
Speeding Up VM Startup by Cooperative
VM Image Caching

Yifan Zhang , Kai Niu, Weigang Wu ,Member, IEEE, Keqin Li , Fellow, IEEE, and Yu Zhou

Abstract—Virtual machine (VM) management is at the core of virtualized cloud data centers. Among others, how to reduce the startup

delay of VMs is a key issue for improving user experience and resource utility. In this paper, we study this issue by jointly considering

VM placement and VM image caching. We formulate the joint placement problem and design several joint algorithms, including both

online and offline algorithms, to speed up VM startup. In our design, we adopt the cooperative caching approach, where image cache

copies are shared among physical machines (PMs) so as to reduce image retrieval time. The key point of our algorithms lies in how to

appropriately place VM image cache among PMs so as to speed up VM startup as much as possible. The proposed algorithms are

evaluated by extensive simulations via SimGrid. The results show that our algorithms can achieve shorter startup delay in most cases,

compared with existing ones.

Index Terms—Cloud computing, data caching, data centers, resource management, VM placement

Ç

1 INTRODUCTION

CLOUD computing has become a major paradigm for var-
ious applications. By shifting computing load to cloud

data centers, users can significantly reduce IT cost. Espe-
cially, with virtualization technology, various computing
resources, including CPU, memory, storage and network
devices, can be shared and used in a flexible and dynamic
way, and resource utility can be improved significantly [1].

Various virtualization technologies have been proposed,
including virtual machine (VM) and Linux-based container.
VM technologies, like KVM, Xen, share the hardware
resources of a physical machine between multiple VMs by
virtualizing system resources such as CPUs, memory and
interrupts, and each VM runs its own OS. Containers, like
LXC, Docker, provide isolated user space instances while
sharing a common OS kernel.

Both VM and container have their own pros and cons,
and suit for different requirements. VM can achieve better
isolation and OS diversity, while container can achieve
higher CPU performance and easier application deploy-
ment [14], [20]. Therefore, both VM and container are major

virtualization technologies nowadays, and they are adopted
in different scenarios.

Here, in this work, we focus on VM based virtualization.
Different levels of cloud computing services, including IaaS
(infrastructure as a service), PaaS (platform as a service) and
SaaS (software as a service), can all be realized on top of
VMs. Major public cloud platforms like Amazon EC2, Rack-
Space and Microsoft Azure, all adopt VM technologies to
achieve flexible resourcemanagement and high scalability.

Among others, VM placement is a key problem in VM
management, because the placement of VMs will signifi-
cantly affect the resource utility of data centers [1]. To
address this problem, quite a number of algorithms have
been proposed in recent years, with various objectives and
constraints considered.

Utility of resources at physical machines (PMs), especially
CPU and memory, should be the most obvious objective [2],
[3]. Energy based placement algorithms try to reduce data
center energy consumption [4], [5]. Network communication
cost is also widely studied in VM placement, which concerns
either communication among VMs [6] or access cost from
VMs to data nodes [7]. Some researchers also consider
dependability in VM placement by tolerating VM failures
via active or standby replicas [8], [9].

Our work focuses on how to reduce VM image retrieval
cost, which is also a major objective in VM placement [10],
[11]. In typical data centers, VM disk images are stored in
special storage nodes and will be transferred to PMs
selected according to VM demand and scheduling. The size
of a VM image may range from one gigabytes to tens of gig-
abytes. Image transfer will obviously introduce high net-
work traffic load and also long startup delay. To reduce
such image retrieval cost, researchers have proposed three
different approaches. The first is to place VMs on the PMs
that have similar images so as to reduce amount of data
transfer, because only the difference data need to be

� Y. Zhang, K. Niu, and W. Wu are with the School of Data and Computer
Science, Guangdong Province Key Laboratory of Big Data Analysis and
Processing, and the Key Laboratory of Machine Intelligence and Advanced
Computing, Ministry of Education, Sun Yat-sen University, Guangzhou
510006, China. E-mail: zhangyifan27@qq.com, emnkcn@gmail.com,
wuweig@mail.sysu.edu.cn.

� K. Li is with the Department of Computer Science, State University of New
York at New Paltz, New York, NY 12561 USA. E-mail: lik@newpaltz.edu.

� Y. Zhou is with College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, China.
E-mail: zhouyu@nuaa.edu.cn.

Manuscript received 4 June 2017; revised 9 Nov. 2017; accepted 29 Dec. 2017.
Date of publication 9 Jan. 2018; date of current version 5 Mar. 2021.
(Corresponding author: Weigang Wu.)
Recommended for acceptance by Y. Wu.
Digital Object Identifier no. 10.1109/TCC.2018.2791509

360 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

2168-7161 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3692-0971
https://orcid.org/0000-0002-3692-0971
https://orcid.org/0000-0002-3692-0971
https://orcid.org/0000-0002-3692-0971
https://orcid.org/0000-0002-3692-0971
https://orcid.org/0000-0002-4714-7021
https://orcid.org/0000-0002-4714-7021
https://orcid.org/0000-0002-4714-7021
https://orcid.org/0000-0002-4714-7021
https://orcid.org/0000-0002-4714-7021
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0002-3723-7584
https://orcid.org/0000-0002-3723-7584
https://orcid.org/0000-0002-3723-7584
https://orcid.org/0000-0002-3723-7584
https://orcid.org/0000-0002-3723-7584
mailto:
mailto:
mailto:
mailto:
mailto:

retrieved [12]. Another approach [10] is to retrieve image
chunks from different PMs in a peer-to-peer way so as to
reduce data image transfer from storage nodes. Booting
VMs from a minimal image [13] has also been studied to
reduce VM startup delay (although network traffic load
may not be reduced by this approach).

Sometimes, VM placement is studied together with VM
migration [16], [17]. With migration, running VMs can be
re-placed to other PMs for various objectives, including
resource utility, load balancing, energy consumption etc.

In this paper, we consider how to reduce the time cost of
VM image retrieval so as to speed up the startup of VMs.
Startup delay of VMs should be a key factor that signifi-
cantly affect the quality level of cloud services.

Fig. 1 shows the general procedure of starting VMs upon
the VM requests from users. Current data centers are still
suffering from a quite long VM startup delay, ranging from
several to tens of minutes [13]. Accordingly, reducing VM
startup delay will significantly improve the performance of
data centers in various aspects, including PM resource util-
ity, user experience, etc.

The time of image retrieval takes a large part of the total
startup delay. Our approach is to reduce image retrieval time
by placing image caches appropriately among PMs in a data
center. Data caching is a widely used technique to reduce
data access cost in various scenarios and applications [18],
[19]. In this work, we propose to cache VM images at PMs and
share such caches among PMs in a cooperative way. With
such image caching, image retrieval timemay be significantly
reduced because transferring image data from PMs nearby
will bemuch faster than from image storage nodes.

Please notice that, the caching of VM images will not
bring additional cost in communication in the point of view
of the whole system. To start a new VM, the image should
be retrieved anyway, even if there is not any caching opera-
tions. Caching is a mechanism to store the image file neces-
sary for a new VM. Our caching method only changes the
data source (from the image depository node to multiple
computing nodes) and the total amount of communication
cost is not changed. It is different from data prefetching,
which may retrieve file in advance and may cause addi-
tional cost in network.

Although there have been a number of efforts in reducing
VM image retrieval time by making use of image caching
[13], [20], [21], [22], our work is quite different in two points.
First, we consider VM placement and VM image placement
jointly. The placement of VM itself will certainly affect the
transfer of VM image file and also the caching of image.

Intuitively, joint placement can achieve better performance
than only image placement. Second, in our work, image
caches are shared among PMs in a cooperative way, which is
not considered in existing VM image caching designs. Shar-
ing cache copies among different nodes can improve cache
hit ratio and further improve the utility of cache copies.

We first define the problem of joint placement of VMs
and VM images. This problem is NP-hard, so we propose
several heuristic algorithms to solve the problem. The pro-
posed algorithms mainly differ in the mechanisms to com-
bine the two placement parts.

To evaluate the performance of our algorithms,we conduct
extensive simulations using SimGrid, a popular simulator for
cloud and grid computing. The results show that, our VM
placement algorithms can significantly reduce VM startup
delay. Comparedwith existing ones (LRU and the default one
in Openstack), our algorithms can achieve an advantage as
much as 80 percent in terms of startup time reduction.

The rest of the paper is organized as follows. We review
existing work on VM placement in Section 2. The joint
placement problem is defined in Section 3, together with
system model. Algorithms for the joint placement problem
are presented in Section 4, and their performance is evalu-
ated in Section 5. Finally, Section 6 concludes the paper and
points out possible extensions.

2 RELATED WORK

Based on objectives assumed, existing VM placement algo-
rithms for data centers can be divided into four categories.

2.1 PM Resource Utility Based

In PM resource based VM placement, the objective is to
improve the utility of computing resources at PMs, espe-
cially CPU and memory. Content-based page sharing is a
popular approach to consolidate PM’s memory resources.
Memory Buddies [23] adopt a memory fingerprinting sys-
tem to efficiently determine the sharing potential among a
set of VMs, and then compute optimal placements of VMs.
The Satori system [24] focuses on the detection of short-
lived sharing opportunities. Gupta et al. [2] considered both
subpage level sharing (through page patching) and incore
memory compression so as to maximize page sharing
among VMs. Hao et al. [3] proposed a generalized method-
ology for online resource allocation in both traditional and
distributed cloud systems, which allocates various resour-
ces, e.g., CPU, memory, and disk, in a joint way to success-
fully instantiate a requested VM.

2.2 Energy Consumption Based

Energy is one of the major concerns in cloud data center
operation. Shea et al. [4] presented an empirical study on
the power consumption of typical virtualization packages
and proposed effective batching solutions to mitigate power
consumption. HARMONY [5] considers heterogeneous
characteristics of VMs and applications and dynamic capac-
ity provisioning. It divides the workload into distinct task
classes with similar resource and performance require-
ments, and then dynamically adjusts the number of PMs of
each type to minimize total energy consumption and sched-
uling delay. Yang et al. [25] proposed an energy-efficient

Fig. 1. The procedure of VM placement and startup.

ZHANG ET AL.: SPEEDING UP VM STARTUP BY COOPERATIVE VM IMAGE CACHING 361

solution that collectively deals with VM placement and
communication traffic configuration. Interrelated VMs are
assigned into the same PM or the same rack so as to reduce
transmission traffic load and consequently reduce energy
consumption.

2.3 VM Communication Cost (or Data Access Delay)
Based

Studies in this category focus on how to reduce network
traffic among VMs and/or communication cost between
VMs and target data. Meng et al. [6] proposed an algorithm
to optimize traffic load among VMs based on communica-
tion distance between them. Jiang et al. [26] proposed an
online algorithm to minimize traffic load by jointly consid-
ering VM placement and routing. In [27], [28], data sets and
VMs are distributed respectively so as to reduce data access
delay. Dynamic bandwidth demand is considered in [11],
which formulates the VM consolidation into a stochastic bin
packing problem and proposed an online packing algo-
rithm. Kuo et al. [7] proposed optimal algorithms to mini-
mize the maximum access delay between data nodes and
assigned computation nodes, and delay among assigned
computation nodes. Li et al. [29] proposed an effective
binary-search based algorithm to achieve a tradeoff between
PM resource utility and network traffic cost.

2.4 VM Image Retrieval Cost Based

Such works try to reduce network traffic load caused by VM
image retrieval. Roughly, three approaches have been pro-
posed to reduce VM image retrieval cost. Bazarbayev et al.
[12] studied the content similarity between different VMs in
the granularity of image blocks, and proposed to schedule
VMs with high content similarity to the same PMs so as to
reduce the amount of image data to be transferred. The
approach used by VDN [10] is quite different. Borrowing
ideas from P2P systems, VDN retrieves different VM image
blocks simultaneously from multiple PMs. Such an
approach can avoid the long distance between PM and
image storage nodes, and consequently reduce network
cost and time cost.

Nicolae et al. [20] and Razavi et al. [21], [22] considers the
observation that, a VM may need only a small part of the
whole VM image to start up or execute jobs. Then, they pro-
pose to retrieve only the necessary chunks of the image file
when starting a VM, and then copy other parts later upon
access commands. In [20], image chunks may be simply
cached at the local disk of a PM, without delicate consider-
ation of cache placement. In [22], the authors propose to
cache the booting necessary part of an image and a special
copy of VM image is delicately created for caching. The
work in [21] is an extension of [22], which proposed to cache
all full images at each PM and the key contribution is how to
reduce storage requirement by making use of compression
and snapshots. This work is further extended in [13], by
caching only booting necessary part of all images rather
than the full images.

Different from existing VM placement or VM image cach-
ing studies, we consider the joint placement of both VMs and
VM image caches. Moreover, the image caches at PMs are
shared in a cooperative way. With these two points, our
design can achieve better performance that existing ones.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model and Assumptions

Although fat-tree (as shown in Fig. 2) is widely used in data
center networks, different data centers may have quite dif-
ferent network topologies [6]. Therefore, we use a general
and undirected graph GðV; EÞ to represent a data center
network. Each PM in the data center is represented as a ver-
tex in V while each weighted edge in E represents a path
between a pair of PMs.

There is a portal node in the data center network, which is
in charge of receiving VM requests from clients and comput-
ing VMplacement according to the status of the network and
PMs in the data center. The portal node also acts as a moni-
toring node of the data center to collect state information
from all nodes in the data center. The portal nodemay physi-
cally consist of more than one machine in a real deployment,
but here we view them as one node for the simplicity of pre-
sentation. How to synchronize and manage such a portal
withmultiple nodes is out the scope of this paper.

The data center may run different types of VMs, according
to the demands of clients. Different VMs may have different
operating systems and other system/application software, so
they require different VM images. These images are originally
stored in a specialized storage that consists of one or more
physical storage nodes and connects to the data center net-
work. That is, the image storage is also a vertex inGðV; EÞ.

To start up a VM, the PM needs to retrieve the corre-
sponding VM image from the image storage or other PMs.
The image can be retrieved in the granularity of chunks.
That is, a VM image can be divided into different file chunks
and these chunks can be transferred separately as in a P2P
system. To reduce startup delay, the PM may request differ-
ent chunks of one image from different target nodes.

Each PM allocates a specified amount of storage space for
caching images. When a PM gets a full copy of image, it will
try to cache the image file into its cache space. Since there
may be a large number of images in a data center, the cache
space of one PM can hold only some of them.

3.2 The Problem of Joint Placement of VMs
and VM Images

The basic idea of our work is to reduce VM startup delay by
retrieving VM image chunks from cache copies. Obviously,
cache placement is the core part of our algorithm because it
determines in what extent cache copies are useful.

Fig. 2. Cloud data center architecture [12].

362 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

On the other hand, VM placement, i.e., the selection of
the PM for a VM, can also affect startup delay signifi-
cantly, because this placement determines the distance to
image copies.

Therefore, we include both VM placement and image
placement in problem formulation and define a joint optimi-
zation problem as follows. The notations used in our prob-
lem definition and algorithm design are listed in Table 1.

Given a general data center network represented by
graph GðV; EÞ, a set of VM types I ¼ fI1; I2; . . . ; Icg, and a
storage pool R storing one image copy for each Ii. The size
of cache space at PMi is denoted by mi. The bandwidth
between a pair of PMs i and j is denoted by bij.

Let us denote the VM request list by Q ¼ fq1; q2; . . . ; qxg,
and the placement of VMs as a set of sets M ¼ fM1;
M2; . . . ; MjV jg, where Mi is a set of VMs placed at PMi.
Please notice that, two VMs may be of the same type, i.e.,
the same image. The number of VMs at PMp using the same
image Ii is denoted by api.

The placement of VM image cache is denoted by a set of
sets C ¼ fC1; C2; . . . ; CjV jg, where Ci is the set of PMs that
store a cache copy of Ii. Note that in our expressions,
fjji 2 Cjgmeans any VM image j cached on PMi.

Then, the total startup delay of VMs can be expressed as:

t G;M;Cð Þ ¼
X
p2V

X
i2Mp

api � SiP
Ci[R bpj

(1)

subject to

8i 2 V;
P

jji2Cjf gSj � mi

8i 2 V;
P

j2Mif gTj � aij � ni:

(

The equation means that, with given placement of VMs
and given placement of VM images, the startup delay of all
the VMs is the sum of VM startup time at each PM. The
startup time of one VM is the time cost to retrieve the image
file from all PMs having a copy of this image and the image
storage nodes. Different image chunks may be retrieved
from different nodes. We assume an ideal assignment of the

chunks among image caching PMs and image storage nodes
so that all the retrieving flows will finish at the same time.

Then, the joint placement problem is defined as the
optimization to select a set M and a set C to minimize
tðG; M; CÞ:

M;Cf g ¼ argmin t G;M;Cð Þ: (2)

Following the proofs in previous works [16], [21], either
optimal placement of VMs or optimal placement of cache
copies is NP-hard, so the joint placement problem is obvi-
ously NP-hard.

4 THE PROPOSED ALGORITHMS

4.1 Overview of the Algorithms

Since the joint placement problem is NP-hard, we consider
heuristics to place VM and image caches efficiently. How to
combine the two placement parts determines the framework
of a solution algorithm. We first consider handling VM place-
ment and image placement in a separate way. That is, the two
placement parts are handled one by one. Obviously, such a
design can work in only offline mode. Since VM placement
itself has been well studied, we can adopt existing solutions
to do VM placement. We propose two offline algorithms and
they differ inwhich placement should be done first.

Then, we consider handling VM placement and image
placement simultaneously. Such an approach is more com-
plex and the algorithm can work in online mode, where the
VM requests arrive during the algorithm executing. We also
propose two online algorithms and they differ in whether
the same metric is used for the two placement parts.

No matter how two placement parts are combined, the
metric to evaluate different placement choices, especially
the image cache placement metric, is at the core of algorithm
design. Borrowing the idea of cache placement in ad hoc
networks [18], [23], we propose a new metric named time
reduction for VM image caching.

In the following of this section, we first define the place-
ment metric and then describe the proposed offline and
online algorithms for joint VM and VM image placement.

4.2 The Placement Metric “Time Reduction”

Since our objective is to minimize the startup delay of VMs,
we try to determine the VM and image placement based on
how much startup time can be saved if different placements
of PMs and cache copies are configured. Based on the
startup time cost expressed by (1), we define the metric
“time reduction” as follows:

Definition of Time Reduction:

D i; j;M:Cð Þ ¼
0 if i 2 Cj

t G;M;Cð Þ � tðG;M;CCj[if gÞ if i =2 Cj and Sj � si

max
8i;t2Ci

ðtðG;M;CÞ � tðG;M;CCj[fig;Ct�figÞÞ if i =2 Cj and Sj > si:

8>><
>>:

(3)

The above definition ofDði; j; M; CÞ indicates howstartup
time can be reduced when a new image cache of virtual
machine j is added to a physical machine i. More precisely, in
the first case, i has already stored a copy of j, and obviously
no more startup time is saved. In the second case, i does not

TABLE 1
Notations Used in Our Work

Notations Description

Ii The VM image for VM type i.
Si The size of Ii.
R The set of image storage nodes.
Bij The bandwidth between a PM pair i and j.
B0

ij The bandwidth resources used by other
running VM between a PM pair i and j.

bij The available bandwidth between a PM
pair i and j (i.e., bij ¼ Bij �B0

ij).
Mi The set of VMs placed at PMi.
api The number of the VMs at PMp using the

same image Ii.
Ci The set of PMs that store a cache copy of Ii.
mi PMi

’s cache space size.
si The free cache space at PMi, and si ¼ mi�P

fkji2Ckg Sk

Ti The resources demand of VMi

ni The available resources at PMi

Q The set of VM request to be processed.

ZHANG ET AL.: SPEEDING UP VM STARTUP BY COOPERATIVE VM IMAGE CACHING 363

have j’s copy and there is enough cache space left to hold j.
Then, node i will simply store the image copy into its cache
space. Otherwise, if i does not have enough free cache space, it
will delete some existing image cache copy. The victim copy is
selected by calculating themaximum time cost saved.

With the metric time reduction, we can evaluate that,
with a given VM request, which PM is the best to run the
VM and whether the image should be cached at the PM.
Therefore, we use time reduction as the heuristics to achieve
a good placement of VMs and VM images.

4.3 Description of the Proposed Algorithms

As aforementioned, we propose four algorithms. The two off-
line algorithms work for a known collection of VM requests.
They do VM placement and image placement in two separate
phases. They differ inwhat placement part is done first. Algo-
rithm 1 places VMs to PMs first and then place image caches
based on the VMplacement, while Algorithm 2 places images
first and thenVMs to PMs based on the image caches.

Algorithm 1. The Offline Algorithm—Place VMs First

/�Place VMs�/
sort the VMs requested in descending order of size;
for (each VM request VMi)
find all PMs with enough resource for VMi;
sort these PMs in descending order of resource left;
place VMi on the PM with most resource left;
if no PM can hold VMi, place VMi at a new PM;

endfor
/� Place Image Caches�/
for (each PMi)
while (free cache space left and
new cache added in last iteration)
for(each VMj)
if ðSj � siÞ calculate Dði; j; M; CÞ;

endfor
place the VM image with the maximalD;

endwhile
endfor

Algorithm 2. The Offline Algorithm—Place Images First

/�Place Images�/
for (each requested VM type i)
calculate ai, the number of cache copies of VMi:

ai ¼ minðnijQj �
P

i2V mi

averagei2I ðSiÞ ; jV jÞ
endfor
for(each requested VM type Ii)
place ai copies of image Ii evenly among PMs;

endfor
if (enough free storage space left for more images)
fill in the free space by randomly choosing images;

endif
/� Place VMs�/
for (each VM request VMi)
find all PMs with enough resource for VMi;
for(each PMj with enough resource)
calculate tðG;MMj[fig; CÞ;

endfor
place VMi at the PM with the minimal t;
if no PM can hold VMi, place VMi at a new PM;

endfor

The two online algorithms handle VM requests one by
one in an iterative way. In each iteration, a target PM is
selected for a given VM request and image cache is update
accordingly. The two online algorithms differ in what met-
rics are used for placement.

4.3.1 Algorithm 1 (offline1)—Place VMs First

As shown in pseudo code of Algorithm 1, our first algo-
rithm places VMs to PMs first and then places image caches.
The flowchart of Algorithm 1 is shown in Fig. 3. The first
placement part is in fact a greedy bin-packing algorithm.
The second placement part is also a greedy algorithm,
which chooses image caches one by one, based on the metric
D. The work in [11] also adopts a bin-packing algorithm.
However, it focuses on bandwidth usage and takes
bandwidth constraints into consideration, while our work

Fig. 3. The flowchart of Algorithm 1.

364 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

aims to reduce VM startup time. Therefore, the problem for-
mulation is quite different. Although both use bin-packing
algorithms, different operations are adopted.

Please notice that, the bin-packing part is proposed to
minimize the number of PMs used in VM placement, so
as to achieve high resource utility. Such an objective is
different from our objective of startup delay. Can we do
VM placement with respect to VM startup delay rather
than resource utility in Algorithm 1? The answer is no.
Since Algorithm 1 separates VM placement and image
placement, and places VMs first, VM placement is done
when the image caches have not been placed yet. Then, it
is impossible to calculate the startup time at that moment.
Therefore, the performance of Algorithm 1, in terms of
VM startup time, is determined by only the second place-
ment part.

Now, we calculate the approximation rate of Algorithm 1
in terms of VM startup time by analyzing the placement of
VM images.

Theorem 1. Algorithm 1 delivers a solution whose total time
reduction is at least one fourth of the optimal time reductionD.

Proof. In Algorithm 1, the decision of image cache is made
according to the metric of time reduction Dði; j; M; CÞ.
More precisely, in each iteration of Algorithm 1, the
image copy with the maximal D at that stage is selected.
The cache space of PMs is filled by images until each
PM’s cache space is exceeded by the last image tried.

Let N1 be the solution contains images cached images
selected except the “last” images and N2 be the cache
placement solution that contains only the “last” images
tried. Our Algorithm 1 can take the better one among N1

and N2.
Let N denote the placement solution including the last

image tried for each PM: N ¼ N1 [N2.
Let L be the total number of PMs used by the solution

N . Please note that N may be greater than the number of
PMs really in the system.

Let Gl be the image placement at the end of the lth iter-
ation, and zl be the images cached at PMl. Then, solution
N is represented by the set of fz1; z2; . . . ; zLg.

Similarly, let the optimal solution N 0 be
f�1; �2; . . . ; �Lg, where �l is the VM images cached by
the optimal solution at PMl. Without loss of generality,
we remove the common placement in N and N 0. That is,
if some image is cached at the same PM by both N and
N 0, we will remove these cache copies. Then, N and N 0

are “completely” different.
By the greedy choice of zl, we have:

D i; zl;M;Gl�1ð Þ 5 D i; �l;M;Gl�1ð Þ; for each l 4 L: (4)

Let O be the optimal time reduction of N 0, and W be
the time reduction ofN . Then,

W ¼
XL
l¼1

Dði; zl;M;Gl�1Þ:

Now, we consider a modified data center G0 wherein
each PMi has a cache capacity of 2�mi, i.e., twice of the
corresponding PMi in G. We construct an image

placement solution for G0 by taking a union of VM
images selected by Algorithm 1 and the optimal solution:

N 00 ¼ fz1; z2; . . . ; zLg [f�1; �2; . . . ; �Lg
¼ fz1; z2; . . . ; zL; �0

1; �
0
2; . . . ; �

0
Lg

Obviously, the time reduction O0 of N 00 is greater than
or equal to the optimal time reduction O inN 0.

Let G0
l be the image placement at the end of the lth iter-

ation in G0. Then, we have

O � O0 ¼
XL
l¼1

Dði; zl;M;Gl�1Þ þ
XL
l¼1

Dði; �0
l;M;G0

l�1Þ

¼ W þ
XL
l¼1

Dði; �0
l;M;G0

l�1Þ

� W þ
XL
l¼1

Dði; �l;M;Gl�1Þ

ðsince �0
l ¼ �0

l;Gl � G0
lÞ

4 2 W

(5)

Equation (5) indicates that, the time reduction ofN is at
least half of that of the optimal solution. Since the solution
N is a union of N1 and N2, the time reduction of N1 or N2

should be at least half of that ofN . Then, we can conclude
that, the time reduction of Algorithm 1 is at least one
fourth of that of the optimal solution. The theorem holds.tu

4.3.2 Algorithm 2 (offline2)—Place Images First

The second algorithm places image caches first, and then
place VMs to PMs, as shown in the pseudo code of Algo-
rithm 2. The flowchart of Algorithm 2 is shown in Fig. 4.

Since image caches are placed before VMs, the startup
time of VMs cannot be calculated when doing image place-
ment. We then place image caches according to the popular-
ity of different VM types. More precisely, the number of
image copies cached in the data center of each VM type is
determined by how frequently it is re-quested. As shown in
Algorithm 2, the total number of images copies in the data
center is estimated using the average size of VMs, and the
number of copies of each VM type is calculated by the per-
centage of its request in Q. Then, image copies of each VM
type are distributed evenly among PMs in the data center.

Of course, the number of image copies for each VM type
is bounded by the number of PMs, since storing more than
one copy at the same PM is not necessary. Due to such a
limit, there may be cache space left after percentage based
allocation. These spaces are filled by randomly choosing
VM images.

After image copies are placed, VMs are placed based on
the calculation the total startup time t. More precisely, for
each request VMi, candidate PMs with enough resource to
hold VMi are recognized and then the PM with the minimal
total startup time is finally chosen to place VMi.

4.3.3 Algorithm 3 (online1)—with Two Placement

Metrics

Different from the two offline algorithms above, which
place all VMs and all image caches separately in two phases,

ZHANG ET AL.: SPEEDING UP VM STARTUP BY COOPERATIVE VM IMAGE CACHING 365

the online algorithms determine the PM and image cache in
one iteration of VM request handling.

The two online algorithms differ in placement metrics
used. In the first online algorithm, VM placement is done
with resource amount as themetric and image cache is placed
according to time reductionD. In the second online algorithm,
bothVMs and images are placed based on themetricD.

Algorithm 3. The Online Algorithm—with Two Metrics

/�Upon receiving a request for VM type i�/
place VMi on PMj with the maximal available resource;
calculate Dðj; i; M; CÞ;
if ðDðj; i; M; CÞ � THÞ // TH is a predefined threshold
remove the victim cache if any;
add a cache copy in PMj’s storage space;

endif

As shown in pseudo code of Algorithm 3, upon the
arrival of a new request for VM type Ii, the PM for this
request is selected based on available resource left. That is,
the requested VM will be run by PMj which has the maxi-
mal resource available. Then, the algorithm calculates D,
i.e., the reduction of startup time if PMj stores a cache copy

of VMi. If the result is greater than a predefined threshold
TH, the image of VMi will be cached at PMj.

The flowchart of Algorithm 3 is shown in Fig. 5.

4.3.4 Algorithm 4 (online2)—with One Placement

Metrics

Algorithm 4 is also an online algorithm which handles VM
placement and image cache in one iteration. Different from
Algorithm 3, Algorithm 4 conducts both placements based
on one metric, as shown in the pseudo code of Algorithm 4.
The flowchart of Algorithm 4 is shown in Fig. 6.

When a VM request arrives, the algorithm will first calcu-
late time reduction value D by trying each possible PM, and
then place the new VM at the PM, say PMx, with the maxi-
mal D. The image of the new VM will also be added to
PMx. The possible victim cache is selected also according to
the time reduction metricD.

Fig. 4. The flowchart of Algorithm 2.

Fig. 5. The flowchart of Algorithm 3.

Fig. 6. The flowchart of Algorithm 4.

366 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

Algorithm 4. The Online Algorithm–with One Metric

/�Upon receiving a request for VM type i�/
for (each PMj)
calculateDðj; i; M; CÞ;

endfor
set x be PMj with the maximalDðj; i; M; CÞ;
place VMi at PMx;
if(PMx =2 Ci)
if(PMx does not have free space for VMi)
remove the victim cache with the minimalD;

endif
add the image copy of Ii to PMx;

endif

5 PERFORMANCE EVALUATION

To evaluate the performance of our proposed algorithms,
we conduct simulations using SimGrid. Please notice that,
we did not use CloudSim, a popular simulator for cloud
computing and developed based on SimGrid, because Sim-
Grid is better for examining the underlying network com-
munication behaviors involved in image file transfer.

The evaluation focuses on the benefit brought by
image caching. We choose two VM placement algorithms
as the baseline, i.e., LRU algorithm and the default algo-
rithm in Openstack. Although there are quite a number

TABLE 2
Resource Requirements of VMs

Type RAM CPU Percentage

M1.small 1.7G 1 34%
M1.medium 3.75G 1 16%
M1.large 7.5G 2 27%
M1.xlarge 15G 4 12%
M2.xlarge 17.1G 2 4%
M2.2xlarge 34.2G 4 4%
M3.medium 3.75G 1 3%

TABLE 3
VM Image Types

ID Image (OS) Name Image Size (GB)

0 Arch Linux 3.5
1 CentOS 5.0 1.2
2 CentOS 5.2 3.3
3 DAMP 1.1
4 Darwin 1.5
5 Debian 0.817
6 DesktopBSD 8.1
7 Fedora 7 2.9
8 Fedora 8 3.4
9 Fedora 9 3.4
10 FreeBSD 1.2
11 Gentoo 5.5
12 Gentoo with LAMP 8.1
13 Knoppix 13
14 Kubuntu 2.6
15 Mandriva 3.3
16 NAMP 1.1
17 OAMP 0.804
18 OpenSBD 0.558
19 OpenSolaris 3.8
20 OpenSUSE 3.8
21 PC-BSD 2.2
22 Slackware 3.5
23 Ubuntu_1 3.5
24 Ubuntu_2 2.5
25 Ubuntu_3 0.293
26 Ubuntu_4 0.52
27 Ubuntu_5 0.557
28 Ubuntu_6 0.543
29 Ubuntu_7 0.547
30 Ubuntu_8 3
31 Ubuntu_9 2.9
32 Ubuntu_10 2.2
33 Ubuntu_11 2.9
34 Ubuntu_12 2.9
35 Ubuntu_13 0.547
36 Ubuntu_14 2.1
37 Ubuntu_15 1.1
38 Ubuntu_16 0.559
39 Ubuntu_17 3.2
40 Ubuntu_18 0.604
41 Ubuntu_19 2.4
42 Ubuntu_20 8.1
43 Ubuntu_21 1.001
44 Ubuntu_22 1.001
45 Ubuntu_23 0.969
46 Ubuntu_24 4.1
47 Ubuntu_25 4.1
48 Xubuntu 2.3
49 Zenwalk 2.5

Fig. 7. The distribution of arrival time of independent VM requests.

ZHANG ET AL.: SPEEDING UP VM STARTUP BY COOPERATIVE VM IMAGE CACHING 367

recent works on speeding up VM placement [13], [20],
[21], [22], these works focus on what part of the image
should be cached, rather than which node should cache
the image. In fact, our proposed technique can be
applied jointly with them to achieve higher efficiency.
For cache replacement, LRU is still popularly used for
data caching, as mentioned in [10].

5.1 Simulation Setup

5.1.1 Data Center and PMs

We simulate a cloud data center with an architecture as
shown in Fig. 2. There are totally 1,728 PMs. One PM is used
as the portal node, which receives requests from clients and
conducts both VM placement and image cache placement.
Another PM is used as the storage node for VM images. The
rest 1,726 PMs are used as computing nodes that hold VMs.

The PMs are connected via a fat-tree network. All links in
the tree is 1 Gbps, each PM is equipped with 24 CPU cores
and 160 GB RAM.

5.1.2 VM Types and Images

To make our simulation convincing, we simulate different
types of VMs, according to OS types and resource sizes.

With reference to data from AmazonEC2 [31], we set
seven different sizes of VMs. VMs with different sizes will

require different RAM sizes and CPU capacities, and
accordingly have different processing performance. The
resource requirements of VMs are shown in Table 2.

Besides VM resource requirements, different OS images
are included in our simulations. We get these images from
VMWare [32]. Totally 50 images are used in our work, as
listed in Table 3.

5.1.3 VM Request and VM Time Duration

To start up a VM instance, a VM request consists of infor-
mation of VM size type (listed in Table 2) and image type
(listed in Table 3). The VM size types are generated ran-
domly according to a predefined distribution (listed in
Table 2). The image type is nonuniformly distributed, since
some types of images are more often used in data centers.
Without loss of generality, we set the first six images are
hot ones and takes 50 percent of all requested images, and
the other VM image types are cold ones. Each hot image is
requested with the same probability, and the same for cold
ones.

We simulate totally 11,000 VM requests for each execu-
tion. For offline algorithms, all the requests are generated in
the beginning of execution.

For online algorithms, requests arrive one by one during
the simulation execution. These requests arrive within 24
hours, and we simulate six different request arrival modes.

Fig. 8. The distribution of arrival time of independent VM requests in
groups (each group contains five requests).

Fig. 9. The distribution of arrival time of independent VM requests in
groups (each group contains ten requests).

368 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

For IaaS services, the user requests are usually indepen-
dent of each other. For the distribution of arrival time, we
set two different ones: uniform distribution and normal dis-
tribution, as shown in Fig. 7.

For SaaS services and some specific application sce-
narios, a service may be realized via multiple VMs. We
simulate such scenarios by letting requests arrive in
groups, where each group contains five or ten VMs, as
shown in Figs. 8 and 9. Similarly, two arrival time distri-
bution types are considered: uniform distribution and
normal distribution.

Time duration of VM instances is also an important fac-
tor that will affect VM placement performance. According
to VM trace data from Internet and literatures, most VM
instances in a public cloud last for several hours and some

long instance can run for weeks. With respect to such infor-
mation and also our simulation resources, we set time dura-
tion to be five minutes to one week. The detailed
distribution of time duration is shown in Table 4.

5.2 Simulation Results

As aforementioned, we simulate all our four placement
algorithms and also two baseline algorithms: LRU and the
default one in Openstack.

The startup time is measured by two parts: waiting time
and downloading time. The former refers to the time
between request arrival and the start of image download-
ing, while the later refers to the time cost to download VM
image for a request. The results under different arrival
modes are shown in Figs. 10, 11, and 12, respectively.

The average startup time when requests arrive indepen-
dently is shown in Fig. 10. The two parts, waiting time and
image downloading time are plotted separately. Roughly,
the offline algorithms achieve shorter startup time than
online algorithms, and the Openstack algorithm achieves
the longest startup time. Offline algorithms have the overall
request information and can generate a better cache place-
ment strategy that others, so PMs need shorter time to
download VM images. Online algorithms outperform LRU,
although the advantage is not so large. The default

TABLE 4
VM Instance Duration

Type Time Duration Percentage

Short 5 minutes to 2 hours 25%
Medium 2 hours to 1 day 60%
Long 1 day to 1 week 15%

Fig. 10. The startup time when requests arrive independently.

Fig. 11. The startup time when requests arrive in group of five VM
requests.

ZHANG ET AL.: SPEEDING UP VM STARTUP BY COOPERATIVE VM IMAGE CACHING 369

placement algorithm in Openstack is quite simple, which
just cleans up the cache on time and no efforts to optimize
cache replacement, so it performs the worst.

Fig. 11 shows the results when requests arrive in groups
and each group contains five VM requests. In group arrival
modes, offline algorithms are still better than others, and
the Openstack one is still the worst. It is interesting to see
that, online algorithms achieve similar performance as off-
line ones. This indicates that, with more knowledge of
requests, online algorithms can achieve better image cache
placement. LRU can also achieve better performance with
groupwise arrival, but its improvement is not as large as
our online ones. Such difference clearly shows the advan-
tage of our design.

The simulation results under request group of ten VM
requests are shown in Fig. 12. Our proposed algorithms can
save more time than that in Fig. 11. This indicates that, with
a large group of VM requests, cache sharing can help more

to reduce the time to start a VM. On the other hand, for the
same algorithm, a longer time is needed to start a VM. This
is because, more requests compete for the network resour-
ces, and a longer time is needed to get the image.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we study the problem of how to reduce startup
time of VMs in a cloud data center. Our approach is to
reduce the time for VM image downloading by placing
image cache copies at physical machines, and handling VM
placement and VM image placement in a joint way. By
including time delay, we define new placement metric and
design four placement algorithms, including two offline
and two online algorithms. Simulation results show the
effectiveness and efficiency of our design.

Since this is the first work (to the best of our knowledge)
focusing on VM image placement in cloud data centers,
many issues still need to be studied to get better solutions.
One possible direction is to consider different network
topologies. Although fat-tree should be the most popular
in data center networks, there are different topologies
deployed in data centers. Different topologies may cause
different startup time and new placement solutions should
be designed. Other interesting directions include VM
requests with different priorities, cache copies with differ-
ent image chunks, etc.

ACKNOWLEDGMENTS

We deeply appreciate three anonymous reviewers for their
constructive comments. This research is partially sup-
ported by The National Key Research and Development
Program of China (No. 2016YFB0200404), National Natural
Science Foundation of China (No. U1711263), MOE-CMCC
Joint Research Fund of China (No. MCM20160104), and
Program of Science and Technology of Guangdong (No.
2015B010111001).

REFERENCES

[1] N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “VM
placement strategies for cloud scenarios,” in Proc. IEEE 5th Int.
Conf. Cloud Comput., Jun. 24-29, 2012, pp. 852–859.

[2] D. Gupta, et al., “Difference engine: Harnessing memory redun-
dancy in virtual machines,” Commun. ACM, vol. 53, no. 10,
pp. 85–93, 2010.

[3] F. Hao, M. Kodialam, T. V. Lakshman, and S. Mukherjee, “Online
allocation of virtual machines in a distributed cloud,” in Proc.
IEEE INFOCOM, Apr. 27-May 2, 2014, pp. 10–18.

[4] R. Shea,H.Wang, and J. Liu, “Power consumption of virtualmachines
with network transactions: Measurement and improvement,” in Proc.
IEEE INFOCOM, Apr. 27-May 2, 2014, pp. 1051–1059.

[5] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,
“HARMONY: Dynamic heterogeneity�Aware resource provi-
sioning in the cloud,” in Proc. IEEE 33rd Int. Conf. Distrib. Comput.
Syst., Jul. 08-11, 2013, pp. 510–519.

[6] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine
placement,” in Proc. IEEE INFOCOM, Mar. 14-19, 2010, pp. 1–9.

[7] J.-J. Kuo, H.-H. Yang, and M.-J. Tsai, “Optimal approximation
algorithm of virtual machine placement for data latency minimi-
zation in cloud systems,” in Proc. IEEE INFOCOM, Apr. 27-May 2,
2014, pp. 1303–1311.

[8] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual
machine placement for fault-tolerant consolidated server
clusters,” in Proc. IEEE Netw. Operations Manage. Symp., Apr. 19-
23, 2010, pp. 32–39.

Fig. 12. The startup time when requests arrive in group of ten VM
requests.

370 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

[9] H. Yanagisawa, T. Osogami, and R. Raymond, “Dependable vir-
tual machine allocation,” in Proc. IEEE INFOCOM, Apr. 14-19,
2013, pp. 629–637.

[10] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual machine
image distribution network for cloud data centers,” in Proc. IEEE
INFOCOM, Mar. 25-30, 2012, pp. 181–189.

[11] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,” in
Proc. IEEE INFOCOM, Apr. 10-15, 2011, pp. 71–75.

[12] S. Bazarbayev, M. Hiltunen, K. Joshi, W. H. Sanders, and R.
Schlichting, “Content-based scheduling of virtual machines
(VMs) in the cloud,” in Proc. IEEE 33rd Int. Conf. Distrib. Comput.
Syst., Jul. 8-11, 2013, pp. 93–101.

[13] K. Razavi, G. van der Kolk, and T. Kielmann, “Prebaked uVMs:
Scalable, instant VM startup for IaaS clouds,” in Proc. IEEE 35th
Int. Conf. Distrib. Comput. Syst., Jun. 29-Jul. 02, 2015, pp. 245–255.

[14] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “Kvm xen and
docker: A performance analysis for arm based NFV and cloud
computing,” in Proc. IEEE 3rd Workshop Adv. Inf., Electron. Electr.
Eng., 2015, pp. 1–8.

[15] K. Wang, Y. Yang, Y. Li, H. Luo, and L. Ma, “FID: A faster image
distribution system for docker platform,” in Proc. IEEE 2nd Int.
Workshops Found. Appl. Self� Syst., Sep. 18-22, 2017, pp. 191–198.

[16] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros,
“Scalable traffic-aware virtual machine management for cloud
data centers,” in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst.,
Jun. 30- Jul. 03, 2014, pp. 238–247.

[17] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” in Proc. IEEE Conf. Com-
put. Commun., Apr. 26-May 01, 2015, pp. 487–495.

[18] B. Tang, H. Gupta, and S. Das, “Benefit-based data caching in Ad
Hoc networks,” IEEE Trans. Mobile Comput., vol. 7, no. 3, pp. 289–
304, Mar. 2008.

[19] W. Wu, J. Cao, and X. Fan, “Design and performance evaluation of
overhearing-aided data caching in wireless Ad Hoc networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 3, Mar. 2013.

[20] B. Nicolae, F. Cappello, and G. Antoniu, “Optimizing multi-
deployment on clouds by means of self-adaptive prefetching,” in
Proc. 17th Int. Conf. Parallel Process., 2011, pp. 503–513.

[21] K. Razavi, A. Ion, and T. Kielmann, “Squirrel: Scatter hoarding
VM image contents on IaaS compute nodes,” in Proc. 23rd Int.
Symp. High-Perform. Parallel Distrib. Comput., 2014, pp. 265–278.

[22] K. Razavi and T. Kielmann, “Scalable virtual machine deployment
using VM image caches,” in Proc. Int. Conf. High Performance Com-
put., Netw., Storage Anal., Nov. 2013, pp. 1–12.

[23] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet,
and M. D. Corner, “Memory buddies: Exploiting page sharing for
smart colocation in virtualized data centers,” in Proc. ACM SIG-
PLAN/SIGOPS Int. Conf. Virtual Execution Environments, Mar.
2009, pp. 31–40.

[24] G. Mi»o�s, D. G. Murray, H. Steven, and M. A. Fetterman, “Satori:
Enlightened page sharing,” in Proc. Conf. USENIX Annu. Tech.
Conf., 2009, pp. 1–1.

[25] T. Yang, Y. C. Lee, and A. Y. Zomaya, “Energy-efficient data cen-
ter networks planning with virtual machine placement and traffic
configuration,” in Proc. IEEE 6th Int. Conf. Cloud Comput. Technol.
Sci., Dec. 15-18, 2014, pp. 284–291.

[26] J. Jiang, L. Tian, S. Ha, M. Chen, and M. Chiang. “Joint VM place-
ment and routing for data center traffic engineering,” in Proc.
IEEE INFOCOM, Mar. 25-30, 2012, pp. 2876–2880.

[27] M. Alicherry and T. V. Lakshman, “Optimizing data access laten-
cies in cloud systems by intelligent virtual machine placement,”
in Proc. IEEE INFOCOM, Apr. 14-19, 2013, pp. 647–655.

[28] M. Alicherry and T. V. Lakshman, “Network aware resource allo-
cation in distributed clouds,” in Proc. IEEE INFOCOM, Mar. 25-
30, 2012, pp. 963–971.

[29] X. Li, J. Wu, S. Tang, and S. Lu, “Let’s stay together: Towards traf-
fic aware virtual machine placement in data centers,” in Proc.
IEEE INFOCOM, Apr. 27-May 2, 2014, pp. 1842–1850.

[30] B. Xavier, T. Ferreto, and L. Jersak, “Time provisioning evaluation
of KVM docker and unikernels in a cloud platform,” in Proc. 16th
IEEE/ACM Int. Symp. Cluster, CloudGrid Comput., 2016, pp. 277–280.

[31] Nov. 2017. [Online]. Available: https://aws.amazon.com/cn/
ec2/instance-types/#instance-details, http://aws.amazon.com/
cn/ec2/previous-generation/

[32] Nov. 2017. [Online]. Available: http://www.thoughtpolice.co.
uk/vmware/

Yifan Zhang received the BSc degree in com-
puter science and technology from Sun Yat-sen
University, Guangzhou, China, in 2015. She is
working toward the MSc degree at Sun Yat-sen
University. Her research interests include distrib-
uted systems, software defined networking, and
cloud computing systems.

Kai Niu received the MSc degree from the
School of Data and Computer Science, Sun Yat-
sen University, Guangzhou, China, in 2016. He is
now with Tencent. His research interests include
distributed systems, software defined networking,
and cloud computing systems.

WeigangWu received the BSc and MSc degrees
from Xi’an Jiaotong University, China, in 1998
and 2003, respectively, and the PhD degree in
computer science, from Hong Kong Polytechnic
University, in 2007. He is currently an associate
professor in the Department of Computer Sci-
ence, Sun Yat-sen University, China. His current
research interests include distributed systems,
cloud computing, mobile computing, big data
management and big data processing. He has
published about 80 papers in major conferences

and journals. He has served as a member of editorial board of two inter-
national journals, Frontiers of Computer Science, and Ad Hoc & Sensor
Wireless Networks. He is also an organizing/program committee mem-
ber for many international conferences. He is a member of the IEEE.

Keqin Li is a SUNY distinguished professor of
computer science with the State University of
New York. He is also a distinguished professor of
Chinese National Recruitment Program of Global
Experts (1000 Plan), Hunan University, China.
He was an intellectual ventures endowed visiting
chair professor in the National Laboratory for
Information Science and Technology, Tsinghua
University, Beijing, China, during 2011-2014. His
current research interests include parallel com-
puting and high-performance computing, distrib-

uted computing, energy-efficient computing and communication,
heterogeneous computing systems, cloud computing, big data comput-
ing, CPU-GPU hybrid and cooperative computing, multicore computing,
storage and file systems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems, mobile computing, service
computing, Internet of things and cyber-physical systems. He has pub-
lished more than 530 journal articles, book chapters, and refereed con-
ference papers, and has received several best paper awards. He is
currently or has served on the editorial boards of the IEEE Transactions
on Parallel and Distributed Systems, the IEEE Transactions on Com-
puters, the IEEE Transactions on Cloud Computing, the IEEE Transac-
tions on Services Computing, and the IEEE Transactions on
Sustainable Computing. He is a fellow of the IEEE.

Yu Zhou received the PhD degree in software
engineering from Nanjing University, in 2009. He
is an associate professor with Nanjing University
of Aeronautics and Astronautics, China. He was
a postdoctoral fellow at Politecnico di Milano, Italy
from 2010 to 2011, and a visiting professor at
University of Zurich from 2015 to 2016. His
research interests are mainly in software evolu-
tion and distributed computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: SPEEDING UP VM STARTUP BY COOPERATIVE VM IMAGE CACHING 371

https://aws.amazon.com/cn/ec2/instance-types/#instance-details, http://aws.amazon.com/cn/ec2/previous-generation/
https://aws.amazon.com/cn/ec2/instance-types/#instance-details, http://aws.amazon.com/cn/ec2/previous-generation/
https://aws.amazon.com/cn/ec2/instance-types/#instance-details, http://aws.amazon.com/cn/ec2/previous-generation/
http://www.thoughtpolice.co.uk/vmware/
http://www.thoughtpolice.co.uk/vmware/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

