNLP, Association for 

Computational Linguistics (ACL), 2024, pp. 10467–10484.

[144] S. Tahmasebi, E. Müller-Budack, R. Ewerth, Verifying cross-modal entity con­

sistency in news using vision-language models, in: European Conference on 

Information Retrieval, Springer, 2025, pp. 339–354.

[145] S. Kumar, A. Kumar, A. Mallik, R.R. Singh, Optnet-fake: fake news detection in 

socio-cyber platforms using grasshopper optimization and deep neural network, 

IEEE Trans. Comput. Soc. Syst. 11 (4) (2023) 4965–4974.

[146] X. Liu, P. Li, H. Huang, Z. Li, X. Cui, J. Liang, L. Qin, W. Deng, Z. He, Fakenewsgpt4: 

advancing multimodal fake news detection through knowledge-augmented lvlms, 

CoRR (2024).

[147] W. Jin, Y. Gao, T. Tao, X. Wang, N. Wang, B. Wu, B. Zhao, Veracity-oriented 

context-aware large language models–based prompting optimization for fake news 

detection, Int. J. Intell. Syst. 2025 (1) (2025) 5920142.

[148] C. Zhang, Z. Feng, Z. Zhang, J. Qiang, G. Xu, Y. Li, Is llms hallucination usable? 

Llm-based negative reasoning for fake news detection, in: Proceedings of the AAAI 

Conference on Artificial Intelligence, vol. 39, 2025, pp. 1031–1039.

[149] Y. Zhang, M. Li, C. Gao, X. Li, Confidence breeds success: Improving fake news 

video detection via lvlm-assisted inference, IEEE Int. Conf. Multimed. Expo (2025) 

1–6.

[150] H. Wan, J. Wu, M. Luo, X. Kong, Z. Ma, Z. Zeng, Difar: Enhancing multimodal mis­

information detection with diverse, factual, and relevant rationales, arXiv preprint 

arXiv:2508.10444, 2025. 

[151] S. Wang, H. Lin, Z. Luo, Z. Ye, G. Chen, J. Ma, Mfc-bench: Benchmarking 

multimodal fact-checking with large vision-language models, in: The Thirteenth 

International Conference on Learning Representations, 2025.

[152] Y. Wang, Z. Gu, S. Zhang, S. Zheng, T. Wang, T. Li, H. Feng, Y. Xiao, Llm-gan: 

Constructing generative adversarial network through large language models for 

explainable fake news detection, in: ICASSP IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2025, pp. 1–5.

[153] C. Wang, M. Gao, Z. Wang, J. Yin, K. Shu, C. Lin, Prompt-induced linguistic fin­

gerprints for llm-generated fake news detection, arXiv preprint arXiv:2508.12632, 

2025. 

[154] Y. Liu, Y. Liu, X. Zhang, X. Chen, R. Yan, The truth becomes clearer through debate! 

multi-agent systems with large language models unmask fake news, in: Proceedings 

of the 48th International ACM SIGIR Conference on Research and Development in 

Information Retrieval, 2025, pp. 504–514.

[155] S. Yang, Z. Yu, Z. Ying, Y. Dai, G. Wang, J. Lan, J. Xu, J. Li, E.C.H. Ngai, 

Rama: Retrieval-augmented multi-agent framework for misinformation detection 

in multimodal fact-checking, arXiv preprint arXiv:2507.09174, 2025. 

[156] B. Fan, F. Ding, G. Zhu, J. Huang, S. Kwong, P. Atrey, S. Lyu, Generating higher-

quality anti-forensics deepfakes with adversarial sharpening mask, ACM Trans. 

Multimed. Comput. Commun. Appl. 21 (6) (2025) 1–18.

[157] M. Mostafa, A.S. Almogren, M. Al-Qurishi, M. Alrubaian, Modality deep-learning 

frameworks for fake news detection on social networks: A systematic literature 

review, ACM Comput. Surv. 57 (3) (2024) 1–50.

[158] L. Shen, Y. Long, X. Cai, I. Razzak, G. Chen, K. Liu, S. Jameel, Gamed: 

Knowledge adaptive multi-experts decoupling for multimodal fake news detection, 

in: Proceedings of the Eighteenth ACM International Conference on Web Search 

and Data Mining, 2025, pp. 586–595.

[159] H. Lin, P. Yi, J. Ma, H. Jiang, Z. Luo, S. Shi, R. Liu, Zero-shot rumor detection with 

propagation structure via prompt learning, in: Proceedings of the AAAI Conference 

on Artificial Intelligence, vol. 37, 2023, pp. 5213–5221.

[160] M. Choudhary, S.S. Chouhan, S.S. Rathore, Beyond text: Multimodal credibility 

assessment approaches for online user-generated content, ACM Trans. Intell. Syst. 

Technol. 15 (5) (2025) 1–33.

[161] C. Raj, A. Mukherjee, Z. Zhu, True and fair: Robust and unbiased fake news detec­

tion via interpretable machine learning, in: Proceedings of the AAAI Conference 

on Artificial Intelligence, 2023, pp. 962–963.

[162] K. Sharma, F. Qian, H. Jiang, N. Ruchansky, M. Zhang, Y. Liu, Combating fake 

news: A survey on identification and mitigation techniques, ACM Trans. Intell. 

Syst. Technol. 10 (3) (2019) 1–42.

[163] M.V. Nezafat, S. Samet, Fake news detection with retrieval augmented genera­

tive artificial intelligence, in: International Conference on Foundation and Large 

Language Models (FLLM), IEEE, 2024, pp. 160–167.

[164] Q. Nan, J. Cao, Y. Zhu, Y. Wang, J. Li, Mdfend: Multi-domain fake news detection, 

in: Proceedings of the 32nd ACM International Conference on Information and 

Knowledge Management, 2021, pp. 3343–3347.

[165] H. Guo, W. Zeng, J. Tang, X. Zhao, Interpretable fake news detection with graph ev­

idence, in: Proceedings of the 32nd ACM International Conference on Information 

and Knowledge Management, 2023, pp. 659–668.

[166] S. Qin, M. Zhang, Boosting generalization of fine-tuning BERT for fake news 

detection, Inf. Process. Manag. 61 (4) (2024) 103745.

[167] K. Shu, X. Zhou, S. Wang, R. Zafarani, H. Liu, The role of user profiles for fake news 

detection, in: Proceedings of IEEE/ACM International Conference on Advances in 

Social Networks Analysis and Mining, 2019, pp. 436–439.

[168] L. Zhang, X. Zhang, Z. Zhou, X. Zhang, S. Wang, P.S. Yu, C. Li, Early detection 

of multimodal fake news via reinforced propagation path generation, IEEE Trans. 

Knowl. Data Eng. (2024).

[169] A. Mosallanezhad, M. Karami, K. Shu, M.V. Mancenido, H. Liu, Domain adaptive 

fake news detection via reinforcement learning, in: Proceedings of the ACM Web 

Conference, 2022, pp. 3632–3640.

[170] W.-Y. Kao, A.-Z. Yen, How we refute claims: Automatic fact-checking through 

flaw identification and explanation, in: Companion Proceedings of the ACM Web 

Conference, 2024, pp. 758–761.

[171] R. Shao, T. Wu, L. Nie, Z. Liu, Deepfake-adapter: Dual-level adapter for deepfake 

detection, Int. J. Comput. Vis. 133 (6) (2025) 3613–3628.

[172] X. Zhang, S. Dadkhah, A.G. Weismann, M.A. Kanaani, A.A. Ghorbani, Multimodal 

fake news analysis based on image–text similarity, IEEE Trans. Comput. Soc. Syst. 

11 (1) (2023) 959–972.

[173] L. Zong, W. Lin, J. Zhou, X. Liu, X. Zhang, B. Xu, S. Wu, Text-guided fine-grained 

counterfactual inference for short video fake news detection, in: Proceedings of the 

AAAI Conference on Artificial Intelligence, vol. 39, 2025, pp. 1237–1245.

[174] P. Li, X. Sun, H. Yu, Y. Tian, F. Yao, G. Xu, Entity-oriented multi-modal align­

ment and fusion network for fake news detection, IEEE Trans. Multimed. 24 (2021) 

3455–3468.

[175] O.D. Apuke, B. Omar, User motivation in fake news sharing during the Covid-19 

pandemic: an application of the uses and gratification theory, Online Inf. Rev. 45 

(1) (2021) 220–239.

[176] S.K. Hamed, M.J. Ab Aziz, M.R. Yaakub, Enhanced feature representation for mul­

timodal fake news detection using localized fine-tuning of improved BERT and 

vgg-19 models, Arab. J. Sci. Eng. 50 (10) (2025) 7423–7439.

[177] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. 

Gesmundo, M. Attariyan, S. Gelly, Parameter-efficient transfer learning for NLP, 

in: International Conference on Machine Learning, PMLR, 2019, pp. 2790–2799.

[178] X.L. Li, P. Liang, Prefix-tuning: Optimizing continuous prompts for generation, in: 

Proceedings of the 59th Annual Meeting of the Association for Computational 

Linguistics and the 11th International Joint Conference on Natural Language 

Processing (Volume 1: Long Papers), 2021, pp. 4582–4597.

[179] B. Lester, R. Al-Rfou, N. Constant, The power of scale for parameter-efficient 

prompt tuning, in: Proceedings of the Conference on Empirical Methods in Natural 

Language Processing, 2021, pp. 3045–3059.

Computer Science Review 60 (2026) 100893 

27 

http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0620
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0620
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0620
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0620
http://arxiv.org/abs/2508.12711
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0630
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0630
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0630
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0630
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0635
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0635
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0635
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0640
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0640
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0645
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0645
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0645
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0645
http://arxiv.org/abs/2406.10870
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0655
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0655
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0655
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0660
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0660
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0660
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0665
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0665
http://arxiv.org/abs/2506.21557
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0675
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0675
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0675
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0685
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0685
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0685
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0685
http://arxiv.org/abs/2509.04448
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0695
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0695
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0695
http://arxiv.org/abs/2502.10455
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0705
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0705
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0705
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0705
http://arxiv.org/abs/2407.02042
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0715
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0715
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0715
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0715
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0720
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0720
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0720
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0725
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0725
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0725
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0730
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0730
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0730
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0735
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0735
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0735
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0740
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0740
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0740
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0745
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0745
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0745
http://arxiv.org/abs/2508.10444
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0755
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0755
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0755
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0760
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0760
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0760
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0760
http://arxiv.org/abs/2508.12632
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0770
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0770
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0770
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0770
http://arxiv.org/abs/2507.09174
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0780
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0780
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0780
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0785
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0785
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0785
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0790
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0790
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0790
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0790
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0795
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0795
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0795
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0800
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0800
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0800
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0805
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0805
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0805
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0810
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0810
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0810
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0815
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0815
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0815
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0820
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0820
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0820
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0825
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0825
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0825
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0830
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0830
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0835
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0835
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0835
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0840
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0840
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0840
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0845
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0845
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0845
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0850
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0850
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0850
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0855
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0855
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0860
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0860
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0860
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0865
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0865
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0865
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0870
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0870
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0870
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0875
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0875
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0875
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0880
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0880
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0880
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0885
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0885
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0885
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0890
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0890
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0890
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0890
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0895
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0895
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0895


W. Ai, Y. Tan, Y. Shou et al.

[180] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, C.A. Raffel, Few-shot 

parameter-efficient fine-tuning is better and cheaper than in-context learning, Adv. 

Neural Inf. Process. Syst. 35 (2022) 1950–1965.

[181] E. Ben-Zaken, S. Ravfogel, Y. Goldberg, Bitfit: Simple parameter-efficient fine-

tuning for transformer-based masked language-models, in: 60th Annual Meeting of 

the Association for Computational Linguistics, ACL, Association for Computational 

Linguistics (ACL), 2022, pp. 1–9.

[182] T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer, Qlora: Efficient finetuning 

of quantized llms, Adv. Neural Inf. Process. Syst. 36 (2023) 10088–10115.

[183] X. Zhou, R. Zafarani, Network-based fake news detection: A pattern-driven ap­

proach, ACM SIGKDD Explorations Newsletter 21 (2) (2019) 48–60.

[184] J. Qiao, X. Li, C. Gao, L. Wu, J. Feng, Z. Wang, Improving multimodal fake news 

detection by leveraging cross-modal content correlation, Inf. Process. Manag. 62 

(5) (2025) 104120.

[185] G. Shan, B. Zhao, J.R. Clavin, H. Zhang, S. Duan, Poligraph: Intrusion-tolerant and 

distributed fake news detection system, IEEE Trans. Inf. Forensics Secur. 17 (2021) 

28–41.

[186] X. Liu, A. Nourbakhsh, Q. Li, R. Fang, S. Shah, Real-time rumor debunking 

on Twitter, in: Proceedings of the 24th ACM International on Conference on 

Information and Knowledge Management, 2015, pp. 1867–1870.

[187] J. Ma, W. Gao, P. Mitra, S. Kwon, B.J. Jansen, K.-F. Wong, M. Cha, Detecting rumors 

from microblogs with recurrent neural networks, 2016. 

[188] Z. Jin, J. Cao, H. Guo, Y. Zhang, J. Luo, Multimodal fusion with recurrent neu­

ral networks for rumor detection on microblogs, in: Proceedings of the 25th ACM 

International Conference on Multimedia, 2017, pp. 795–816.

[189] A. Zubiaga, M. Liakata, R. Procter, G. Wong Sak Hoi, P. Tolmie, Analysing how 

people orient to and spread rumours in social media by looking at conversational 

threads, PLoS One 11 (3) (2016) e0150989.

[190] K. Nakamura, S. Levy, W.Y. Wang, Fakeddit: A new multimodal benchmark dataset 

for fine-grained fake news detection, in: Proceedings of the Twelfth Language 

Resources and Evaluation Conference, 2020, pp. 6149–6157.

[191] G. Luo, T. Darrell, A. Rohrbach, Newsclippings: Automatic generation of out-of-

context multimodal media, in: Proceedings of the 2021 Conference on Empirical 

Methods in Natural Language Processing, 2021, pp. 6801–6817.

[192] A.F. Biten, L. Gomez, M. Rusinol, D. Karatzas, Good news, everyone! context 

driven entity-aware captioning for news images, in: Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 2019, pp. 12466–12475.

[193] R. Tan, B. Plummer, K. Saenko, Detecting cross-modal inconsistency to defend 

against neural fake news, in: Proceedings of the 2020 Conference on Empirical 

Methods in Natural Language Processing (EMNLP), 2020, pp. 2081–2106.

[194] Y. Li, B. Jiang, K. Shu, H. Liu, Mm-covid: A multilingual and multimodal data 

repository for combating Covid-19 disinformation, 2020. 

[195] C. Yang, X. Zhou, R. Zafarani, Checked: Chinese Covid-19 fake news dataset, Soc. 

Netw. Anal. Min. 11 (1) (2021) 58.

[196] Q. Xu, H. Du, S. Łukasik, T. Zhu, S. Wang, X. Yu, Mdam3: A misinformation detec­

tion and analysis framework for multitype multimodal media, in: The ACM Web 

Conference, Association for Computing Machinery, 2025.

[197] Y. Zhu, Y. Wang, Z. Yu, Multimodal fake news detection: Mfnd dataset and shallow-

deep multitask learning, arXiv preprint arXiv:2505.06796, 2025. 

[198] K. Shu, A. Sliva, S. Wang, J. Tang, H. Liu, Fake news detection on social media: 

A data mining perspective, ACM SIGKDD Explorations Newsletter 19 (1) (2017) 

22–36.

[199] F.K.A. Salem, R. Al Feel, S. Elbassuoni, M. Jaber, M. Farah, Fa-kes: A fake 

news dataset around the Syrian war, in: Proceedings of the International AAAI 

Conference on Web and Social Media, vol. 13, 2019, pp. 573–582.

[200] L. Cui, D. Lee, Coaid: Covid-19 healthcare misinformation dataset, CoRR (2020).

[201] X. Hu, Z. Guo, G. Wu, A. Liu, L. Wen, P.S. Yu, Chef: A pilot Chinese dataset 

for evidence-based fact-checking, in: Proceedings of the Conference of the North 

American Chapter of the Association for Computational Linguistics: Human 

Language Technologies, 2022, pp. 3362–3376.

[202] E. Min, Y. Rong, Y. Bian, T. Xu, P. Zhao, J. Huang, S. Ananiadou, Divide-and-

conquer: Post-user interaction network for fake news detection on social media, 

in: Proceedings of the ACM Web Conference, 2022, pp. 1148–1158.

[203] D.S. Nielsen, R. McConville, Mumin: A large-scale multilingual multimodal fact-

checked misinformation social network dataset, in: Proceedings of the 45th 

International ACM SIGIR Conference on Research and Development in Information 

Retrieval, 2022, pp. 3141–3153.

[204] D.K. Sharma, S. Garg, Ifnd: a benchmark dataset for fake news detection, Complex 

Intell. Syst. 9 (3) (2023) 2843–2863.

[205] X. Hu, Z. Guo, J. Chen, L. Wen, P.S. Yu, Mr2: A benchmark for multimodal 

retrieval-augmented rumor detection in social media, in: Proceedings of the 46th 

International ACM SIGIR Conference on Research and Development in Information 

Retrieval, 2023, pp. 2901–2912.

[206] B.M. Yao, A. Shah, L. Sun, J.-H. Cho, L. Huang, End-to-end multimodal fact-

checking and explanation generation: A challenging dataset and models, in: 

Proceedings of the 46th International ACM SIGIR Conference on Research and 

Development in Information Retrieval, 2023, pp. 2733–2743.

[207] P. Qi, Y. Bu, J. Cao, W. Ji, R. Shui, J. Xiao, D. Wang, T.-S. Chua, Fakesv: A multi­

modal benchmark with rich social context for fake news detection on short video 

platforms, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 

37, 2023, pp. 14444–14452.

[208] S. Suryavardan, S. Mishra, P. Patwa, M. Chakraborty, A. Rani, A.N. Reganti, A. 

Chadha, A. Das, A.P. Sheth, M. Chinnakotla, et al., Factify 2: A multimodal fake 

news and satire news dataset, in: Proceedings of the AAAI Conference on Artificial 

Intelligence, 2023.

[209] S.-I. Papadopoulos, C. Koutlis, S. Papadopoulos, P.C. Petrantonakis, Verite: a robust 

benchmark for multimodal misinformation detection accounting for unimodal bias, 

Int. J. Multimed. Inf. Retr. 13 (1) (2024) 4.

[210] Y. Bu, Q. Sheng, J. Cao, P. Qi, D. Wang, J. Li, Fakingrecipe: Detecting fake news 

on short video platforms from the perspective of creative process, in: Proceedings 

of the 32nd ACM International Conference on Multimedia, 2024, pp. 1351–1360.

[211] X. Liu, Z. Li, P.P. Li, H. Huang, S. Xia, X. Cui, L. Huang, W. Deng, Z. He, 

Mmfakebench: A mixed-source multimodal misinformation detection benchmark 

for lvlms, in: The Thirteenth International Conference on Learning Representations, 

2025.

[212] B. Li, Y. Zhang, L. Chen, J. Wang, F. Pu, J.A. Cahyono, J. Yang, C. Li, Z. Liu, Otter: 

a multi-modal model with in-context instruction tuning, IEEE Trans. Pattern Anal. 

Mach. Intell. (2025).

[213] D. Zhu, J. Chen, X. Shen, X. Li, M. Elhoseiny, Minigpt-4: Enhancing vision-

language understanding with advanced large language models, in: The Thirteenth 

International Conference on Learning Representations, 2024.

[214] T. Liang, S. Wu, J. Fang, G. Yang, W. Wang, F. Lv, Damage analysis via bidirec­

tional multi-task cascaded multimodal fusion, in: Proceedings of the ACM on Web 

Conference, 2025, pp. 625–636.

[215] J. Lin, H. Yin, W. Ping, P. Molchanov, M. Shoeybi, S. Han, Vila: On pre-training for 

visual language models, in: Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, 2024, pp. 26689–26699.

[216] Y. Su, T. Lan, H. Li, J. Xu, Y. Wang, D. Cai, Pandagpt: One model to instruction-

follow them all, in: Proceedings of the 1st Workshop on Taming Large Language 

Models: Controllability in the Era of Interactive Assistants!, 2023, pp. 11–23.

[217] Q. Ye, H. Xu, J. Ye, M. Yan, A. Hu, H. Liu, Q. Qian, J. Zhang, F. Huang, Mplug-owl2: 

Revolutionizing multi-modal large language model with modality collaboration, 

in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2024, pp. 13040–13051.

[218] H. Liu, C. Li, Q. Wu, Y.J. Lee, Visual instruction tuning, Adv. Neural Inf. Process. 

Syst. 36 (2023) 34892–34916.

[219] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, 

V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv 

preprint arXiv:1907.11692, 2019. 

[220] Y. Zhu, Q. Sheng, J. Cao, Q. Nan, K. Shu, M. Wu, J. Wang, F. Zhuang, Memory-

guided multi-view multi-domain fake news detection, IEEE Trans. Knowl. Data Eng. 

35 (7) (2023) 7178–7191.

[221] D.N. Hong, Y. Hashimoto, I. Paik, T.C. Thang, Leveraging llms for llm-generated 

fake news detection: insights from Covid-19 misinformation, in: IEEE 16th 

International Conference on Computational Intelligence and Communication 

Networks (CICN), IEEE, 2024, pp. 1460–1466.

[222] M. Maggini, P.G. Otero, Leveraging advanced prompting strategies in llama3-8b 

for enhanced hyperpartisan news detection, in: Proceedings of the 10th Italian 

Conference on Computational Linguistics, 2024, pp. 531–539.

[223] K.I. Roumeliotis, N.D. Tselikas, D.K. Nasiopoulos, Fake news detection and clas­

sification: a comparative study of convolutional neural networks, large language 

models, and natural language processing models, Futur. Internet 17 (1) (2025).

[224] S. Yang, Y. Dai, G. Wang, X. Zheng, J. Xu, J. Li, Z. Ying, W. Wang, E.C.H. Ngai, 

Realfactbench: A benchmark for evaluating large language models in real-world 

fact-checking, arXiv preprint arXiv:2506.12538, 2025. 

[225] F. Li, J. Wu, C. He, W. Zhou, Cmie: Combining mllm insights with external ev­

idence for explainable out-of-context misinformation detection, arXiv preprint 

arXiv:2505.23449, 2025. 

[226] S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, 

et al., Qwen2. 5-vl technical report, arXiv preprint arXiv:2502.13923, 2025. 

[227] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirec­

tional transformers for language understanding, in: Proceedings of the Conference 

of the North American Chapter of the Association for Computational Linguistics: 

Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 

4171–4186.

[228] L. Shang, Z. Kou, Y. Zhang, D. Wang, A multimodal misinformation detector for 

Covid-19 short videos on tiktok, in: IEEE International Conference on Big Data (Big 

Data), IEEE, 2021, pp. 899–908.

[229] H.Y.E.W.O.N. Choi, Y.O.U.N.G.J.O.O.N.G. Ko, Topic-agnostic fake news video 

detection using adversarial learning and topic modeling, IEEE Access 9 (2021) 

164846–164853.

[230] J. Wang, J. Liu, N. Zhang, Y. Wang, Consistency-aware fake videos detection 

on short video platforms, in: International Conference on Intelligent Computing, 

Springer, 2025, pp. 200–210.

[231] R. Hong, J. Lang, J. Xu, Z. Cheng, T. Zhong, F. Zhou, Following clues, approaching 

the truth: explainable micro-video rumor detection via chain-of-thought reasoning, 

in: Proceedings of the ACM on Web Conference, 2025, pp. 4684–4698.

[232] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, 

A. Madry, A. Beutel, A. Carney, et al., Openai o1 system card, arXiv preprint 

arXiv:2412.16720, 2024. 

[233] A. Beigi, B. Jiang, D. Li, T. Kumarage, Z. Tan, P. Shaeri, H. Liu, Lrq-fact: Llm-

generated relevant questions for multimodal fact-checking, arXiv e-prints arXiv–

2410, 2024.

[234] X. Wang, J. Pan, L. Ding, L. Wang, L. Jiang, X. Li, C. Biemann, Cogsteer: cognition-

inspired selective layer intervention for efficiently steering large language models, 

in: Findings of the Association for Computational Linguistics: ACL, 2025, pp. 

25507–25522.

[235] W. Wang, L. Ding, L. Shen, Y. Luo, H. Hu, D. Tao, Wisdom: improving multimodal 

sentiment analysis by fusing contextual world knowledge, in: Proceedings of the 

32nd ACM International Conference on Multimedia, 2024, pp. 2282–2291.

Computer Science Review 60 (2026) 100893 

28 

http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0900
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0900
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0900
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0905
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0905
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0905
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0905
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0910
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0910
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0915
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0915
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0920
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0920
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0920
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0925
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0925
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0925
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0930
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0930
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0930
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0940
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0940
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0940
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0945
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0945
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0945
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0950
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0950
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0950
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0955
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0955
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0955
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0960
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0960
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0960
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0965
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0965
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0965
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0975
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0975
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0980
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0980
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0980
http://arxiv.org/abs/2505.06796
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0990
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0990
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0990
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0995
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0995
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr0995
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1000
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1005
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1005
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1005
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1005
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1010
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1010
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1010
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1015
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1015
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1015
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1015
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1020
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1020
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1025
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1025
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1025
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1025
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1030
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1030
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1030
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1030
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1035
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1035
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1035
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1035
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1040
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1040
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1040
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1040
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1045
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1045
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1045
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1050
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1050
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1050
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1055
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1055
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1055
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1055
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1060
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1060
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1060
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1065
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1065
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1065
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1070
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1070
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1070
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1075
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1075
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1075
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1080
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1080
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1080
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1085
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1085
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1085
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1085
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1090
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1090
http://arxiv.org/abs/1907.11692
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1100
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1100
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1100
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1105
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1105
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1105
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1105
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1110
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1110
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1110
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1115
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1115
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1115
http://arxiv.org/abs/2506.12538
http://arxiv.org/abs/2505.23449
http://arxiv.org/abs/2502.13923
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1135
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1140
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1140
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1140
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1145
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1145
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1145
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1150
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1150
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1150
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1155
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1155
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1155
http://arxiv.org/abs/2412.16720
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1165
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1165
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1165
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1170
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1170
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1170
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1170
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1175
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1175
http://refhub.elsevier.com/S1574-0137(26)00002-X/sbr1175

	The paradigm shift: A comprehensive survey on large vision language models for multimodal fake news detection
	1 Introduction
	2 Preliminary information
	2.1 Traditional single-modal fake news detection
	2.2 Multimodal fake news detection
	2.3 Multimodal fake news reasoning
	2.4 Positioning of large vision-language models

	3 Taxonomy
	3.1 Parameter-frozen paradigm
	3.2 Parameter-tuning paradigm
	3.3 Reasoning paradigm

	4 Popular benchmark dataset
	4.1 Overview of benchmark datasets
	4.2 Comparison and taxonomy of misinformation datasets

	5 Evaluation metrics
	6 Experimental performance
	6.1 Results on MM-FakeBench
	6.2 Results on twitter and fakeddit
	6.3 Results on MDAM3-DB
	6.4 Results on pheme and twitter16
	6.5 Results on DriftBench
	6.6 Results on FakeSV and FakeTT
	6.7 Results on multiple in-domain and out-of-domain datasets

	7 Future directions
	7.1 Causal and counterfactual reasoning for explainable detection
	7.2 Adversarially robust and out-of-distribution generalization
	7.3 Efficient and modular architectures for real-time deployment
	7.4 Inference-time mitigation of multimodal hallucination
	7.5 Knowledge-enhanced LVLM adaptation for veracity reasoning

	8 Conclusion
	Declaration of competing interest
	Data availability
	References






