
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Parallel and Progressive Approaches for
Skyline Query over Probabilistic
Incomplete Database
YIFU ZENG1, KENLI LI2(Senior Member, IEEE), SHUI YU3(Senior Member, IEEE), YANTAO
ZHOU1,AND KEQIN LI24 (Fellow, IEEE)
1College of Electrical and Information Engineering, Hunan University, Hunan, China, 410082
2College of Computer Science and Electronic Engineering, Hunan University, Hunan, China, 410082
3School of Information Technology, Deakin University, 221 Burwood HWY , Burwood, VIC, 3125, Australia
4Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

Corresponding author: Yifu Zeng (e-mail: zengyifu@hnu.edu.cn).

The research was partially funded by the Key Program of National Natural Science Foundation of China (Grant No. 61472126, 61432005),
the International (Regional) Cooperation and Exchange Program of National Natural Science Foundation of China (Grant No.
61661146006), the National Natural Science Foundation of China (Grant Nos. 61370095), and the National Key R&D Program of China
(Grant No. 2016YFB0200201).

ABSTRACT The advanced productivity of the modern society has created a wide range of similar
commodities. However, the descriptions of commodities are always incomplete. Therefore, it is difficult for
consumers to make choices. In the face of this problem, skyline query is a useful tool. However, the existing
algorithms are unable to address incomplete probabilistic databases. In addition, it is necessary to wait
for query completion to obtain even partial results. Furthermore, traditional skyline algorithms are usually
serial. Thus, they cannot utilize multi-core processors effectively. Therefore, a parallel progressive skyline
query algorithm for incomplete databases is imperative, which provides answers gradually and much faster.
To address these problems, we design a new algorithm that uses multi-level grouping, pruning strategies,
and pruning tuple transferring, which significantly decreases the computational costs. Experimental results
demonstrate that the skyline results can be obtained in a short time. The parallel efficiency for an Octa-core
processor reaches ninety percent on high-dimensional, large databases.

INDEX TERMS Data management, Incomplete data, Parallel processing, Progressive processing, Proba-
bilistic products, Skyline query

I. INTRODUCTION

The widespread use of portable Internet devices such as mo-
bile phones and tablets, allows people to share comments on
all kinds of commodities, whenever and wherever they want.
In addition, people tend to rely on item descriptions and com-
ments on the Internet, which are provided by merchants or
other customers, in selecting their favorite items. Therefore,
the growing numbers of comments on review sites, such as
TripAdvisor and Yelp, are playing an increasingly important
role in our daily lives. However, due to many issues, such
as limitations of measuring equipment, deliberate withhold-
ing of disadvantages, and transmission errors, most of the
information is incomplete. Additionally, the randomness of
the commodities and the reliability of the data increases the
probabilistic uncertainty of the data. The positive review rate
and the number of comments also influence the reliability of

the ratings, since they reflect the gap between the description
of commodities and the subjective feelings of clients. Con-
sequently, the information of a commodity usually carries
uncertainty of not only probability but also completeness.
Therefore, processing these probabilistic incomplete data ef-
ficiently and accurately would be an important achievement.

We give an example to illustrate a practical application
scenario. Suppose Mr. Smith wants to enjoy his meal nearby,
and the restaurant information in terms of distance, price and
reliable rate is as shown in Fig. 1(a). For two restaurants with
similar distance, price, or other parameter such as facilities
or environment, the one with more comments and a higher
positive rate is more reliable. The number of comments indi-
cates the popularity of the restaurant. Apparently, a popular
restaurant is more likely to be truly and accurately described.
A negative review rate indicates the probability that a cus-

1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

tomer’s dining experience will not match that shown in the
advertising campaigns. Therefore, the restaurant with higher
positive rate is more reliable. The We use P-skyline query[1]
to extract the best candidates from this database. Restaurants
b, c and f are the best choices if we set the threshold to 0.5.
Therefore, Mr. Smith should choose his dining place from
the subset {b, c, f} as these restaurants are better than other
candidate restaurants.

Price($)

Distance(kM)

a=(0.5,30), 0.4

b=(1.5,10), 0.5 c=(4,5), 0.6

g=(4.5,15), 0.8

f=(3,20), 1

h=(4,30), 0.8

e=(2,25), 0.7

d=(1,40), 0.5

(a) Probabilistic tuples

Restaurant a b c d e f g h

Distance(kM) 0.5 1.5 4 1 2 3 4.5 4

Price($) - 10 - 40 25 20 15 -

Good review

rate
0.4 0.5 0.6 0.5 0.7 1 0.7 0.8

(b) Probabilistic incomplete tuples

FIGURE 1: Two forms of uncertain datasets

However, a more realistic situation is that the data of each
tuple are incomplete. As shown in Fig. 1(b), the average
price information of some restaurants is lost. This is a very
common phenomenon on most shopping websites and rec-
ommendation systems. Faced with this situation, Mr. Smith
would be puzzled again because the previous skyline set
{a, b, c} may not contain the best choices now.

Skyline query is a powerful tool for data mining and
decision making and is highly suitable for this case. It has re-
ceived significant attention from the database community [2,
3, 4, 5]. In addition to skyline query, some similar algorithms
have been proposed for obtaining suitable candidates[6, 7].
There are many sophisticated solutions for complete, certain
databases, which means the skyline query results can be
obtained in a short time [8]. Additionally, for probabilistic
databases, such as that shown in Fig. 1(a), there have been
many recent developments of skyline queries[1, 9, 10, 11, 12,
13]. These developments are important, as this research has
many applications. A famous example is the selling of airline
tickets at http://www.bing.com/travel. The availability and
price of airline tickets show substantial uncertainty. To help
their users make decisions, bing.com provides a service that
predicts changes in tickets prices. This problem is based on
the possible world semantics [14], which is widely adopted
in probabilistic databases [15, 16, 17, 18, 19].

However, the progressive skyline query is unwarranted
with these methods, but is very important in practical ap-
plications. People may not need to choose from all possible
answers. Providing several candidates for customers in a
short time is very helpful. For example, Mr. Smith wants

to obtain recommendations for nearby restaurants. With the
the non-progressive algorithm, he obtains 40 options after 30
seconds. With a progressive algorithm, he obtains five option-
s in the first two seconds, and the other options are given soon
afterwards. In most cases, five candidates are sufficient for
making a choice. Therefore, a progressive algorithm is a new
challenge with many promising applications, which better
matches practical needs. To address this problem, we need to
evolve the algorithm and make it supportive of progressive
query. Moreover, with the increasing popularity of multi-
core portable devices, parallelizable algorithms are becoming
more popular. An efficient parallel algorithm can be run in
a smart phone and tablet, which makes it feasible to obtain
all kinds of recommendations based on local databases with
greatly decreased waiting time.

Motivated by these issues, we make the following contri-
butions:
• We define tuple grouping, strict group encoding and an

inclusion relation as the basis of the algorithm, which
enhance the parallel efficiency of the algorithm.

• We provide an optimized definition of the incomplete
data mode, which provides more reasonable answers.

• We formulate the algorithm with progresion, which
reduces the waiting time for most users who do not need
a complete candidate set to make a choice.

• We propose several pruning approaches in both the pre-
treatment stage and the comparsion stage, which reduce
the response time of the system.

• We perform an extensive experimental study on both
synthetic and real datasets to evaluate the efficiency and
effectiveness of our proposed algorithm, especially on
massive and high-dimensional datasets.

The rest of the paper is organized as follows: In Section
III, we propose the incomplete data model and the P-skyline
model. The related works are also reviewed. In Section IV,
we design some effective pruning strategies and algorithms
for overcoming the problems in skyline queries over proba-
bilistic incomplete data. In Section V, we evaluate the perfor-
mance of the proposed algorithm by extensive experiments.
In Section VI, we present the conclusions of the paper and
discuss directions for future work.

II. RELATED WORK
Skyline query is a popular paradigm for extracting interesting
objects from multi-dimensional databases. Skyline query also
garnered considerable research attention over uncertain data.
Pei et al. first proposed probabilistic skyline query over
uncertain databases [1]. Kin et al. introduced a probabilis-
tic skyline algorithm called P-skyline, which computes the
exact skyline probabilities of all objects. Its performance is
scalable with the dataset size or the dimensionality. Lian and
Chen focused probabilistic reverse skylines, and considered
both monochromatic and dichromatic cases [20]. Zhang et
al. studied the problem of efficiently computing skylines
against sliding windows over an uncertain data stream [21].
Recently, Lian and Chen proposed a novel and important

2

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

query for uncertain databases, namely, probabilistic group
subspace skyline query (PGSS), and presented an efficient
query procedure [22]. Ding et al. proposed the notation of
distributed skyline queries over uncertain data and designed
two computationally and communication-efficient algorithm-
s [23]. Most of these previous studies are based on P-skyline.
Specification by the user of an appropriate probability thresh-
old is one of the challenges for P-skyline. Moreover, in P-
skyline, tuples are considered individually, and the domi-
nance relationship between them is not taken into account.

Although incomplete data exist widely in practice, the
amount of research that considers incomplete data, let alone
probabilistic incomplete data, is very limited. A closely
related work to incomplete data is the k-dominant skyline
problem [24]. The k-dominant skyline algorithm overcomes
the non-transitivity property by discarding points that are
dominated in all dimensions, while keeping points that are
only dominated in k dimensions. The k-dominant skyline
algorithm cannot applied to incomplete data directly and
incurs prohibitive costs, which can be avoided with the
knowledge of incomplete dimensions. Khalefa et al. first
defined a dominance relation for incomplete data [25], which
is different from ours. They also introduced the ISkyline
algorithm for skyline computation over incomplete data.
Haghani et al. addressed the problem of processing contin-
uous top-k queries over incomplete data streams [26]. Wolf
et al. introduced QPIAD, which is a novel query rewrit-
ing and optimization framework that tackles the challenges
of incomplete autonomous databases [27]. Soliman et al.
explored a novel probabilistic model that extends partial
orders to represent the uncertainty in the score of database
records, and formulated several types of ranking queries on
this model [28]. Gao et al. proposed the k-skyband skyline
for incomplete databases in 2014 [29]. Cheng et al. studied
similarity search on dimension-incomplete data [30]. Lofi et
al. proposed an approach for the challenge of dealing with
missing information in datasets in connection with skyline
query processing, by using crowd-enabled databases [31].

However, none of them studied the database with uncer-
tainties of both incomplete and probabilistic characteristics.
In this paper, we formalize a progressive skyline query over
probabilistic incomplete data. In addition, this query is real-
ized in a parallel way.

III. PRELIMINARIES
In this section, we first present the uncertain data model that
we use in this paper. Afterwards, an innovative incomplete
data model is proposed. To avoid misunderstanding, we
assume that the smaller value is better. For reference, Table 1
summarizes the symbols that are used frequently in the rest
of this paper.

A. UNCERTAIN DATA MODEL
There have been many research works about query process-
ing on the locationally uncertain data model, which empha-
sizes processing the uncertainty of the location [1, 32, 33].

TABLE 1: Symbols and description
Notation Description
tp≺tq tp dominates tq
tp⊀tq tp does not dominate tq
P (tp) the existing (reliable) probability of tp
t.[i] the i-th dimensional value of t
t.b tuplue t’s bitmap
Bm a bitmap bucket contains tuples of t.b = m
Pnon−dom(S) S’s non-dominance probability
PP (S) S’s P-skyline probability
C(t) tuple t’s integrity
Bs

m monotonic sorted Bm

BR
m reduced Bm

PS(Bm) pruning set of Bm

c©tp complete pruning tuple tp
PQ(S) P-skyline answer set of S
Gj an independent partition group

TABLE 2: Distinctions between two models [32]
Property Locationally

Uncertain Object
Existentially Uncertain Object

Location uncertain certain
Existence certain uncertain
Storage a spatial histogram a point with existence probabil-

ity

All the objects in this model are known to exist. Admittedly,
this uncertain model is useful in many cases. However, the
uncertain model is not applicable to our problem about
incomplete probabilistic products,in which it is possible for
each product to be unavailable. Therefore, we conduct our re-
search on the basis of another existing uncertain data model.
Different from the previous model, this one has locationally
certain objects with existence probabilities (see Table 2). This
model is widely used in a variety of online trading sites and
previous papers [5, 19, 22].

The research works about skyline query over probabilistic
data are mostly based on the P-skyline Model, which was
first proposed in [1]. Here, we give an example to illustrate P-
skyline. According to Fig. 1(a), the non-dominated probabili-
ty of tuple d is calculated by Pnon−dom(d) = P (a)×P (d) =
0.3, because d is not dominated only if a is unavailable. Sim-
ilarly, Pnon−dom(b) = P (b) = 0.5, no tuple can dominate
b. In summary, P-skyline returns individual data tuples with
non-dominance probabilities that are greater than or equal to
a specified threshold. In this example, for a threshold of 0.5,
the P-skyline answer set is {b, c, f}.

B. INCOMPLETE DATA MODEL
Due to the existence of missing dimensional values, the tradi-
tional definition of a dominance relationship under complete
data is no longer applicable. The existing research works on
skyline query over incomplete data use an incomplete data
models, as in Definition 1 [25, 29]. Admittedly, Definition
1 provides a feasible model for tackling incomplete data.
However, this model is unreasonable in some cases. As
shown in Fig. 1, tuple a dominates all the other tuples when
its price information is missing. Restaurant a has a relatively
high price in this database. A customer may find the prices

3

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

unaffordable when he arrives at restaurant a. Therefore, we
need a more reasonable incomplete data model for perform-
ing a more reasonable skyline query over incomplete data.
The definition and further comparisons are given below.

Definition 1. Assume that t.[i] is the i-th dimensional
value of t. Tuple t dominates another tuple t

′
(denoted as

t≺t′) if the following two conditions hold:

• For each dimension i, either t.[i] and/or t
′
.[i] are/is

unknown, or t.[i]6t
′
.[i].

• There is at least one dimension j in which both t.[j] and
t
′
.[j] are known, and t.[j] < t

′
.[j].

We define a new dominance relationship over incomplete
data in Definition 2. The detail comparisons of Definition 1
and Definition 2 are given under Definition 3.

Definition 2 (Dominance relationship over incomplete da-
ta). Assume that t.[i] is the i-th-dimensional value of t. Tuple
t dominates another tuple t

′
(denoted as t≺t′) if the following

four conditions hold:

• There is at least one dimension i in which both t.[i] and
t
′
.[i] are known.

• For each dimension j in which both t.[j] and t
′
.[j] are

known, t.[j] ≤ t′ .[j].
• There is at least one dimension k in which t.[k] < t

′
.[k]

or t.[k] exists while t
′
.[k] is unknown.

• There does not exist any dimension m in which t.[m] is
unknown while t

′
.[m] is known.

The skyline set for an incomplete data set S is defined as
follows:

Definition 3 (Skyline set). The skyline set of an incomplete
multidimensional data set S is a set of tuples that are not
dominated by any other tuple in S.
A relatively more complete database (see Table 3) is intro-
duced for analyzing the differences between Definition 1 and
Definition 2. For convenience, we adjust the measurement u-
nit to simplify the data and assume that a lower measurement
value is better. Additionally, we use different background
colors to differentiate the lost dimensions.

TABLE 3: Four-dimensions incomplete dataset
Restaurant Price Distance Taste Service

(5$) (kM) (review scores) (review scores)
a 5 3 2 1
b 1 3 2 2
c 2 2 1 5
d 2 3 2 3
e 2 - 1 5
f 1 - 3 2
g - 1 4 1
h - 3 2 1
i 1 3 - -
j 3 1 - -
k 4 - - 1
m - - 2 2
n 1 - - -
p - 1 - -
q - - 1 -
r - - - 1

Under Definition 1, information lose seems to be advantage-
out for the merchants, which is unreasonable. According to
Table 3, restaurant n dominates nearly all the other restau-
rants, with only the value of the first dimension known, as do
restaurants p, q and r. Consequently, the skyline set of this
dataset under Definition 1 is {n, p, q, r}, which is apparently
unacceptable for customers. This set may encourage the
merchants to lose some information intentionally.
The same patterns under Definition 2 will yield more reason-
able results. We give priority to tuples with higher complete-
ness to prune the relatively incomplete tuples. According to
Table 3, tuple a dominates tuples r and h; tuple b dominates
tuples{n,m, i, f, d}; tuple c dominates tuplesq and e; and
tuple g dominates tuple p. Consequently, the skyline set of
this dataset, according to Definition 2, is {a, b, c, g, j, k},
which is obviously more applicable and helpful for customer-
s. People who are sensitive to price could choose b, which is
the cheapest option with good taste and service. People who
do not care about money but have limited time, can choose g.
Since this nearby restaurant has the best service, it could also
be chosen to ensure a positive dining experience.
Moreover, if a tuple has a great value in any one dimension,
but lose values of all the other dimensions, it still can be
a skyline answer under Definition 2. For example, if the
distance of tuple p is 0.5, it will still be a skyline answer.
Therefore, for our skyline query over incomplete data, Defi-
nition 2 is more suitable.

Definition 4. P-skyline query over a probabilistic incomplete
database S outputs a subset of S that has a P-skyline proba-
bility that is larger than a threshold α.
The answer set of the database in Fig. 1(b) according to
Definition 4 is {b, d, f} if we set the threshold to 0.5. This
paper studies the problem of apply P-skyline query over a
probabilistic incomplete database, which is given in Defini-
tion 4.

IV. SKYLINE QUERIES PROCESSING
In this section, we first put forward a baseline algorithm
for probabilistic incomplete data. Then, several methods are
introduced for enhancing the efficiency of the algorithm.

A. BASELINE ALGORITHM
The baseline algorithm is designed for the control test. Since
there is no existing any algorithm that is designed for P-
skyline query over a probabilistic incomplete database, the
baseline algorithm is simply designed according to Definition
2 and the definition of P-skyline[1]. As shown in Algorithm
1, the baseline algorithm is a brute-force algorithm; it is time-
consuming and inapplicable to big databases due to the high
computational burden of calculating P-skyline probabilities.
Moreover, the baseline algorithm is a serial algorithm.

B. GROUPING AND SORTING
Most existing skyline query algorithms are serial because of
the dependence among tuples. The computation of a tuple of-
ten relies on the results for other tuples. Therefore, the key to

4

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

Algorithm 1 Baseline Algorithm

Input: d-dimensional probabilistic incomplete data set S.
Output: PQ(S).

1: Initialize PQ(S)
2: for each tuple tp∈S do
3: Calculate PP (tp);
4: if PP {tp}≥α then
5: Put tp into PQ(S);
6: Return PQ(S).

parallelization is to determine which tuples are independent
of one another.
Bitmap is an important concept in the processing of incom-
plete data [25, 29]. For ease of representation and compu-
tation, we represent a d-dimensional incomplete tuple t by a
d-bit bitmap vector t.bwhose entries are 1 for all complete di-
mensions and 0 for all incomplete dimensions. For example,
the bitmaps of tuples t = (3,−, 2,−) and t

′
= (−, 2, 2, 3)

are t.b = 1010 and t
′
.b = 0111, respectively.

For the convenience of describing the incompleteness of a
tuple or a bitmap group, integrity is defined in Definition 6.
For example, the integrity of tuples t = (3, 1, 2,−) and t

′
=

(−,−,−, 3) are C(t) = 3 and C(t
′
) = 1, respectively.

Definition 5 (Independent tuples). Tuples a and b are inde-
pendent tuples if a⊀b and b⊀a.

Definition 6 (Integrity). The integrity C(ti) of any tuple ti
is the sum of the entries of its bitmap vector. The integrity
C(Bm) of any bitmap group Bm is the integrity of the tuple
in this group. The maximum integrity value of a tuple is its
dimension d and the minimum integrity value of a tuple is 1.
Assume that tuple a and tuple b have the same integrity
value and different bitmaps. It can be demonstrated that they
are independent tuples. Therefore, we can allocate them to
different buckets according to their bitmaps and integrity
value for convenience of parallelization.

Lemma 1. Two tuples are independent tuples if they have the
same integrity value and different bitmaps.

Proof: Assume that tuple a and tuple b have the same
integrity value and different bitmaps. There is at least one
dimension, i, in which a.[i] is known and b.[i] is unknown.
Moreover, there is at least one dimension, j, in which b.[j] is
known and a.[j] is unknown. According to Definition 2, a⊀b
and b⊀a. Therefore, a and b are independent tuples. 2
As shown in Fig. 2, the buckets with the same integrity value
have the same priority level. Thus, they can be processed at
the same time. For tuples with the same bitmap, the domi-
nance relationship is the same as that for complete data. We
can process the skyline query by each bitmap in a particular
order. Besides, some of the settled answers can be used to
prune tuples before processing.

Lemma 2. All tuples in Bm, where C(Bm) = d, will not be
dominated by any tuple in Bn, where C(Bn) = d− 1.

1111

1000 0100 0010 0001

C=4

1110 1101 1011 0111

C=3

1100 1010 1001 0110 0101 0011

C=2

C=1

FIGURE 2: Integrity pyramid

Proof: According to Definition 2, the number of missing
dimensions of tuples in Bn is greater than that of Bm, so
that Lemma 2 holds. 2
According to Lemma 2, it is impossible for all of the local
P-skyline answers to be dominated by tuples in the lower
layers. Moreover, it is impossible for tuples that belong to
different buckets of the same layer to have a dominance
relationship. Therefore, once we obtain a local P-skyline
answer, we can output it immediately because it is the final
answer. Progression can be realized by this way.
Before the processing of each bucket, it is necessary to sort it
according to a set of rules. For Bm with integrity d, sorting
should be carried out according to the following rules:
• Prepose the tuple with smaller value in any dimension.
• For tuples with the same minimum value, prepose the

tuple with the smaller sum value over all dimensions.
For example, subset {a, b, c, d} in Table 3 will be sorted as
{b, c, a, d} because tuples b, c, and a have a minimum value
of 1, while the minimum value of d is 2. In addition, the sum
value of b over all dimensions is 8 while those for c and a are
10 and 11 respectively.

Lemma 3. For a sorted group, it is impossible for a candi-
date tuple to be dominated by a postpositional tuple.

Proof: Assume that tuple a is in front of tuple b. In the
dimension in which the minimum value of a is attained, if
b is larger than a, it cannot dominate a. If b is equal to a
in that dimension, there is at least one dimension in which b
is larger than a because the sum of b over all dimensions is
larger than that of a. Therefore, according to Definition 2, it
is impossible for b to dominate a. 2
The sorting in descending order can be performed in each
group in a parallel way. Meanwhile, it can be processed by
the grouping operation. Algorithm 2 illustrates this proce-
dure.

Algorithm 2 Grouping and Sorting

Input: d-dimensional probabilistic incomplete data set S.
Output: 2d − 1 numbers of sorted bucket Bs

m.
1: Initialize 2d − 1 numbers of bucket Bm;
2: while S is not empty do
3: Read an object s from S;
4: Put s into a bucket Bm based on its bitmap;
5: Remove s from S;
6: Monotonic sort each bucket Bm;
7: Return Bs

m

5

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

C. INDIVIDUAL BUCKET PROCESSING
The processing of each bucket begins from the top of the
integrity pyramid, which is shown in Fig. 2. It is impossible
for tuples in the top bucket to be dominated by tuples in
lower layers so the answers can be output progressively.
Moreover, we can use some tuples with higher dominance
ability to prune other tuples, which accelerates the processing
speed. In order to clarify the dominance ability of each tuple,
Definition 7 is given as follows. A higher value of pruning
ability of a tuple indicates the greater chance of this tuple to
dominate other tuples.

Definition 7 (Pruning Ability). The pruning ability for tuple
tp is denoted as PA(tp) and is computed by

PA(tp) = 1− (1− P(tp))× (1− P(tq))
×

∏
∀tx,tq≺tx≺tp

(1− P(tx))

Definition 8 (Completed Pruning Tuple). A tuple tp is a
complete pruning tuple if its pruning ability is larger than or
equal to 1− α. the tuple is marked with c©.

Lemma 4. All tuples that are dominated by a complete
pruning tuple c©tp can be safely discarded without affecting
the answer set.

Proof: Assuming that ti is dominated by c©tp. Pp{ti} =
P (ti)×

∏
∀tx,tx≺ti(1− P (tx)). Since PA(tp)≥ 1− α, so

that (1 − P (tp))×
∏
∀tx,tx≺tp ≤ α. Since tp ≺ ti, we have

(1 − P (ti))×
∏
∀tx,tx≺ti < (1 − P (tp))×

∏
∀tx,tx≺tp < α.

So that Pp{ti} < P (ti)×α, which is less than α. Therefore,
ti can be safely discarded and this lemma holds. 2
Some tuples that are not marked as c© are also useful in
pruning strategies. These incomplete pruning tuples can help
produce complete pruning tuples. According to Fig. 3(a),
tuple tp is a complete pruning tuple when its existence
probability is larger than 1 − α. When P (tq) < 1 − α,
it is possible to help tp become a complete pruning tuple.
With assistant tuples, it is still possible for a tuple with low
existence probability to become a complete pruning tuple.
For example, as shown in Fig. 3(b), suppose we have pruning
tuples tp and tq . P (tq) = 0.3, P (tp) = 0.5 and tq≺tp. Since
PA(tq) < 0.6 and PA(tp) > 0.6, tp can be marked as c©
while tq is not. Further, if we set P (tp) = 0.4 and keep other
conditions invariably, PA(tp) will be 0.58, which is less than
0.6. If we have another pruning tuple tr that dominates tp,
even if its existance probability is only 0.1, PA(tp) will be
larger than 1 − α and tp will become a complete pruning
tuple.
Therefore, a tuple set that contains complete pruning tuples
and incomplete pruning tuples should be created in the pro-
cessing procedure. We can directly discard tuples that are
dominated by a complete pruning tuple.
With Lemmas 2, 3 and 4, Algorithm 3 is designed.
An example is presented to explain this algorithm. Table 4
shows a sorted dataset. Assume that the threshold is 0.4.
Bucket B111 consists of tuples a, b, c, d, e. Tuples a and

Dimension 1

D
im

e
n

sio
n

 2

©tp, P(tp) 1-!

ti

Pruning

Area

(a) Complete Pruning Tuple

Dimension 1

D
im

e
n

sio
n

 2

©tq, PA(tq) 1-!

ti

Pruning

Area

(b) Incomplete Pruning Tuples

tp, P(tp)<1-

FIGURE 3: Complete and incomplete pruning tuples

Algorithm 3 Single Bucket Processing

Input: Bm.
Output: Answer set PQ(Bm).

1: Initialize pruning set PS(Bm)
2: Initialize answer set PQ(Bm)
3: while Bm is not empty do
4: Read a tuple tp from Bm;
5: if PS(Bm)⊀tp then
6: if P (tp)≥α then
7: PQ(Bm) = PQ(Bm)∪tp;
8: Output tp;
9: PS(Bm) = PS(Bm)∪tp;

10: if P (tp)≥(1− α) then
11: Mark tp as c©;
12: else if ∃ c©tq≺tp, tq∈PS(Bm) then
13: Discard tp;
14: Break;
15: else if ∃tq≺tp, tq∈PS(Bm), ∧tq is not c© then
16: Calculate PA(tp);
17: if PA(tp)≥(1− α) then
18: Mark tp as c©;
19: Calculate Pp(tp);
20: if Pp{tp}≥α then
21: PQ(Bm) = PQ(Bm)∪tp;
22: Output tp;

TABLE 4: Three-dimensions probabilistic incomplete
dataset

Restaurant Price Distance Taste Positive Rate
(5$) (kM) (review scores) (rates)

a 7 3 1 0.9
b 5 7 1 0.4
c 5 9 1 0.5
d 2 5 6 0.7
e 8 9 2 0.6
f 3 - 1 0.9
g 2 - 8 0.8
h 2 3 - 0.6
i 6 9 - 1
j - - 1 0.8
k - 3 - 0.5
m 4 - - 0.9

6

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

b are put into PQ(B111) and PS(B111) in lines 5 to 8
of Algorithm 3 where a is marked as c©, while b is not.
Then, tuple c is dominated by an incomplete pruning tuple
b. Tuple c is put into PS(B111), but not PQ(B111), after the
calculation of PA(c) and Pp{c}. Afterwards, d is put into
PQ(B111) and PS(B111), while e is pruned by completed
pruning tuple a. From this procedure, we obtain PQ(B111)
of a, b, d and PS(B111) of c©a, b, c©c, c©d.

D. LOWER-LAYER PROCESSING
The pruning set can be transferred to the subsets after we
obtain the pruning set of a higher-layer bucket. The pruning
efficiency can be greatly enhanced by this approach.

Definition 9. Tuples in Pruning Set PS(Bm) of bitmap
group Bm will be transferred to subsets PS(Bn), which is
the Pruning Set of bitmap group Bn if the following two
conditions hold:
• Exactly on digit of Bm.b is 1, while Bn.b is 0.
• For each digit of Bm.b that is 0, the same digit of Bn.b

must be 0 as well.

111

110

101

011

100

010

001

FIGURE 4: PS(Bm) transfer to its subsets

Lemma 5. Tuples that are supposed to be in the final P-
skyline results will not be pruned by the transferred pruning
tuples.

Proof: ti is a tuple that is supposed to be in the final result
set PQ(S) without the use of the transferred pruning tuples.
Assume that ti will be pruned by transferred pruning tuple ttj .
Since ttj is a tuple that was copied from tj with one or more
missing dimensions, tj can also prune ti. Thus, ti cannot be
a final skyline tuple and the assumption is invalid. Therefore,
ti will not be pruned by any transferred pruning tuple and
Lemma. 5 holds. 2
The notation of pruning set transfer is introduced to reduce
the calculation workload and enhance the pruning efficiency.
After the processing of the sorted bitmap group Bs

m, which
has the maximum value of integrity C(Bm) = d, the
PS(Bm) can prune not only tuples in Bs

m but also tuples
in any other bitmap group Bs

n that has an integrity value of
C(Bn) = d − 1. As illustrated in Fig. 4, PS(Bm) from the
upper level should be transferred to the lower level to enhance
the efficiency. For example, assume that tuple t = (1, 3, 1) is
in PS(Bm) with probability 0.7. To fully realize its pruning

potential and improve the overall computational efficiency,
we can transfer this tuple to the Pruning Set of bitmap groups
with a bitmaps of 110,101,and 011. Similarly, the tuples in
each bitmap group’s pruning set could also be transferred.
To streamline and optimize this transfer characteristic, we
give a definition that describes the conditions of the tuple
sender and the tuple receiver (see Definition 9). This also
means that the receiver bucket is independent of the other
higher-level buckets. The receiver bucket only needs to wait
for the processes in its sender buckets to be completed, but
not the processes in other buckets. The parallel efficien-
cy is improved. For example, the transfer will occur from
Bm.b = 110 to B(n).b = 100, but not Bp.b = 001. In
this way, the initial Pruning Set of these groups is not empty,
which provides a considerable reduction in the number of
calculations in the overall process of P-skyline query over
uncertain incomplete data.

Algorithm 4 Lower Layers Processing

Input: Bm.
Output: Answer set PQ(Bm).

1: Initialize pruning set PS(Bm)
2: Get pruning tuples from related upper layer;
3: Initialize answer set PQ(Bm)
4: SBP(Bm);

With the use of transferred pruning tuples, Algorithm 4 is
designed as follows: SBP() is moved from line 3 to line 22 in
Algorithm 3. We give an example in Table 4 to illustrate the
transfer mechanism. We obtain PS(B111) after applying Al-
gorithm 3. Then, PS(B111) can be transferred to PS(B101)
and PS(B110). Buckets B101 and B110 can be processed
in parallel with these pruning sets at this stage. Tuple f is
put into PS(B101) and output as an answer, while tuple g is
pruned by transferred pruning tuple d. The other buckets are
processed in a similar way. The final answers of P-skyline in
this database under threshold of 0.4 are tuples a, b, d, f and
h.

E. INDIVIDUAL BUCKET EFFICIENCY ENHANCEMENT

The processing of individual buckets is serial in Algorithm
3. The parallel efficiency decreases when the processing of
some buckets finishes before the processing of others. A typi-
cal example is that only one thread is loaded when processing
the first bucket. The processing of all the other buckets relies
on the result for the first bucket. Therefore, parallelizing the
processing of individual buckets is very important.

Definition 10 (Tuple bus). Tuples in one tuple bus cannot
dominate each other, which means they are independent tu-
ples. The capacity of the tuple bus is the number of processor
threads.

Lemma 6. Any number of independent tuples can be pro-
cessed at the same time without changing the final results.

7

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

Proof: Assume that tuples a and b are independent tuples.
According to Algorithm 3, the sequence of processing in-
fluences the generation of the pruning set. Since a and b
do not have a dominance relationship, putting one into the
pruning set does not affect the other. Therefore, a and b can
be processed in any order and Lemma 6 holds. 2

Lemma 7. The use of a tuple bus does not affect the final
results.

Proof: Tuples in the same tuple bus do not have a dominance
relationship. Therefore, according to Lemma 6, Lemma 7
holds. 2
Before the processing in Algorithm 3, we can obtain indi-
vidual tuples from the sorted bucket before the full load of
the tuple bus. Then, they can be read by each thread and
processed in parallel. We give an example to illustrate the
operation. Assume that the number of thread is two. The
processing of B111 in Table 4 involves the processing of
buses {a, b}, {d}. The tuples in each bus are processed in
parallel.
The final algorithm is shown in Algorithm 5. Line 4 ensures
the parallel processing according to different platforms. Line
5 to line 8 are the building of bitmap index. Line 10 to line
36 are the main processing flow that are illustrated above.
With Algorithm 5, a probabilistic incomplete database can
be processed to a set of skyline answers efficiently.

V. EXPERIMENTAL EVALUATION
To evaluate our proposed algorithms, we implement them in
C++. The experiments are performed on a PC with an Intel
R© XeonTM E5-2690 2.9GHz CPU (with 8 cores) and 8GB

main memory, under the Ubuntu 14.04 operation system.

A. EXPERIMENTAL SETUP
To generate the synthetic datasets that are used in the exper-
iments, we compile a random database generator program
in C++. The generator provides the database with three pa-
rameters: database size, dimensionality and incomplete rate.
Similar to [5, 23], we use uniform distribution to randomly
generate an reliable probability of each tuple to make them
be probabilistic uncertain. The reliable probability of each
tuple takes a random value between 0 and 1.The parameters
settings of the synthetic database are summarized in Table 5.

TABLE 5: The database parameter settings
Parameter Default Value Variation Range

Database Size 10K 1K∼1M
Dimensionality 3 2∼7
Incomplete Rate 0.3 0.2∼0.6

We also evaluated our algorithms on four real world dataset-
s: CCarDB, HotDB, NBA and UCarDB. CCarDB is a 6-
dimensional database of size 41,424. In our experiments,
we consider three numerical attributes of each car: Price,
Mileage and Age. HotDB contains 10,120 5-dimensional
values, which represent the comments and positive review

Algorithm 5 Final Algorithm

Input: Probabilistic incomplete database S.
Output: Answer set PQ(S).

1: Initialize PQ(S);
2: Initialize 2d − 1 numbers of Bm;
3: Initialize 2d − 1 numbers of PS(Bm);
4: Set capacity of a tuple bus to thread count;
5: while S is not empty do
6: Read an object s from S;
7: Put s into a bucket Bm based on its bitmap;
8: Remove s from S;
9: Monotonic sort each Bm;

10: for each Bs
m from higher layer to lower layer do

11: while tuple bus TB is not full do
12: Read a tuple tp from Bs

m;
13: if TB⊀tp then
14: TB = TB∪tp;
15: Discard tp from Bs

m;
16: else
17: Skip tp;
18: Capture a tuple tp from TB;
19: if PS(Bm)⊀tp then
20: if P (tp)≥α then
21: PQ(Bm) = PQ(Bm)∪tp;
22: Output tp;
23: PS(Bm) = PS(Bm)∪tp;
24: if P (tp)≥(1− α) then
25: Mark tp as c©;
26: else if ∃ c©tq≺tp, tq∈PS(Bm) then
27: Discard tp;
28: Break;
29: else if ∃tq≺tp, tq∈PS(Bm), ∧tq is not c© then
30: Calculate PA(tp);
31: if PA(tp)≥(1− α) then
32: Mark tp as c©;
33: Calculate Pp(tp);
34: if Pp(tp)≥α then
35: PQ(Bm) = PQ(Bm)∪tp;
36: Output tp;
37: Transfer PS(Bm) to its subsets;
38: return 0

ratios of hotels in Beijing. The attributes contain location,
facilities, service, sanitary condition and price inforamtion.
These two databases are probabilistic incomplete databases
and were obtained by us from two famous e-commerce web-
sites in China. NBA contains 17,266 5-dimensional values,
which represent the box scores of the basketball players
in the National Basketball Association. UCarDB is a 2-
dimensional dataset of size 1,048,575, which represents used
car information in U.S. These two databases have been
widely used in many previous works on dominance problems
[34, 35, 36, 37, 38, 39, 40].
The experiments are divided into two parts: In the first part,

8

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

we compare the performances of four algorithms: BF, IP,
TS and EP. BF is the baseline algorithm, which is described
in Section 1. IP applies Algorithm 3 to all buckets after
grouping and sorting. TS applies pruning tuple transfer, as
described in Section 4, on IP. EP is the algorithm that is
presented as Algorithm 5. We will find that EP has obvious
advantages over the other algorithms through comparison. In
the second part, examine the performance of EP under other
conditions.
In the following experiments, we consider the following three
aspects as our performance metrics:

• Processing time: the time spent processing the database;
• Progression: the number of output answer tuples in the

timer shaft;
• Parallel efficiency: the parallel efficiency of our paral-

lelized algorithm.

B. COMPARISON EXPERIMENTS
To evaluate the performance of our algorithm, a comparison
is necessary. However, our algorithm is the first parallel al-
gorithm to tackle P-skyline query over incomplete uncertain
databases with progression. Therefore, we design a compari-
son with the four algorithms that are presented in this paper:
BF, IP, TS and EP, which were introduced in the previous
subsection.
The performance comparison is the first experiment on a
synthetic database. Three parameters are varied in building
the synthetic database: the number of tuples in the database,
the dimensionality d and the incomplete rate. We change the
dimensionality, database size, incomplete rate, and threshold
value from d = 2 to d = 7, 1k to 1M , 0.2 to 0.6, and α = 0.3
to α = 0.7, respectively. The results are shown in Fig. 5.
As shown in Fig. 5(a), the processing time of each algorithm
keeps growing when the database size increases. However,
the processing time of BF is obviously much larger compared
to the other algorithms, regardless of whether the database
size is large or small. We find that the time cost of BF
becomes unacceptable when the database size reaches 300K.
In addition, IP has a barely acceptable processing time,
according to the figure. For a small database, its processing
time is only slightly longer than those of TS and EP. How-
ever, the time cost of IP is more than ten times that of EP
when the database size reaches 100K. Additionally, the time
gap between IP and EP widens as the size of the database
increases. Therefore, both of BF and IP are unsuitable for
processing a large database.
Fig. 5(b) indicates that for all algorithms, higher dimen-
sionality databases require much more processing time than
lower dimensional databases. The cost for d = 7 is more than
ten times that for d = 2 in all algorithms. However, EP still
outperforms the others algorithms. The curve of EP is flatter
than those of the others, which means it is suitable for high-
dimensional databases.
Fig. 5(c) reveals that the incomplete rate has little effect on
the processing time of each algorithm. The processing time

of each algorithm rises inconspicuously when the incomplete
rate is 0.3. All of the four lines are nearly straight.
Similarly, the threshold value has little influence on the
processing time of each algorithm. Fig. 5(c) shows that the
larger threshold value is, the lower the time cost.
Next, we try to implement all four algorithms on real databas-
es CCarDB, HotDB, NBA and UCarDB. The experimental
results are shown in Fig. 6. BF is unable to handle UCarDB.
BF requires more than one thousand seconds, which is un-
acceptable. EP remarkably outperforms all the other algo-
rithms. EP is almost twenty times faster than IP on HotDB
and NBA, and it is more than forty times faster that UCarDB.
Therefore, our algorithm EP is also very efficient on real data.

C. FURTHER PERFORMANCE EVALUATION
According to the comparison experiments, our algorithm can
output the answer in a quarter of a second, even when the
database size is increased to one million. In this section, we
try to determine the maximum performance by applying it to
a larger and higher-dimensional database. At the same time,
the parallel efficiency and progression of EP are also tested.
The experiments show that the processing time increases
steadily and continuously as the database size increases. The
dimensionality of the database also influences the processing
time. Experimental results are shown in Fig. 7(a). For a
database with a size of 100 K, the processing time varies
from 0.029 s to 0.379 s when its dimensionality is varied
from 2 to 7. Even when the database size is increased to
one million, our algorithm can still return the answer quickly.
On a database with 30 M tuples, the processing time is still
acceptable. Even for a 7-dimensional database, the result
is given in approximately one minutes. Therefore, the time
complexity of our algorithm is acceptable.
The incomplete rate of the database is correlated with the
difficulty of processing. In our experiment, 0.3 seems to be
the hardest incomplete rate, which is shown in Fig. 7(b).
However, the influence of the incomplete rate is compara-
tively small.
Fig. 8(a) shows the parallel efficiency of EP. The y-
coordinate implies the parallel efficiency of EP. For the Octa-
core system, a parallel efficiency of 0.9 means a speedup
ratio of 7.2. The parallel efficiency increases as the database
size and dimensionality increase. This is very significant
because larger and higher-dimensional databases are more
time-consuming. Fig. 8(b) indicates that the parallel efficien-
cy is highest when incomplete rate is 0.3, which means that
EP enjoys better parallel performance on more difficult tasks.
Progressive testing is conducted under default settings of
d = 5 and size = 1M . The number of answers on a low-
dimensional or small database is too small for determining
the progression of EP. The experimental result is shown in
Fig. 9. It illustrates that EP achieves better progressive on a
larger database. According to Fig. 9(a), EP outputs all the
results in the first fifth of the processing procedure when
size = 30M , which is very time-saving for users. For a
smaller database, users also receive sufficient skyline tuples

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

1 k 3 k 1 0 k 3 0 k 1 0 0 k 3 0 0 k 1 m
1 E - 3

0 . 0 1

0 . 1

1

1 0

1 0 0

1 0 0 0
tim

e(s
)

s i z e

B F I P T S E P

(a) Processing time with different database sizes

2 3 4 5 6 7
0 . 0 1

0 . 1

1

1 0

1 0 0 B F I P T S E P

d i m e n s i o n s

tim
e(s

)

(b) Processing time with different data dimensions

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

0 . 0 1

0 . 1

1 B F I P T S E P

i n c o m p l e t e r a t e

tim
e(s

)

(c) Processing time with different incomplete rates

0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

0 . 0 1

0 . 1

1 B F I P T S E P

t h r e s h o l d

tim
e(s

)

(d) Processing time with different threshold values

FIGURE 5: Experiment results for synthetic data

in a shorter time. Additionally, the processing time on a
small database is shorter. Fig. 9(b) implies that at least fifty
percent of the final answers can be output in the first third
of the processing time. This means that users reveive enough
skyline candidates to make decisions before the querying is
finished. Therefore, the progression of EP is very meaningful.

VI. CONCLUSIONS

For most problems in market analysis and decision making,
P-skyline query over incomplete uncertain data is a very use-
ful tool. In most cases, the number of tuples that need to be
processed does not exceed ten millions, and the dimension-
ality is not more than six. The algorithm that we proposed in
this paper has been demonstrated to be efficient and valuable
in this range. The processing time is limited to a few seconds.
The parallel efficiency of our algorithm is also outstanding
when processing high-dimensional large databases, which
greatly reduces the time-cost. Additionally, the progression
of our algorithm provides sufficient candidates for users to
make decision before whole querying process has finished.
Therefore, we believe this algorithm has many applications.
Future research should examine skyline queries with privacy
protection.

REFERENCES
[1] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilis-

tic skylines on uncertain data,” in Proceedings of the
33rd international conference on Very large data bases.
VLDB Endowment, 2007, pp. 15–26.

[2] I. Bartolini, P. Ciaccia, and M. Patella, “Salsa: com-
puting the skyline without scanning the whole sky,” in
Proceedings of the 15th ACM international conference
on Information and knowledge management. ACM,
2006, pp. 405–414.

[3] K. C. Lee, B. Zheng, H. Li, and W.-C. Lee, “Ap-
proaching the skyline in z order,” in Proceedings of the
33rd international conference on Very large data bases.
VLDB Endowment, 2007, pp. 279–290.

[4] Y. Wang, Z. Shi, J. Wang, L. Sun, and B. Song, “Sky-
line preference query based on massive and incomplete
dataset,” IEEE Access, vol. 5, pp. 3183–3192, 2017.

[5] X. Zhou, K. Li, Y. Zhou, and K. Li, “Adaptive process-
ing for distributed skyline queries over uncertain data,”
IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 28, no. 2, pp. 371–384, 2016.

[6] Y. M. AbdulAzeem, A. I. Eldesouky, H. A. Ali, and
M. M. Salem, “Ranking distributed database in tuple-
level uncertainty,” Soft Computing, vol. 19, no. 4, pp.

10

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

BF IP TS EP

0.1

1

10
CCarDB d=3, size=41424

tim
e

(s
)

algorithm

(a) Processing time of CCarDB

BF IP TS EP
0.01

0.1

1

10
HotDB d=5, size=10120

tim
e

(s
)

algorithm

(b) Processing time of HotDB

B F I P T S E P

0 . 1

1

1 0
N B A d = 5 , s i z e = 1 7 2 6 6

tim
e(

s)

a l g o r i t h m
(c) Processing time of NBA

BF IP TS EP

0.1

1

10

100

1000 UCarDB d=2, size=1048575

tim
e

(s
)

algorithm

(d) Processing time of UCarDB

FIGURE 6: Experiment results for real data

1 0 0 k 3 0 0 k 1 m 3 m 1 0 m 3 0 m

0 . 1

1

1 0

1 0 0

tim
e(s

)

s i z e

d = 2 d = 3 d = 4
d = 5 d = 6 d = 7

(a) Processing time by dimensions

1 0 0 k 3 0 0 k 1 m 3 m 1 0 m 3 0 m

0 . 1

tim
e(s

)

s i z e

0 . 2 0 . 3 0 . 4
0 . 5 0 . 6

(b) Processing time by incomplete rates

FIGURE 7: Processing time of EP

965–980, 2015.
[7] Y. T. Tsou, Y. L. Hu, Y. Huang, and S. Y. Kuo, “Sftopk:

Secure functional top- k query via untrusted data stor-
age,” IEEE Access, vol. 3, pp. 2875–2890, 2015.

[8] S. Borzsony, D. Kossmann, and K. Stocker, “The sky-

line operator,” in Data Engineering, 2001. Proceedings.
17th International Conference on. IEEE, 2001, pp.
421–430.

[9] H. Yong, J.-h. Kim, and S.-w. Hwang, “Skyline ranking
for uncertain data with maybe confidence,” in Data

11

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

1 0 0 k 3 0 0 k 1 m 3 m 1 0 m 3 0 m0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5
eff

ici
en

cy

s i z e

d = 2 d = 3 d = 4
d = 5 d = 6 d = 7

(a) Parallel efficiency by dimensions

1 0 0 k 3 0 0 k 1 m 3 m 1 0 m 3 0 m0 . 6 8
0 . 7 0
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6
0 . 8 8

eff
ici

en
cy

s i z e

0 . 2 0 . 3 0 . 4
0 . 5 0 . 6

(b) Parallel efficiency by incomplete rates

FIGURE 8: Parallel efficiency of EP

1 0 % 3 0 % 5 0 % 7 0 % 9 0 %0

2 0

4 0

6 0

8 0

1 0 0

fin
ish

pe
rce

nts

t i m e p e r c e n t s

 1 0 0 k 3 0 0 k 1 m
 3 m 1 0 m 3 0 m

(a) Progressive by sizes

1 0 % 3 0 % 5 0 % 7 0 % 9 0 %0

2 0

4 0

6 0

8 0

1 0 0

fin
ish

pe
rce

nts

t i m e p e r c e n t s

 d = 2 d = 3 d = 4
 d = 5 d = 6 d = 7

(b) Progressive by dimensions

FIGURE 9: Progressive of EP

Engineering Workshop, 2008. ICDEW 2008. IEEE 24th
International Conference on. IEEE, 2008, pp. 572–
579.

[10] M. J. Atallah and Y. Qi, “Computing all skyline prob-
abilities for uncertain data,” in Proceedings of the
twenty-eighth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems. ACM,
2009, pp. 279–287.

[11] W. J. Zhang, X. M. Lin, Y. Zhang, W. Wang, and
J. X. Yu, “Probabilistic skyline operator over sliding
windows,” in Proc. of the 25th Int. Conf. on Data
Engineering (ICDE). IEEE, 2009, pp. 1060–1071.

[12] I. Bartolini, P. Ciaccia, and M. Patella, “The skyline of a
probabilistic relation,” Knowledge and Data Engineer-
ing, IEEE Transactions on, vol. 25, no. 7, pp. 1656–
1669, 2013.

[13] L. Antova, C. Koch, and D. Olteanu, “From complete
to incomplete information and back,” in Proceedings of
the 2007 ACM SIGMOD international conference on
Management of data. ACM, 2007, pp. 713–724.

[14] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the

representation and querying of sets of possible worlds,”
Theoretical Computer Science, vol. 78, no. 1, pp. 159–
187, 1991.

[15] C. C. Aggarwal and P. S. Yu, “A survey of uncertain data
algorithms and applications,” IEEE Trans. on Knowl-
edge and Data Engineering, vol. 21, no. 5, pp. 609–623,
2009.

[16] M. Hua, J. Pei, W. J. Zhang, and X. M. Lin, “Ranking
queries on uncertain data: a probabilistic threshold ap-
proach,” in Proc. of the ACM Int. Conf. on Management
of Data (SIGMOD). ACM, 2008, pp. 673–686.

[17] E. Michelakis, R. Krishnamurthy, P. J. Haas, and
S. Vaithyanathan, “Uncertainty management in rule-
based information extraction systems,” in Proceedings
of the 2009 ACM SIGMOD International Conference
on Management of data. ACM, 2009, pp. 101–114.

[18] G. Q. Xiao, K. L. Li, K. Q. Li, and X. Zhou, “Ef-
ficient top-(k, l) range query processing for uncertain
data based on multicore architectures,” Distributed and
Parallel Databases, vol. 33, no. 3, pp. 381–413, 2015.

[19] X. Zhou, K. Li, G. Xiao, Y. Zhou, and K. Li, “Top

12

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2806379, IEEE Access

Zeng et al.: Parallel and Progressive Approaches for Skyline Query over Probabilistic Incomplete Database

k favorite probabilistic products queries,” IEEE Trans,
Knowl. Data Eng, vol. 28, no. 10, pp. 2808–2821, 2016.

[20] X. Lian and L. Chen, “Reverse skyline search in uncer-
tain databases,” ACM Transactions on Database Sys-
tems (TODS), vol. 35, no. 1, p. 3, 2010.

[21] W. J. Zhang, X. M. Lin, Y. Zhang, W. Wang, G. P.
Zhu, and J. X. Yu, “Probabilistic skyline operator over
sliding windows,” Information Systems, vol. 38, no. 8,
pp. 1212–1233, 2013.

[22] X. Lian and L. Chen, “Efficient processing of prob-
abilistic group subspace skyline queries in uncertain
databases,” Information Systems, vol. 38, no. 3, pp.
265–285, 2013.

[23] X. F. Ding and H. Jin, “Efficient and progressive algo-
rithms for distributed skyline queries over uncertain da-
ta,” IEEE Trans. on Knowledge and Data Engineering,
vol. 24, no. 8, pp. 1448–1462, 2012.

[24] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and
Z. Zhang, “Finding k-dominant skylines in high di-
mensional space,” in Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data. ACM, 2006, pp. 503–514.

[25] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski,
“Skyline query processing for incomplete data,” in Data
Engineering, 2008. ICDE 2008. IEEE 24th Internation-
al Conference on. IEEE, 2008, pp. 556–565.

[26] P. Haghani, S. Michel, and K. Aberer, “Evaluating top-
k queries over incomplete data streams,” in Proceedings
of the 18th ACM conference on Information and knowl-
edge management. ACM, 2009, pp. 877–886.

[27] G. Wolf, H. Khatri, B. Chokshi, J. Fan, Y. Chen, and
S. Kambhampati, “Query processing over incomplete
autonomous databases,” in Proceedings of the 33rd in-
ternational conference on Very large data bases. VLDB
Endowment, 2007, pp. 651–662.

[28] M. A. Soliman, I. F. Ilyas, and S. Ben-David, “Support-
ing ranking queries on uncertain and incomplete data,”
The International Journal on Very Large Data Bases,
vol. 19, no. 4, pp. 477–501, 2010.

[29] Y. Gao, X. Miao, H. Cui, G. Chen, and Q. Li, “Pro-
cessing k-skyband, constrained skyline, and group-by
skyline queries on incomplete data,” Expert Systems
with Applications, vol. 41, no. 10, pp. 4959–4974,
2014.

[30] W. Cheng, X. Jin, J.-T. Sun, X. Lin, X. Zhang, and
W. Wang, “Searching dimension incomplete databas-
es.” IEEE Trans. Knowl. Data Eng., vol. 26, no. 3, pp.
725–738, 2014.

[31] C. Lofi, K. El Maarry, and W.-T. Balke, “Skyline
queries in crowd-enabled databases,” in Proceedings
of the 16th International Conference on Extending
Database Technology. ACM, 2013, pp. 465–476.

[32] M. L. Yiu, N. Mamoulis, X. Y. Dai, Y. F. Tao, and
M. Vaitis, “Efficient evaluation of probabilistic ad-
vanced spatial queries on existentially uncertain da-
ta,” IEEE Trans. on Knowledge and Data Engineering,

vol. 21, no. 1, pp. 108–122, 2009.
[33] Y. Wang, X. Li, X. Li, and Y. Wang, “A survey of

queries over uncertain data,” Knowledge and informa-
tion systems, vol. 37, no. 3, pp. 485–530, 2013.

[34] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive
skyline computation in database systems,” ACM Trans-
actions on Database Systems (TODS), vol. 30, no. 1,
pp. 41–82, 2005.

[35] W. Zhang, X. Lin, Y. Zhang, J. Pei, and W. Wang,
“Threshold-based probabilistic top-k dominating
queries,” The International Journal on Very Large Data
Bases, vol. 19, no. 2, pp. 283–305, 2010.

[36] E. Tiakas, G. Valkanas, A. N. Papadopoulos,
Y. Manolopoulos, and D. Gunopulos, “Metric-
based top-k dominating queries.” in EDBT, 2014, pp.
415–426.

[37] E. Tiakas, A. N. Papadopoulos, and Y. Manolopou-
los, “Progressive processing of subspace dominating
queries,” The International Journal on Very Large Data
Bases, vol. 20, no. 6, pp. 921–948, 2011.

[38] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos,
“Continuous top-k dominating queries,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 24,
no. 5, pp. 840–853, 2012.

[39] B. J. Santoso and G.-M. Chiu, “Close dominance graph:
An efficient framework for answering continuous top-
dominating queries,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 26, no. 8, pp. 1853–1865,
2014.

[40] Y. Tao, X. Xiao, and J. Pei, “Efficient skyline and top-k
retrieval in subspaces,” Knowledge and Data Engineer-
ing, IEEE Transactions on, vol. 19, no. 8, pp. 1072–
1088, 2007.

13

