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a b s t r a c t

Mobile edge computing is a new paradigm that can enhance the computation capability of end
devices and alleviate communication traffic loads during transmission. Mobile edge computing is
highly useful for emerging resource-hungry mobile applications. However, a key challenge for mobile
edge computing systems is multiple resources allocation between Mobile Edge Clouds (MECs) and
End Users (EUs), especially for multiple heterogeneous MECs and EUs. To address this problem, we
propose a Stackelberg game-based framework in which EUs and MECs act as followers and leaders,
respectively. The proposed framework aims to compute a Stackelberg equilibrium solution in which
each MEC achieves the maximum revenue while each EU obtains utility-maximized resources under
budget constraints. We decompose the multiple resources allocation and pricing problem into a set of
subproblems in which each subproblem only considers a single resource type. The Stackelberg game
framework is constructed for each subproblem wherein each player (i.e., an EU) can selfishly maximize
its utility by selecting an appropriate strategy in the strategy space. We prove the existence of the
subgame Stackelberg equilibrium and develop algorithms to determine the Stackelberg equilibrium
for each resource type, including an optimal demand computation algorithm, to determine the best
resource demand strategy for an EU and an iterative algorithm to find an equilibrium price. The
equilibrium solutions of all subgames constitute the equilibrium solution of the original problem.
We also conduct simulation experiments of our game, such as numerical data for the Stackelberg
equilibrium, numerical data for the convergence of the Stackelberg equilibrium, and numerical data
as the system size increases. Finally, we demonstrate that an EU with idle resources can play the role
of an MEC.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Mobile edge computing is a novel computing paradigm that
complements and effectively avoids several shortcomings of tra-
ditional clouds, such as reducing network traffic and enhancing
user experience. Multiple types of resources, including comput-
ing, storage, control, and network resources, are often geograph-
ically close to End Users (EUs) in mobile edge computing. The
processing capability of ordinary smart mobile devices can be
greatly improved by taking advantage of mobile edge computing,
which can even implement functions that are impossible with
a laptop or a desktop. Various devices, such as smartphones,
access points, and Base Stations (BSs), can act as mobile edge
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computing nodes or Mobile Edge Clouds (MECs) [1]. For exam-
ple, a smartphone is an edge between an individual and the
cloud, and a gateway in a smart home is the edge between
home devices and the cloud. Moreover, edge computing is a
key technology for meeting the stringent requirements of new
systems and low-latency applications (e.g., embedded artificial
intelligence, 5G networks, virtual/augmented reality, and tactile
Internet).

Despite its great potential, mobile edge computing is still in its
infancy and faces enormous new challenges such as programming
models, network architecture design, Internet of things support,
resource management and provisioning, resource allocation, se-
curity and privacy, and scalability of edge devices [1–3]. In this
work, we focus on multiple resources allocation and pricing for a
mobile edge computing system in which different EUs compete
for resources in a resource pool composed of multiple MECs.

Compared with traditional clouds with virtually infinite ca-
pacities that are far from EUs, MECs have limited computational
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power but are near EUs. Several MECs with different limited
resources may exist in a geographic area, and each MEC may serve
multiple EUs with endless sequences of computation tasks, var-
ious application characteristics, and diversified communication
requirements and bandwidths. Therefore, multiple heterogeneous
EUs compete for different resources from multiple heterogeneous
MECs.

Resource allocation exhibits locality in mobile edge comput-
ing. An MEC can only serve its neighboring EUs with limited
computing resources, whereas EUs with different requirements
can only offload computing tasks to their proximate MECs. In this
manner, when an EU has high-priority emergency tasks, such as
e-health, mobile vehicle connectivity, and industrial automation,
the nearby MEC cannot meet the needs of the EU because it
can only allocate limited computing resources to the EU. This
limitation becomes more prominent when the number of EUs
who opt to offload their tasks grows. Moreover, EUs and MECs
genetically belong to different authorities, are profit-oriented, and
focus only on their own utilities. Therefore, a feasible and efficient
incentive mechanism is required to charge EUs and reward MECs
to stimulate service provisioning by MECs and improve resource
utilization. When the mobile edge computing system adopts price
incentive strategies, MECs can also gain certain payoffs while pro-
viding resources to EUs. EUs can obtain a superior user experience
while paying for the resources.

EUs inherently expect to obtain as many resources as possible
within their limited budgets, and MECs with a limited amount of
resources aim to maximize their revenues by attracting EUs to
purchase their resources. However, realizing these requirements
is difficult in distributed systems, such as mobile edge computing
systems, where no centralized authority exists, and MECs and EUs
can selfishly make their own decisions.

Therefore, a primary concern is the efficient allocation of lim-
ited MEC resources to competing EUs with diverse demands and
preferences. To address this challenge, we propose a Stackel-
berg game-based framework to harmonize the interests of EUs
and MECs such that every EU is satisfied with its obtained re-
sources, while MECs maintain considerable revenue. The main
contributions of this work are summarized as follows:

(1) We establish a Stackelberg game model for the multiple
resources allocation and the pricing problem between mul-
tiple EUs and MECs. In our model, each EU with a limited
budget who acts as a follower can decide the demand ma-
trix, which represents its requirements for each resource
owned by each MEC to maximize its utility. Each MEC with
constrained resources that acts as a leader can determine
the unit price of various resources to maximize its revenue.

(2) We decompose the multiple resources allocation and pric-
ing problem into a set of subproblems in which each sub-
problem only considers a single resource type. The Stackel-
berg game framework is constructed for each subproblem
in which leaders (i.e., MECs) can determine the unit price
of that resource, and each follower (i.e., EU) can selfishly
maximize its utility by selecting an appropriate strategy in
the strategy space. Moreover, we prove the existence of the
Stackelberg equilibrium of the subproblem game.

(3) We develop algorithms to determine the Stackelberg equi-
librium for each type of resource, including an Optimal
Demand Computation Algorithm (ODCA) to find the best
resource demand strategy for an EU and an iterative algo-
rithm to find an equilibrium price. The equilibrium solu-
tions of all subgames constitute the equilibrium solution
of the original problem.

(4) We conduct the simulation experiments of our game, in-
cluding the numerical data for the Stackelberg equilibrium
and the numerical data for the convergence of the Stack-
elberg equilibrium. Furthermore, we show that an EU with
idle resources can play the role of an MEC.

The remainder of this work is organized as follows. We de-
scribe the related work in Section 2 and discuss the system model
in Section 3. We formulate a Stackelberg game for multiple EUs
that compete for multiple resources from multiple heterogeneous
MECs, show the existence of the Stackelberg equilibrium of the
game, and develop algorithms to find the Stackelberg equilibrium
in Section 4. We investigate the simulation results in Section 5.
Finally, we conclude the paper in Section 6.

2. Related works

Mobile edge computing and related technical works have ob-
tained much attention in recent years. The latest comprehensive
surveys provide overviews of most of these published works
[4–6].

One major line of research has recently focused on computing
offloading from a user equipment to an MEC [7–10]. The com-
mon characteristic among the literature is that EUs offload their
computational tasks to MECs to reduce their power consumption
or computational task execution delays. Typically, these MECs
with limited resources are located near the EUs or at cellular
BSs. However, multiple EUs offloading their computation tasks
to MECs simultaneously may negatively affect the EUs’ experi-
ence for computing offloading. The reason is that an EU may
suffer from the following problems: increased transmission delay
due to severe communication interference, high task processing
delay caused by more waiting time in a queuing system, and
more power consumption due to increased transmission delay.
Therefore, the allocation and scheduling of resources should be
considered in the mobile edge computing system.

Much research concerning cloud resource allocation and pric-
ing has been conducted [11]. A widely used method is a game-
theoretical approach to tackle resource provisioning and pric-
ing problems in cloud computing [12–16]. Liu et al. focused
on request migration strategies among multiple servers for load
balancing from a game-theoretic perspective and formulated it
into a non-cooperative game among the multiple servers, where
it is under a distributed, non-cooperative, and competitive envi-
ronment [15]. Auction theory is another state-of-the-art approach
focused on the pricing problem [17–20]. In [17], the authors
proposed a combinatorial auction-based mechanism to address
Virtual Machine (VM) allocation and pricing in the presence of
multiple types of VMs in a single-provider scenario.

By contrast, resource allocation and pricing in mobile edge
computing is still in its infancy [21–26]. Mao et al. investigated
an online joint radio and computational resource management
algorithm for multi-user mobile edge computing systems to min-
imize the long-term average weighted sum power consumption
of the mobile devices and the mobile edge computing server,
subject to a task buffer stability constraint [21]. You et al. studied
resource allocation for a multi-user mobile edge computation
offloading system based on time-division multiple access and or-
thogonal frequency-division multiple access, in which each user
has one task, by minimizing the weighted sum of mobile energy
consumption under the constraint on computation latency, with
the assumption of negligible cloud computing and result down-
loading time [22]. Guo et al. considered energy-efficient resource
allocation schemes for a multi-user mobile edge computing sys-
tem with one BS of computing capability and multiple users
with inelastic computation tasks of non-negligible task execution
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durations by minimizing the weighted sum energy consumption
problem to optimally allocate the task operation sequence as
well as the uploading and downloading time durations [23]. Yin
et al. proposed a container-based task-scheduling model and
task-scheduling algorithms with a task-delay constraint. Further-
more, in accordance with the characteristics of the container,
a resource-reallocation mechanism was proposed to reduce the
execution delay of tasks [24]. These studies typically discuss
resource management issues to minimize power consumption
or reduce task completion time. However, these works consider
neither the pricing of resources nor the issue of simultaneously
optimizing the goals of EUs and MECs.

A group of literature utilizes auction theory to investigate
resource pricing in mobile edge computing. Jin et al. consid-
ered resource sharing and pricing for cloudlets in mobile cloud
computing in [27] and proposed two incentive mechanisms, in-
cluding a truthful incentive mechanism, and a more efficient
design of auction to coordinate the resource auction between
mobile devices as service users (buyers) and cloudlets as ser-
vice providers (sellers). In [28], Jin et al. proposed an incentive-
compatible auction mechanism for the resource trading between
the mobile devices as service users (buyers) and cloudlets as
service providers (sellers). Sun et al. investigated the joint prob-
lem of network economics and resource allocation in mobile
edge computing where industrial Internet of Things (IIoT) Mobile
Devices (MDs) requested offloading with claimed bids, and edge
servers provided their limited computing service with ask prices.
They proposed two double auction schemes with dynamic pricing
in mobile edge computing, namely, a breakeven-based double
auction and a more efficient dynamic pricing-based double auc-
tion, to determine the matched pairs between IIoT MDs and
edge servers as well as the pricing mechanisms for high system
efficiency under the locality constraints [29].

Matching theory is a mathematical framework that provides
polynomial-time solutions for combinatorial assignment prob-
lems [30]. Matching theory is suitable to model the interactions
among numerous agents with conflicting interests [31]. For exam-
ple, in [32], a distributed spectrum trading mechanism based on
matching theory with evolving preferences is introduced to pro-
vide more spectrum accessing opportunities for secondary users
through spectrum reuse. In [33], the authors studied caching
in dual-mode Small Base Stations (SBSs) that integrate µ-wave
and mm-wave frequencies, where a dynamic matching game-
theoretic approach was applied to maximize the handovers to
SBSs in the mobility management scenarios. However, the re-
search in this paper explores not only the combinatorial as-
signment problem but also multiple resources pricing. As such,
matching theory is unsuitable for the proposed model.

A Stackelberg game is a two-period game with a concept of
leader and follower [34]. The leader and follower try to maximize
their profits. Hence, the game provides dual benefits to both
players. A Stackelberg game has been extensively adopted for
solving resource management problems in a network systemwith
a distributed fashion. In [35], Wang et al. formulated a Stackelberg
game for the power allocation of data centers in the cloud. In the
game, the power grid controller acts as the leader and sets the
prices of the provided energy based on the current amount of re-
newable energy and costs. The cloud controller, i.e., the follower,
observes the prices, determines the optimal amount of energy to
purchase, and performs resource allocation for its data centers.
The near-optimal strategies of both players in the game can be
achieved using backward induction. A Stackelberg game-theoretic
model is widely used to describe hierarchical decision-making
problems in a network system [36–40]. In [36], Zhang et al.
considered a specific fog computing network consisting of a set
of Data Service Operators (DSOs), each of which controls a set of

Fog Nodes (FNs) to provide the required data service to a set of
Data Service Subscribers (DSSs). They formulated a Stackelberg
game to analyze the pricing problem for the DSOs as well as the
resource allocation problem for the DSSs. They proposed a many-
to-many matching between the DSOs and the FNs to deal with the
DSO-FN pairing problem. Reference [37] formulated the single-
cloud multi-service resource provisioning and pricing problem
as a Stackelberg game to minimize the services’ costs while
maximizing the provider’s revenue. Yang et al. employed game-
theoretic approaches to model the problem of minimizing energy
consumption as a Stackelberg game [38]. Several related studies
on resource allocation and pricing in mobile edge computing have
recently used a Stackelberg game method [41–43]. For example,
in [41], Guo et al. proposed a hierarchical architecture in Smart
Home with mobile edge computing and adopted a Stackelberg
game to solve resource purchasing and pricing problem for access
point and user equipment. Therefore, a Stackelberg game is an
appropriate model for solving the problem proposed in this paper.

However, as shown in Table 1, the previously mentioned
works are either based on centralized methods or deal with single
resource allocation problems in a distributed environment. Differ-
ent from their considerations, to address the problem of multiple
resources allocation and pricing in a distributed environment,
we propose a multi-leader multi-follower Stackelberg game to
harmonize the interests of MECs and EUs. Our paper has the
following novel and unique features.

(1) We consider multiple heterogeneous EUs competing for
multiple resources from multiple heterogeneous MECs, in
which each EU is limited by the budget for each resource,
and each MEC has a certain amount constraint for each
type of resource. The interaction between EUs and MECs
is carried out by the price incentive mechanism.

(2) Each EU has a budget to procure resources, which includes
budgets for each required resource. Each MEC contains
several types of resources, and the number of each resource
is limited.

(3) We employ a Stackelberg game approach to address the
optimal resource demands for each EU and the unit price
of each resource for MECs.

3. System model

We introduce the system model of mobile edge computing
in this section. Fig. 1 depicts a network architecture with three
layers, namely, the MEC layer, the aggregation layer, and the EU
layer. First, various devices, such as smartphones, tablets, PCs,
lab servers, and underutilized small and medium data centers in
enterprises/schools/hospitals and central telecom offices, can act
as MECs in the MEC layer. In general, equipment with certain
computing capabilities and is temporarily idle can act as MEC.
Second, the aggregation layer (e.g., a base station, a switch/router,
or an access point) is the communication bridge between EUs
and MECs. Third, the EU layer consists of diverse equipment, such
as sensors, smartphones, or PCs, that have different computation
requirements.

Each EU has several types of computing tasks and may require
several types of resources. This paper assumes that each EU has a
definitive budget for a specific resource. In practice, the budgets
for these resources can be transferred to one another. However,
we do not consider this situation to simplify the problem. Corre-
spondingly, each MEC also contains at least one type of resource.
The amount of each type of resource is limited. Moreover, MECs
can be paid for providing their resources to the EUs. In general,
EUs and MECs exchange price and demand information through
the aggregation layer, as shown in Fig. 1. All MECs publish the
unit price of their own resources, and EUs transmit their demand
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Table 1
Comparisons between ours and the state-of-the-art works.
Ref. Environment Number of resource type Main technique(s)

[21] Central Multi-resources Lyapunov optimization
[26] Central Two Convex optimization and heuristic methods
[28] Distributed Multi-resources Auction
[29] Distributed Multi-resources Double auction
[41] Distributed Single resource Stackelberg game and matching strategy
[42] Distributed Single resource Multi-leader multi-follower Stackelberg game
[43] Distributed Single resource Single-leader multi-follower Stackelberg game
Ours Distributed Multi-resources Multi-leader multi-follower Stackelberg game

Fig. 1. Mobile edge computing system with multiple EUs and MECs. EUs and
MECs exchange price and demand information through the aggregation layer.

to MECs based on the unit price of each resource and their budget
for each resource.

The mobile edge computing system in this work consists of
multiple EUs and multiple resource-constrained heterogeneous
MECs. Each MEC provides several types of resources. For example,
an MEC can be selected randomly from a set of M4 and M5
Amazon EC2 instances [44]. An M4 Amazon EC2 machine pro-
vides multiple configurations of resource types, such as m4.large,
m4.xlarge, and m4.2xlarge. Each EU has an available budget to
buy resources. These resources are utilized by EUs to perform
computing tasks in the mobile edge computing system. We focus
on the interactions between MECs and EUs in this paper and
consider multiple heterogeneous EUs that compete for resources
from multiple heterogeneous MECs.

Several mechanisms stimulate the collaboration between the
MECs and the EUs. An incentive mechanism to charge EUs and to
reward MECs is required. That is the unit price of each resource.
On the one hand, if the price is high, then it can motivate the
MECs to provide resources to the EUs. On the other hand, if
the price is low, then it can promote EUs to purchase more
resources from the MECs. In this paper, we focus on computing
an equilibrium solution that assigns a unit price to each resource
and allocates an optimal resource bundle to each EU to maximize
the utilities of the MECs and EUs.

Table 2
Summary of key notations.
(a) Sets

Notation Description

M Set of MECs
N Set of EUs
R Set of resources

(b) Parameters

Notation Description

M Total number of MECs
N Total number of EUs
R Number of categories for different resources
Bi,r Budget of EU i for resource r
Bi Total budget of EU i for multiple resources
Qj,r Amount of resource r in MEC j

(c) Decision variables

Notation Description

xi,j,r Number of resource of type r obtained by EU i from MEC j
xi,j Demand vector of EU i for resources from MEC j
X i Demand matrix of EU i for resources from all MECs
pj,r Unit price of resource r in MEC j
pj Unit price vector of resources in MEC j
P Unit price matrix of all MECs

4. Problem formulation

As described in Fig. 1, MECs set the unit price for each type of
resource and announce them to EUs. Afterward, EUs determine
their demands for each resource based on the unit prices from
MECs. MECs make choices before EUs, and this model is referred
to as the Stackelberg model in economics [45].

The Stackelberg model is frequently used to model players in
which a leader exists. For example, Apple is typically considered
a dominant company in the mobile phone industry, where small
companies commonly wait for Apple’s release of new products.
After the release, the small companies adjust their product deci-
sions accordingly. In this example, we model the mobile phone
industry with Apple as the Stackelberg leader and the other
companies in the industry as the Stackelberg followers.

In our proposed model, the MECs are leaders who can set their
prices, and the EUs are followers who respond by selecting their
demands. This game consists of multiple leaders with multiple
resources and followers. What price should the leader MECs
set to maximize their utility? The answer depends on how the
leader MECs expect the follower EUs to react to their prices.
Presumably, leader MECs will expect that the follower EUs will
attempt to maximize utilities as well. Therefore, leaders MECs
must consider their followers EUs’ utility maximization problem
to make sensible decisions about their resource prices.

We must establish mathematical models to analytically study
the details of the theoretical Stackelberg model. For ease of ref-
erence, Table 2 lists the key notations and descriptions adopted
in this paper.
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4.1. EU problems

Our research focuses on a mobile edge computing system,
which includes multiple EUs and MECs with different types of
resources (Fig. 1). We denote N = {1, 2, . . . ,N} and M =

{1, 2, . . . ,M} as the set of EUs and MECs, respectively. The no-
tation R = {1, 2, . . . , R} represents the set of the different types
of resources. Assume that |N | = N , |M | = M , and |R| = R. Bi
denotes the budget of EU i, which includes the budget for each
resource r Bi,r , where Bi = Bi,1 + Bi,2 + · · · + Bi,R. Bi,r is 0 if EU i
has no demand for resource r; otherwise, Bi,r > 0. Let xi,j,r be the
amount of resource type r obtained by EU i from MEC j. The utility
functions of the EUs are also provided. EU i aims to maximize the
following function.

Ui =
∑
r∈R

Bi,r

∑
j∈M

log(αi + xi,j,r ),∀i ∈ N , (1)

where αi is a constant. The log function has been widely used
in network optimization problems, and equilibrium allocations
for the Fisher market [46,47]. The function in Eq. (1) is selected
as a utility function due to its close relation with the utility
function ωi,r

∑
j∈M log(xi,j,r ). Furthermore, this function leads to

a proportionally fair resource allocation [39,48], where ωi,r is a
constant. However, if ωi,r

∑
j∈M log(xi,j,r ) is used as the utility

function, then an EU will obtain a negative utility when xi,j,r = 0,
which is inconsistent with the definition that the utility will be
0 when xi,j,r = 0. After replacing xi,j,r with αi + xi,j,r , the utility
becomes finite when xi,j,r = 0. The general value of αi is 1. In
addition, we use budget Bi,r instead of ωi,r .

The follower EU’s utility depends on resource matrix X i, which
varies with the unit price matrix P of the leader MECs, where
X i = (xi,1, xi,2, . . . , xi,M )T ∈ RM×R, and the resource matrix, in
which the element at the jth row and rth column is xi,j,r . For a
given price matrix P from the MECs, where P = (p1, p2, . . . , pM )
and pj = (pj,1, pj,2, . . . , pj,R), EU i aims to select an optimal re-
source demand matrix X i by solving the EU optimization problem

max
X i

Ui (2)

s.t.
∑
r∈R

∑
j∈M

pj,rxi,j,r ≤ Bi (3)

xi,j,r ≥ 0,∀r ∈ R,∀j ∈ M . (4)

The resource demand choices of each EU will depend on the
prices determined by the MECs. Thus, this relationship can be
written as

X i = f (P),∀i ∈ N . (5)

Function f (P) reveals the choices of an EU as a function of
the MECs’ determination. This relationship is a reaction function
because it reveals how EUs will respond to MECs’ determination.

We derive the reaction function in the following discussion.
We can decompose the original EU optimization problem into
several single resource subproblems because all resources are
independent of and not in conflict with one another. The EU
optimization problem can be transformed into R single resource
subproblems according to the number of resource type R. The
subproblem r is expressed as

max
xri :={xi,j,r ,j∈M}

Ui,r = Bi,r

∑
j∈M

log(αi + xi,j,r ) (6)

s.t.
∑
j∈M

pj,rxi,j,r ≤ Bi,r (7)

xi,j,r ≥ 0,∀j ∈ M . (8)

Eq. (5) is another constraint, where r = 1, . . . , R.

We present the following statements based on the above
transformation.

(1) This transformation is equivalent because the xri of all
subproblems constitute the X i of the original EU optimization
problem.

(2) The solution of the original EU optimization problem is
an M × R matrix. However, the solution is only a vector with
M elements in a subproblem. Solving the subproblems is simpler
than solving the original problem.

First, let us derive a reaction function in the simple case of N
EUs and three MECs. Then, we apply the derived function to the
general situation of N EUs and M MECs. In this case, subproblem
r is defined as

max
xri :={xi,1,r ,xi,2,r ,xi,3,r }

Ui,r = Bi,r

3∑
j=1

log(αi + xi,j,r ) (9)

s.t.
3∑

j=1

pj,rxi,j,r ≤ Bi,r (10)

xi,1,r , xi,2,r , xi,3,r ≥ 0. (11)

The problem defined by Eqs. (9)–(11) always has a feasible
interior solution by simply setting xi,1,r , xi,2,r , and xi,3,r as positive
and sufficiently small, such that all constraints in Eqs. (10) and
(11) are satisfied with the strict inequalities. Hence, the Slaters
condition holds, and the Karush–Kuhn–Tucker (KKT) conditions
are necessary and sufficient for optimality [49]. Inspired by stud-
ies [3] and [40], we also adopt the KKT conditions to solve the
problem.

We define λi,r , µi,1,r , µi,2,r , and µi,3,r as the dual variables
associated with Eqs. (10) and (11). The Lagragian function is
expressed as

L(xri , λi,r , µi,1,r , µi,2,r , µi,3,r ) = Bi,r

3∑
j=1

log(αi + xi,j,r )

+ λi,r (Bi,r −

3∑
j=1

pj,rxi,j,r )+ µi,1,rxi,1,r + µi,2,rxi,2,r

+ µi,3,rxi,3,r .

(12)

The KKT conditions of the problem in Eqs. (9)–(11) are pre-
sented as follows.

∂L
∂xi,1,r

=
Bi,r

αi + xi,1,r
− λi,rp1,r + µi,1,r = 0 (13)

∂L
∂xi,2,r

=
Bi,r

αi + xi,2,r
− λi,rp2,r + µi,2,r = 0 (14)

∂L
∂xi,3,r

=
Bi,r

αi + xi,3,r
− λi,rp3,r + µi,3,r = 0 (15)

λi,r (Bi,r −

3∑
j=1

pj,rxi,j,r ) = 0 (16)

µi,1,rxi,1,r = 0 (17)

µi,2,rxi,2,r = 0 (18)

µi,3,rxi,3,r = 0 (19)

λi,r , µi,1,r , µi,2,r , µi,3,r , xi,1,r , xi,2,r , xi,3,r ≥ 0. (20)

The optimal solutions of Eqs. (9)–(11) can take one of the follow-
ing forms:

(1) Case 1: xi,1,r = xi,2,r = xi,3,r = 0: if Bi,r > 0, then
we can derive λi,r = 0 using Eq. (16). µi,2,r and µi,3,r must be
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negative according to Eqs. (14) and (15), respectively, which do
not satisfy Eq. (20). Thus, the solution in this situation is not
feasible and cannot occur. However, when Bi,r = 0, verifying that
xi,1,r = xi,2,r = xi,3,r = 0 is easy.

(2) Case 2: xi,1,r , xi,2,r , xi,3,r > 0: from Eqs. (17), (18), and (19),
we can derive µi,1,r = µi,2,r = µi,3,r = 0. Then, Eqs. (13)–(16)
can be rewritten as follows.

Bi,r

αi + xi,1,r
− λi,rp1,r = 0 (21a)

Bi,r

αi + xi,2,r
− λi,rp2,r = 0 (21b)

Bi,r

αi + xi,3,r
− λi,rp3,r = 0 (21c)

λi,r (Bi,r −

3∑
j=1

pj,rxi,j,r ) = 0. (21d)

The above expressions signify that λi,r > 0. From Eqs. (21a)–
(21d), we can derive

xi,j,r =
Bi,r + αi

∑3
j=1 pj,r

3pj,r
− αi, j = 1, 2, 3. (22)

(3) Case 3: xi,1,r = 0, xi,2,r , xi,3,r > 0: Eqs. (18) and (19)
imply that µi,2,r = µi,3,r = 0. On the basis of this knowledge,
Eqs. (13)–(16) can be rewritten as follows.
Bi,r

αi
− λi,rp1,r + µi,1,r = 0 (23a)

Bi,r

αi + xi,2,r
− λi,rp2,r = 0 (23b)

Bi,r

αi + xi,3,r
− λi,rp3,r = 0 (23c)

λi,r (Bi,r − p2,rxi,2,r − p3,rxi,3,r ) = 0. (23d)

Suppose λi,r = 0. Then, Bi,r
αi+xi,3,r

= 0, which will never occur.

Thus, λi,r > 0. From Eq. (21), we can derive the following
expressions.

xi,2,r =
Bi,r + αi(p2,r + p3,r )

2p2,r
− αi (24a)

xi,3,r =
Bi,r + αi(p2,r + p3,r )

2p3,r
− αi. (24b)

(4) Case 4: xi,2,r = 0, xi,1,r , xi,3,r > 0: This case is similar to
Case 3.

(5) Case 5: xi,3,r = 0, xi,1,r , xi,2,r > 0: This case is also similar
to Case 3.

(6) Case 6: xi,1,r = xi,2,r = 0, xi,3,r > 0: Proving that λi,r > 0
is easy. From Eq. (16), we can derive

xi,3,r =
Bi,r
p3,r

. (25)

(7) Case 7: xi,2,r = xi,3,r = 0, xi,1,r > 0: xi,1,r =
Bi,r
p1,r

: This case
is similar to Case (6).

(8) Case 8: xi,1,r = xi,3,r = 0, xi,2,r > 0: xi,2,r =
Bi,r
p2,r

: This case
is also similar to Case (6).

In the cited case with N EUs and three MECs, the optimal
demand strategy will be one of the eight cases that depends on
the prices of the MECs and budget Bi,r . However, the strategy
will become increasingly complex as the values of N and M
increases. In the following discussion, we present an ODCA to
rapidly compute the optimal demands.

Basing on Eqs. (22), (24), and (25), the demands for the general
case of N EUs and M MECs for a given set of {pj,r , j ∈ M }, can be

formulated as

xi,j,r =

{
Bi,r+αi

∑
t∈T pt,r

|T |pj,r
− αi

0
, (26)

where T is a set that must contain j, and |T | represents the num-
ber of elements in T . xi,j,r is equal to either (Bi,r + αi

∑
t∈T pt,r )/

(|T | pj,r ) − αi or 0, and T is crucial to xi,j,r . Initially, T is set
by M . Suppose xi,j,r is a real number. In this situation, we can
obtain xi,j,r = (Bi,r + αi

∑M
j=1 pj,r )/(Mpj,r ) − αi, j ∈ M , which

is similar to Eq. (22). However, several of xi,j,r may be negative
because the MECs’ pj,r are excessively high and the budget Bi,r
is relatively small. This situation contradicts the fact that no EU
will have a negative demand. xi,j,r will then be reset to 0 when
the computed xi,j,r from xi,j,r = (Bi,r + αi

∑M
j=1 pj,r )/(Mpj,r )− αi is

negative. In addition, we exclude j from T . Finally, we repeat the
above mentioned process using the new T until all xi,j,r satisfy the
condition xi,j,r ≥ 0.

In the above analysis, we suppose that all MECs have R re-
sources and pj,r > 0,∀j ∈ M , r ∈ R. However, each MEC j
contains at most R types of resources. Some MECs do not contain
certain types of resources. MEC j will set the price to 0 when no
resource r exists, that is, pj,r = 0. In this case, xi,j,r = 0,∀i ∈ N

must occur. Furthermore, this situation will have no influence on
the demands of EUs for MECs, who own the resources.

Basing on the analysis above, we propose an ODCA for deter-
mining EU i’s best demand strategy for resource r . We already
know the solution to subproblem r , so we only need to repeat
the above process for any other resource r to obtain the solution
X i of the original problem.

Algorithm 1 ODCA

Input: αi: a constant; Bi,r : budget of EU i used for resource r;
S1 = {j|j ∈ M }: set of MECs; Sz = {j|pj,r > 0, xi,j,r = 0} =
NULL: set of MECs that have resource r but are not required.

Output: optimal xi,j,r , j ∈ M

1: for (each EU i) do
2: set j← 1
3: while j ≤ M do
4: if pj,r = 0 then
5: set xi,j,r ← 0
6: set j← j+ 1
7: else
8: if j ∈ Sz then
9: set xi,j,r ← 0

10: set j← j+ 1
11: else
12: set Snew ← S1 \ Sz , S ′ ← {j|j ∈ Snew, pj,r = 0}
13: set Mnew ← |Snew| −

⏐⏐S ′⏐⏐
14: xi,j,r ←

Bi,r+αi
∑

j∈Snew pj,r
Mnewpj,r

− αi

15: if xi,j,r < 0 then
16: set xi,j,r ← 0
17: set Sz ← Sz ∪ {j}
18: Break;
19: else
20: set j← j+ 1
21: end if
22: end if
23: end if
24: end while
25: end for
26: return xi,j,r , j ∈ M
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4.2. MEC problems

Using the given unit price matrix of leader MECs, we analyze
how follower EUs select demand strategies. Subsequently, we
discuss the leader MECs’ utility maximization problem.

Presumably, leader MECs are aware that their actions influ-
ence the demand choices of follower EUs. This relationship is
summarized by the reaction function f (P), which can be ob-
tained through the ODCA. Hence, leader MECs should recognize
the influence that they exert on follower EUs when setting the
resources’ prices.

To obtain maximum utility, MECs should set a suitable price
for resources. If MEC j sells resource r at a higher price than
other MECs, then the EUs are more willing to obtain resource
r from lower-priced MECs. The relationships among MECs are
non-cooperative and competitive. We then assume that Qj,r is the
amount of resource r in MEC j, j ∈ M . If MEC j does not have a
resource r , then Qj,r = 0. We define the utility function for each
MEC j as

Uj(pj, P−j) =
∑
r∈R

pj,r
∑
i∈N

xi,j,r , (27)

where P−j is the price matrix of the resources of all other MECs
except MEC j. Given P−j , MEC j will want to select a proper
price vector pj to maximize its utility. The utility maximization
problem for MEC j is expressed as

max
pj

Uj(pj, P−j) (28)

s.t.
∑
i∈N

xi,j,r ≤ Qj,r ,∀r ∈ R (29)

pj,r ≥ 0,∀r ∈ R, (30)

where pj,r = 0 indicates that MEC j does not contain resource r
(i.e., Qj,r = 0). EU i’s demand for resource r of MEC j is xi,j,r = 0. In
practice, we forgo this situation when we obtain the optimal price
vector pj through the utility maximization problem. We skip the
case where pj,r = 0 because the price will never be changed until
MEC j newly introduces this resource r . Otherwise, adjusting the
price pj,r makes no sense.

Similar to EU optimization problems (Eqs. (2)–(4)), we de-
compose the utility maximization problem for the MECs (Eqs.
(28)–(30)) into R subproblems. We can obtain the optimal price
for resource type r in each MEC j through subproblem r .

max
pj,r

Uj,r (pj,r , p−j,r ) = pj,r
∑
i∈N

xi,j,r (31)

s.t.
∑
i∈N

xi,j,r ≤ Qj,r (32)

pj,r ≥ 0, j ∈ M , (33)

where p−j,r is the price vector of resource type r of all other MECs
except MEC j and Uj,r is the utility of MEC j on resource type r .
Constraint (32) captures the capacity limit of resource type r in
MEC j. The equality pj,r = 0, which is included in constraint (33),
occurs if and only if Qj,r = 0. This situation is the simplest in
the optimization subproblem r . Uj,r must be 0 because pj,r = 0
and Qj,r = 0; maximizing the corresponding utilities does not
influence other MECs.

Substituting Eq. (26) into the subproblem r of MEC j (Eqs.
(31)–(33)) yields

max
pj,r

Uj,r (pj,r , p−j,r ) (34)

s.t.
∑

i∈N /{i}:xi,j,r=0

(
Bi,r + αi

∑
t∈T pt,r

|T | pj,r
− αi) ≤ Qj,r (35)

pj,r ≥ 0, j ∈ M , (36)

where Uj,r (pj,r , p−j,r ) = pj,r
∑

i∈N /{i}:xi,j,r=0(
Bi,r+αi

∑
t∈T pt,r

|T |pj,r
− αi).

From the objective function Uj,r (pj,r , p−j,r ), the optimal price pj,r
of MEC j is related to the prices of other MECs. Hence, this
price optimization scenario can be modeled by the following
noncooperative game.
• Players: M MECs.
• Strategies: Each MEC j selects price pj,r ∈ Cj,r to maximize

its utility, where Cj,r is the set of all values that satisfy constraints
(35) and (36).
• Payoffs: The utility function Uj,r is defined above. Revenue is

the product of the unit price and the number of sold resources.
MECs select price strategies to maximize revenues according

to the definitions of the revenues and strategies in the price op-
timization game. To proceed, the price optimization game should
be denoted as Γ = (M , {Cj,r}j∈M , {Uj,r}j∈M ) for convenience. The
concept of the Nash equilibrium is then introduced [50].

Definition 1. A strategy profile p∗r = (p∗1,r , . . . , p
∗

N,r ) is the
Nash equilibrium of game Γ if no player can further increase its
revenue by unilaterally changing its strategy at equilibrium p∗r .
Mathematically,

Uj,r (p∗j,r , p
∗

−j,r ) ≥ Uj,r (pj,r , p∗−j,r ),∀pj,r ∈ Cj,r , j ∈ M . (37)

The Nash equilibrium has a satisfactory self-stabilizing prop-
erty that allows the users at the equilibrium to achieve a mutually
satisfactory solution; no user has the incentive to deviate. This
property is crucial to the price optimization problem because EUs
are different individuals who may act according to their interests.

4.3. Stackelberg game equilibrium analysis

We first study the existence of the Nash equilibrium of the
price optimization game among MECs, and we reference work
in the literature [7] and [39] to prove the existence of Nash
equilibrium.

Theorem 1. The Nash equilibrium of the price optimization game
among MECs always exists and is unique.

Proof. (1) In game Γ , all players’ strategy space is the product
space Cr = C1,r×C2,r×· · ·×CN,r , where pj,r ∈ Cj,r , j ∈ M . Thus, Cr
is a convex, closed, and non-empty subset of a certain Euclidian
space RM .

(2) The revenue function Uj,r is continuous in pj,r . The second
derivative of Uj,r with respect to pj,r is obtained as

∂2Uj,r

∂p2j,r
= 0,∀j ∈ M . (38)

Therefore, Uj,r is concave in pj,r for each fixed value of p−j,r ,
and game Γ is a concave N-person game. In this situation, the
Nash equilibrium exists in the game based on Theorem 1 in [51].
Moreover, the Nash equilibrium is unique according to Theorem
3 in [51]. □

We can also prove that the Nash equilibrium of the price
optimization game among MECs exists for each resource r . The
utility maximization problem in Eqs. (28)–(30) has a Nash equi-
librium pj .

EUs determine the amount of each resource purchased from
each MEC, whereas MECs set the unit price of each resource.
Therefore, we model our problem as a Stackelberg game. The
Stackelberg game, which is known as a leader–follower game,
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studies the decision-making processes of a number of indepen-
dent players.

MECs, which act as the leaders, determine the price strategy P
in the first stage, whereas each EU decides the demands X i in the
second stage. One optimal solution of this Stackelberg game is to
reach the Stackelberg equilibrium, which is defined as follows.

Definition 2. Set (P∗,X∗) is called a Stackelberg equilibrium
of the game between the MECs and the EUs if it satisfies the
following condition.

Uj(P∗;X∗ = f (P∗)) ≥ Uj(pj, P
∗

−j;X = f (pj, P
∗

−j)),∀j ∈ M ;

Ui(P∗;X∗ = f (P∗)) ≥ Ui(P∗;X i,X∗−i),∀i ∈ N .

Theorem 2. There exists a unique Stackelberg equilibrium for the
proposed Stackelberg game.

Proof. In this Stackelberg game, MECs will select price strategies
in the first stage and announce the selected ones to the EUs.
According to Theorem 1, a Nash equilibrium solution exists for
the price-making process among MECs. In the second stage, EUs
will decide the demands for resources based not only on their
budgets, but also on the price of each resource in each MEC. EUs
can obtain the optimal demand allocation through the proposed
ODCA. Therefore, a unique Stackelberg equilibrium exists for the
proposed Stackelberg game. □

4.4. Algorithm of reaching equilibrium

Algorithm 2 Algorithm of reaching equilibrium

1: for (each resource type r , r ∈ R) do
2: for (each iteration t) do
3: MECs publish the current price of resource type r ,
{pj,r ,∀j ∈ M }

4: Each EU i computes the best demand from MEC j xi,j,r
for resource r using the proposed ODCA algorithm and sends
it to MEC j, where j ∈ M .

5: for (each MEC j, j ∈ M ) do
6: if (

∑N
i=1 xi,j,r > Qj,r ) then

7: Increase the resource price of MEC j p′j,r .
8: Update the demands from all MECs.
9: else

10: if (
∑N

i=1 xi,j,r < Qj,r ) then
11: Decrease the resource price of MEC j p′j,r .
12: Update the demands from all MECs.
13: else
14: Price pj,r remains unchanged.
15: end if
16: end if
17: end for
18: if (|p′j,r − pj,r |< ϵ,∀j ∈ M ) then
19: pj,r∗ ← p′j,r ;
20: Return pj,r∗;
21: Break;
22: else
23: t=t+1; Break;
24: end if
25: end for
26: end for

In this section, we develop an iterative algorithm to achieve
the equilibrium of the proposed Stackelberg game.

Algorithm 2 runs iteratively for each resource type r (lines
2–25). The initial price of resource r pj,r > 0,∀j ∈ M is

arbitrarily set by each MEC. Each MEC updates its unit price in
each iteration once based on EUs’ demands and total resources
(lines 2–25). In this algorithm, the mechanism for updating the
prices is mathematically expressed as

p′j,r = pj,r + (
∑N

i=1 xi,j,r − Qj,r )× δj, (39)

where δj is a step parameter of MEC j, which is a sufficiently small
number. Once an MEC updates its prices, the EUs will adjust their
demands based on the current situation by using our proposed
ODCA (line 4).

The unit prices of the MECs and the demands of EUs update
interactively. The algorithm terminates when the price profiles
obtained by two successive iterations are close enough and the
accuracy requirement is satisfied (lines 18–21). The final con-
verged price profile pr∗ = (p1,r∗, p2,r∗, . . . , pM,r∗) and the corre-
sponding EUs’ price profiles construct the Stackelberg equilibrium
for resource type r . A Stackelberg equilibrium solution for the
proposed Stackelberg game can be obtained by repeating the
aforementioned process for other resources.

5. Experimental evaluation

In this section, we illustrate the performance of the proposed
Stackelberg Game Approach (SGA).

Research on mobile edge computing is still at infancy. To our
knowledge, few studies have tackled the allocation and pricing
of resources [3,28,52]. However, because of the different back-
ground information and optimization objectives, comparing SGA
with the previous works is not appropriate. In accordance to the
methods in [7,15,53,54], and [36], we design several numerical
examples to evaluate the performances of the proposed SGA. We
investigate how EUs select the best resource combinations based
on the unit price of each resource in each MEC under limited
budgets. We also study how MECs determine the unit price of
the resources to maximize revenues. Without loss of generality,
we also consider the equilibrium of the Stackelberg game for the
scenario comprising a large number of MECs and EUs. Then, we
show the convergence of Algorithm 2 and how an EU with idle
resources can play the role of an MEC. Moreover, because we
apply a Stackelberg game to model the interaction between MECs
and EUs in a decentralized manner, we consider the following
three centralized schemes as baseline schemes for comparison.
• Interior Point Algorithm (IPA) [55,56]
• Sequential Quadratic Programming algorithm (SQP) [57,58]
• Active Set Algorithm (ASA) [59,60]
The objective of the three centralized schemes is to maximize

the sum of the utility of all individuals, including MECs and EUs.
Unless stated otherwise, the parameters used in the analysis

are as follows: αi = 1; N = 5 EUs; M = 3 MECs; R = 3 resources
in the mobile edge computing system; budget limits of EUs are
B1,1 = 5, B1,2 = 15, B1,3 = 10; B2,1 = 7, B2,2 = 16, B2,3 = 15;
B3,1 = 9, B3,2 = 4, B3,3 = 20; B4,1 = 12, B4,2 = 10, B4,3 = 25;
B5,1 = 15, B5,2 = 9, and B5,3 = 30; αi = 1 for all i ∈ N ;
the available resources of MECs include Q1,1 = 10, Q1,2 = 11,
Q1,3 = 30; Q2,1 = 15, Q2,2 = 27, Q2,3 = 30; Q3,1 = 20, Q3,2 = 26,
and Q3,3 = 30; δj = 0.01; and ϵ = 10−10.

5.1. Simulation steps

MATLAB is used to examine the performance of the proposed
Stackelberg game. The simulation steps are performed using it-
erations to obtain the Stackelberg equilibrium. We take a single
resource type as an example. First, given the unit price of the
resource of each MEC, each EU makes the best choice for the
resource according to the proposed ODCA. Then, the MECs will
update their prices based on the EUs’ requirements. This process
is repeated until the accuracy requirement for the unit price is
satisfied. Finally, when the unit prices are determined, each EU’s
optimal resource demand can be obtained through the ODCA.
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Fig. 2. Optimal prices of MECs at the Stackelberg equilibrium. (a) Unit price of resource 1 vs. B11 . (b) Unit price of resource 2 vs. B12 . (c) Unit price of resource 3
vs. B13 .

Table 3
Unit price of resource r at the Stackelberg equilibrium when N = 100 EUs and
M = 7 MECs with a variation in B1,r .
B1,r p1,r p2,r p3,r p4,r p5,r p6,r p7,r
10 5.0791 3.7630 3.0104 2.5087 2.1503 1.8815 1.8815
20 5.0894 3.7749 3.0199 2.5166 2.1571 1.8874 1.8874
30 5.1058 3.7864 3.0291 2.5243 2.1637 1.8932 1.8932
40 5.1223 3.7979 3.0384 2.5320 2.1703 1.8990 1.8990
50 5.1388 3.8095 3.0476 2.5396 2.1768 1.9047 1.9047
60 5.1553 3.8210 3.0568 2.5473 2.1834 1.9105 1.9105
70 5.1717 3.8325 3.0660 2.5550 2.1900 1.9163 1.9163
80 5.1882 3.8440 3.0752 2.5627 2.1966 1.9220 1.9220
90 5.2047 3.8556 3.0845 2.5704 2.2032 1.9278 1.9278
100 5.2211 3.8671 3.0937 2.5781 2.2098 1.9335 1.9335

5.2. Example 1: Optimal prices and utilities of MECs at the Stackel-
berg equilibrium

Fig. 2 shows the optimal prices determined by each MEC at the
Stackelberg equilibrium when the budget of EU 1 for each kind of
resource varies from 5 to 50. Fig. 2(a) and (b) show that the price
for an MEC with few resources is higher than that with numerous
resources. For example, MEC 1 charges higher than MEC 2 for
Resource 1, and MEC 2 charges higher than MEC 3, which is
because the amount of Resource 1 that the three MECs possess
is 10, 15, and 20, respectively. When the three MECs have the
same amount of resources, EUs cannot distinguish among them,
and the charges are the same (Fig. 2(c)). Fig. 2 shows that the
increases in the unit price of each resource is roughly linear as
the budget of the EUs increases.

Fig. 3(a), (b), and (c) show the revenue of each MEC with one
resource type, which corresponds to the situations in Fig. 2(a),
(b), and (c), respectively. Fig. 3(d) depicts the total revenue of
each MEC when the total budget of EU 1 varies from 15 to
150. Although MEC 1 charges the highest among the MECs, the
corresponding revenue is the lowest because the MEC possesses
the lowest amount resources (Fig. 3(a) and (b)). By contrast, the

revenue of MEC 3 is the highest despite having the lowest unit
price among the MECs (Figs. 2(a) and 3(a)).

5.3. Example 2: Optimal demands and utilities of EUs at the Stack-
elberg equilibrium

Fig. 4(a), (b), and (c) display the demands of each EU for
each resource at the Stackelberg equilibrium. EU 1’s demand
for resources increases with the increase in the corresponding
budget. On the contrary, the demands of other EUs decrease
because the price of the resources increased due to the increment
in the budget of EU 1 while their budget remains unchanged.
Fig. 5 shows the utilities of the EUs at the Stackelberg equilibrium.

For a certain resource r , we consider the equilibrium of the
Stackelberg game for large-scale applications consisting of a large
number of MECs and EUs. Tables 3 and 4 summarize the results
of the unit price and EU demands at the Stackelberg equilibrium
when the number of EUs and MECs are 100 and 7, respectively,
and the budget of EU 1 is B1,r = 10, 20, . . . , 100. The budgets
of EUs 2–10, 11–20, 21–30, 31–40, 41–50, 51–60, 61–70, 71–
80, 81–90, and 91–100 are 10, 15, 20, 25, 30, 35, 40, 45, 50,
and 55, respectively. The available resource r of the MECs are
Q1,r = 50, Q2,r = 100, Q3,r = 150, Q4,r = 200, Q5,r = 250,
and Q6,r = Q7,r = 300. The characteristics included in Tables 3
and 4 are similar to those in Figs. 2 and 4.

5.4. Example 3: EU with idle resources acting as an MEC

In a mobile edge computing system, an EU with idle resources
can act as an MEC. For example, for several kinds of resources,
if few EUs own resources with idle states, then the EUs can
serve as MECs to provide the resources to other requiring EUs.
Furthermore, the EUs can charge other EUs for providing the
resources. Taking resource 1 as an example, suppose that an EU
with available resource 1 exists, and the amount of resource 1 is
QEU,1 = 5 (Fig. 6(a) and (b)). The parameters of the other MECs

Table 4
EU demands for resource r at the Stackelberg equilibrium when N = 100 EUs and M = 7 MECs with a variation in B1,r .
B1,r EU1 EU2− 10 EU11− 20 EU21− 30 EU31− 40 EU41− 50 EU51− 60 EU61− 70 EU71− 80 EU81− 90 EU91− 100

10 4.6013 4.6013 6.7051 8.6580 10.6019 12.5458 14.4897 16.4337 18.3776 20.3215 22.2654
20 8.6325 4.5880 6.6852 8.6325 10.5704 12.5084 14.4463 16.3843 18.3222 20.2601 22.1981
30 12.4731 4.5753 6.6661 8.6091 10.5411 12.4731 14.4051 16.3371 18.2691 20.2012 22.1332
40 16.2903 4.5626 6.6470 8.5858 10.5119 12.4380 14.3641 16.2903 18.2164 20.1425 22.0687
50 20.0843 4.5500 6.6281 8.5626 10.4829 12.4031 14.3234 16.2437 18.1640 20.0843 22.0045
60 23.8552 4.5374 6.6093 8.5396 10.4540 12.3685 14.2830 16.1974 18.1119 20.0263 21.9408
70 27.6035 4.5250 6.5906 8.5167 10.4254 12.3341 14.2427 16.1514 18.0601 19.9688 21.8774
80 31.3291 4.5126 6.5720 8.4940 10.3969 12.2998 14.2028 16.1057 18.0086 19.9115 21.8145
90 35.0324 4.5003 6.5536 8.4714 10.3686 12.2658 14.1630 16.0602 17.9574 19.8547 21.7519
100 38.7135 4.4880 6.5352 8.4489 10.3404 12.2320 14.1235 16.0150 17.9066 19.7981 21.6897
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Fig. 3. Optimal utilities of MECs at the Stackelberg equilibrium. (a) Revenues of the MECs for resource 1 vs. B11 . (b) Revenues of the MECs for resource 2 vs. B12 .
(c) Revenues of the MECs for resource 3 vs. B13 . (d) Revenues of the MECs vs. B1 .

Fig. 4. EUs’ demands at the Stackelberg equilibrium. (a) EUs’ demands for resource 1 vs. B11 . (b) EUs’ demands for resource 2 vs. B12 . (c) EUs’ demands for resource
3 vs. B13 .

are the same as the parameters set at the beginning of Section 5.
The main observations from Fig. 6 are elaborated as follows.

(1) The unit price of the original MECs decreases due to the
increase in resources. Another reason is the introduction of a
newly joined MEC that brings this kind of resource. Moreover,
the price of the newly joined MEC is higher than any other
original MEC because the amount of resources in the former is
the minimum quantity.

(2) The demands for Resource 1 of all EUs increase due to
the decrease in the prices of the originally existing MECs and the
unchanged budgets of EUs.

(3) The newly joined MEC can obtain revenues because of its
ability to provide its own idle resources for the EUs.

Therefore, any EU with idle resources can act as an MEC.

5.5. Example 4: Convergence of Algorithm 2

Three parameters affect the convergence speed of Algorithm 2:
the initial price, accuracy requirement ϵ, and step parameter δj.
The pricing problem of Resource 1 will be treated as an example
to analyze the effect of these parameters on Algorithm 2.

(1) Initial unit price. We set the accuracy requirement ϵ =
10−10 and δj = 0.05. Fig. 7 shows that different initial prices
exert an effect on the convergence speed of the algorithm. The
closer the initial unit price is to the equilibrium price, the faster
Algorithm 2 converges.
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Fig. 5. EU utilities at the Stackelberg equilibrium. (a) EU utilities for resource 1 vs. B11 . (b) EU utilities for resource 2 vs. B12 . (c) EU utilities for resource 3 vs. B13 .
(d) EU utilities vs. B1 .

Fig. 6. Changes in MECs and EUs when an EU with idle resources acts as an MEC. (a) Changes in the unit price of MECs’ resources. (b) Changes in EUs’ demands.

(2) ϵ. To eliminate the influence of the other two parameters,
we set δj = 0.02 and j = 1, 2, 3. The experiment is repeated
100 times to eliminate the effect of the randomness of the initial
price. The average results are summarized in Table 5, which also
displays the number of iterations for ϵ = 10−1, 10−2, . . . , 10−10.
The higher the accuracy requirement (i.e., the lower the value of
ϵ), the higher the number of iterations t and the closer the unit
price is to the optimal one.

(3) δj. We set the initial price of MECs as p1,1 = p2,1 = p3,1 =
6 and ϵ = 10−10. Fig. 8(a) and (b) indicate that Algorithm 2
converges faster when the step parameter δj is larger.

5.6. Example 5: Decentralized mechanism: SGA vs. centralized
schemes

To compare and assess the performance of the proposed de-
centralized mechanism (SGA), we implement the system-wide
utility maximization solution (i.e., maxX,P

∑
i∈N ,j∈M Ui + Uj) us-

ing three centralized optimization schemes, namely, IPA, SQP, and
ASA.

For a certain resource type 1, we run several experiments to
compare the system-wide total utility when the budget of EU
1 is B1,1 = 5, 10, . . . , 50. The other parameters of MECs and
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Fig. 7. Unit price of MECs’ resource 1 with different initial unit prices. (a) p1,1 = p2,1 = p3,1 = 6. (b) p1,1 = p2,1 = p3,1 = 0.5.

Fig. 8. Unit price of MECs’ resource 1 with different values of δj , (j = 1, 2, 3). (a) δj = 0.05. (b) δj = 0.02.

Table 5
Unit price of MECs’ resource 1 with different ϵ.
Accuracy requirement ϵ t p11 p21 p31
10−1 26 1.9299 1.2985 0.9544
10−2 47 1.4861 1.0921 0.8708
10−3 52 1.4477 1.0835 0.8666
10−4 67 1.4440 1.0828 0.8662
10−5 80 1.4437 1.0827 0.8662
10−6 92 1.4436 1.0827 0.8662
10−7 109 1.4436 1.0827 0.8662
10−8 117 1.4436 1.0827 0.8662
10−9 127 1.4436 1.0827 0.8662
10−10 140 1.4436 1.0827 0.8662

EUs are the same as the parameters set at the beginning of the
experimental section. The results are presented in Table 6.

The findings from Table 6 indicate that the system-wide to-
tal utility of all mechanisms increases as the budget of EU 1
increases. The total utility of SGA is slightly lower than that of
the three centralized methods. Compared with the centralized
optimization solution, the total utility obtained by SGA is almost
equal to that obtained by IPA, SQP, and ASA, and the performance
loss of the former is lower by 1% in all cases. This result illustrates
the feasibility and effectiveness of the proposed decentralized
mechanism in terms of total utility.

Table 6
Comparison of the total utilities with a variation in B1,1 .
B1,1 SGA IPA SQP ASA

5 253.7504 254.2595 254.0912 254.3389
10 274.8481 275.0994 275.0144 275.0994
15 301.8510 302.2093 302.0904 302.2093
20 332.4434 333.0566 332.8519 333.0566
25 365.5030 366.4621 366.1398 366.4621
30 400.3798 401.7537 401.2905 401.2905
35 436.6574 438.5034 437.8808 437.8808
40 474.0498 476.4186 475.6210 476.7900
45 512.3516 515.2890 514.3026 515.7489
50 551.4092 554.9580 554.9580 555.5123

Taking resource 1 again as an example, we investigate the
comparison of the utility of each individual method after the
allocation and pricing of resource 1 is determined through SGA
and the three centralized mechanisms. The parameters are the
same as the parameters set at the beginning of the experiments.

Fig. 9 describes the utility values of the three MECs and five
UEs obtained by different algorithms. The utility obtained by EUs
1, 2, and EU 3 using SGA is the largest among the compared algo-
rithms. The utilities obtained by EUs 4 and 5 through SGA are not
the largest, but are extremely close to the maximum value. MEC
3 only obtained an effective utility value through SGA; the utility
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Fig. 9. Individual utility comparison.

value is equal to 0 when the three methods are employed. For
MEC 1, the utility value obtained by the ASA method is 0, whereas
for MEC 2, the utility value obtained through this method is the
largest. MEC 1 obtained a large utility value through IPA and SQP
methods. However, that of MEC 2 is 0, which indicates that the
individual utility induced by IPA, SQP, and ASA is unbalanced. By
contrast, SGA delivered satisfactory utility values.

5.7. Example 6: Sensitivity analysis of the parameters affecting the
proposed SGA

To investigate the sensitivity analysis of the parameters that
mainly affect the proposed SGA, we consider two different sce-
narios, in which resource r is treated as an example in both
scenarios. In the first scenario, we analyze the effect of the dif-
ferent numbers of EUs on the unit price of resource r in each
MEC and on the corresponding revenues. We assume three MECs
with Q1,r = 10, Q2,r = 15 and Q3,r = 20, and the number of
EUs is within 4–20. To simplify the problem, we assume that each
EU’s budget is 1. In the other scenario, we consider the effect of
different numbers of MECs on the demands of EUs for resource
r and on the corresponding utilities. The number of MECs varies
from 3 to 15. The number of resource r in each MEC is set to 100,
and the budgets of EUs 1–20, 21–40, 41–60, 61–80, and 81–100
are set to 10, 20, 30, 40, and 50, respectively.

Fig. 10(a) shows that with the increase in EUs, the total budget
of all EUs for resource r increases, resulting in the increase in
the unit price of resource r of each MEC. Correspondingly, as
the number of EUs and the unit price of resource r increase, the
revenue of each MEC increases (Fig. 10(b)). Although the budgets
of EUs for resource r are the same in all cases (i.e., all budgets
are set to 1), the amount of resources that each EU can obtain
decreases because the unit price increases while the budget for
resource r remains unchanged. Moreover, the total amount of
resource r does not change, but the number of EUs demanding
resource r increases. This situation is consistent with the market
law of under-supply in economics.

Fig. 11(a) and (b) presents the demands and utilities for re-
source r for 100 EUs. The number of MECs varies from 3 to

Fig. 10. Equilibrium for MECs under various EUs. (a) Unit price of resource r . (b) Revenues of the MECs for resource r .

Fig. 11. Equilibrium for EUs under various MECs. (a) Demands for resource r . (b) EU utilities for resource r .
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15. The total amount of resource r increases as the number of
MECs grows. Therefore, each EU demands increasing resources
(Fig. 11(a)). Similarly, the utilities of all EUs increase due to the
increase in the demands. Although the budgets of the EUs for
resource r do not change in all cases, the demands for resource r
increase because the total number of resource r increases while
the number of EUs remains the same. This situation is consistent
with the market law of over-supply in economics.

6. Conclusion

In this paper, we study multiple resources allocation and
pricing issues in a mobile edge computing system and propose
a Stackelberg game-based framework in which the EUs act as
followers and MECs act as leaders. To solve this problem ef-
ficiently, we decompose the multiple resources allocation and
pricing problem into a set of subproblems, each of which only
considers a single resource type. For each subproblem, we first
prove the existence of the Stackelberg equilibrium of the game.
To determine the Stackelberg equilibrium for each resource type,
we then develop an algorithm ODCA to find the best demand
strategy of the resource for an EU and an iterative algorithm to
find an equilibrium price. The numerical results demonstrate that
the proposed mechanism is efficient and scales well as the system
size increases. Moreover, we show that an EU with idle resources
can play the role of an MEC.

In future work, we will consider a dynamic scenario wherein
EUs may depart and leave within a computation offloading pe-
riod. In addition, we will conduct a research that not only com-
bines resource allocation with specific task models that involve
transmissions over wireless channels but also accounts for the
energy efficiency of EUs.
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