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ARTICLE INFO ABSTRACT

Keywords: In recent years, the rapid evolution of large vision-language models (LVLMs) has driven a paradigm shift in mul-
Multimodal fake news detection timodal fake news detection (MFND), transforming it from traditional feature-engineering approaches to unified,
Large language models end-to-end multimodal reasoning frameworks. Early methods primarily relied on shallow fusion techniques to

Deep learning

capture correlations between text and images, but they struggled with high-level semantic understanding and
Large vision-language models

complex cross-modal interactions. The emergence of LVLMs has fundamentally changed this landscape by en-
abling joint modeling of vision and language with powerful representation learning, thereby enhancing the ability
to detect misinformation that leverages both textual narratives and visual content. Despite these advances, the
field lacks a systematic survey that traces this transition and consolidates recent developments. To address this
gap, this paper provides a comprehensive review of MFND through the lens of LVLMs. We first present a historical
perspective, mapping the evolution from conventional multimodal detection pipelines to foundation model-driven
paradigms. Next, we establish a structured taxonomy covering model architectures, datasets, and performance
benchmarks. Furthermore, we analyze the remaining technical challenges, including interpretability, temporal
reasoning, and domain generalization. Finally, we outline future research directions to guide the next stage of
this paradigm shift. To the best of our knowledge, this is the first comprehensive survey to systematically docu-
ment and analyze the transformative role of LVLMs in combating multimodal fake news. The summary of existing
methods mentioned is in our Github: https://github.com/Tan-YiLong/Overview-of-Fake-News-Detection.

1. Introduction modalities, such as subtle semantic mismatches [12], visual entail-
ment contradictions, and temporal or contextual incoherence, presents
formidable challenges [13,14]. Early MEND methods typically relied on
late fusion architectures or shallow cross-modal alignment, which lacked
the semantic depth and reasoning capacity to capture nuanced deception
strategies [15].

Importantly, the notion of cross modal inconsistency in MFND is
not ad hoc, but rooted in well documented limitations of vision-lan-
guage pretraining (VLP) models. Prior work shows that even large-scale
VLP models exhibit systematic weaknesses in fine grained semantic
alignment, particularly for linguistic negation, attribute ownership, and
spatial relations [16]. These limitations are especially consequential for
fake news detection, where deceptive content often maintains surface
level coherence while violating latent semantic constraints across modal-
ities. As demonstrated by Wang et al. [16], such inconsistencies cannot

The rapid proliferation of fake news across online platforms has
emerged as a formidable societal challenge [1], undermining public trust
[2], destabilizing democratic discourse, and exacerbating global crises
such as the COVID-19 pandemic and geopolitical conflicts [3,4]. Unlike
early waves of misinformation, which were predominantly textual,
modern fake news campaigns increasingly exploit multimodal content
combining manipulated images [5], misleading videos [6], and textu-
ally coherent yet semantically deceptive captions [7,8]. This growing
reliance on cross-modal deception renders traditional unimodal detec-
tion techniques inadequate and motivates a shift toward Multimodal
Fake News Detection (MFND) [9,10].

Multimodal fake news detection seeks to uncover inconsistencies be-
tween text, image, video, and other modalities to assess the veracity
of online information [11]. However, the complex interplay between
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be reliably identified through naive cross-modal similarity alone, reveal-
ing the brittleness of multimodal alignment without explicit linguistic
grounding. This observation provides a theoretical basis for MFND, as
many forms of multimodal misinformation intentionally exploit these
alignment blind spots.

The emergence of Large Vision-Language Models (LVLMs) has fun-
damentally changed this landscape [17]. Built upon advances in large
language models (LLMs) and pre-trained visual encoders [18,19], as
shown in Fig. 1, LVLMs such as CLIP [20], BLIP-2 [21], Flamingo [22],
Kosmos-1 [23], LLaVA [24], and GPT-4V [25] offer unified architec-
tures capable of joint cross-modal representation learning and reasoning
[26]. These models demonstrate impressive zero-shot and few-shot per-
formance on tasks such as image-text matching [27], visual question
answering [28], and multimodal entailment making them well-suited
for high-level fake news detection that demands semantic grounding and
cross-modal verification [29].

Nevertheless, the application of LVLMs to MFND remains fragmented
and lacks a systematic understanding. Existing studies vary widely in
how they integrate LVLMs, differing in architectural design, supervi-
sion strategy [30], task formulation [31], and training cost [32]. To
unify this landscape, we propose a novel three branch taxonomy that
categorizes current MFND approaches using LVLMs into three distinct
paradigms: (1) Parameter freezing applications. These methods uti-
lize pre-trained LVLMs without modifying their internal parameters
[33]. Techniques such as in-context learning [34], prompt-based adap-
tation [35], or lightweight classification heads are employed on top of
frozen backbones [15]. This paradigm is particularly attractive for re-
source constrained or real-time applications, offering fast deployment
and high generalization at the cost of task specific adaptation [36].
(2) Parameter tuning applications. These approaches involve full
or partial fine tuning of the LVLMs to enhance task alignment [11].
Techniques include full model fine tuning [37], adapter insertion [38],
prefix tuning [39], or low rank adaptation (e.g., LoRA) [40]. Tuning
allows the model to capture domain specific semantics [41], subtle
modality inconsistencies [42], and contextual cues critical to accurate
fake news detection, albeit with higher computational and data require-
ments [43]. (3) Reasoning paradigm applications. This new paradigm
focuses on how LVLMs engage in structured, multi step reasoning to
enhance the accuracy of fake news detection. Approaches under this
paradigm emphasize the use of multi agent systems or explicit reasoning
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pipelines that sequentially analyze multimodal evidence and the claim.
Methods such as agent-based reasoning [44], which breaks down rea-
soning into distinct sub-tasks like evidence retrieval and contradiction
analysis, and prompting-based reasoning [45], which guides the model
through reasoning via carefully crafted prompts, are key examples.
The reasoning paradigm enables a deeper understanding of complex
misinformation, leveraging the strengths of both large pre-trained mod-
els and task-specific reasoning strategies. However, it typically incurs
higher inference costs and complexity, requiring more elaborate model
architectures and robust reasoning pipelines [46].

In this survey, we offer the first comprehensive and structured
review of how large vision-language models are being utilized for mul-
timodal fake news detection. The contributions made in this paper are
summarized as follows:

« New taxonomy: We propose a novel three-branch taxonomy for
applying large vision language models (LVLMs) to multimodal
fake news detection (MFND), dividing existing methods into three
main categories: (1) parameter-freezing applications, (2) parameter-
tuning applications, and (3) reasoning-paradigm applications. This is
the first comprehensive survey to systematically document and ana-
lyze the transformative role of LVLMs in combating multimodal fake
news, incorporating the latest advancements in structured reasoning
and agent-based strategies.

Comprehensive review: We systematically review the evolution
from unimodal to multimodal approaches, analyze representative
LVLMs-based architectures, and compare their performance and
design principles across visual-textual misinformation detection
benchmarks.

Unified framework: We build a structured analytical frame-
work that encompasses model design, task formulation, training
paradigms, and evaluation criteria. By aligning the strengths and
limitations of parameter-freezing, parameter-tuning, and reasoning-
based approaches, we provide guidance for selecting appropriate
LVLM strategies under different resource and robustness constraints,
helping to navigate the challenges of real-time and resource-
constrained applications.

Benchmark and evaluation: We summarize and compare publicly
available datasets in MFND, highlighting their modality composition,
annotation strategy, and real-world complexity. In addition, we
examine current evaluation metrics and identify key gaps.

Gemini 2.0 Flash G l—\

Jul-Dec 2025

Jan-Jun
GPT-40-mini

m Llama 4
A\ Claude-3.7-Sonnet

@ GPT-4.1-mini

FLUX.1 Redux $
-
y AN

Llama 3.1

FLUX.1-dev
2024

> 5> 36

Qwen2.5-VL

[ LLaVA
]
@ GPT-4V h Mistral-7B A\ DALL-E 3
THE HONG KO}
Qbmn‘nm\n UNIVERSITY FactLLaMA S ° SD-Turbo

Fig. 1. A chronological overview of representative LVLMs is presented, highlighting the rapid growth of this field.
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+ Research challenges and future directions: We identify open
problems in LVLM-based MFND, including multimodal hallucina-
tion, cross-modal bias, and data scarcity in misinformation domains.
We further propose promising directions for future research, in-
cluding counterfactual generation for cross-modal reasoning, and
knowledge-enhanced LVLM adaptation.

This paper is organized as follows: Section 2 introduces the back-
ground and preliminary knowledge. Section 3 outlines the multimodal
fake news detection paradigm based on LVLM. Section 4 introduces
widely used benchmark datasets. Section 5 reviews evaluation met-
rics. Section 6 compares the experimental results of different methods.
Section 7 discusses the advantages and challenges of LVLM in this field.
Section 8 points out future research directions. Section 9 concludes the

paper.
2. Preliminary information
2.1. Traditional single-modal fake news detection

Problem definition. Early approaches to fake news detection pre-
dominantly relied on a single modality [47,48], typically focusing on
either textual or visual content [49,50]. In these methods, fake news
is formulated as a binary classification problem over a single input
space [51]. Let x, denote textual features extracted from news articles
[52], and x, represent visual features derived from associated images
[53]. The single-modal fake news classifier can generally be defined as
Fgu o x = {0,1}, where x € {x,,x,} and the output {0, 1} corresponds
to the labels real and fake [54].

Text-based methods. Traditional text-based approaches typically
leverage linguistic and semantic features [55], such as word n-grams,
syntactic patterns [56], or semantic embeddings [57]. Given a text se-
quence T = {w,, w,, ..., w,}, an embedding model ¢(-) maps words into
a continuous space [58], yielding the representation as follows:

Xy = ¢(T) e R? (€))

where d is the embedding dimension. A classifier f, (e.g., logistic re-
gression, SVM, or neural network) then predicts the probability of being
fake as follows:

P(y=1T) = o(fo(X7)) (2)

with o(-) denoting the sigmoid function. The model is trained using the
standard binary cross-entropy loss as follows:

N
Ly == Y [y10g PGIT) + (1 = y)log(1 — P(y,|T}))] ®3)

i=1

Image-based methods. Visual single-modal methods focus on de-
tecting inconsistencies or manipulations in images [59,60]. A typi-
cal approach involves extracting features from an image [ using a
convolutional neural network (CNN) [3] or vision Transformer (ViT)
[61] as follows:

Xy =w(I) € R¥ (C))

where y(-) is the feature extractor. The classifier g, then computes as
follows:

P(y = 11I) = 0(gs(Xy)) (5)

These methods aim to capture visual artifacts such as unnatural textures
[62], illumination mismatches [63], or traces of generative adversarial
networks (GANSs) [64].

Limitations. Although single-modal detection has achieved early
success, it suffers from several critical limitations [65]. Text-only meth-
ods often fail when the news content appears linguistically coherent

Computer Science Review 60 (2026) 100893

but is paired with misleading images [66]. Similarly, image-only meth-
ods cannot account for manipulative narratives conveyed by text [67].
Formally, if fake news involves a cross-modal inconsistency [68,69], i.e.,

(T.V) € Dygper O #y (V)

then any function F,,, defined on a single modality is inherently in-
sufficient [70]. This limitation motivates the shift toward multimodal
approaches, where joint reasoning over text and vision becomes essen-
tial [71].

2.2. Multimodal fake news detection

Problem definition. Let M = {t,v} denote the set of available
modalities (e.g., text f, image/video v). A multimodal set is x =
{X,} mes> associated with a focal claim ¢ and optional external con-
text « (e.g., knowledge bases, timelines, provenance) [72]. The goal of
Multimodal Fake News Detection (MFND) is to infer a veracity label

€ {0,1} (with 1 meaning fake) together with a structured, referable
rationale R grounding the decision in cross-modal evidence [73,74]. We
formalize a reasoned prediction as follows:

P, R)=ar ma. Pyy,R| x,c, 6
(3, R) gye(OJLXReR (v R | x,¢,x) (6)
where 6 parameterizes the large vision-language model (LVLM), and R
denotes the space of executable explanations (textual justifications with
pointers to spans, frames, and regions).

2.3. Multimodal fake news reasoning

Principled dimensions of deception. We posit a principled, tri-
adic decomposition of multimodal deception into three interacting yet
distinct dimensions (i.e., Authenticity, Consistency, and Intent) that
together determine veracity and the structure of model explanations
[75]. Authenticity quantifies media-level integrity via forensic evidence
and generative priors [76]. Consistency measures cross-modal seman-
tic agreement between claim, text, image/video, and audio embeddings
[59]. Intent captures manipulative or persuasive framing, decoupled
from factuality, through stylistic, pragmatic, and source cues. These di-
mensions target complementary failure modes, including (i) deepfaked
or altered media with otherwise aligned captions; (ii) truthful media
paired with misleading text; and (iii) technically accurate content ar-
ranged to steer beliefs. Relying on any single dimension is insufficient;
instead, we fuse calibrated posteriors within an interpretable surrogate
to produce both the veracity label and a grounded rationale [77]. This
decomposition provides a unifying lens across news articles, social posts,
memes, and videos, and it aligns naturally with LVLM-based reasoning
that constructs evidence graphs and referenceable explanations [78].
Below we will introduce the principles of each dimension.

Media authenticity. This dimension targets whether a medium in x
has been synthetically generated or altered. Let p,,; and p,;; be (implicit)
likelihoods under natural and altered media manifolds, respectively (in-
stantiated by generative/forensic priors) [79]. A generic forgery score
for a visual stream x,, is as follows:

SF(XU) == IOanat(xu) + logpalt(xv)

(7)
F =o(¢p(Sp(x,) €10,1]

where ¢ calibrates the score and ¢ is a sigmoid. F indicates tampering
signals (e.g., seam/lighting inconsistencies, GAN fingerprints, lip-sync
drift).

Cross-modal inconsistency. This dimension captures contradic-
tions between modalities (e.g., the caption asserts “Category 5 hur-
ricane” while the video depicts calm weather). Let g, : &, — R¢
embed each modality into a shared semantic space [13]. For any pair
(m,n) € M:

D, ,(x) = 1 — sim(g,,(x,,), &,(x,)) )
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D= max D, ,(x)e€[0,1] 9
(m,n)eM ’

where sim can be cosine similarity or an entailment-based score from
a caption—NLI pipeline. Large D signals cross-modal contradiction or
missing supporting evidence [80].

Manipulative intent. Distinct from factuality, this dimension eval-
uates whether content is crafted to steer beliefs via rhetorical devices
(e.g., cherry-picked visuals, loaded language, fear appeals) [65]. We
model intent as a latent probability as follows:

1= Pg(manipulative | x, ¢, K)
(10)
= of by (i W), wa(x,), w) ) € 10,11

where y, extracts stance, sentiment, emotional arousal, propaganda
patterns, and u encodes source-level priors.

Joint decision. The veracity decision should couple these dimen-
sions while remaining explanation-seeking [81]. A factorized formula-
tion is as follows:

Py(y, F, D, I | x,¢,x) < wy(y | x,c, wp(F | x) an
wpD | x, )y (I | x,c,x)pc(, F,D,T)

where y enforces structural compatibilities (e.g., severe tampering or
strong cross-modal contradictions raise the prior for y=1, while high
I alone is not conclusive) [26]. A transparent decision surrogate is as
follows:

s(x,c,k) = hy(x,c,k)+ ApF+ ApD+ A;1 12
y= ﬂ[a(s(x,c, K)) > r]

where h, captures claim-conditioning and external verification (e.g.,
retrieval-augmented grounding), and A, balances the three dimensions.

Definition of reasoning in MFND. Reasoning is the construction of
a grounded evidence graph G = (V, E) and a minimal rationale R C V
such that a verifier Vo confirms sufficiency [81] and faithfulness as
follows:

Py(y|x,c,x,R) = Pyy | x,c,x,0) > €

baseline

P(Risusedby 0) > 1 -6

sufficient

a3

faithful

where R consists of modality-aligned snippets (text spans, frames, re-
gions) and explicit cross-modal relations (support/contradiction) that
can be referenced and verified [9].

Learning objective. Supervision is naturally multi-task, promoting
veracity accuracy, forensic robustness, semantic alignment, and intent
recognition [82], while rewarding concise, grounded explanations as
follows:

L=y 9)+a £p(F F)+p ¢p(D. D) +y ¢/(1.1) 40 Coxp(RR)
N—— S—— [ —— N— —

grounded rationale

a4

veracity authenticity consistency intent

where a controls the relative importance of the content-level forgery
detection loss #f, which focuses on identifying tampered or synthetic
media,  weights the cross-modal consistency loss £, encouraging the
model to detect semantic misalignments between modalities [83], y
adjusts the manipulative intent recognition loss #;, which measures
whether the content is strategically framed to mislead or persuade, #
regulates the explanation generation loss £, ensuring that the model
outputs interpretable and faithful rationales R grounded in multimodal
evidence [84].
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2.4. Positioning of large vision-language models

Unified parameterization. LVLMs provide a single probabilistic
program to instantiate the factorization in Eq. (11) and the reasoned
prediction [85] in Eq. (6). Let ¢,, ¢, be modality encoders and let r(c)
denote a retrieval operator over external context x conditioned on claim
c. We define claim-aware token streams

f = Pack(x,,c), 0=Patch(x,), &k =r.(c) (15)

and a cross-modal aggregator .4, (multi-head cross-attention over con-
catenated tokens) that yields a joint representation as follows:

Z = 44(¢,®. 6,0, $(®)) € R? 16

Concretely, the authenticity, consistency [86], and intent scores are
realized by LVLM heads, which are mathematically expressed as follows:

F=o(wpZ+bg), I=o(w]Z+b)
gl(xt) = I/I/tqbr(;)’ gv(xu) = Wu¢u(5) (17)
D =1-sim(g(x,), g,(x,))

The claim-conditioned verifier h, is implemented to fuse content
evidence with retrieved context as follows:

hy(x,c,Kx) = w-YrZ+by (18)

Cross-modal alignment pretraining. To make sim(-, -) meaningful,
LVLMs optimize contrastive alignment [87] between g, and g,
i log 5P (&, ("), g,(x) /)

L g . :
o IV e (g (), g, (e /7)

19)

align = —

This objective ensures that D faithfully reflects cross-modal consistency.
Claim-conditioned verification and retrieval grounding.
External context « is integrated by a differentiable retriever as follows:

r(c) = TopK ( arg max sim(q(c), k(d))) (20)

with query encoder ¢(-) and key encoder k(-) sharing parameters with
¢,. The retrieved snippets are injected as memory tokens, allowing A, to
realize the claim-conditioning term and to reduce spurious correlations
in £,D, 1.

Evidence-consistent rationale generation. Let R = (r|, ..., r;) de-
note a textual rationale augmented [31] with pointers z to evidence
units (text spans, frames, regions) from the evidence graph G = (V, E).
LVLMs generate R with an autoregressive head over Z as follows:

L
Py(R| x,c,k) = | | Po(r, | rp> X, ¢, K),
E : (3]

Py(my =u|re,x,c,k) = softmax((q,, v(u))), uevV

where ¢, is the decoder query at step ¢ and v(u) is the node embedding
of the evidence unit u. By training Egs. (21) jointly, the LVLM yields
rationales that satisfy the sufficiency/faithfulness criteria via explicit
grounding [88].

Decision surrogate and calibration. Plugging LVLM heads into
Eq. (12) gives the following:

s(x,e,x) = hy(x, e, &)+ ApF + ApD+ A, 1
0 F D 1 22)
f/=1][0'(s)>f]

where the weights (Ap, Ap, 4;) are learned by post-hoc calibration to
respect the compatibility potential y in Eq. (11):

min  E[£gy(y. 1o(s) > 71)] + Q4. Ap. A1) (23)

Ap.Ap.Ar,T

with a regularizer Q that discourages over-reliance on any single dimen-
sion.
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Media authenticity with generative priors. To instantiate p,,; and
Pai» LVLMs either distill forensic experts into a head over Z, or use a
learned energy surrogate [76] as follows:

Sp(x,) & Eg(x,) = —log Y exp( = &(x,, 2))
z 249

F = o(pp(Ep(x,))

where &, is an amortized energy over latent codes z (e.g., visual artifacts,
frequency cues). This provides a practical bridge to Eq. (7) within the
LVLM.

Training objective. The multi-task learning is realized by aug-
menting it with alignment and instruction-following terms [89] as
follows:

Liyin = Cas. 9 +a £p(F.F)+p £ 5(D, D) +y £,(I1, )41 £eyp(R.R)

veracity authenticity consistency intent grounded rationale

+L +Lim + Loy

align
(25)

where L;,; is the next-token negative log-likelihood for rationale gen-
eration and L, is a cross-entropy over pointers x to evidence nodes
[90].

3. Taxonomy

We classify multimodal fake news detection methods into three
paradigms, namely Parameter-Frozen Paradigm, Parameter-Tuning
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Paradigm, and Reasoning Paradigm. The Parameter-Frozen Paradigm
relies on zero-shot or few-shot prompting without updating the model’s
parameters, ensuring that the backbone model remains fixed. In con-
trast, the Parameter-Tuning Paradigm involves adapting the model’s
parameters through full fine-tuning or parameter-efficient techniques
such as adapters, prefix tuning, and Low Rank Adaptation (LoRA).
Finally, the Reasoning Paradigm categorizes methods based on the type
of reasoning employed, with prompting-based reasoning conducting im-
plicit reasoning within a single inference pass and agent-based reasoning
involving explicit, structured, multi step interactions for veracity reason-
ing. This classification is illustrated in Fig. 2, providing a comprehensive
framework for understanding the distinct approaches in multimodal fake
news detection.

3.1. Parameter-frozen paradigm

In the parameter-frozen paradigm, the backbone LVLM remains un-
changed, and task adaptation is realized purely through prompting and
in-context specification [156]. This setting is particularly attractive for
multimodal fake news detection because it avoids expensive fine-tuning
on large models, and it enables rapid transfer across datasets and plat-
forms with heterogeneous news formats [75]. Let X = {x,, x;, x, } denote
text, image, and video inputs after modality-specific encoding or serial-
ization into model-acceptable inputs, and let 7 denote a task instruction
template that defines the goal (e.g., “Determine whether the given news is
fake or real and justify the decision with cross-modal evidence.”) [157]. The
model produces a distribution over label strings given the constructed

Zero-shot Learning: CLIP [91], ALIGN [92], M3 A [93], BLIP-2 [94], LLaVA [24], InstructBLIP [95], GPT-4V [96],
FILIP [97], MCCA [98], METER [99], UNITE-FND [100], Gemini-1.5 [101], MiniGPT-4 [102], BLIP [103], KAI [104],
GPT4o [105], FND-CLIP [20], Phi-3-Vision-128k-Instruct [106], LLaVA-v1.5-Vicuna-7B [107], Pixtral [108],
LLaVA-v1.6-Mistral-7B [107], Qwen2-VL-7B-Instruct [109], InternVL2-8B [110], DeepSeek-VL2-Small [111],
DeepSeek Janus-Pro-7B [112], GLM-4V-9B [113], LLaMA-3.2-11B-Vision [114], GPT 3.5 (Base) [115], MRCD [116],
GPT 3.5 (CoT) [115], GPT 4 (Base) [115], GPT 4 (CoT) [115], Vicuna-7B-v1.5 [117], InternLM2-7B [118],
Mistral-7B-Instruct-v0.3 [119], Qwen2-7B-Instruct [120], GLM-4-9B-Chat [113], MiRAGe [121], LEMMA [122],

Kosmos-1 [23]

Parameter-Frozen Paradigm (§3.1)

FakeSV-VLM [38]

Parameter-Tuning Paradigm (§3.2)

Few-shot Learning: AAR [123], SearchLVLMs [124], DriftBench [125], FKA-Owl [126], CMA [127], ARG-D [75],
FNDPT [128], Prompt-and-Align [129], COOL [130], FSKD [131], MPL [35], DAFND [128], StablePT [132],

Full-parameter Tuning: IMFND [133], MDAM3 [122], DIFND [134], MCOT [135], MACAW [136], DPOD [137],
TRUST-VL [138], EARAM [87], RumorLLM [139]

Parameter-efficient Tuning: E2LVLM [140], LVLMA4FV [141], M-DRUM [142], MMKD [143], LVLM4CEC [144],

Multimodal Fake News Detection and Veracity Reasoning

Reasoning Paradigm (§3.3)

Cross-SEAN [145], SNIFFER [34], FakeNewsGPT4 [146]

Prompting-based Reasoning: ICD [45], CAPE-FND [147], NRFE [148], IFAI [149], DIFAR [150], MFC-Bench [151],
LLM-GAN [152], LIFE [153]

Agent-based Reasoning: FactAgent [44], TED [154], SheepDog [19], ARG [75], FACTGUARD [46], RAMA [155]

Fig. 2. Taxonomy of multimodal fake news detection and veracity reasoning. We systematically categorize multimodal fake news detection methods according to
their parameter adaptation paradigms, including full fine-tuning, parameter-efficient tuning, prompting-based inference, and agent-based reasoning. This taxonomy
provides a structured overview of state-of-the-art approaches and clarifies how different parameter interaction strategies are leveraged for multimodal veracity
assessment [91,92,97-103,105-108,111-114,117-120,127,128,130-132,135,137,139,146,155].
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prompt I1(X, 7) as follows:

Y Pols I TI(X, 1))

seV(y)

Poy 1 X, 1) = (26)

where © are frozen parameters and v(y) is a verbalizer mapping each
class y (e.g., fake, real) to one or more label strings. The final decision is
y=argmax, Po(y | X, I).

Mechanistic view under frozen parameters. From a mechanis-
tic perspective, parameter-frozen LVLMs perform multimodal fake news
detection by integrating visual tokens and textual instructions into a
unified autoregressive reasoning process, rather than relying on ex-
plicit cross modal classifiers. Since model parameters remain unchanged,
prompts act as the primary interface for controlling how multimodal ev-
idence is attended to, decomposed, and compared. Different prompting
strategies induce distinct reasoning behaviors [129]. Direct classifica-
tion prompts typically encourage holistic judgments, which may obscure
fine grained semantic inconsistencies such as mismatched object at-
tributes, quantities, or spatial relations. In contrast, structured prompts
that explicitly request visual entity extraction, attribute comparison,
or step by step reasoning promote finer grained alignment between
visual evidence and textual claims [158]. Chain-of-thought prompt-
ing further externalizes intermediate reasoning states, reducing over
reliance on language priors and improving sensitivity to subtle cross-
modal discrepancies. This mechanism distinguishes parameter-frozen
LVLMs from traditional multimodal pipelines, where inconsistency de-
tection is enforced through explicit similarity objectives or supervised
heads. In frozen LVLMs, fine grained semantic inconsistency detection
emerges implicitly from prompt guided reasoning trajectories, highlight-
ing the central role of inference time design in determining detection
robustness.

Zero-shot learning. Zero-shot multimodal fake news detection relies
solely on natural-language instructions without task-specific examples
[159]. As shown in Fig. 3, a well-engineered prompt serializes hetero-
geneous evidence into a structured context that highlights cross-modal
credibility cues while minimizing spurious correlations [160]. In LLM-
based pipelines, non-text modalities are first converted into textual
evidence snippets, e.g., image captions, entity-relation triples, and video
scene summaries through auxiliary encoders, and concatenated with raw
news articles using role tags (e.g., <Text>, <Image-Caption>, <Video-
Scene>)). In LVLM-based pipelines, raw embeddings are passed along-
side textual tokens, but the model is still queried through instructions
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[65]; hence Eq. (26) applies with II(-) injecting modality tokens or
connector-produced embeddings. To reduce prompt sensitivity and
improve robustness, zero-shot systems commonly employ instruction
variants and prompt ensembling with majority voting or probability av-
eraging, self-consistency with reasoning where latent rationales r are
sampled and marginalized as follows:

Py | X, D)~ ) Po(y | 1, X, D)Po(r | X, T) @7)

rer

and contextual calibration subtracts a prior estimated from a content-
free prompt to alleviate label-word frequency bias. Zero-shot decoding
can output both a veracity label (fake or real) and an explanation,
providing weak but valuable interpretability for auditing fake news
decisions [161].

Representative methods have instantiated these principles in di-
verse ways. For instance, MRCD [116] introduces a zero-shot multi
round collaborative framework that iteratively generates hypotheses,
retrieves external evidence, and refines predictions without supervised
fine tuning. This approach effectively supports the detection of emerging
fake news while enhancing decision explainability. Additionally, MRCD
leverages collaborative evidence gathering, which improves robustness
by facilitating cross source information validation and hypothesis re-
finement. LEMMA [122] adapts this paradigm by leveraging exemplar
driven fusion pipelines in a zero-shot setting, showing that multi-
modal alignment and reasoning can be improved without task specific
supervision. This model introduces an innovative approach by using ex-
emplar based learning to guide reasoning, enabling better performance
in resource constrained settings. MiRAGe [121] improves cross modal
alignment in zero-shot scenarios through synthetic data augmentation
and augmented connectors, enhancing multimodal reasoning. By syn-
thesizing additional data, MiRAGe reduces the dependency on manually
curated datasets, making it highly effective for scaling fake news detec-
tion across diverse domains. Similarly, M3A [93] integrates text, image,
and domain adaptation features via large scale pre-training, achiev-
ing transferability across diverse disinformation benchmarks without
task specific fine tuning. This model demonstrates the power of large
scale pre-training, allowing it to generalize effectively across multiple
fake news detection challenges. KAI [104] proposes a knowledge en-
hanced interpretable network that leverages a large language model to
generate target specific analytical perspectives, which are integrated
through a bidirectional knowledge guided neural generation system.

Initial stage inference
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Fig. 3. Zero-shot learning framework for multimodal fake news detection. The architecture integrates direct prediction and reasoning mechanisms to process text
and image inputs. It employs a multi-query generation module to formulate news-related queries based on the input’s title and keywords. These queries are filtered
for topical relevance and used to extract evidence from external sources. If external knowledge is deemed necessary, the system verifies the authenticity of both
text and image inputs. The extracted evidence, along with the initial predictions, is refined through a reasoning process to produce the final output. This end-to-end
approach enables the detection of fake news without prior training on labeled data, leveraging the complementary strengths of direct reasoning and external evidence

integration [122].
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This enables zero-shot stance detection with improved interpretability,
making KAI particularly suitable for real world applications that demand
transparency and explainability in decision-making processes.

Few-shot learning. Few-shot multimodal fake news detection aug-
ments the instruction with k demonstration pairs {(X;, y,~)}ff=l injected
into the prompt as in-context exemplars. The predictive distribution is
as follows:

Po(y| X", 1Dy = ) Pols | (X", 1,Dy) (28)

sev(y)

where the selection of D, is crucial. Effective strategies balance rel-
evance to the query and diversity across news topics and modalities
[6,162], often via embedding-based retrieval with determinantal or
max-min objectives to avoid redundancy [163]. Demonstrations should
expose the model to prototypical cross-modal inconsistencies (e.g.,
text-image mismatch, fabricated video snippets, or misleading multi-
modal narratives) and discourse contexts (e.g., satire, conspiracy, and
propaganda) that are underrepresented in pre-training [32]. Ordering
also matters: placing task definition first, then structured exemplars
(“context — rationale — label”), and finally the query tends to re-
duce hallucination [148]. For classification with free-form generation, a
rationale-then-verbalizer template that first elicits a short explanation r
and then constrains the final answer to v(y) often improves calibration
and stability [74]. When label spaces differ across datasets, dynamic ver-
balizers provide a principled bridge by defining synonyms per class and
aggregating token probabilities [55].

Representative few-shot systems in fake news detection operational-
ize these principles through diverse mechanisms. For instance, AAR
[123] demonstrates that incorporating adaptive exemplars enables mod-
els to align retrieved evidence with news claims under limited su-
pervision. By dynamically selecting relevant exemplars, AAR allows
for effective alignment of multimodal evidence, even in settings with
scarce labeled data, thus improving robustness in detecting inconsisten-
cies. SearchLVLMs [124] show that few-shot multimodal demonstrations
can guide large vision-language models to detect subtle inconsistencies
between text and images by leveraging retrieval augmented exem-
plars. The integration of retrieval augmented learning in SearchLVLMs
allows for more precise detection of fine grained inconsistencies, effec-
tively enhancing model sensitivity to cross-modal discrepancies, such as
conflicting visual cues or ambiguous textual claims. DriftBench [125]
extends few-shot evaluation by systematically assessing model robust-
ness under limited exemplars and distribution shifts, providing insights
into adaptability against evolving disinformation patterns. This frame-
work facilitates a deeper understanding of how models perform under
real world conditions where training data may vary, highlighting the
importance of model adaptability to shifting distributions in fake news
contexts. FKA-Owl [126] further enhances robustness by integrating
structured attention over curated demonstrations, revealing that hier-
archical exemplar design mitigates the impact of noisy or adversarial
content. This model’s hierarchical attention mechanism helps filter out
noise and adversarial influences, ensuring that models remain reli-
able even when presented with imperfect or misleading evidence. At a
broader scale, FakeSV-VLM [38] exemplifies few-shot adaptability by ex-
ploiting cross source and cross event multimodal exemplars, improving
generalization without necessitating full model fine tuning. By lever-
aging cross source and event specific data, FakeSV-VLM improves the
model’s transferability across diverse contexts, ensuring more effective
detection across different types of disinformation. Collectively, these
systems highlight that few-shot learning strikes a pragmatic balance be-
tween efficiency and adaptability, making it a compelling paradigm for
fake news detection in scenarios where annotated data is limited but
multimodal evidence must be effectively utilized.

3.2. Parameter-tuning paradigm

Unlike the parameter-frozen paradigm that keeps © fixed, the
parameter-tuning paradigm updates part or all of the LVLM parameters
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© to enhance domain specialization [164], multimodal calibration [59],
and interpretable reasoning [165]. Let each modality encoder be ¢,, ¢,
for text, vision inputs, and let .4, denote the cross-modal aggregator.
Given a multimodal dataset as follows:

D= {(xiﬁci’yi’Ri)}illl @9

where x; = {x,, x,} are paired modalities [18], ¢, is the claim, y; € {0, 1}
is the veracity label [41], and R; the annotated rationale, parameter
tuning seeks the optimal ® that minimizes a task-aligned multi-objective
loss as follows:

l:tune(@) = ELVLM + Areg||® - 90”% (30)

where L}y, follows Eq. (25) and @, is the pretrained initialization,
acting as a regularizer to prevent catastrophic forgetting.

Mechanistic view under parameter-tuning paradigm. From a
mechanistic perspective, the parameter-tuning paradigm enhances the
multimodal reasoning capabilities of LVLMs by fine tuning a subset of
model parameters, allowing for a more flexible integration of text and
image modalities. Unlike traditional models that treat text and images as
separate inputs, LVLMs in this paradigm jointly optimize the parameters
of both the textual and visual encoders through cross modal aggregators.
This enables the model to better capture fine grained semantic incon-
sistencies between text and image, such as mismatched attributes or
spatial relations. The effectiveness of this mechanism is largely driven
by the choice of prompting strategy. Direct classification prompts en-
courage holistic judgments, which may overlook subtle mismatches,
whereas structured prompts (e.g., entity extraction, attribute compar-
ison, or step-by-step reasoning) guide the model to attend to specific
details, improving the alignment between the visual and textual data.
Furthermore, chain-of-thought prompting externalizes intermediate rea-
soning steps, reducing over reliance on language priors and enhancing
the model’s sensitivity to cross modal discrepancies. Through the fine
tuning of model parameters and strategic prompting, the parameter-
tuning paradigm allows LVLMs to implicitly detect fine grained semantic
inconsistencies, offering a more adaptive and robust approach compared
to traditional methods.

Full-parameter tuning. Full fine-tuning unfreezes all LVLM com-
ponents [166], including modality encoders ¢,, ¢,, aggregator A,, and
decision heads (wp,wp,w;,wy). The optimization jointly refines the
authenticity [167], consistency [86], and intent estimators as follows:

F=o(w[Z+bp)

D =1-sim(g,(x,), g,(x,))

R 31
I=ow]Z+bp)

hy(x,c,&) = wy Z + by

and the calibrated decision surrogate remains as follows:

s(x,c,&) = hg(x,c,§)+aFF+aDﬁ+a,f (32)

During training, all parameters receive gradients [168] from £, >
enabling domain-specific adaptation [169] as follows:

Loyin =las3 9 + Aplp(F, F) + Aplp(D, D) + Al (I, 1)

A 33)
+ ARlexy(R, R) + Lyjign + Lopg + Ly

To stabilize optimization [145], practical implementations adopt stage-
wise unfreezing, mixed-precision gradient checkpointing, and curricu-
lum fine-tuning (progressing from single-claim to multi-evidence rea-
soning) [170]. Full tuning allows LVLMs to internalize complex cross-
modal contradictions and high-level intents but requires significant

computational and data resources [26].
Recent full-tuning approaches in multimodal fake news detection
have demonstrated both the strengths and limitations of this paradigm
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[171]. For instance, IMFND [133] established the foundation by fully
fine tuning pretrained multimodal transformers on paired text-image
datasets [172], achieving strong results in capturing cross modal in-
consistencies in news content. By optimizing all parameters, IMFND
improves the model’s ability to learn fine grained interactions between
text and images, significantly enhancing its capacity to identify mislead-
ing content. Building on these successes, video oriented systems such as
MDAM? [122] extended full parameter tuning to spatiotemporal news
verification, showing that large scale video pretraining coupled with
end-to-end optimization yields significant gains in detecting deepfake
based misinformation [173]. MDAM? pushes the boundaries of video
based fake news detection by effectively incorporating both temporal
and spatial cues, improving the model’s robustness against dynamic ma-
nipulations often found in deepfake content. More recent models such
as DIFND [134] and TRUST-VL [138] scale this strategy by integrat-
ing multimodal evidence with reasoning rich supervision, demonstrating
that fully updating all parameters enhances both interpretability and ro-
bustness against adversarial news [165]. These models exemplify how
reasoning guided updates allow for better disambiguation of complex
multimodal evidence, improving both the model’s generalization and
its ability to handle adversarial inputs in fake news scenarios. Similarly,
MACAW [136] leverages parameter intensive optimization to jointly
model discourse level attention and multimodal alignment [174], high-
lighting the effectiveness of full-tuning for handling long context and
linguistically nuanced misinformation [55]. By modeling discourse level
attention, MACAW improves the model’s ability to capture long range
dependencies and subtle language nuances, which are critical in under-
standing and detecting misinformation embedded in lengthy articles or
complex narratives.

While these systems highlight the versatility and strong performance
of full-parameter tuning in fake news detection, they also expose its
substantial computational costs [162], which motivates ongoing explo-
ration [175] of more efficient alternatives such as parameter-efficient
tuning.

Parameter-efficient tuning. To alleviate the prohibitive cost of full
fine-tuning while preserving most of its performance benefits [176],
parameter-efficient tuning (PET) has become a practical strategy for
multimodal fake news detection [168]. In this paradigm, the backbone
of large vision-language or video-language models is kept frozen,
while lightweight modules, such as Adapter-tuning [177], LoRA [40],
Prefix/Prompt-tuning [178,179], or gating mechanisms (e.g., IA3 [180],
BitFit [181]) are optimized to capture domain-specific patterns. For mul-
timodal news involving text, images, and videos, PET allows detectors
to emphasize subtle lexical manipulations, visual tampering artifacts,
and temporal inconsistencies without incurring the high computational
overhead of updating the entire model. Recent advances such as QLoRA
[182] further improve scalability by quantizing the frozen backbone to
4-bit while training LoRA adapters in higher precision, enabling efficient
deployment at scale. Moreover, PET is often combined with connector
tuning or selective unfreezing of higher Transformer layers to enhance
discourse-level reasoning [183] and cross-modal alignment under con-
strained resources [184]. Specifically, parameter-efficient tuning keeps
most of ® frozen and introduces a small trainable subset @' through
lightweight modules [185] as follows:

6’ = {Aadaprer’ Pprefix’ LLoRA} (34)

Each module injects learnable low-rank or prefix parameters into the
transformer blocks of A, or modality encoders as follows:

Z' = Ay (D), b, (D), $,(8)) (35)

The downstream heads (wg, wp, wy, wy) are fine-tuned on Z’, while
the frozen backbone retains general cross-modal alignment from pre-
training. The loss function remains Eq. (33) but with gradient flow
restricted to ©’. Regularization such as orthogonality or low-rank

Computer Science Review 60 (2026) 100893

constraints on LoRA matrices (rank r < d) ensures stable adaptation:

min L1y 1y () + Bl ALoraALopa = TII7 (36)
Recent PET-based systems have demonstrated the practicality of
parameter-efficient tuning in multimodal fake news detection [19].
For instance, E2LVLM [140] employs selective adaptation to integrate
retrieved textual and visual evidence, significantly reducing training
overhead while maintaining cross domain generalization. E2LVLM’s
selective adaptation approach allows the model to adapt only rele-
vant parts of the pretrained model, ensuring efficient use of resources
while still achieving strong performance across diverse domains and
multimodal data. LVLM4FV [141] and M-DRUM [142] extend PET
strategies to evidence driven verification, incorporating lightweight
adapters into frozen LVLMs to efficiently capture cross modal reasoning
under limited supervision. These models demonstrate that by incorpo-
rating lightweight adapters, it is possible to enhance model efficiency
and generalization without the need for extensive fine tuning, offer-
ing a scalable solution for multimodal fake news detection. As shown
in Fig. 4, MMKD [143] illustrates how PET can unify multimodal rep-
resentation learning with knowledge guided reasoning, showing that
adapter based modules can approximate the gains of full tuning while
remaining computationally efficient. MMKD’s approach of combining
knowledge guided reasoning with PET allows the system to maintain
interpretability and efficiency, providing a lightweight yet powerful
solution for multimodal reasoning. Domain specific adaptations, such
as LVLM4CEC [144], demonstrate that parameter efficient designs can
preserve sensitivity to subtle context event correlations when anno-
tated multimodal corpora are scarce. LVLM4CEC’s ability to adapt to
domain specific nuances without relying heavily on large annotated
datasets highlights its effectiveness in specialized fake news detection
tasks, particularly in resource constrained environments. Cross-SEAN
[145] illustrates how adapter based architectures can be tuned along-
side frozen backbones to support cross lingual and rationale grounded
debunking. Cross-SEAN’s cross lingual capabilities enhance its versatility
in addressing fake news in multiple languages, while rationale-grounded
debunking adds a layer of interpretability by explaining the model’s
reasoning process. Collectively, these systems exemplify how PET tech-
niques balance the high performance of full parameter tuning with
the scalability required for real-world deployment, underscoring their
growing role in advancing multimodal fake news detection [169].

3.3. Reasoning paradigm

At both the system and cognitive levels, multimodal fake news de-
tection methods employ distinct reasoning strategies. Prompting-based
reasoning operates at the system level by implicitly guiding the model’s
reasoning process through instructions or prompts. In contrast, agent-
based reasoning functions at the cognitive level by structuring reasoning
as an explicit sequence of coordinated sub-tasks, simulating a more
deliberate and human like approach to decision-making.

Mechanistic view under reasoning paradigm. From a mechanis-
tic perspective, the reasoning paradigm in LVLMs offers a significant
advancement over traditional models in detecting fine grained semantic
inconsistencies between text and images. In prompting-based reason-
ing, LVLMs use task-specific prompts to guide the model’s reasoning
in a single inference pass, which contrasts with traditional methods
that typically rely on separate pipelines for text and image processing.
However, while prompting-based methods enable efficient, zero-shot
generalization, they may obscure subtle mismatches between textual
and visual evidence, especially when using direct classification prompts.
In contrast, structured prompts such as those for entity extraction or
step-by-step reasoning allow LVLMs to more explicitly align and detect
discrepancies in object attributes, quantities, and spatial relationships,
improving the model’s sensitivity to fine grained inconsistencies. On
the other hand, agent-based reasoning decomposes the detection pro-
cess into a sequence of explicit tasks performed by specialized agents,
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Fig. 4. Parameter-efficient tuning architecture for multimodal fake news detection. The framework operates in two stages: global knowledge learning and comple-
mentary knowledge fusion. In the first stage, a student model with 7 billion parameters is trained alongside two adapters, processing visual and textual inputs to
identify relevant entities and search options. The second stage integrates the student model with the adapters to enhance reasoning. Knowledge acquisition is achieved
through two vision-language models, Qwen2-VL and InternVL, which provide predictions and rationales for the input image. Multi-teacher knowledge distillation
follows, where the student model and adapters align their predictions and rationales, facilitated by LoRA and DPO techniques to refine the model’s outputs [143].

which interact to refine the reasoning process. This approach provides
greater transparency and interpretability compared to prompting-based
reasoning, allowing for more deliberate, human like decision-making.
It also facilitates error localization and enables strategies like counter
argumentation, which are essential for handling complex, long context
misinformation. By combining these two paradigms, LVLMs are able to
surpass traditional models in robustness and interpretability, providing a
more flexible and effective approach to multimodal fake news detection.
Prompting-based reasoning. Prompting-based reasoning methods
treat multimodal fake news detection as a single pass inference prob-
lem, where reasoning is implicitly induced through carefully designed
prompts, instructions, or constraints, without the need for explicit inter-
mediate decision states or tool driven interactions. Given multimodal
evidence x = {x,,x,} and a claim ¢, the model directly produces a
veracity prediction:
¥ = folx;, x,, ¢ P) 37
where x, and x, represent the textual and visual modalities of the multi-
modal evidence, respectively, and ¢ denotes the claim whose veracity is
being assessed. P is a task specific prompt encoding reasoning cues, such
as cross modal consistency, credibility, or relevance of the evidence.
This paradigm leverages the emergent reasoning capabilities of large
vision-language models (LVLMs) or language models, using prompt
engineering to guide the model toward detecting semantic inconsisten-
cies, fabricated visual evidence, or misleading narratives. Representative
approaches include ICD [45] and CAPE-FND [147], which mitigate mul-
timodal hallucination and calibration errors through instruction level
constraints, ensuring that models provide more accurate interpretations
by imposing explicit guidance on reasoning pathways. These systems
enhance the reliability of LVLMs by constraining the model’s outputs
to adhere more strictly to logical reasoning patterns, reducing the oc-
currence of hallucinations in multimodal content. NRFE [148] and IFAI
[149], which employ confidence aware or feedback enhanced prompt-
ing to improve robustness, further address the challenge of multimodal
inconsistency by adjusting the confidence levels in the model’s out-
put. NRFE utilizes feedback loops to refine reasoning accuracy, while
IFAI focuses on boosting robustness in video based fake news detec-
tion through the strategic use of feedback enhanced prompts that guide
the model’s attention toward more reliable features. Specifically, IFAI
addresses challenges in fake news video detection by constructing multi-
modal prompts through prompt engineering to semantically understand
news videos and generate auxiliary information from the perspectives

of video style, content, and information matching. The video informa-
tion interactor enables small models to effectively learn supplementary
knowledge from LVLMs, while the key information selector evaluates
the importance of inference rationales, thus improving the efficiency
of utilizing knowledge from LVLMs. This mechanism significantly im-
proves the model’s capacity to discern subtle discrepancies between
video content and textual narratives, enhancing detection performance
in dynamic, real-world contexts. Recent works, such as DIFAR [150] and
LIFE [153], demonstrate that structured prompts can replicate reasoning
behaviors typically associated with explicit reasoning pipelines. DIFAR
introduces a robust framework for prompt guided reasoning, leverag-
ing structured prompts to replicate the reasoning steps commonly used
in traditional, explicit pipelines, while LIFE focuses on long term effec-
tiveness by applying structured prompt templates that align multimodal
evidence over extended interactions. Benchmarks like MFC-Bench [151]
and generative frameworks such as LLM-GAN [152] highlight both the
potential and limitations of prompt induced reasoning, especially under
adversarial or distribution shifted conditions. These benchmarks demon-
strate that, while prompt based methods show significant promise in
handling a wide range of multimodal scenarios, challenges remain in
maintaining consistent reasoning under adversarial settings or when the
distribution of data shifts significantly from the training conditions.

Despite their efficiency and strong zero-shot generalization,
prompting-based methods inherently combine perception, reasoning,
and decision-making within a single inference pass. This monolithic
approach limits controllability and interpretability, particularly when
dealing with complex, multi hop misinformation.

Agent-based reasoning. Unlike prompting-based reasoning, which

relies on implicit reasoning in a single inference step, agent-based
reasoning explicitly decomposes the multimodal fake news detection
process into a sequence of structured, multi step tasks. This paradigm
involves multiple specialized agents, each performing a distinct sub-
task such as evidence retrieval, cross modal verification, contradiction
detection, and final adjudication. These agents interact with one an-
other to refine the reasoning process, ensuring that the detection system
can handle complex scenarios requiring in-depth analysis. Formally, the
inference process is modeled as a sequence of agent interactions:
Spp = Ap(Spx0), ke (l,...,K} (38)
where S, represents the intermediate reasoning state at time step ¢, and
A, denotes a task-specific agent responsible for executing a particular
sub-task.
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Systems like FactAgent [44] and TED [154] exemplify the agent-
based reasoning paradigm by coordinating multiple agents that iter-
atively verify claims using multimodal evidence, allowing for explicit
control over the reasoning order and the selection of relevant evidence
at each step. This coordination of agents enables more flexible and inter-
pretable reasoning processes, as each agent can specialize in evaluating
a particular type of evidence, whether textual, visual, or audio, and can
adaptively select the most relevant information for the task at hand.
These systems enable better traceability of the reasoning process, en-
suring transparency and accountability in decision-making by offering
a detailed log of the steps each agent took in reaching its conclusion.
Furthermore, agent-based frameworks like SheepDog [19] and ARG [75]
take this approach further by introducing adversarial or debate-style
agents, which can engage in counter-argumentation, helping the sys-
tem improve robustness against false or manipulated narratives. The
adversarial agents engage in a structured exchange of opposing view-
points, forcing the system to critically evaluate evidence from different
perspectives and refine its reasoning, thus enhancing its ability to detect
inconsistencies or biases in the evidence. By simulating a back-and-
forth debate, these agents can identify subtle inconsistencies in the
evidence, improving the system’s ability to handle misleading or de-
ceptive content. More recent architectures, such as FACTGUARD [46],
have integrated tool-augmented agents that not only reason about the
evidence but also maintain structured memory and rationale supervi-
sion. FACTGUARD introduces a memory mechanism that allows agents
to retain and reference previous reasoning steps, making it possible to
build a more coherent and structured argument over time. This approach
enhances interpretability by providing clear, human readable reasoning
traces that explain how conclusions are reached. Furthermore, these sys-
tems demonstrate improved generalization under complex, long-context
misinformation scenarios, where the model must synthesize and analyze
large volumes of data over extended reasoning chains. By incorpo-
rating memory and rationale supervision, these systems can maintain
contextual continuity across longer interactions, improving the accu-
racy of fake news detection in scenarios where misinformation evolves
gradually.

While agent-based reasoning systems are computationally more de-
manding and involve greater system complexity, they provide several
key advantages. These include enhanced transparency, the ability to
modularize reasoning processes, and improved error localization, all
of which make agent-based methods highly suited for high stakes
applications such as judicial decision-making, legal analysis, and evi-
dence intensive fake news verification. By ensuring that each step in
the reasoning process is explicitly documented and accountable, agent-
based systems offer a level of trustworthiness and flexibility that is
critical in real-world verification tasks.

2015s 2016s 2017s 2019s 2020s
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4. Popular benchmark dataset

In recent years, the research progress in multimodal fake news de-
tection has benefited greatly from the continuous construction and
availability of high-quality datasets. Datasets not only provide a basis
for model training and evaluation, but also largely define the boundaries
and difficulty of research problems. Starting from early social media ru-
mor detection datasets such as Twitterl5 [186] and Twitter16 [187],
researchers have gradually expanded from single text or image modali-
ties to multimodal resources integrating text, images, videos and social
context, and have continuously improved data scale, modality diver-
sity and annotation precision, thereby promoting the development of
more complex detection tasks that are closer to real-world scenarios. As
shown in Fig. 5, looking back at the related work from 2015 to 2025, we
can observe that dataset construction demonstrates the following four
development trends as follows:

« Data scale expansion: Early datasets such as LIAR [66], Weibo
[188], and PHEME [189] typically contained only a few thousand to
tens of thousands of examples and were primarily used for training
and validating small-scale models. As research deepened, subsequent
datasets (such as M3A [93], Fakeddit [190], and NewsCLIPpings
[191]) expanded to hundreds of thousands or even millions of ex-
amples, facilitating the application of deep learning and large-scale
pre-trained models, and supporting the systematic evaluation of
complex models at varying data scales.

Modal diversity: Initially, data was primarily text-based.
Subsequently, images (such as Weibo [188] and GoodNews
[192]), image-text alignment data (such as NeuralNews [193] and
COSMOS [71), and multilingual content (such as MM-COVID [194]
and CHECKED [195]) were introduced, and further expanded to
include audio, video, and social interaction information (such as
M3A [93] and MDAMS3-DB [196]). This increased modal diversity
not only provides the model with richer learning signals but also
better reflects the complex spread of disinformation on real social
platforms.

Task dimension expansion: Early research focused primarily on
binary classification tasks (authenticity and fake identification),
but recent datasets have gradually expanded to support multi-class
labeling (such as LIAR [66] and Fakeddit [190]), tampered region
localization (such as DGM* [88] and MFND [197]), image-text
inconsistency detection (such as COSMOS [7] and NewsCLIPpings
[191]), and Al-generated content recognition (such as MiRAGeNews
[121] and MMFakeBench). This expansion of task dimensions has
greatly increased the challenge and application value of detection,
enabling research to cover diverse objectives, from coarse-grained to
fine-grained, and from discriminative to generative.

2021s 2022s 2023s 2024s 2025s
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Fig. 5. Timeline of multimodal fake news detection datasets.
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Table 1
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Publicly available benchmark datasets in multimodal fake news detection.

Datasets Year Modality Available at

Twitterl5 [186] 2015 Text,Image https://github.com/majingCUHK/Rumor_RvNN?tab = readme-ov-file
Twitterl6 [187] 2016 Text,Image https://github.com/majingCUHK/Rumor_RvNN?tab =readme-ov-file
PHEME [189] 2016 Text,Image https://www.kaggle.com/datasets/usharengaraju/pheme-dataset
LIAR [66] 2017 Text https://www.kaggle.com/datasets/yuktibishambu/liar-dataset-labeled
FakeNewsNet [198] 2017 Text,Image https://github.com/KaiDMML/FakeNewsNet

Weibo [188] 2017 Text,Image https://github.com/plw-study/MRML?tab = readme-ov-file

GoodNews [192] 2019 Text,Image https://github.com/furkanbiten/GoodNews

FA-KES [199] 2019 Text https://www.kaggle.com/datasets/mohamadalhasan

MultiFC [199] 2019 Text,Image https://huggingface.co/datasets/pszemraj/multi_fc

Fakeddit [190] 2020 Text,Image https://github.com/entitize/fakeddit

NeuralNews [193] 2020 Text,Image https://drive.google.com/file/d/1vD4DtyJOIjRzchPtCQu-KPrUjgTiWwSmo/view
MM-COVID [194] 2020 Text,Image https://drive.google.com/drive/folders/1gd4AvT6BxPRtymmNd9Z7ukyaVhae5s7U
CoAID [200] 2020 Text https://github.com/cuilimeng/CoAID

NewsCLIPpings [191] 2021 Text,Image https://github.com/g-luo/news_clippings?tab = readme-ov-file
COSMOS [7] 2021 Text,Image https://shivangi-aneja.github.io/projects/cosmos/

CHECKED [195] 2021 Text,Image https://github.com/cyang03/CHECKED/tree/master/dataset
Weibo21 [164] 2021 Text,Image https://github.com/kenngiang/MDFEND-Weibo21

CHEF [201] 2022 Text https://github.com/THU-BPM/CHEF?tab = readme-ov-file

MC-Fake [202] 2022 Text https://github.com/qwerfdsaplking/MC-Fake

MuMiN [203] 2022 Text,Image https://mumin-dataset.github.io/

DGM* [88] 2023 Text,Image https://huggingface.co/datasets/rshaojimmy/DGM4

IFND [204] 2023 Text,Image https://www.kaggle.com/datasets/sonalgarg174/ifnd-dataset

MR? [205] 2023 Text,Image https://github.com/THU-BPM/MR2

Mocheg [206] 2023 Text,Image https://github.com/PLUM-Lab/Mocheg

FakeSV [207] 2023 Text,Vedio https://github.com/ICTMCG/FakeSV

FACTIFY 2 [208] 2023 Text,Image https://github.com/suryal701/Factify-2.0?tab = readme-ov-file
MiRAGeNews [121] 2024 Text,Image https://huggingface.co/datasets/anson-huang/mirage-news

M3A [93] 2024 Text,Image,Audio,Vedio https://github.com/FinalYou/M3A?tab = readme-ov-file

HFFN [142] 2024 Text,Image -

VERITE [209] 2024 Text,Image https://github.com/stevejpapad/image-text-verification

FakeTT [210] 2024 Text,Vedio https://github.com/ICTMCG/FakingRecipe/tree/main?tab = readme-ov-file
MEND [197] 2025 Text,Image https://github.com/yunan-wang33/sdml

MMFakeBench [211] 2025 Text,Image https://huggingface.co/datasets/liuxuannan/MMFakeBench
MDAM?3-DB [196] 2025 Text,Image,Audio,Vedio -

DriftBench [125] 2025 Text,Image -

« Cross-language and cross-domain adaptation: With the
widespread global spread of disinformation, the need for cross-
language and cross-domain detection has become increasingly
prominent. Some datasets (such as MM-COVID [194], Weibo21
[164], and CHEF) focus on multilingual, cross-topic, and cross-
domain authenticity detection. These datasets not only enrich the
training corpus but also provide important support for research on
model transferability and cross-cultural adaptability.

Overall, dataset evolution over the past decade has seen a gradual
transition from early rumor detection to complex cross-modal disin-
formation identification. These datasets have continuously improved
in terms of authenticity annotation granularity, modal coverage, cross-
lingual adaptability, and generative content detection. These datasets
not only provide a solid experimental benchmark for the research com-
munity but also drive the field’s progress from traditional classification
tasks to more complex multi-task, multi-modal, and multi-lingual ap-
proaches, forming a relatively complete evolutionary trajectory and
research ecosystem. Table 1 lists 32 fake news detection benchmark
datasets. We analyze the release time, modality, and open-source URL
of each dataset. Next, we briefly introduce each dataset.

4.1. Overview of benchmark datasets

Twitterl5. The Twitterl5 dataset [186], created by crawling two
rumor-tracking websites, Snopes! and Emergent,? collects 2299 news
items published up to March 2015. After screening, it contains 94 true
news items and 446 false news items. To obtain tweets related to an

1 snopes.com
2 emergent.info
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event, a keyword-based query was constructed, and a web crawler was
used to obtain the complete history. This was then sampled and cross-
checked by researchers. Furthermore, real events were collected using
Twitter’s free data stream and a clustering algorithm. The final dataset
contains 421 true events and 421 false events.

Twitter16. The Twitter16 dataset [187], based on Snopes,® an online
rumor-debunking service, collects 778 events from March to December
2015, 64% of which are rumors. Researchers extracted and optimized
keywords to obtain relevant tweets, supplemented with public datasets,
ultimately creating a balanced dataset containing 498 rumors and 494
non-rumors, which is widely used in rumor detection research.

PHEME. The PHEME dataset [189], constructed through a combi-
nation of automated crawling and manual verification, covers tweets,
comments, and user interaction data, such as retweets and likes, re-
lated to specific events. Its multi-dimensional information structure and
high-quality annotations, including the differentiation of rumor types,
provide a rich resource for rumor detection, information dissemina-
tion analysis, and user behavior research, supporting machine learning
model training and cross-event comparative research.

LIAR. LIAR [66] is a multimodal fake news detection dataset con-
structed in 2017. It contains 12,836 manually annotated sentences from
PolitiFact, covering a variety of contexts including news, speeches,
interviews, advertisements, and social media. The dataset provides fine-
grained authenticity annotations (six-category labels) and rich meta-
data, including speaker identity, context, and historical credibility. It
is suitable for research in disinformation detection, credibility analysis,
and multimodal modeling, providing an important benchmark resource
in the field.

3 snopes.com
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https://github.com/yunan-wang33/sdml
https://huggingface.co/datasets/liuxuannan/MMFakeBench

W. Ai, Y. Tan, Y. Shou et al.

FakeNewsNet. The FakeNewsNet dataset [198] is a multidimen-
sional data repository containing two fact-checking datasets based on
Politifact and Gossipcop, covering news content, social context, and spa-
tiotemporal information. Constructed by the FakeNewsTracker system,
this dataset aims to advance open research questions in the field of fake
news research.

Weibo. The Weibo dataset [188], built from Weibo’s official rumor-
busting system and Xinhua News Agency news sources, covers verified
rumor and non-rumor posts from 2012-2016. The dataset contains ap-
proximately 40,000 tweets with images, including text, images, and
social context. The dataset is deduplicated and quality-screened using
the LSH algorithm, and the training/test set is split into an 8:2 ra-
tio based on event clustering to minimize data leakage. This dataset
provides an authoritative and high-quality benchmark for multimodal
rumor detection.

GoodNews. The GoodNews dataset [192], sourced from The New
York Times, contains over 460,000 news images, corresponding articles,
and headlines, making it one of the largest multimodal news resources
available. The average article length exceeds 650 words, 97% of head-
lines contain named entities, and 68% contain human names, fully
demonstrating the complexity and semantic relevance of news text. This
dataset not only supports news image and text generation and alignment
tasks but also provides a core data source for building multimodal fake
news detection benchmarks such as NeuralNews. Because approximately
half of the news texts exceed 512 tokens, GoodNews presents significant
challenges for long-text modeling, multimodal alignment, and named
entity recognition.

FA-KES. The FA-KES dataset [199], constructed for diverse media
coverage of the Syrian war, utilizes a semi-supervised annotation process
and fact-checking mechanism to collect approximately 804 English news
articles (with a nearly balanced distribution of true and false news). Its
rich structured information (including title, date, source, etc.) and reli-
able label generation process provide a solid foundation for fake news
detection, especially for research on meta-learning, weak supervision,
and multi-feature fusion models in few-shot scenarios. Its significant
generalizability makes it suitable for dataset construction and algorithm
validation in other military conflict scenarios.

MultiFC. The MultiFC dataset [199], collected from 26 English-
language fact-checking websites, covers 34,918 naturally occurring
factual claims, accompanied by supporting evidence, context, and rich
metadata, all annotated by professional journalists. Its core features in-
clude the entities involved in the claims, contextual information, and
multi-dimensional metadata. These additional attributes significantly
improve model performance in automated claim verification tasks.
MultiFC provides a solid foundation for the development and evaluation
of fact-checking models.

Fakeddit. The Fakeddit dataset [190], constructed from 22 Reddit
subreddits, covers topics ranging from politics to everyday life and con-
tains over one million posts. It undergoes a multi-stage review process
and employs distant supervision to provide 2/3/6 classification labels.
The data includes text, images, metadata, and comments, with approx-
imately 64% of the samples being multimodal, supporting research on
multimodal and hierarchical fake news detection.

NeuralNews. The NeuralNews dataset [193], built on the GoodNews
dataset, covers approximately 128,000 real and machine-generated
news articles, divided into four categories (combinations of real/gener-
ated articles and headlines). The machine-generated content, generated
by models such as Grover and entity-aware image caption models,
includes text, images, and headline information. Its multimodal and
fine-grained design provides a more realistic and challenging benchmark
for detecting machine-generated news, and is of great significance for
advancing research in multimodal fake news detection.

MM-COVID. MM-COVID [194] is a multilingual, multimodal dataset
for COVID-19 fake news detection. It covers six languages and contains
3981 fake news items and 7192 real news samples. The data was col-
lected from February to July 2020 and comes from sources including
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social media, traditional media, blogs, and fact-checking organizations.
This dataset integrates multimodal content, preserves user interactions,
and retains timestamp information. It supports cutting-edge tasks such as
cross-language detection, multimodal fusion, and social and spatiotem-
poral feature analysis, providing key support for building efficient and
generalizable fake news detection models.

CoAID. CoAID [200] is a multimodal dataset for detecting COVID-
19 health disinformation. It covers 4251 news articles and statements,
296,000 user tweets and replies, and 926 social media posts collected
from real-world online environments between December 2019 and July
2020. CoAID supports a variety of tasks, including multimodal fake news
detection and social contextual propagation analysis, providing a critical
data foundation for building efficient and generalizable disinformation
identification models in real-world scenarios.

Weibo21. The Weibo 21 dataset [164] was released in 2021
and covers 4488 fake news and 4640 real news from 9 differ-
ent fields(i.e., Science, Military, Education, Disasters, Politics, Health,
Finance, Entertainment, Society). The dataset was created by collecting
fake news and real news on Sina Weibo between December 2014 and
March 2021.

NewsCLIPpings. The NewsCLIPpings dataset [191], built on
VisualNews, addresses the problem of mismatched images and mislead-
ing headlines. By generating forged samples using multiple strategies
and combining them with CLIP filtering, we have generated 1111,828
balanced image-text pairs. This dataset is challenging and avoids uni-
modal bias, making it a popular tool for evaluating the performance of
multimodal models in image-text inconsistency detection.

COSMOS. COSMOS [7] is a typical multimodal dataset focused on
detecting contextual inconsistencies between images and captions to
support research on disinformation detection. The dataset consists of
160,000 training samples, 40,000 validation samples, and 1700 test sam-
ples. Each image is assigned up to 10 bounding boxes, and the data is
primarily sourced from news websites and the Snopes platform. Unlike
traditional annotation methods, COSMOS does not directly use contex-
tual misuse annotations during training, but only incorporates them
during evaluation. This significantly increases the challenge of the task
and enhances the generalization capabilities of the model. This dataset
provides a high-quality benchmark for multimodal disinformation de-
tection, and is of great significance for comparative studies and method
evaluation.

CHECKED. CHECKED [195] is the first Chinese multimodal dataset
for COVID-19-related fake news detection, covering 2104 samples col-
lected from Weibo between December 2019 and August 2020, including
344 fake news and 1760 real news. The dataset integrates multimodal
information such as text, images, and videos, and provides large-scale
social context data, including more than 1.86 million reposts, 1.18 mil-
lion comments, and 56.85 million likes. CHECKED provides important
benchmark experimental support for multimodal fake news detection,
propagation behavior analysis, and early identification.

CHEF. CHEF [201] is a multi-domain Chinese dataset for evidence-
based fact-checking, covering politics, public health, science, society,
and culture. The dataset contains 10,000 manually verified true claims,
each accompanied by manually curated and annotated evidence col-
lected from the internet, including text and some images and videos, to
ensure the reliability and accuracy of the annotations. The data source
comes from six Chinese fact-checking and news websites (e.g., Piyao,
TFC, MyGoPen, Jiaozhen, and Cnews), and is divided into a training
set of 5754 claims, a validation set of 666 claims, and a test set of 666
claims. Multiple rounds of annotation and verification ensure annotation
consistency, with a Fleiss Kappa of 0.74.

MC-Fake. The MC-Fake dataset [202], collected from Twitter, covers
28,334 news events across five major themes: politics, entertainment,
health, COVID-19, and the Syrian War. This dataset is unique in that
it provides both news text and rich social context, including tweets,
retweets, replies, user attributes, and their social connections. Compared
to existing content-based fake news benchmarks, MC-Fake complements
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existing content-based fake news benchmarks by incorporating social
context and relationship networks. This provides a new experimental
platform for studying the cross-modal characteristics of fake information
and holds significant potential for open research.

MuMiN. The MuMiN dataset [203], built on Twitter, covers 41 lan-
guages. It integrates multimodal information, including tweets, replies,
users, images, articles, and hashtags, spanning over a decade and
covering a wide range of topics and events. This dataset offers signif-
icant advantages in scale, diversity, and cross-linguality, providing a
large-scale benchmark for studying cross-modal modeling, cross-lingual
propagation, and the long-term evolution of disinformation.

DGM?*. The DGM* dataset ([88]) is a large-scale dataset for detecting
and localizing multimodal media manipulation. Built on VisualNews, it
covers real-world sources from The Guardian, BBC, USA Today, and The
Washington Post. It contains 230,000 news image and text samples, in-
cluding 77,426 pairs of original images, 152,574 pairs of manipulated
images (e.g., face swaps, attribute edits, and text replacements), and
32,693 pairs of hybrid images. The dataset is constructed with a distri-
bution of nine manipulation categories. All samples are annotated with
fine-grained and sentimentally balanced annotations, making it more
challenging than existing datasets and suitable for multimodal forgery
detection and localization research.

IFND. The IFND dataset [204] covers multimodal news related to
India between 2013 and 2021, totaling 56,868 text and image samples.
Real news comes from mainstream media outlets such as Times Now
News and The Indian Express, while false news is collected by author-
itative fact-checking platforms such as Alt News and Boom Live and is
manually verified for labeling accuracy. To alleviate the category im-
balance, researchers introduced an intelligent enhancement algorithm
to generate semantically plausible false statements and, based on LDA
topic modeling, categorized the news into five major categories: elec-
tions, politics, COVID-19, violence, and others. IFND is widely used for
performance evaluation of machine learning and deep learning mod-
els, expanding the research boundaries of multimodal disinformation
detection.

MR2. The MR2 dataset [205] consists of two subsets, Weibo and
Twitter, covering both text and image news, and provides external
evidence retrieved from the internet for both modalities. The dataset
supports both Chinese and English, covers multiple fields including
politics, society, technology, and entertainment, and contains a rich
collection of text, images, and webpage information, enabling a more
realistic reflection of the cross-platform rumor propagation and verifi-
cation process. With its bilingual nature and multimodal design, MR2
provides an important benchmark for the training and evaluation of
multimodal rumor detection models, making it particularly suitable for
lightweight CNN experiments and content moderation scenarios.

Mocheg. The Mocheg dataset [206], constructed from fact-checked
claims from PolitiFact and Snopes, contains 15,601 truth-labeled claims,
along with 33,880 text paragraphs and 12,112 images as evidence.
This dataset is unique in that it provides both textual and image ev-
idence, supporting, for the first time, evidence retrieval, multimodal
fact-checking, and explanation generation within a single, end-to-end
framework. As a key benchmark for multimodal fact-checking, Mocheg
is not only suitable for validating model detection capabilities but also
provides a systematic evaluation platform for interpretability research.

FakeSV. The FakeSV dataset [207] is the largest Chinese short-video
benchmark for multimodal fake news detection, containing rich social
context information. It includes news video content, user comments, and
publisher profiles, providing a comprehensive view of the dissemination
environment of short video news. FakeSV enables multimodal analysis
by jointly leveraging visual, textual, and social modalities, addressing
the limited exploitation of multimodal correlations in prior works. In
addition to fake/real labels, the dataset supports exploratory analysis of
fake news propagation characteristics across content and social dimen-
sions. To establish baseline performance, the authors further introduce a
multimodal detection model named SV-FEND, which adaptively exploits
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cross-modal correlations and social contextual cues to enhance detection
accuracy. Overall, FakeSV bridges the gap between multimodal content
understanding and social behavior analysis, offering a valuable resource
for future research on fake news detection in short video platforms.

FACTIFY 2. The FACTIFY 2 dataset [208] is a large-scale multimodal
fact-checking benchmark that extends FACTIFY 1 by incorporating new
data sources and adding satire news articles, resulting in 50,000 addi-
tional data instances. Each sample consists of textual claims paired with
visual content, enabling research on multimodal verification. Similar to
its predecessor, FACTIFY 2 categorizes samples into three broad labels—
support, no-evidence, and refute—with sub-categories that reflect the
entailment between text and image. The dataset provides a foundation
for developing and evaluating models that jointly reason over textual
and visual information. Baseline experiments using BERT and Vision
Transformer architectures achieve a test F1 score of 65%, highlighting
the challenge of multimodal fact verification.

MiRAGeNews. The MiRAGeNews dataset [121] is a multimodal
benchmark designed specifically for Al-generated fake news detection. It
contains 12,500 pairs of real and generated image-headline examples.
Real examples are sourced from The New York Times articles in the
TARA dataset, while the fake ones are generated using GPT-4 headlines
and Midjourney V5.2 images, ensuring the content is highly realistic
and misleading. This dataset includes training, validation, and cross-
generator/publisher test sets, emphasizing the model’s generalization
capabilities.

HFFN. Guided by the core principles of “human-centeredness” and
“factual relevance,” the HFFN dataset [142] comprises multimodal
samples consisting of image-text pairs covering entertainment, sports,
politics, and other fields. These samples are generated through image
manipulation, text manipulation, and fact manipulation, and are ac-
companied by detailed human annotations. This significantly enhances
the research value of fake news detection models in both authenticity
judgment and manipulation reasoning.

VERITE. VERITE [209] is a dataset designed specifically for multi-
modal disinformation detection, aiming to address the unimodal bias
commonly found in existing datasets. Constructed from real-world news
and social media image and text pairs, VERITE ensures that detection
relies on cross-modal information rather than unimodal shortcuts by
balancing modalities and eliminating asymmetric multimodal disinfor-
mation.

MB3A. M3A [93] is a large-scale multimodal disinformation dataset
covering text, images, audio, and video. Collected from 60 leading news
outlets worldwide, the dataset contains 708,425 real news items and
6,566,386 fake news items. It provides multi-category, fine-grained topic
and sentiment annotations and serves as a unified benchmark for vari-
ous disinformation detection tasks, such as out-of-context detection and
deepfake detection. This dataset aims to promote the development of
robust multimodal disinformation analysis techniques.

FakeTT. The FakeTT dataset [210] is an English-language bench-
mark specifically designed for fake news detection on short video
platforms. It contains a large collection of short videos paired with tex-
tual descriptions, user comments, and video metadata, capturing the
rich but heterogeneous multimodal information inherent in short-form
content. Unlike previous datasets that focus mainly on content analysis,
FakeTT emphasizes the creative process behind video production, pro-
viding insights into material selection and editing patterns commonly
found in fake news videos. In addition to real/fake labels, FakeTT sup-
ports research on creative-process-aware detection, enabling models to
learn from sentimental, semantic, spatial, and temporal cues in video
content. Together with the existing Chinese FakeSV dataset, FakeTT
provides a comprehensive resource for developing and evaluating multi-
modal models that consider both content and production characteristics
in fake news detection on short video platforms.

MFND. The MFND dataset [197] (released on May 11, 2025) con-
tains 125,000 multimodal news samples across four combinations: real
image-real text (RIRT), fake image-real text (FIRT), real image-fake text
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[ Prompt: Imagine the scene in which the rumor occurred and provide details ]
Detail Description

.. Pfizer's CEO standing at a
), ‘ﬁ pod1 um.... a large screen displays

an 1rnage of a brain...a vaccine

Textual Rumor
Pfizer CEO Secretly Admits
COVID-19 Vaccine Causes
Per-manent Brain Damage
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In Vaccine Recipients.

syringe is placed in front of him...

DALLE.3

(a) Textual Veracity Distortion Supported by AI-Generated Images

[Prompt: Write a sentence about objects or events that do not exist in real world]

Real Claim

Scenic boats daily travel
the Thames in England.

Fact-conflicting Description

'% The Queen's face appears
in the Thames.

=3 =B —

(b) Visual Veracity Distortion by AI-Generated Images

Original Pair (text,m, lmgm)

Edited Pair (text,q;;, lmgedlt)
An old man g

reading a % Newspaper
newspaper on a ord disparity
park bench.

d disparity An old man
Anold Word disp ) )
readirrllo a k:ggi on L book (lmg ori) ':[> reading a
a pa;gk bench (text,,”) newspaper on a
Instruct Rank CLIP \ < o ‘R ol park bench.
Pix2Pix Similarity =~ . S’ Reassemble

(textedlt)

‘:D(lmgedlt) I:J>

Text Editing (texted,t, lmgm)

LA Image Editing (text,,;, img.qi;)

An old man
reading a book
on a park bench.

(c) Cross-modal Consistency Distortion by Text/Image Editing

Fig. 6. Instructions for constructing the MMFakeBench dataset. (a) Al-generated images support text authenticity distortion. (b) Visual authenticity distortion is
caused by generating images that conflict with facts. (c) Cross-modal consistency distortion is caused by text/image editing [211].

(RIFT), and fake image-fake text (FIFT). The fabricated content is con-
structed using 11 advanced generative techniques, including StyleGAN3
for synthesized images and multimodal large models (LVLMs) for text
generation. In addition to true and fake labels, MFND also provides la-
bels for image and text manipulation detection and precise annotation
of manipulated image regions. Compared to existing datasets, MFND
is more authentic to real-world communication scenarios and supports
multi-task research such as detection and localization.

MMFakeBench. As shown in Fig. 6, the MMFakeBench dataset
[211] (released in 2025) collects multimodal disinformation samples
from various sources, covering both image and text modalities. The
dataset provides complete annotations for each sample, including text
content, image path, source information, and binary and multi-class
labels. As a mixed-source multimodal disinformation detection bench-
mark, MMFakeBench is particularly suitable for evaluating the perfor-
mance of large-scale vision-language models in multimodal fake news
detection.

MDAM3-DB. MDAM?3-DB [196] is a comprehensive multimodal dis-
information detection benchmark consisting of 90,000 text, image,
video, and audio samples. This dataset not only supports disinformation
detection and modal inconsistency modeling across multimodal inputs,
but also covers various deception scenarios, including Al-generated
content, factual conflicts, and cross-modal mismatches. MDAM?3-DB
was built by integrating an interpretable analysis module driven by a
large-scale visual-language model (LVLM). Its usability and practical
performance were validated through systematic user studies. MDAM?3-
DB provides a solid foundation for promoting more comprehensive,
transparent, and trustworthy disinformation detection research.

DriftBench. The DriftBench dataset [125] contains 16,000 news ar-
ticles with images and text, covering six major topics. It focuses on
simulating two typical scenarios: genre drift and evidence drift. Its
tasks cover authenticity verification, adversarial evidence detection, and
cross-variant consistency reasoning. DriftBench not only reveals the vul-
nerabilities of LVLM in the GenAl era but also provides a key benchmark
for research on robustness and generalization methods.
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4.2. Comparison and taxonomy of misinformation datasets

To comprehensively understand the landscape of misinformation
datasets, Table 2 categorizes 32 representative benchmarks across three
major axes of veracity distortion: (i) Textual Veracity Distortion, (ii)
Visual Veracity Distortion, and (iii) Cross-modal Consistency Distortion.
Each axis captures different aspects of misinformation generation,
ranging from textual fabrication to visual manipulation and semantic
inconsistency between modalities. Specifically:

(i) Textual veracity distortion. This category involves falsified or
manipulated textual content that misrepresents facts. Datasets
such as Twitter15/16, LIAR, and FakeNewsNet primarily focus
on this dimension, providing annotated claims and news state-
ments labeled as true, false, or unverified. Some recent datasets,
including FA-KES and GoodNews, extend this by incorporating
Al-generated or repurposed text samples to simulate emerging mis-
information patterns. These resources enable fine-grained studies
on linguistic cues, contextual framing, and source reliability.

Visual veracity distortion. The second dimension focuses on vi-
sual manipulations, including photo editing, compositional blend-
ing, and Al-synthesized imagery. Datasets such as Fakeddit,
NeuralNews, and MM-COVID explicitly mark images that have
been Photoshop-edited (PS-edited) or generated by diffusion and
GAN-based models. Unlike textual datasets, these visual corpora
are often multimodal, pairing each image with a corresponding
textual caption or headline, thus supporting research in multi-
modal forgery detection and image-text alignment. This line of
datasets becomes increasingly important with the rise of genera-
tive models producing hyper-realistic yet fabricated content.

Cross-modal consistency distortion. Cross-modal distortion
refers to semantic or factual mismatches between modalities,
for example, when the text claims an event that the image
does not depict. Datasets such as Weibo, FakeNewsNet, and
COSMOS explicitly annotate image-text repurposing or editing

(i)

(iii)
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Comparison of misinformation datasets across three categories of distortion: textual veracity, visual veracity, and cross-modal consistency.

Textual Veracity Distortion

Visual Veracity Distortion

Cross-modal Consistency Distortion

Dataset Text

(Rumor)

Supporting Image

Repurposed  Al-generated

Text
(Veracity)

Fact-conflicting Image
PS-edited

Image/Text Image/Text

Editing

Al-generated  Repurposing

Twitterl5 [186]
Twitterl6 [187]
PHEME [189]
LIAR [66]
FakeNewsNet [198]
Weibo [188]
GoodNews [192]
FA-KES [199]
MultiFC [199]
Fakeddit [190]
NeuralNews [193]
MM-COVID [194]
CoAID [200]
NewsCLIPpings [191]
COSMOS [7]
CHECKED [195]
Weibo21 [164]
CHEF [201]
MC-Fake [202]
MuMiN [203]
DGM* [88]

IFND [204]

MR? [205]
Mocheg [206]
FakeSV [207]
FACTIFY 2 [208]
MiRAGeNews [121]
M3A [93]

HFFN [142]
VERITE [209]
FakeTT [210]
MFND [197]
MMFakeBench [211]
MDAM3-DB [196]
DriftBench [125]
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NN AXX AR XXX XXXXXXXXXXXXXXX%XXXXX%XX%XX
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NN AXX AR AXX™XXXXXXXXXXXXXXXX%XXXXX%XX%XX
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NN AXXA_NAXXXXNUXXXXXXXXXXXX%XXXXX%XX%XX%

inconsistencies, making them valuable for multimodal reasoning
tasks. More recent datasets like M3FD and VERITE further in-
troduce controlled repurposing and image-text editing tasks to
support explainable evaluation.

In summary, as summarized in Table 2, most early rumor datasets
(e.g., Twitter15/16, PHEME, LIAR) emphasize textual veracity classi-
fication, whereas later benchmarks gradually incorporate visual and
cross-modal distortions to reflect real-world misinformation complex-
ity. Notably, datasets such as MM-COVID, M3FD, and DriftBench cover
all three dimensions, providing a holistic platform for evaluating multi-
modal reasoning and robustness. The trend indicates a paradigm shift
from single-modality rumor detection toward comprehensive multi-
modal misinformation understanding.

5. Evaluation metrics

In multimodal fake news detection, evaluation metrics not only
serve as fundamental tools to assess model performance but also
guide research progress. Unlike traditional text classification tasks,
fake news detection involves high-risk, cross-modal, and adversarial
characteristics. Therefore, its evaluation framework must systematically
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consider classification performance, robustness and generalization,
cross-modal consistency, and interpretability and user perception. The
following subsections provide a structured overview of commonly used
metrics, along with mathematical definitions.

In the evaluation of multimodal fake news detection systems, par-
ticularly those framed as classification problems, standard performance
metrics provide essential insights into model behavior across diverse
and often imbalanced datasets. Given the binary or multi-class nature
of fake news categorization (e.g., real vs. fake, or fine-grained labels
such as satire, misleading, fabricated), the following metrics are widely
adopted to quantify predictive efficacy.

Accuracy measures the proportion of correctly classified instances
among all predictions.

TP + TN

TP + TN + FP + FN (39)

Accuracy =
where TP, TN, FP, and FN denote true positives, true negatives, false
positives, and false negatives, respectively. More specifically, TP is the
number of samples that are actually “fake news” and are correctly judged
as “fake news” by the model, TN is the number of samples that are actu-
ally “real news” and are correctly judged as “real news” by the model,
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FP is the number of samples that are actually “real news” but are mistak-
enly judged as “fake news” by the model, FN is the number of samples
that are actually “fake news” but are mistakenly judged as “real news”
by the model. While intuitive, accuracy can be misleading under class
imbalance, a common scenario in fake news datasets, where genuine
news often dominates.

To address this limitation, Precision and Recall offer class-specific
perspectives as follows:

TP
TP + FP’

TP

Recall = ————
TP + FN

Precision = (40)
Precision reflects the reliability of positive predictions (i.e., how many
flagged items are truly fake), whereas recall indicates coverage (i.e.,
how many actual fake instances are detected). In safety-critical appli-
cations like misinformation mitigation, high recall is often prioritized to
minimize undetected disinformation.

F1 Score harmonizes precision and recall via their harmonic mean
as follows:

_ Precision - Recall

Precision + Recall

41)
This single-value metric is especially informative for imbalanced set-
tings, as it penalizes extreme disparities between precision and recall.

For multi-class fake news taxonomies (e.g., distinguishing clickbait,
deepfake, conspiracy), Macro-F1 and Micro-F1 extend the F1 score
to aggregate performance across all classes. Macro-F1 computes the
unweighted mean of per-class F1 scores, treating all classes equally
regardless of size as follows:

c
1
acro c ,~§. ; (42)
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where C is the number of classes. This metric highlights model
performance on minority classes, which is crucial when rare but high-
impact misinformation types must be identified.

Conversely, Micro-F1 aggregates TP, FP, and FN globally before
computing precision and recall, effectively weighting each class by its
frequency:

c
2- Z;:] TP;

Micro-F1 = c e I
2- Zi:l TP; + Zi:l FP; + Zf:l EN;
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Micro-F1 thus reflects overall instance-level performance and aligns
closely with accuracy in balanced scenarios, but remains robust to label
skew through its grounding in contingency counts.

6. Experimental performance

Due to the heterogeneous nature of multimodal misinformation
detection benchmarks, this survey follows the original evaluation pro-
tocols, baseline selections, and metrics defined in the corresponding
benchmark papers, rather than enforcing a unified setting across all
datasets. The use of different proprietary LVLM baselines (e.g., GPT-4V
in Tables 3-5 and GPT-40-mini in Table 7) reflects dataset-specific evalu-
ation objectives and historical contexts. In particular, GPT-4V is adopted
in earlier benchmarks as a representative high-capacity LVLM, whereas
GPT-40-mini is used in DriftBench to reflect deployment-oriented eval-
uation under controlled diversity and distribution shift, consistent with
the original benchmark design. Each table therefore constitutes a self-
contained evaluation environment, where all compared methods share
the same reference baseline, ensuring fair within-benchmark compar-
ison. Similarly, evaluation metrics are retained as defined by each
dataset to account for differences in task formulation, class imbalance,
and annotation granularity. Metrics such as macro-F1, accuracy, AUC,

Binary overall results of different models on the MM-FakeBench validation and test set with the comparison of standard prompting (Standard)

and proposed MMD-Agent framework. The best results are bolded.

Model name Language model Prompt method Validation (1000) Test (10000)
F1 Precision Recall ACC F1 Precision Recall ACC

Human evaluation 54.9 56.6 57.8 56.8 - - - -
LVLMs with 7B parameter
Otter-Image [212] MPT-7B Standard 7.9 4.1 4.5 7.9 8.6 32.4 5.0 8.6
MiniGPT4 [213] Vicuna-7B Standard 40.4 38.2 45.7 63.1 41.7 41.0 47.4 65.2
InstructBLIP [95] Vicuna-7B Standard 14.7 30.8 13.2 8.1 16.1 40.5 14.2 8.8
Qwen-VL [214] Qwen-7B Standard 43.6 50.6 44.9 60.3 44.0 51.6 45.2 60.5
VILA [215] LLaMA2-7B Standard 41.2 35.0 50.0 70.0 41.2 35.0 50.0 70.0
PandaGPT [216] Vicuna-7B Standard 24.6 60.6 50.5 30.9 24.1 61.7 50.4 30.6
mPLUG-Owl12 [217] LLaMA2-7B Standard 47.2 64.9 52.3 70.6 48.7 71.1 53.3 71.4
BLIP2 [94] FlanT5-XL Standard 41.2 35.0 50.0 70.0 41.2 35.0 50.0 70.0
LLaVA-1.6 [218] Vicuna-7B Standard 48.1 48.2 48.5 59.5 52.5 53.0 52.6 62.5
LVLMs with 13B parameter

Standard 41.1 35.0 50.0 70.0 41.1 35.0 50.0 70.0
VILA [215] LLaMA2-13B MMD-Agent 56.5 62.2 56.9 70.3 56.6 64.3 57.2 71.2

Standard 41.1 35.0 49.9 69.9 41.1 35.0 49.9 69.8
InstructBLIP [95] Vicuna-13B MMD-Agent 51.3 53.4 54.0 53.1 47.9 50.1 50.1 49.9

Standard 31.6 63.4 53.6 35.5 30.6 64.9 53.4 34.9
BLIP2 [94] FlanT5-XXL MMD-Agent 51.5 53.4 54.0 53.6 51.8 54.0 54.7 53.5

Standard 41.1 35.0 50.0 69.7 42.3 57.3 50.1 69.5
LLaVA-1.6 [218] Vicuna-13B MMD-Agent 51.8  66.7 54.6 71.4  50.2 67.3 53.9 71.3
LVLMs with 34B parameter

Standard 62.9 67.1 70.0 63.4 64.3 68.8 71.7 64.8
LLaVA-1.6 [218] Nous-Hermes-2 -Yi-34B ~ MMD-Agent 67.2  70.4 66.0 75.1 68.1 71.1 67.0 75.6
Proprietary LVLMs

Standard 72.3 72.1 72.8 75.6 74.2 73.5 76.9 76.4
GPT-4V [96] ChatGPT MMD-Agent 74.0 73.4 75.5 76.8 728 72.4 75.4 75.0
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Table 4
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Performance comparison of baseline methods on the Twitter and Fakeddit dataset. We show the results of eight
different baseline methods. Additionally, we present the results of two ablation studies: one without initial-stage
inference, and the other without resource distillation and evidence extraction. The best two results are bolded and

underlined.
Dataset Method Accuracy Rumor Non-Rumor
Precision Recall F1 Precision Recall F1

Twitter Direct (LLaVA [218]) 0.605 0.688 0.590 0.635 0.522 0.626 0.569
CoT (LLaVA [218]) 0.468 0.563 0.231 0.635 0.441 0.765 0.560
Direct (InstructBLIP [95]) 0.494 0.751 0.171 0.277 0.443 0.902 0.599
CoT (InstructBLIP [95]) 0.455 0.813 0.067 0.112 0.428 0.921 0.596
Direct (GPT-4 [115]) 0.637 0.747 0.578 0.651 0.529 0.421 0.469
CoT (GPT-4 [115]) 0.667 0.899 0.508 0.649 0.545 0.911 0.682
FacTool (GPT-4 [115]) 0.548 0.585 0.857 0.696 0.273 0.082 0.125
Direct (GPT-4V [96]) 0.757 0.866 0.670 0.756 0.673 0.867 0.758
CoT (GPT-4V [96]) 0.678 0.927 0.485 0.637 0.567 0.946 0.709
LEMMA [122] 0.824 0.943 0.741 0.830 0.721 0.937 0.816
w/o initial-stage infer 0.809 0.932 0.736 0.823 0.699 0.919 0.794
w/o visual retrieval 0.781 0.953 0.672 0.788 0.652 0.949 0.773

Fakeddit Direct (LLaVA) 0.663 0.588 0.797 0.677 0.777 0.558 0.649
CoT (LLaVA [218]) 0.673 0.612 0.400 0.484 0.694 0.843 0.761
Direct (InstructBLIP [95]) 0.726 0.760 0.489 0.595 0.715 0.892 0.793
CoT (InstructBLIP [95]) 0.610 0.685 0.190 0.202 0.604 0.901 0.742
Direct (GPT-4 [115]) 0.677 0.598 0.771 0.674 0.776 0.606 0.680
CoT (GPT-4 [115]) 0.691 0.662 0.573 0.614 0.708 0.779 0.742
FacTool (GPT-4 [115]) 0.506 0.476 0.834 0.606 0.624 0.232 0.339
Direct (GPT-4V [96]) 0.734 0.673 0.723 0.697 0.771 0.742 0.764
CoT (GPT-4V [96]) 0.754 0.858 0.513 0.642 0.720 0.937 0.814
LEMMA [122] 0.828 0.881 0.706 0.784 0.800 0.925 0.857
w/o initial-stage infer 0.803 0.857 0.692 0.766 0.786 0.891 0.830
w/o visual retrieval 0.792 0.818 0.675 0.740 0.778 0.883 0.854

Table 5

Performance metrics for different misinformation types in MDAMZ-DB, comparing direct prompt queries with results obtained using the proposed

MDAM? framework. The best two results are bolded and underlined.

Model Process Fact-conflicting Al-generated Offensive 00C
Acc AUC AP Acc AUC AP Acc AUC AP Acc AUC AP
InstructBLIP [95] Direct 0.481 0.492 0.498 0.360 0.389 0.385 0.612 0.639 0.634 0.493 0.496 0.496
MDAM? 0.580 0.644 0.638 0.766 0.798 0.797 0.746 0.783 0.779 0.607 0.654 0.652
BLIP2 [94] Direct 0.467 0.484 0.479 0.355 0.367 0.359 0.621 0.688 0.685 0.472 0.484 0.480
MDAM? 0.589 0.651 0.646 0.764 0.823 0.814 0.747 0.778 0.768 0.617 0.662 0.654
LLaVA [24] Direct 0.503 0.512 0.509 0.398 0.402 0.399 0.631 0.696 0.688 0.622 0.639 0.635
MDAM? 0.712 0.761 0.760 0.787 0.852 0.849 0.795 0.848 0.839 0.728 0.773 0.761
VILA [215] Direct 0.484 0.490 0.489 0.323 0.365 0.358 0.611 0.656 0.652 0.615 0.626 0.624
MDAM? 0.730 0.756 0.755 0.754 0.796 0.774 0.750 0.768 0.764 0.712 0.769 0.758
GPT-4V [96] Direct 0.611 0.684 0.667 0.483 0.491 0.488 0.744 0.754 0.747 0.637 0.664 0.646
MDAM? 0.853 0.912 0.908 0.886 0.924 0.919 0.891 0.895 0.894 0.729 0.784 0.776

and AP are selected to best reflect the primary evaluation goals of
the corresponding benchmarks, and unifying them would risk obscur-
ing task-specific performance characteristics. Accordingly, this survey
does not aim to conduct direct numerical comparisons across differ-
ent tables. Instead, cross-dataset analysis is performed at the level
of modeling paradigms and reasoning mechanisms, while numerical
comparisons are restricted to within-dataset settings under consistent
protocols.

6.1. Results on MM-FakeBench

Table 3 provides a comprehensive evaluation of binary detection
performance for various large vision-language models (LVLMs) on the
MM-FakeBench benchmark, comparing both validation and large scale
test settings. The results highlight the significant role of model size
and inference strategies in detecting different types of misinformation
distortions.
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Smaller models with 7B parameters generally struggle with
performance, as reflected by macro-F1 scores below 50. These mod-
els exhibit limitations in addressing cross modal inconsistencies, which
are critical for distinguishing between authentic and fabricated con-
tent. For instance, Otter-Image, MiniGPT4, and InstructBLIP show poor
precision and recall, indicating their difficulty in recognizing relevant
evidence across text and image modalities. This can be attributed to
their inability to handle complex textual veracity distortions, which
often involve rumor laden text that is challenging to separate from
supporting images. When the model size increases to 13B parameters,
performance improves significantly. Models like VILA and InstructBLIP
achieve macro-F1 scores above 50 in validation, although they still fall
short of human-level performance (F1 = 54.9). The introduction of the
MMD-Agent framework notably enhances the models’ ability to handle
visual veracity distortions, such as fact conflicting images. The MMD-
Agent framework employs a structured reasoning process that combines
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Table 6
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Performance comparisons for different types of misinformation on the Pheme and Twitter16 datasets are conducted. Results are presented for
various methods, including SLM, zero-shot and few-shot LLM, and a hybrid LLM + SLM approach. The best performance value for each metric is

denoted by bolded.

Category Method Pheme Twitterl6
Acc Precision Recall F1 Acc Precision Recall F1
SLM RoBERTa [219] 0.714 0.777 0.695 0.734 0.644 0.649 0.641 0.645
EANN [47] 0.744 0.738 0.745 0.741 0.641 0.621 0.741 0.676
MS3FEND [220] 0.746 0.747 0.746 0.746 0.642 0.608 0.816 0.697
FTT [116] 0.754 0.748 0.764 0.756 0.651 0.649 0.720 0.683
LLM (zero-shot) Llama2-7B [19] 0.505 0.498 0.697 0.581 0.496 0.501 0.494 0.498
Llama3-8B [116] 0.535 0.518 0.770 0.620 0.562 0.574 0.531 0.552
GPT3.5 [221] 0.503 0.500 0.714 0.586 0.583 0.585 0.571 0.578
LLM (few-shot) Llama2-7B [19] 0.528 0.511 0.894 0.650 0.590 0.598 0.584 0.591
Llama3-8B [222] 0.549 0.524 0.961 0.679 0.622 0.607 0.717 0.658
GPT3.5 [221] 0.520 0.507 0.850 0.635 0.621 0.609 0.705 0.653
LLM + SLM ARG[75] 0.743 0.741 0.779 0.760 0.705 0.698 0.710 0.704
MRCD Llama2 +RoBERTa [116] 0.772 0.765 0.775 0.770 0.732 0.717 0.619 0.664
GPT3.5+RoBERTa [116] 0.781 0.735 0.821 0.778 0.768 0.752 0.734 0.743
Llama3+RoBERTa [116] 0.788 0.700 0.900 0.786 0.772 0.765 0.775 0.770
Llama3+FTT [116] 0.814 0.788 0.841 0.814 0.794 0.768 0.782 0.774
Improvements Impr. RoBERTa [219] +7.4% / +20.5% +5.2% +12.8% +11.6% +13.4% +12.5%
Impr. FIT [116] +6.0% +4.0% +7.7% +5.8% +14.3% +11.9% +13.2% +12.1%
Table 7

Performance comparison of LVLM-based multimodal misinformation detection methods under the DI OT setting within Controlled News
Diversity. Since DI OT applies to both real and fake instances, we report results (in percentages) for this category as a representative example

[224,225].
Real Fake
Infer Type Data Type Accuracy Precision Recall F1 Precision Recall F1

GPT-tomini [223]  Reaistic 833 89.4 75.6 8L.9 78.9 L1 845
Diversified 64.4 (-18.9) 83.7 (-6.0) 35.7 (-39.9) 50.0 (-31.9) 59.1 (-19.8) 93.1 (+2.0) 72.3 (-12.2)

Realistic 883 87.7 89.2 88.4 89.0 875 88.2
Claude-3.7-Sonnet [224] 1y, ified 72.4 (-15.0) 86.1 (-1.6) 535 (-35.7) 66.0 (-22.4) 663 (-22.7) 914 (+3.0) 76.8 (-11.4)

Quen-VL [214] Realistic  73.7 676 911 776 863 56.3 68.2
Diversified 63.7 (-10.0) 63.9 (-3.7) 62.7 (-28.4) 63.3 (-14.3) 63.5 (-22.8) 64.7 (+8.4) 64.1 (-4.1)

CMIE [225] Realistic  90.9 88.8 936 911 93.2 88.2 90.6
Diversified 72.4 (-18.5) 72.2(-16.6) 72.8(-20.8) 72.5(-18.6) 72.6(-20.6) 72.1(-16.1) 72.3(-18.3)

SNIFFER [34] Realistic 843 78.4 93.2 85.1 923 76.2 835
Diversified 73.5 (-10.8) 71.2 (-7.2) 76.0 (-17.2) 73.5 (-11.6) 75.8 (-16.5) 71.1 (-5.1) 73.4 (-10.1)

Realistic  79.6 734 92.8 82.0 90.2 66.5 76.5
LEMMA [122] Diversified 68.9 (-10.7) 64.7 (-8.7) 83.1 (-0.7) 72.7 (-0.3) 76.3 (-13.0) 54.7 (-11.8) 63.7 (-12.8)

multi step reasoning and confidence calibration, helping the models to
better differentiate genuine content from misleading visual cues. For
example, VILA’s F1 score increases from 51.1 to 56.5, and InstructBLIP’s
score rises from 51.3 to 56.1, showing the substantial impact of these in-
ference enhancements. At the 34B scale, Nous-Hermes-2 demonstrates
strong performance with a macro-F1 of 62.9 in validation, which in-
creases to 67.2 when paired with MMD-Agent. This shows that while
model size contributes to performance, it is the targeted application of
inference strategies like those in MMD-Agent that enables models to ef-
fectively address cross modal consistency distortion. MMD-Agent refines
the model’s reasoning by enhancing the alignment between text and
images, particularly when there are discrepancies such as image/text
repurposing or Al-generated content. These refinements lead to more ro-
bust detection performance across various distortion types, ensuring the
model better handles inconsistencies between the modalities. Finally,
GPT-4V, a proprietary LVLM, sets a high benchmark with a macro-F1
of 72.3 in validation and 74.2 on the test set under standard prompt-
ing. When enhanced with the MMD-Agent framework, it reaches a
macro-F1 of 74.0 in validation and 72.8 in testing, narrowly outperform-
ing human evaluation. The improvements in both precision and recall
reflect how MMD-Agent fine tunes the reasoning process to address
specific distortions, particularly in visual textual misalignments, making

the model more reliable and accurate in multimodal misinformation
detection.

The results underscore that simply increasing model capacity is not
enough. The integration of the MMD-Agent framework, with its ad-
vanced inference strategies such as multi step reasoning, confidence
calibration, and adaptive visual amplification, consistently enhances
model performance. This framework allows the models to effectively ad-
dress different types of distortions, highlighting the importance of struc-
tured reasoning and adaptive refinement in achieving high accuracy in
multimodal misinformation detection.

6.2. Results on twitter and fakeddit

Table 4 compares the performance of LEMMA with several base-
line methods on the Twitter and Fakeddit datasets, both of which are
widely used benchmarks for multimodal misinformation detection. The
results underscore the importance of structured reasoning and modular
architectures in improving performance across these datasets.

On the Twitter dataset, LEMMA achieves an accuracy of 0.824 and
an F1 score of 0.816, significantly outperforming the best perform-
ing baseline, GPT-4V with Chain-of-Thought (CoT), which attains an
accuracy of 0.757 and an F1 score of 0.758. This improvement is
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observed consistently across both rumor and non-rumor classification
tasks. Specifically, in the rumor category, LEMMA achieves a preci-
sion of 0.943 and a recall of 0.741, compared to GPT-4V’s 0.866 and
0.670, respectively. In the non-rumor class, LEMMA maintains a preci-
sion of 0.721 and a recall of 0.937, demonstrating its superior balance
and robustness. The results also highlight a common issue with baseline
methods, such as FacTool, which show high recall but suffer from low
precision. This indicates a tendency to overfit to superficial cues, such as
sensational language or common visual patterns, leading to a high rate
of false positives.

On the Fakeddit dataset, LEMMA maintains strong generalization
performance with an accuracy of 0.828 and an F1 score of 0.857, once
again outperforming all baseline methods. Even the powerful GPT-4V
model, under direct prompting, achieves only an accuracy of 0.734 and
an F1 score of 0.740. The CoT variant of GPT-4V improves slightly but
still lags behind LEMMA by a significant margin. Notably, LEMMA'’s per-
formance remains stable across both datasets, with minimal variance in
precision and recall, suggesting its effectiveness in capturing cross modal
evidence without over-relying on domain-specific artifacts or superficial
cues.

The ablation studies further validate LEMMA’s design choices.
Removing the initial stage inference module reduces accuracy to 0.781
on Twitter and 0.803 on Fakeddit, underscoring the critical role of
early filtering in improving efficiency and reducing noise. Similarly, ex-
cluding visual retrieval results in a performance drop, highlighting the
importance of integrating external visual knowledge to support decision-
making. These results confirm that LEMMA'’s strength lies not only in its
underlying model capacity but also in its modular architecture, which
enables systematic evidence assessment and calibrated decision-making.
Compared to prior work, LEMMA avoids the instability observed in mod-
els like FacTool, which often exhibit sharp fluctuations in precision recall
trade offs due to sensitivity to input phrasing or image composition.
LEMMA, on the other hand, consistently maintains high scores across
multiple metrics, demonstrating its ability to balance confidence and
completeness in explanation generation. This balanced performance en-
sures that it minimizes both false positives and false negatives, making
it particularly well suited for real-world applications where reliability
and fairness are paramount.

6.3. Results on MDAM3-DB

Table 5 presents a comparison of various models on the MDAM3-
DB dataset, highlighting the performance improvements achieved by
integrating the MDAM?® framework across different misinformation
types, including fact conflicting content, Al-generated content, offensive
content, and out-of-context (OOC) information.

When analyzing the direct application of large visual-language mod-
els (LVLMs) without the MDAM?3 framework, we observe that models
such as BLIP2 and InstructBLIP perform poorly on certain types of mis-
information, particularly in detecting factual conflicts and Al-generated
content. For instance, BLIP2 achieves an accuracy of 0.467 in detecting
fact conflicting content and 0.355 for Al-generated content. Similarly,
InstructBLIP shows limited performance, with an accuracy of 0.481 for
fact conflicting content and 0.360 for Al-generated content. These results
suggest that while these models perform reasonably well in identify-
ing offensive content and cross modal inconsistencies, they struggle to
verify factual authenticity reliably, often misclassifying synthetic con-
tent as real. This can be attributed to their lack of structured reasoning
capabilities, which hinders their ability to make accurate distinctions
in complex multimodal contexts. In contrast, GPT-4V demonstrates the
strongest baseline performance across all tasks, particularly in handling
complex semantics and multimodal information. However, the intro-
duction of the MDAM?® framework leads to substantial improvements.
For example, in Al-generated content detection, GPT-4V’s accuracy
rises from 0.483 to 0.886, and its AUC improves from 0.491 to 0.924.
These results underscore the critical role of MDAMS? in correcting model
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biases, enhancing fact checking capabilities, and improving classifica-
tion accuracy. The framework’s ability to integrate external knowledge
and apply structured reasoning is particularly effective in overcoming
the challenges faced by models like BLIP2 and InstructBLIP, leading
to notable improvements in their detection capabilities. For example,
InstructBLIP’s accuracy for detecting fact conflicting content improves
from 0.481 to 0.580, and BLIP2 sees a similar improvement, with its ac-
curacy rising from 0.467 to 0.589. Additionally, MDAM® demonstrates
remarkable versatility across multiple types of misinformation. Models
like LLaVA and VILA show considerable improvements in both accu-
racy and AUC for detecting offensive and fact conflicting content after
integrating MDAMZ. Notably, VILA’s performance jumps from an accu-
racy of 0.484 to 0.730 in fact conflicting content detection, and LLaVA’s
accuracy increases from 0.503 to 0.712 for the same task. These im-
provements highlight MDAM3’s ability to enhance model performance
across a range of challenging misinformation types, reinforcing its adapt-
ability and robustness. The ablation studies also provide insight into
the specific contributions of MDAMS3. For instance, the removal of the
MDAM? framework leads to significant drops in performance across
all models, particularly in complex tasks like Al-generated content
detection and fact conflicting content. These findings emphasize the im-
portance of structured reasoning and external knowledge integration in
improving detection accuracy and reducing model bias.

The MDAM? framework not only addresses the limitations of individ-
ual models in specific tasks but also incorporates external information
through a structured reasoning process, resulting in significant im-
provements in the performance of multimodal misinformation detection
systems. The observed gains across a variety of metrics, including ac-
curacy, AUC, and AP, highlight that MDAM? offers a comprehensive
and reliable solution for detecting and mitigating different types of
misleading information.

6.4. Results on pheme and twitter16

Table 6 presents a performance comparison across different misinfor-
mation types on the Pheme and Twitter16 datasets, using various models
including small language models (SLMs), large language models (LLMs)
in both zero shot and few shot settings, and the hybrid LLM+SLM
framework of MRCD.

SLM-based approaches, such as RoBERTa and FTT, demonstrate mod-
erate performance on both datasets, with accuracy values of 0.754
on Pheme and 0.651 on Twitterl6. These models struggle to gener-
alize across newly emerging events due to their limited contextual
understanding, particularly when facing dynamic misinformation that
requires up-to-date knowledge. This is especially evident in their subop-
timal performance on complex misinformation types, such as emerging
rumors or evolving fake narratives, where deeper reasoning and con-
textual adaptation are essential. In contrast, LLM based methods, like
Llama2-7B and GPT-3.5, even under few shot settings, exhibit lim-
ited adaptability, with accuracies remaining below 0.63 across both
datasets. Their performance underscores the challenges LLMs face in
rapidly evolving domains without explicit domain-specific supervision.
Although these models show some improvement over SLMs, they remain
less effective at handling nuanced and domain-specific misinformation
compared to hybrid approaches that combine the strengths of both
model types. The MRCD framework, by integrating LLMs and SLMs
through multi round collaboration, achieves a substantial performance
boost, particularly in the detection of dynamic and heterogeneous mis-
information. For instance, integrating Llama3 with FTT results in the
best performance, achieving an accuracy of 0.814 on Pheme and 0.794
on Twitterl6, surpassing the strongest standalone SLM baseline by
7.4% and 12.8%, respectively. This improvement is not only observed
in accuracy but also across precision, recall, and F1 scores, demon-
strating MRCD’s balanced enhancement in both detection reliability
and robustness. The synergy between LLMs’ broad generalization and
reasoning capacity and SLMs’ domain specific precision allows MRCD
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to excel in detecting both emerging and context specific misinforma-
tion types, which single model paradigms struggle to address. Further
analysis of the results shows that MRCD’s multi round collaborative
learning mechanism enables dynamic retrieval and application of rele-
vant knowledge, refining the detection process iteratively. This enables
the system to continuously adapt to evolving misinformation, a crucial
factor in real-world fake news detection scenarios. The improvement of
over 20% in performance metrics, such as precision and recall, especially
in the context of domain specific fake news detection, underscores the
importance of such an approach. Additionally, the hybrid approach mit-
igates the shortcomings of single model methods, such as overfitting to
superficial cues or failing to capture emerging trends in misinformation.

These results confirm that MRCD’s collaborative architecture, com-
bining LLMs with SLMs, offers a powerful solution for tackling the
complexities of dynamic and evolving misinformation. By dynamically
retrieving and integrating the most relevant knowledge, MRCD not only
improves detection performance but also ensures that fake news detec-
tion systems remain adaptable to new and emerging threats in rapidly
changing information environments.

6.5. Results on DriftBench

Table 7 presents a comparison of various LVLM based misinforma-
tion detection methods under the DI_OT setting within Controlled News
Diversity. The results underscore the vulnerability of current systems
to GenAl-driven content variation, which can significantly affect model
performance, particularly when models are exposed to diversified news
content with stylistic and semantic shifts.

Models like GPT-40-mini and Claude-3.7-Sonnet, which perform well
under realistic conditions, suffer notable declines in performance when
exposed to diversified content. For example, GPT-40-mini’s accuracy
drops from 83.3% to 64.4%, and its recall for real news falls sharply from
75.6% to 35.7%, illustrating how stylistic and semantic changes can
severely impair factual verification. Similarly, Claude-3.7-Sonnet experi-
ences a decline in accuracy from 88.3% to 72.4%, with a substantial drop
in recall for fake news. These results emphasize a common challenge in
current LVLMs, which is their inability to maintain reliable reasoning
across diverse multimodal content, especially when the content deviates
from the distribution encountered during training. In contrast, models
like SNIFFER and LEMMA exhibit more stability in the face of content
diversification, though their F1 scores still decline by more than 10%
across both real and fake categories. This indicates that while these
models are somewhat resilient to content variation, they still struggle
with reasoning consistency, particularly when handling complex distor-
tions such as those induced by GenAl driven content heterogeneity. The
integration of multilevel drift scenarios in DriftBench reveals a critical

Computer Science Review 60 (2026) 100893

gap in current detection systems, which is their inability to effectively
generalize across evolving distributions. Models that excel in controlled
conditions such as GPT-4o0-mini and Claude-3.7-Sonnet fail to maintain
their performance when confronted with content that deviates stylisti-
cally or semantically. This underscores the need for new frameworks
capable of adapting to such shifts, stabilizing cross-modal reasoning,
and ensuring consistent misinformation detection in rapidly changing
information environments. Notably, LEMMA and SNIFFER demonstrate
relatively stable performance in these challenging scenarios. This re-
silience can be attributed to their architectural focus on robust evidence
retrieval and adaptive reasoning processes. However, even these models
face limitations when dealing with the broader variations introduced by
GenAl, underscoring the necessity for frameworks that integrate multi
modal, multi round reasoning and continuous adaptation. These findings
point to the need for more robust multimodal misinformation detection
systems capable of addressing the challenges posed by GenAl driven
content diversification.

The results from DriftBench underscore the need for developing
frameworks capable of mitigating multi level drift, stabilizing rea-
soning across diverse contexts, and enhancing the reliability of fake
news detection in the face of dynamic, GenAl induced misinformation.
While models like LEMMA outperform most others, they still highlight
the gaps that must be addressed to achieve robust and generalizable
misinformation detection across a wide range of content types.

6.6. Results on FakeSV and FakeTT

Table 8 presents a performance comparison of various models,
including both traditional unimodal and state-of-the-art multimodal
frameworks, on the FakeSV and FakeTT datasets. The results empha-
size the importance of robust multimodal reasoning and the challenges
posed by different types of distortions, such as visual manipulation, cross
modal inconsistency, and Al generated content.

Models such as BLIP2 and InstructBLIP, which are general pur-
pose vision-language models (VLMs), demonstrate limited capability in
handling complex cross modal reasoning. These models achieve accu-
racies of 70.85% and 78.41% on FakeSV, respectively, which reflects
their difficulty in capturing subtle semantic and visual inconsistencies
between text and images. The root cause of these limitations lies in
their architecture, which lacks the specialized modules required for fine
grained multimodal alignment. Specifically, these models struggle with
detecting visual distortions, such as manipulated images, or reconciling
discrepancies between textual claims and visual evidence, making them
less effective at handling nuanced misinformation types. In contrast,
more sophisticated multimodal models like TikTec and FANVM intro-
duce explicit feature alignment mechanisms, improving their ability to

Table 8

Performance comparison on two datasets. Best results are shown in bold.
Model FakeSV FakeTT

ACC M-F1 M-P M-R ACC M-F1 M-P M-R

GPT-40-mini [223] 68.08 68.05 69.88 69.49 61.54 61.20 64.41 65.89
GPT-4.1-mini [223] 70.30 70.25 70.61 70.87 49.16 48.54 62.50 59.70
Qwen2.5-VL [226] 64.21 60.79 64.55 61.52 45.82 45.31 56.69 55.42
InternVL2.5 [110] 64.39 57.89 68.52 60.50 46.82 45.29 64.92 59.23
InternVL2.5-MPO [110] 65.13 61.07 66.46 62.12 43.14 40.84 61.90 56.23
ViT [61] 70.85 70.66 70.64 70.91 64.88 62.59 62.54 63.80
BERT [227] 78.41 78.25 78.17 78.52 70.90 69.00 68.71 70.60
TikTec [228] 73.06 72.79 72.73 72.93 66.56 65.55 66.50 68.62
FANVM [229] 79.88 78.91 80.98 78.42 71.91 70.85 71.21 73.90
SV-FEND [207] 80.81 80.19 81.08 79.84 77.26 75.55 74.94 77.13
FakingRecipe [210] 84.69 84.39 84.57 84.25 79.26 77.53 76.86 78.89
CA-FVD [230] 85.79 85.28 86.57 84.78 81.61 80.26 79.50 82.17
ExMRD [231] 86.90 86.52 87.31 86.13 84.28 83.13 82.27 85.19
FakeSV-VLM [38] 90.22 89.97 90.55 89.64 89.30 87.98 87.80 88.17
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detect cross modal inconsistencies. These models achieve better perfor-
mance with accuracy scores of 73.06% and 79.88%, respectively, on
FakeSV. However, they still fall short in addressing the challenges of
fine grained factual verification. Their performance plateaus at around
86.90% accuracy on FakeSV and 84.28% on FakeTT, indicating that
while they can capture basic cross modal correlations, they still strug-
gle with more complex distortions like those introduced by generative
adversarial techniques or cross modal contradictions. The FakeSV-VLM
framework introduces a significant advancement with its Progressive
Mixture of Experts (PMOE) architecture, which enables adaptive expert
collaboration for multimodal authenticity verification. By leveraging
specialized experts for different tasks, FakeSV-VLM demonstrates supe-
rior performance, achieving 90.22% accuracy and 89.97% macro-F1 on
FakeSV, and 89.30% accuracy with 87.98% macro-F1 on FakeTT. These
gains can be attributed to the system’s ability to dynamically select the
most relevant experts for each specific misinformation task. The frame-
work also incorporates an Alignment-driven Event Checking (ADEC)
module, which captures subtle semantic and visual inconsistencies that
are crucial for detecting fabricated content, particularly in short videos.
This combination of expert reasoning and cross modal alignment allows
FakeSV-VLM to outperform both traditional and LVLM based models
by a large margin. The performance improvements in FakeSV-VLM can
be explained by the integration of adaptive expert collaboration and
the ability to handle multimodal distortions across different types of
misinformation. The PMOE architecture allows the system to select spe-
cialized experts based on the task at hand, providing a tailored approach
to each misinformation type, whether it involves visual manipulation,
cross modal inconsistency, or semantic distortions. The ADEC module
further enhances the system’s robustness by identifying and correcting
subtle inconsistencies that traditional models fail to capture.

The results from FakeSV-VLM indicate that the combination of struc-
tured reasoning, dynamic expert collaboration, and deep multimodal
alignment is crucial for achieving state-of-the-art performance in mul-
timodal misinformation detection. While general-purpose models like
BLIP2 and InstructBLIP perform well in simpler scenarios, they struggle
with the complexities introduced by evolving misinformation tactics.
The success of FakeSV-VLM highlights the importance of integrating
task-specific adaptability and fine-grained reasoning capabilities in fu-
ture misinformation detection systems, ensuring that they can handle a
wide range of distortion types with high accuracy and interpretability.

6.7. Results on multiple in-domain and out-of-domain datasets

Table 9 compares the performance of TRUST-VL and other baseline
VLMs across both in-domain and out-of-domain datasets, highlighting
the ability of various models to handle different types of misinformation

Table 9
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distortions, including textual, visual, and cross-modal inconsistencies.
The results clearly demonstrate that while general purpose VLMs exhibit
certain strengths, they face significant limitations in effectively address-
ing complex multimodal misinformation, particularly in the presence of
advanced distortions like cross-modal inconsistencies or Al-generated
manipulations.

Models such as BLIP2 and InstructBLIP, despite showing relatively
high performance in some cases, struggle significantly with specific
distortion types. These models often misclassify cross modal or Al-
generated distortions as genuine content, leading to substantial drops in
accuracy. For example, BLIP2’s performance on datasets like MOCHEG
and VERITE is markedly lower, as it fails to capture the nuanced in-
consistencies between text and supporting visual content, especially in
cases where visual veracity is distorted. These results suggest that the
standard training and prompting strategies used by these models are
insufficient for tackling complex visual and cross modal distortions,
highlighting a clear gap in their ability to adapt across varied dis-
tortion types. In contrast, TRUST-VL, which introduces the Question
Aware Visual Amplifier (QAVA) module for adaptive visual representa-
tion enhancement, shows substantial improvements across all datasets,
including both in-domain and out-of-domain settings. By dynamically
adjusting the visual representations based on contextual textual cues,
TRUST-VL excels in addressing both textual veracity distortions (e.g.,
rumor-laden text) and visual veracity distortions (e.g., fact conflicting
images). Its performance on Factify2, achieving near perfect accuracy,
underscores its ability to handle specific types of distortion, particularly
in scenarios involving high level visual manipulations. The model’s aver-
age accuracy of 86.16%, surpassing the second best model by + 8.42%,
reflects the strength of its unified reasoning approach, which effectively
integrates structured textual and visual reasoning. Moreover, TRUST-
VL’s robustness is evident in out-of-domain datasets like MOCHEG and
Fakeddit-M, where traditional models like GPT-40 show severe perfor-
mance degradation. These models fail to generalize effectively when
faced with data that deviate from their training distribution, particu-
larly in domains with cross-modal inconsistencies. TRUST-VL, however,
maintains strong performance in these settings, demonstrating that its
training paradigm, which combines reasoning based instruction with
multimodal alignment, allows it to generalize better to unseen data.
This performance is further amplified by its integration of the QAVA
module, which optimally balances textual and visual cues for more ac-
curate cross modal reasoning, ensuring that the model adapts well across
a wide range of distortions.

The stark contrast in performance between TRUST-VL and other
models reveals the limitations of traditional approaches, particularly in
their inability to maintain robustness across distortion types. The success

Performance (%) comparison between TRUST-VL and other baseline VLMs across in-domain and out-of-domain datasets. The best score is bolded, and the second-best

score is underlined.

Methods Avg. Acc. In-domain Out-of-domain

MMFakeBench Factify2 DGM?*-Face NewsCLIPpings MOCHEG Fakeddit-M VERITE

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
General-purpose VLMs
BLIP2 [94] 53.36 37.40 34.45 54.30 42.38 47.70 34.35 50.14 34.28 62.50 57.16 70.75 70.19 50.75 37.35
InstructBLIP [95] 58.41 57.30 56.38 66.83 66.48 50.40 48.66 53.85 50.71 63.25 60.85 64.75 62.83 52.50 49.60
LLaVA [24] 60.25 62.60 61.72 79.59 79.10 46.41 38.14 45.87 48.54 66.50 64.71 68.00 66.67 52.75 49.80
xGen-MM 62.20 65.40 62.77 86.03 86.04 50.10 49.68 59.87 59.18 59.50 56.32 60.00 53.45 54.50 54.41
LLaVA-NeXT [87] 62.35 71.60 65.99 79.60 79.09 53.40 52.21 59.86 59.37 58.25 52.52 59.00 52.36 54.75 54.57
Qwen2-VL [109] 69.85 67.00 66.28 89.40 89.37 48.10 41.63 70.94 69.91 66.25 64.57 77.25 76.96 70.00 68.94
GPT-40 [223] 76.16 83.10 80.88 88.37 88.21 57.14 49.24 86.51 86.51 77.00 76.81 73.50 73.12 67.50 67.57
ol [232] 77.74 83.90 82.41 96.90 96.90 50.06 38.06 86.80 86.54 81.50 81.38 73.25 73.07 71.75 71.66
Misinformation detectors
MMD-Agent [211] 56.11 69.10 48.68 71.03 69.35 48.30 48.29 53.06 41.12 54.25 43.72 42.25 42.24 54.75 47.00
SNIFFER [34] 61.17 51.40 51.33 61.00 55.97 47.20 37.96 88.85 88.85 53.75 50.73 53.50 51.13 72.50 72.02
LRQ-FACT [233] 66.60 71.30 74.00 86.63 89.79 41.80 44.14 68.19 73.45 66.25 69.25 67.25 71.77 64.75 68.32
TRUST-VL [138] 86.16 87.30 85.42 99.50 99.50 88.50 88.39 90.35 90.35 82.75 82.58 82.50 82.20 73.75 73.61
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of TRUST-VL highlights the necessity of integrated, adaptive models that
not only scale across model sizes but also incorporate more sophisticated
reasoning strategies. This work establishes a new benchmark for multi-
modal misinformation detection, setting a precedent for future models
that aim to achieve both high accuracy and generalization capabilities
across diverse distortion types.

7. Future directions

While Large Vision-Language Models (LVLMs) have demonstrated
remarkable capabilities in understanding and reasoning over multi-
modal content, their application to the nuanced and adversarial domain
of fake news detection remains nascent and fraught with unresolved
challenges. Drawing from the limitations and gaps identified in this
survey, we outline several high-impact research directions that are crit-
ical to advancing the field toward robust, trustworthy, and deployable
systems.

7.1. Causal and counterfactual reasoning for explainable detection

Current large vision-language models (LVLMs) detect fake news by
learning statistical patterns from massive image-text datasets. While
effective on benchmark tasks, these models often rely on superficial
correlations rather than genuine evidential reasoning. For example,
an LVLM may incorrectly associate certain visual styles, such as low-
resolution images, particular color tones, or recurring backgrounds, with
“fakeness” merely because these features frequently appear in the false
examples within its training data. Similarly, it may link emotionally
charged language (e.g., “shocking,” “you won’t believe”) or particular
news sources to misinformation, even when the underlying claim is fac-
tually accurate. This reliance on non-causal cues leads to two critical
failures. First, the model’s decisions become brittle: when confronted
with novel manipulation tactics or content from underrepresented do-
mains, performance degrades sharply. Second, and more importantly,
the model lacks the ability to explain why a piece of content is classified
as false based on concrete inconsistencies between visual and textual ev-
idence, such as mismatched timestamps, manipulated objects, or claims
that contradict the visible context. Without such reasoning, the system
remains a black box, unsuitable for high-stakes applications like jour-
nalism, legal review, or public policy. Standard LVLMs are optimized to
maximize predictive accuracy on observed data without distinguishing
between causal features that make a claim false and correlated fea-
tures that simply co-occur with falsity in the training distribution. This
limitation arises from inherent biases in real-world fake news datasets,
which mirror historical disinformation patterns, platform-specific mod-
eration rules, and cultural contexts. As a result, the model often learns
superficial associations, such as treating content from certain regions or
containing protest imagery as deceptive, rather than reasoning about
whether the visual evidence genuinely contradicts the accompanying
text. In essence, today’s LVLMs answer the question “What usually goes
with fake news?” instead of “What proves this specific claim is false?”

To address this limitation, future LVLMs should be explicitly de-
signed to perform causal and counterfactual reasoning, enabling them
to identify which elements of the multimodal input contribute to the ve-
racity judgment and to evaluate how modifying those elements would
affect the final decision. A crucial step is to disentangle causally relevant
signals, such as temporal inconsistencies, object mismatches, or seman-
tic contradictions, from confounding factors like source bias, stylistic
patterns, or demographic correlations. This can be accomplished by
training LVLMs across diverse environments, including news from differ-
ent countries, platforms, or time periods, and ensuring that their internal
representations of evidence remain consistent even when confounding
factors vary. Methods such as invariant risk minimization and domain-
adversarial training can be adapted to reduce the model’s dependence
on environment-specific cues while maintaining its ability to detect gen-
uine cross-modal factual inconsistencies. Another effective strategy is to
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enhance training with counterfactual examples, which are modified ver-
sions of real multimodal samples where only non-essential attributes
are changed. For example, an image in a fake news instance can be
replaced with a visually similar but factually neutral photo while keep-
ing the misleading text intact. A causally aware model should retain its
“fake” prediction only if the textual claim remains unsupported by the
new image. Conversely, if a true claim is paired with a manipulated
image implying falsity, the model should detect the inconsistency and
revise its judgment accordingly. Creating such counterfactual examples
through image editing, text paraphrasing, or retrieval from verified me-
dia archives offers direct supervision for teaching the model to focus
on the truly causal factors underlying veracity assessment. Finally, ad-
vancing in this direction requires the development of evaluation metrics
that go beyond traditional accuracy. A causally competent model should
demonstrate counterfactual consistency, meaning its predictions change
only when causally relevant evidence is altered and remain stable when
irrelevant features such as font style or background scenery are modi-
fied. Furthermore, the model’s explanations, including the image regions
it highlights and the textual phrases it emphasizes, should align with
human judgments of what constitutes decisive evidence. Collaborations
with fact-checking organizations can support the creation of such eval-
uation benchmarks, ensuring that models are evaluated on genuine
reasoning ability rather than statistical pattern recognition.

7.2. Adversarially robust and out-of-distribution generalization

Fake news is not a static phenomenon but an adversarial and adap-
tive process. Malicious actors continuously refine their strategies to
evade detection, exploiting the very patterns that current LVLMs depend
on. Early misinformation often involved simple image-text mismatches,
whereas modern disinformation campaigns employ more sophisticated
techniques such as context swapping, where real images are reused with
fabricated captions; deepfakes with semantic alignment, which generate
synthetic media that coherently supports false narratives; and multi-
modal prompt injection, which crafts inputs that subtly mislead LVLMs
toward incorrect conclusions. These tactics are intentionally designed
to maintain surface-level plausibility while eroding factual integrity,
revealing the inherent fragility of existing models. Compounding this is-
sue is the distributional shift inherent in real-world deployment. LVLMs
trained on historical datasets, which are often dominated by English-
language content from a few major platforms, tend to struggle when
confronted with news from underrepresented regions, emerging social
media formats (e.g., short videos, memes), or novel event types (e.g.,
pandemics, geopolitical crises). In such out-of-distribution (OOD) sce-
narios, models frequently default to spurious heuristics or fail silently,
producing high-confidence but incorrect predictions. The root cause lies
in the passive learning paradigm of most LVLMs: they are optimized for
average-case performance on fixed, curated datasets, not for worst-case
robustness or adaptability. Their representations are highly sensitive to
input perturbations that preserve semantics to humans but alter model-
internal features, such as minor color shifts, object repositioning, or
synonym substitutions. Moreover, because training data rarely includes
examples of how fake news evolves over time, models lack mecha-
nisms to recognize or adapt to new manipulation strategies. Crucially,
standard evaluation protocols mask this vulnerability. Benchmarks like
FakeNewsNet or Weibo21 consist of static snapshots of past misinforma-
tion, offering no test of a model’s ability to generalize to future or unseen
attack vectors. As a result, reported performance often overestimates
real-world effectiveness.

To address these challenges, future work must move beyond static
training and embrace proactive robustness by design. Below are sev-
eral interlinked strategies that can significantly improve generalization
under adversarial pressure and distribution shifts. First, LVLMs should
be trained not only on clean examples but also on realistic adversarial
variants that mimic actual disinformation tactics. This requires develop-
ing perturbation models tailored to multimodal content. Specifically, for
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images, apply context-preserving modifications such as object removal
or replacement using diffusion-based inpainting, adjustments to light-
ing or color tone, and the generation of subtle deepfakes that maintain
overall scene coherence. For text, apply meaning-preserving manipu-
lations such as paraphrasing that introduces subtle false implications,
substituting key entities with misleading alternatives, or inserting plau-
sible yet fabricated details to distort the narrative while maintaining
fluency. For cross-modal alignment, introduce semantic drift in which
the image and text remain individually coherent but become jointly de-
ceptive, such as pairing a real photo of a flood with a claim about a
different location. By training on such augmented data, ideally produced
through an iterative red-team and blue-team process, LVLMs can grad-
ually learn invariant features that remain robust against manipulation.
A more principled strategy is to ensure that the model’s internal rep-
resentation of “fakeness” relies only on features that remain consistent
across diverse environments, such as different news sources, languages,
or event types. This can be accomplished by partitioning the train-
ing data into multiple environments, for example based on platform,
country, or time period, and applying algorithms such as invariant risk
minimization or domain-conflict-aware optimization. These methods en-
courage the model to build decision boundaries that depend on signals
consistently associated with veracity across all environments rather than
on environment-specific artifacts. The resulting representation captures
the fundamental essence of multimodal inconsistency rather than the pe-
culiarities of any single dataset. Finally, robust systems must know when
they don’t know. LVLMs should be equipped with calibrated uncertainty
estimation, for instance, via ensemble methods, Monte Carlo dropout,
or density-based out-of-distribution scoring. When encountering inputs
that deviate significantly from the training manifold (e.g., a novel meme
format or a deepfake with unusual artifacts), the model should flag high
uncertainty and defer to human reviewers or external verification tools,
rather than outputting a confident but erroneous verdict.

7.3. Efficient and modular architectures for real-time deployment

While recent large vision-language models (LVLMs) have shown
impressive performance on curated fake news detection benchmarks,
their practical usefulness in real-world content moderation remains
severely limited. The main challenge lies not only in accuracy but also
in computational efficiency, latency, and adaptability under operational
constraints. Social media platforms must process millions of multimodal
posts every minute, including images, short videos, memes, and text
captions, often on edge devices or within strict response-time limits of
less than 500 milliseconds per post. Current monolithic LVLMs, which
contain billions of parameters and rely on complex cross-modal fusion
mechanisms, are poorly suited for such environments. They demand
costly GPU clusters, consume large amounts of energy, and lack the flex-
ibility and transparency required for timely updates or inspection when
new manipulation tactics appear. Moreover, the “one-size-fits-all” archi-
tecture of most LVLMs ignores the heterogeneity of real-world content.
A breaking news photo, a satirical meme, and a deepfake video demand
fundamentally different verification strategies, yet today’s models apply
the same computationally intensive pipeline to all inputs, wasting re-
sources on low-risk or obviously benign content. This mismatch between
research prototypes and deployment realities creates a critical gap: the
most accurate models are too slow to be useful, while fast heuristics lack
the reasoning depth needed for nuanced disinformation.

To bridge this gap, future systems must abandon the paradigm of
“bigger is better” in favor of intelligent, modular, and adaptive architec-
tures that allocate computational resources only when and where they
are needed. This requires rethinking both the structure of the model
and the flow of inference. Instead of applying a full LVLM to every
post, a more scalable solution is to adopt a multi-stage verification cas-
cade. In the first stage, lightweight screening models such as distilled
transformers or vision-text co-occurrence filters quickly identify obvi-
ously benign content like personal photos and product advertisements,
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as well as clear violations such as known deepfake signatures or black-
listed sources. These models operate within milliseconds and can filter
out more than 80% of total traffic. The second stage involves special-
ized verifiers that are activated only for ambiguous or high-risk cases.
For example, a temporal inconsistency detector can be used when a
claim references a recent event, while a semantic alignment analyzer fo-
cuses on narrative-heavy posts. Each module is trained for a narrow and
well-defined subtask and can be independently updated or replaced. The
third stage is a full LVLM fallback, reserved for rare cases that require
comprehensive multimodal reasoning, ensuring that high-cost process-
ing is applied only when necessary. This hierarchical design mirrors the
workflow of human fact-checkers, where rapid preliminary screening
is followed by more detailed analysis for uncertain or disputed claims.
Furthermore, not all inputs demand the same level of processing. Early-
exit mechanisms enable the model to produce confident predictions at
intermediate layers when sufficient evidence has already been gathered,
avoiding the need to engage deeper and more computationally expensive
modules. For example, if a meme’s text includes a clearly false statistic
and the accompanying image offers no conflicting visual evidence, the
system can terminate the analysis early without performing resource-
intensive cross-attention over visual features. Similarly, input-adaptive
routing can direct different modalities through tailored subnetworks. A
text-dominant post (e.g., a quote screenshot) might skip heavy visual en-
coding, while a video-based claim could activate a dedicated temporal
consistency module. Such routing can be learned jointly with the main
task or guided by lightweight meta-classifiers. Finally, efficiency must be
co-designed with hardware constraints. Techniques such as model quan-
tization (reducing numerical precision from 32-bit to 8-bit), structured
pruning (removing redundant attention heads or feed-forward neurons),
and knowledge distillation (training small student models to mimic large
teachers) can drastically reduce model size and latency without sig-
nificant accuracy loss. Crucially, these optimizations should preserve
the model’s sensitivity to subtle multimodal inconsistencies, avoiding
aggressive compression that erases fine-grained evidential signals.

7.4. Inference-time mitigation of multimodal hallucination

Multimodal hallucination represents a critical yet underexplored
challenge in LVLM based fake news detection. Unlike general reasoning
errors, hallucinated visual entities, events, or cross modal causal rela-
tions can artificially increase the plausibility of false claims, misleading
both automated detectors and downstream users by providing high con-
fidence yet unfounded evidence. This issue is especially concerning in
misinformation scenarios, where models must reason beyond directly
observable content. Hallucinated visual or textual content can lead to
the generation of false narratives that appear credible, thereby under-
mining the reliability of detection systems. The problem is compounded
by the seamless reinforcement of misleading textual claims through mis-
interpreted or manipulated visual content, creating more convincing but
ultimately false narratives.

While most existing solutions focus on training time alignment or
data curation, emerging research indicates that inference time mitiga-
tion offers a lightweight, model agnostic alternative to reduce hallu-
cinated reasoning without the need for retraining large scale LVLMs.
This approach is particularly advantageous for real-world applications,
where retraining large models on massive datasets can be computa-
tionally expensive and impractical. A prominent example is Instruction
Contrastive Decoding (ICD) [45], which suppresses generation paths
dominated by language priors by explicitly contrasting faithful and un-
faithful decoding trajectories. This approach ensures that the model’s
output remains grounded in both textual and visual modalities, leading
to more accurate visual grounding and reducing the risk of hallucina-
tions. ICD is especially relevant for fake news detection, where even
subtle hallucinations such as fabricated visual content or misrepresented
events can distort veracity assessments by introducing fictitious evi-
dence. Beyond ICD, innovative methods such as Cogsteer [234] have
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shown considerable promise in mitigating hallucinations during in-
ference. Cogsteer introduces a selective layer intervention mechanism
that draws inspiration from cognitive processes of attention and filter-
ing. This method guides the model to prioritize relevant, contextually
accurate information while downplaying less reliable or hallucinated
details. By intervening at specific layers of the model during inference,
Cogsteer effectively steers large models toward more grounded, factually
accurate outputs, significantly reducing the likelihood of generating hal-
lucinated cross modal inferences without requiring large scale retraining
or additional data curation. The combination of selective layer interven-
tions and contrastive decoding offers a robust strategy for mitigating
hallucinations across both visual and textual modalities. While ICD ad-
dresses hallucinated textual content, Cogsteer ensures that the model’s
attention aligns with relevant visual evidence, thus creating a more
holistic solution to hallucination mitigation. These techniques, when
combined, form a powerful framework for enhancing the reliability
of LVLMs in multimodal misinformation detection tasks. Furthermore,
additional inference time mechanisms, such as evidence-conditioned
generation and self-consistency verification, provide complementary
controls to enhance cross modal faithfulness. Evidence-conditioned gen-
eration verifies the consistency of generated content with available,
trusted evidence during the generation process. Self-consistency verifica-
tion enables models to cross check their outputs against multiple sources
or versions of the input, ensuring that the generated content aligns with
verified data. While these techniques have yet to be fully explored in the
context of multimodal misinformation detection, they offer promising
avenues for further reducing hallucination rates and improving model
trustworthiness.

Future research should focus on integrating hallucination aware
inference strategies such as ICD, Cogsteer, and self-consistency mech-
anisms into LVLM based fake news detectors. Evaluation metrics should
prioritize faithfulness oriented measures that explicitly quantify evi-
dence grounding and hallucination rates, rather than relying solely on
end task detection accuracy. These faithfulness metrics would offer a
more nuanced evaluation of model performance, particularly in complex
real-world scenarios where identifying hallucinations is just as critical as
detecting false claims. Incorporating such metrics will significantly ad-
vance the development of more reliable, robust, and trustworthy LVLM
based systems for multimodal fake news detection.

7.5. Knowledge-enhanced LVLM adaptation for veracity reasoning

The discussion of knowledge enhanced LVLM adaptation remains
underdeveloped, despite mounting evidence that integrating contextual
world knowledge can substantially enhance multimodal reasoning, par-
ticularly in tasks requiring complex, cross modal understanding. Existing
frameworks often frame knowledge enhancement narrowly, focusing
primarily on external fact retrieval or static knowledge graph aug-
mentation. However, recent advancements suggest that LVLMs can not
only leverage structured external knowledge but also dynamically gen-
erate and contextualize world knowledge to improve decision-making
processes during inference.

A prime example of this is WisdoM [235], which demonstrates the ca-
pacity of LVLMs to generate, contextualize, and fuse commonsense and
background knowledge with both visual and textual modalities. By ac-
tively eliciting relevant contextual knowledge during inference, WisdoM
improves multimodal sentiment analysis, especially under ambiguous
conditions or when context is sparse. This approach goes beyond static
knowledge integration by enabling models to adjust their knowledge
based on the immediate reasoning context, leading to more accurate
multimodal predictions. This dynamic knowledge generation and fusion
approach has strong implications for veracity reasoning in fake news
detection. Fake news often presents claims that, while visually plausi-
ble, may be contextually implausible. For instance, claims may involve
geopolitical contexts or events that require implicit world knowledge,
such as an understanding of regional political dynamics, typical event
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timelines, or physical plausibility. These forms of knowledge are often
not directly observable in the visual modality, which makes their in-
tegration crucial for accurate veracity assessments. Building on these
insights, future research should focus on adapting knowledge enhanced
paradigms to veracity reasoning tasks. LVLMs must be able to dynam-
ically incorporate both external and internal knowledge contextually
relevant background information that aids in the identification of false
claims while maintaining cross modal consistency. Unlike traditional ap-
proaches that treat knowledge as an isolated post hoc component, this
vision advocates for the seamless integration of knowledge generation
and grounding mechanisms throughout the model’s reasoning process.
Such a holistic approach would enable LVLMs to not only detect in-
consistencies between visual and textual cues but also assess whether a
claim, while visually credible, aligns with contextual knowledge, leading
to more robust and reliable fake news detection systems.

Knowledge enhanced LVLMs, particularly those capable of dynamic
knowledge generation and fusion, present significant potential for ad-
vancing multimodal reasoning in fake news detection. By enabling
LVLMs to distinguish between visually plausible yet contextually false
claims, this approach offers a promising path toward improving verac-
ity assessment, providing a more comprehensive and accurate solution
to the challenges posed by multimodal misinformation.

8. Conclusion

As one of the fastest-growing areas in artificial intelligence, large
visual-language models (LVLMs) for multimodal fake news detection
have made significant progress in recent years. Therefore, we provide
a comprehensive review of this research area. First, we introduce its
background and motivation and highlight the unique challenges posed
by LVLMs. Second, we present some preliminary research results, includ-
ing the definition of multimodal fake news, the evolution of traditional
multimodal methods, and LVLM-based methods. Third, we propose a
taxonomy of current methods, categorizing them into parameter-frozen
paradigm and parameter-tuning paradigm. Each paradigm provides a
complementary perspective on the development of this field. We then
review representative models within each paradigm, tracing their devel-
opment history and methodological innovations. Fourth, we introduce
commonly used evaluation metrics in multimodal fake news detection.
Fifth, we compare the performance of different methods on various
multimodal fake news detection datasets. Sixth, we summarize several
commonly used multimodal fake news detection datasets. Finally, we
outline unresolved challenges and future research directions.
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