The Journal of Supercomputing (2025) 81:1631
https://doi.org/10.1007/s11227-025-08106-9

®

Check for
updates

An efficient lossy compression framework for density
partitioning in AMR applications

Yida Li' - Huizhang Luo’ - Yufeng Zhang' - Keqin Li' - Kenli Li'

Received: 10 January 2025 / Accepted: 21 November 2025
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract

Adaptive mesh refinement (AMR) has become an indispensable tool in high-perfor-
mance computing (HPC), enabling exascale simulations by dynamically allocating
computational resources and significantly reducing memory footprint. Meanwhile,
lossy compression is widely adopted in HPC environments to alleviate critical stor-
age capacity and I/O bottlenecks, provided that reconstruction errors remain within
acceptable bounds. However, the hierarchical structure, multi-resolution nature,
and inherent spatio-temporal irregularity of AMR data pose unique challenges that
render general-purpose compressors inefficient. Despite their respective advan-
tages, existing data compressors still have an insufficient compression ratio and low
throughput for data reduction in AMR applications. This paper mainly explores
how to improve the performance of state-of-the-art lossy compression algorithms
from the perspective of applications. To this end, we propose a density-partitioned
AMR data lossy compression framework called AMRDPC, improving AMR appli-
cations’ storage efficiency. The main ideas are twofold. First, to address the high
computational overhead of using the k-d tree to process medium-density AMR data,
we propose a fast k-d tree backfilling density grid (FBKDTree) strategy to improve
compression speed. Second, to address the problem of the low compression ratio of
high-density AMR data, we propose an efficient loop reversal patching (ELRP) strat-
egy based on the design characteristics of existing prediction-based compressors.
It can significantly improve the data compression performance while controlling
errors. To verify the effectiveness of AMRDPC, we introduce multiple evaluation
metrics for experimental analysis in seven real AMReX application datasets. Com-
pared to state-of-the-art methods, AMRDPC achieves significant performance gains,
with up to a 5.73% higher compression ratio and an 18.83% increase in throughput,
providing a powerful data reduction solution for supercomputing environments.

Keywords Data compression - High-performance computing (HPC) - Adaptive
mesh refinement (AMR) - Density partitioning - Data backfilling

Extended author information available on the last page of the article

Published online: 06 December 2025 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-08106-9&domain=pdf

1631 Page 2 of 29 Y.Lietal

1 Introduction

In recent years, as the scale of scientific simulations in high-performance comput-
ing (HPC) systems continues to grow, storage capacity and I/O bandwidth bottle-
necks have become increasingly serious [1]. To mitigate these constraints, many
HPC packages, such as AMReX [2], Athena [3], BoxLib [4], Chombo [5] [6], etc.,
have deployed adaptive mesh refinement (AMR) technology to reduce unneces-
sary computational overhead while ensuring the accuracy of the calculation results.
Compared with the traditional uniform grid solution methods, AMR optimizes the
use of computing resources and significantly lowers storage requirements, making it
particularly suitable for large-scale scientific simulations. [7, 8].

While AMR technology successfully reduces output data volume, its efficacy
can be insufficient for extreme-scale scientific simulations, and significant storage
costs and I/O overheads persist [9]. For example, the WarpX project team studies the
simulation of plasma accelerators, which reach the exascale computing level [10].
Because the simulation of plasma accelerators requires resolving the evolution of
the driver (laser or particle beam) and the accelerating beam into structures that are
several orders of magnitude longer than the accelerating beam. This will require sev-
eral or even more orders of magnitude of acceleration based on the existing technol-
ogy level.! Managing such large amounts of data is a preeminent supercomputing
challenge. Saving all the generated raw data to disk is often impractical due to lim-
ited storage capacity and constrained I/O bandwidth.

A straightforward approach is to use data compression technology to fill this gap.
As reported, scientific applications usually require more than 10x of data reduc-
tion [11]. However, data deduplication and lossless compression techniques are no
longer effective due to their lower data compression performance [12]. Existing
leading lossless compressors can only achieve a maximum data compression ratio
of 2%, while lossy compressors can significantly reduce data size with controllable
errors [13]. Specifically, the error bound can be set according to user requirements,
such as absolute error bounds, and bounding values. The compressor ensures that
the differences between the decompressed and original data do not exceed this error
bound. Typical error-bounded lossy compressors include SZ [14-17], QoZ [18] and
MGARD [19] based on prediction methods, ZFP [20] and TTHRESH [21] based on
transformation methods, etc. Generally, the metrics for evaluating lossy compression
performance include compression ratio, data distortion, and compression through-
put. Among the state-of-the-art compressors, SZ usually has better compression
performance [22].

Several prior works have explored the combination of AMR and lossy compres-
sion technology. For instance, zMesh considers reorganizing the data in different
refinement levels of AMR into a 1D array for processing to make the data smoother,
which improves the data compression ratio compared to directly input the data
into the compressor for compression [23]. Based on this idea, LAMP proposes a

! https://www.exascaleproject.org/research-project/warpx/

@ Springer

https://www.exascaleproject.org/research-project/warpx/

An efficient lossy compression framework for density. .. Page30f29 1631

hierarchical mapping method that can effectively reduce the redundancy between
AMR hierarchical data and improve compression performance [24]. However, these
methods process data in 1D space, which causes the loss of locality and topologi-
cal information of high-dimensional spatial data. To solve this problem, the three-
dimensional AMR Compressor (TAC) presents a method for compressing 3D
AMR data, and divides the density of spatial data into three types: low, medium,
and high density, and designs multiple strategies for data processing according to
different densities [25]. AMRIC proposes an in-situ lossy compression frame-
work and deploys HDF5 filters to improve compression performance for AMR
applications [26].

Despite these advances, significant performance gaps remain. Specifically, TAC’s
k-d tree structure incurs substantial computational overhead during data backfilling
for medium-density data, and its block patching strategy for high-density data fails
to leverage the design of modern prediction-based compressors, yielding subopti-
mal compression. To this end, we propose AMRDPC, an efficient lossy compression
framework based on density partitioning, explicitly designed for the challenges of
AMR data in HPC environments.

Our main contributions are outlined as follows:

e We conducted an in-depth analysis of the shortcomings of existing AMR 3D
compression technology, proposed an optimization design method for data pro-
cessing strategies under different density partitions and constructed a lossy com-
pression framework AMRDPC?

e To address the high computational overhead of AMR data processing at medium
density, we design a fast k-d tree backfilling (FBKDTree) technique while ensur-
ing that data fidelity remains unchanged compared to the original k-d tree back-
filling strategy;

e To address the problem of poor compression performance in AMR data process-
ing under high density, we designed an efficient loop reversal patching (ELRP)
technology that can significantly improve data compression performance while
keeping errors under control;

e We evaluate AMRDPC on the Tianhe supercomputer using seven real-world
AMReX datasets, analyzing its compression ratio, distortion, and throughput.
We also show that AMRDPC is a backend-agnostic framework, ensuring broad
compatibility and flexibility.

Limitations of the proposed approarch. In this work, we focus on patch-based AMR
data compression, which efficiently handles data redundancy across different levels
of refinement. Unlike tree-based representations, the patch-based approach simpli-
fies refinement computation and facilitates post-analysis and data visualization. Our
method is designed for offline AMR data compression, rather than in-situ scenarios,
and it is important to position it within a holistic data path.

2 The source codes are available at https://github.com/liyidal995/AMRDPC;

@ Springer

https://github.com/liyida1995/AMRDPC

1631 Page 4 of 29 Y.Lietal

It is important to note that compression in HPC systems operates at multiple,
complementary layers, each addressing distinct challenges. Application-layer com-
pression (such as the method proposed in this work) is primarily concerned with
storage efficiency and data preservation. It leverages domain-specific knowledge of
the data structure and semantics (e.g., AMR hierarchy, scientific error bounds) to
achieve high compression ratios for long-term archiving and subsequent analysis. In
contrast, network-layer compression [27-29] is designed for transmission efficiency,
prioritizing low latency and high throughput to mitigate I/O and network bottlenecks
during data movement. While generic and fast, these methods are typically data-
agnostic and do not address the fundamental structural irregularity or rate-distortion
trade-offs required for scientific data storage. These approaches are not mutually
exclusive; rather, they can be synergistically combined in an end-to-end data pipe-
line. An optimal strategy may first employ application-specific compression to mini-
mize the fundamental data volume for storage, upon which network-level compres-
sion can effectively operate to accelerate the transmission of this already-reduced
data.

The remainder of this paper is organized as follows: Section 2 provides the back-
ground for this work. Section 3 further provides the motivation. Section 4 proposes
the idea and implementation of AMRDPC. Section 5 shows the evaluation results
and analysis of AMRDPC. Section 6 introduces related work in compression for
scientific data and exploration for AMR applications, along with conclusions and
future work in Sect. 7.

2 Background

In this section, we present AMR’s principles and data layout, existing scientific data
compressors, and related works in classical k-d trees for spatial data partitioning. We
also discuss the state-of-the-art methods for AMR data compression and potential
problems and challenges.

2.1 AMR principles and data distribution

A key method in HPC, AMR optimizes simulations by employing high-resolution
grids in sub-regions with large physical gradients and low-resolution grids else-
where. This targeted approach delivers high solution precision while maintaining
high computational efficiency and managing resource demands.

Specifically, AMR calculates a finer grid in the following steps. Step 1: Calcu-
late the local error of each grid point, usually using the Richardson extrapolation
method [30]; Step 2: When the error is greater than a preset threshold, mark this
grid point for further refinement. Find all grid points that need to be further refined
and generate a new grid that can cover all grid points that meet the conditions; Step
3: Based on the coarse grid, use the interpolation method to fill the new grid. As
such, there is a high correlation between the coarser grid and the finer grid; Step 4:

@ Springer

An efficient lossy compression framework for density... Page50f29 1631

DB: plot.pigv5.1km.1112.4lev.000742.2d.hdf5
Cycle: 74

Pseudocolor
Var: Vel mgnmﬂ@ﬂ
—B00.

Cycle: 742

Pseudocolor
Var: basal fictiod 50
1.000

— 6002 —0.7500

w05 300 osoo 300
2008
1.000

Max: 3898,
Min: 9.240e-
=
Pseudocolor™

Var: Vel_magpitude
=00,

200 % 200

Y-Axis (x10°3) &

150

Mox: 3898
Min: 9.240653 159

Subset
Var: levels
o

-

=

100 150
X-Axis (x10%3)

100 150
X-Axis (x10°3)

Fig. 1 Viewing of MISMIP3D with Vislt. a) Grounding line migration. b) Nested level boxes for adap-
tive resolution

1A 1B
0A 0B
________________________ 24 | 2B
| I 1C —1D—
'Ivl_0.bin(0A,0B,0C,0D) | 2C | 2D
| IvI_Lbin(1A,1B,1C,1D,1E, IF,1G, 1 H)
vl 2.bin(2A,2B.,2C,2D
] IE | 1F
0C 0D
1G 1H
(a) 1d baseline (b) AMR data layout

Fig.2 A typical example of AMR data storage and layout

Repeat Step 2, with the error less than the specified threshold or reaching the maxi-
mum number of refinement levels as the termination condition.

Fig. 1 shows the visualization results of a real AMR application MISMIP3D with
Vislt,® which is the Marine Ice Sheet Model Intercomparison Project for plan view

3 https://hpe.linl.gov/software/visualization-software/visit

@ Springer

https://hpc.llnl.gov/software/visualization-software/visit

1631 Page 6 of 29 Y.Lietal

models. The progressively small boxes indicate regions of progressively higher
resolution. AMR uses finer meshes such that high resolution is maintained at the
grounding line. The data from a finer level are highly correlated with those from a
coarser level.

The data of each AMR level are usually stored separately (e.g., in a 1D array).
When the AMR data are needed for post-analysis or visualization, users will typi-
cally convert the data from different levels to a uniform resolution. For example,
Fig. 2(a) shows a simple example of three-levels AMR data; 0 means low resolution
(the coarse level), 1 and 2 mean high resolution (the fine level). Fig. 2(b) illustrates
a dataset of three AMR levels, with one, two, and one box at each level. Each box
has four data points, where each point is denoted by the concatenation of its level ID
and sequence index within its level. For example, 1A denotes the first data point at
level 1.

2.2 Compressors for scientific data compression

Scientific data compression is divided into two categories: lossless compression and
lossy compression. Compared with lossless compression, lossy compression can
greatly increase the data compression ratio while ensuring controllable errors [31].

In the HPC domain, with the explosive growth of scientific data scale, many high-
precision lossy compressors have been designed and developed well [32], for exam-
ple, SZ and ZFP. SZ is a lossy compressor based on a prediction model, which uses
prediction methods such as Lorenzo prediction to remove data correlation and uses
quantization methods combined with lossless compression techniques such as Huff-
man encoding to further compress data [15, 17]. ZFP is a transform-based compres-
sor, which uses orthogonal block transformation to remove the correlation between
data and uses embedded encoding to compress transformation coefficients [20].
Within the same error bound, SZ is usually 2Xx higher than ZFP in compression
ratio, but at the same time, SZ has a 20% to 30% performance trade-off in encoding
and decoding throughput compared to ZFP in terms of time overhead [31, 33].

This paper focuses on SZ lossy compression because SZ has a high compression
performance [22]. Specifically, SZ has four main steps. In the first step, based on
neighbor data points, a variety of prediction methods (such as Lorenzo prediction
and spline interpolation prediction) can be used to predict the current data point; in
the second step, based on the preset error bound, calculate the difference between
the predicted value and the actual value, and quantize the difference; the third step,
use Huffman coding to encode the quantized value; the fourth step, use lossless
compression technology (such as Zstd) to further compress the data.

2.3 K-d tree for multi-dimensional spatial data partitioning
The k-d tree is a fundamental data structure for partitioning k-dimensional space,

widely used in particle data compression to identify particles and eliminate empty
regions [34]. As a binary search tree, it recursively subdivides the space along

@ Springer

An efficient lossy compression framework for density. .. Page70f29 1631

alternating axes (e.g., x = y — x) until each sub-region contains either particles or
becomes empty, as illustrated in Fig. 3.

However, this axis-aligned partitioning strategy often proves inefficient [35]. For
instance, within the red dashed box in Fig. 3, following the conventional order pro-
duces two 2 X 2 sub-regions, both still containing empty areas that require further
subdivision. In contrast, partitioning along the x-axis yields one 1 X 4 sub-region
free of empty space, thereby reducing subsequent partitioning effort. This example
highlights the limitation of the classical k-d tree approach when handling non-uni-
form data distributions.

In AMR data compression, the spatial partitioning strategy of traditional k-d trees
demonstrates limited efficiency when handling the complex hierarchical density dis-
tribution characteristic of AMR data. Notably, the "empty blocks" commonly found
in AMR data are not manually specified using external domain knowledge, but rep-
resent inherent structural features where all data values equal zero. These empty
blocks originate from the fundamental AMR refinement mechanism: computational
resources focus on critical regions, while other areas remain at coarse resolution
and are populated with zero values. Our proposed method formally defines empty
blocks as data blocks whose maximum absolute value is zero. By specifically target-
ing these structural empty blocks, our enhanced k-d tree strategy achieves efficient
adaptive spatial partitioning that is better suited to the characteristics of AMR data.
The detailed algorithm design can be found in Sect. 4.

3 Motivation
This section identifies shortcomings in TAC’s k-d tree and ghost-shell padding
(GSP) strategies for AMR data preprocessing, which result in poor compression

ratios and significant time overhead. To address these limitations, we propose a new
data processing strategy, detailed after the following analysis.

effective split
%

Fig.3 A classical k-d tree for 2D data partitioning

@ Springer

1631 Page 8 of 29 Y.Lietal

Observation 1: When compressing medium-density AMR data, the k-d tree construction is the critical
performance bottleneck of the algorithm, which prevents TAC from providing high compression
throughput for 3D AMR data.

First, we conducted an empirical analysis of the time costs associated with the
OpST strategy and k-d tree strategy used by TAC when compressing low-density
and medium-density AMR data. Our analysis, as depicted in Fig. 4, reveals the time
cost of these two strategies for processing the three datasets Grid_Z2, Grid_Z3, and
Grid_Z5, under the same absolute error.

The results show that k-d tree construction accounts for about 90% of the total
AMR data compression time. More deeply, we observed that when mapping the k-d
tree structure data back to the 3D density grid, multiple nested loops are introduced
to traverse all tree blocks and leaf nodes. Specifically, assuming that the number of
tree blocks is m and the average number of leaf nodes under each tree block is n, the
time complexity of this part is O(m * n). The number of loops involved in the fill-
ing operation corresponding to each leaf node depends on the size of the leaf node.
Assuming that in the worst case, the size of each leaf node is d, then the time com-
plexity of the filling operation is O(d®). Since this operation is performed once for
each leaf node, the total time complexity is O(m * n * d°). To overcome this limita-
tion, we can consider appropriately adjusting the construction strategy of the k-d
tree. For smaller leaf nodes, we can consider a more efficient backfilling algorithm
to reduce the number of loops and thereby reduce time overhead. Please see Sect. 4
for the specific design.

Observation 2: When processing high-density AMR data, the original GSP strategy overlooks its
spatial distribution and integrates poorly with block-wise SZ compressors, potentially compromising
compression performance.

For block-wise SZ compressors like SZ2, data prediction is pivotal to perfor-
mance. High prediction accuracy causes the resulting errors to be clustered closely
around zero, which enables efficient Huffman encoding and higher compression
ratios. This is why SZ2 performs best on data with high spatial locality; low locality
directly compromises prediction quality and, in turn, the compression ratio.

As shown in Fig. 5, we use two examples to illustrate the irrationality of the orig-
inal GSP strategy. This level of high-density AMR data is divided into 5x%5, i.e., 25
blocks, where the blank color blocks represent empty areas, and the colored parts

w

Fig.4 Time overhead of the
algorithm when processing three — gK[;Iree
low—medium density AMR P
datasets under the same absolute m
error T 24

o

(9]

o}

2]

[}

£ 1

E

0- . . .
Grid_Z2 Grid_Z3 Grid_Z5

@ Springer

An efficient lossy compression framework for density... Page90f29 1631

Fig.5 Analyze the shortcom-
ings of the GSP strategy when
processing high-density AMR
data reverse
—_—

(a) density = 60%

reverse

(b) density = 80%

represent the data areas. The left part of Fig. 5(a) and Fig. 5(b) shows the original
AMR data distribution. For example, when the density is 60% (15/25), the original
GSP method will patch the empty areas from the top-left to the bottom-right. At this
time, the dark green blocks represent blocks that can be effectively predicted using
SZ, while the light green blocks represent blocks that SZ cannot accurately predict.
In this case, the number of blocks that can be accurately predicted is 7, and the num-
ber of blocks that are difficult to accurately predict is 8. When we reverse this level,
we get the situation shown on the right side of Fig. 5(a). At this time, the original
blocks that cannot be accurately predicted have changed their prediction accuracy
because the blocks in the upper left can be accurately predicted. Through reversion,
the number of blocks that can be accurately predicted becomes 11, and the number
of blocks that are difficult to accurately predict becomes 4. Similarly, as shown in
Fig. 5(b), through reversion, the number of blocks that can be accurately predicted
increases from 14 to 18, while the number of blocks that cannot be accurately pre-
dicted decreases from 6 to 2. In other words, improving the data prediction hit rate
will bring benefits to the patch operation in empty areas. Therefore, combined with
prediction-based compressor design principles, the loop inversion strategy can be
considered to optimize the original patching strategy to further improve data com-
pression performance. In this work, we use SZ2 to compress AMR data. For detailed
design, please refer to Sect. 4.

@ Springer

1631 Page 10 of 29 Y.Lietal

FBKDTree
Medium-density

I £

I ‘]
X fonz e B0
|| High-density m = L
I o o
I

Fig.6 Overview of our proposed AMRDPC

;Za'feln Surateey ComPASOn Botleneck TAC AMRDPC Gain
\ OpST OpST (adopted) \
Slow Backfilling ~ AKDTree = FBKDTree +18.83% CT
Low CR GSP ELRP +5.73x CR

4 Design methodology

We propose AMRDPC, an efficient framework for 3D AMR data compression illus-
trated in Fig. 6. It employs tailored strategies for different data densities: FBKDTree
for medium-density data and ELRP for high-density data. Section 4.1 presents the
overall architecture, while Sect. 4.2 and 4.3 detail the FBKDTree and ELRP strate-
gies, respectively.

4.1 Framework

AMRDPC employs distinct processing strategies tailored to different density pat-
terns in AMR data. The framework processes original AMR data containing mul-
tiple adjacent levels, where Level O represents the coarse level, Levels 1 and 2 rep-
resent refined levels, and dotted boxes indicate empty regions. The core distinctions
are systematically compared in Table 1.

As outlined in Table 1, the novelty of AMRDPC resides in two primary contribu-
tions that directly address the bottlenecks of TAC:

1) For medium-density data, our FBKDTree replaces TAC’s complex hierarchi-
cal AKDTree with a flattened partitioning logic. This simplification drastically
reduces computational overhead, accelerates compression, and significantly
improves CT.

2) To address the suboptimal compression of TAC’s GSP on high-density data, we
propose the ELRP strategy. This coherence-aware method employs a reverse

@ Springer

An efficient lossy compression framework for density. .. Page 110f29 1631

analysis to intelligently patch empty blocks from data trends, achieving a higher
CR under strict error bounds.

To facilitate detailed analysis of our proposed FBKDTree and ELRP algorithms,
Table 2 summarizes the key variables used throughout the algorithmic implementa-
tions. These variables play crucial roles in spatial partitioning, indexing, and density
computation processes.

Building upon these fundamental variables, we now provide an in-depth analysis
of the FBKDTree and ELRP algorithms.

4.2 FBKDtree strategy for medium-density AMR data

We now focus on analyzing the advantages of FBKDTree compared to conventional
k-d tree data space partitioning strategies. Compared to conventional k-d tree data
space partitioning strategies, our proposed FBKDTree method offers the advantage
of adaptive data space partitioning. Specifically, the adaptive k-d tree partitioning
involves the following steps:

First, the 3D dataset is divided into multiple sub-data blocks. Second, a tree struc-
ture represents the position of each data value within the hierarchical dataset. Each
tree node is associated with a sub-data block in the dataset and stores the number
of non-empty sub-data blocks within the sub-data block linked to that node. Third,
for each tree node, the sub-data block is split into two smaller sub-data blocks along
a certain direction. The selection of the splitting direction follows the principle of
maximizing the distinction between non-empty sub-data blocks and blank areas.
Fourth, the subdivision of sub-data blocks continues iteratively until the sub-data
blocks consist entirely of non-empty data regions or entirely blank areas. Fifth, after
completing the subdivision of sub-data blocks, i.e., constructing a complete k-d tree,

Table2 Variable summary

Variable Name Description
densgrid Density grid data array
grid/grid_x,y,z Grid dimensions
blkSize Block size for processing units
leafCnt Leaf node count per depth level
maxTreeBlk Maximum tree blocks or depth level
strideX, Y, Z Strides for 3D grid indexing
XxBegin, xEnd, yBe- Node spatial indices

gin, yEnd, zBegin, zEnd
xSize, ySize, zSize Node spatial sizes
blkX,Y,Z Block counts in spatial dimensions
blkSize The length of the data block
avgDensity Calculated average density
avgCount Sample count for density calculation
hasNeighbor Flag for valid neighbors

@ Springer

1631 Page 12 of 29 Y.Lietal

the non-empty sub-data blocks contained in the leaf nodes of the k-d tree are fed
into the compressor for data compression. It is worth noting that non-empty leaf
nodes do not contain any empty areas; otherwise, the node would undergo further
partitioning. Therefore, a leaf node can only be a data region containing non-empty
sub-data blocks or an empty block.

Unlike traditional k-d tree partitioning rules, the splitting direction in the FBK-
DTree algorithm is dynamically determined. As shown in Fig. 7, a data block is
partitioned along the x, y, and z axes, resulting in eight smaller sub-data blocks. The
number of non-empty sub-data blocks within these eight sub-data blocks is counted
and denoted as nj, n,, ..., ng. Based on the counts of non-empty sub-data blocks
along the x, y, and z axes, the direction for data partitioning is determined. The cal-
culation formula is as follows:

div, = |ny + ny 4+ ns +ng —ny, — iy —ng — ny|
divy = |ny + ny + ns + ng — ny — ny — ny — ng|)

div, = |n; +n, + n3 + ng — ng — ng — n; — ng|

The direction corresponding to the highest value in the div set determines the next
splitting direction for the current data block. As illustrated in Fig. 7, assuming div,
has the largest value, the data block is split into upper and lower sub-blocks along
the z-axis. Subsequently, only the values of div, and div, need to be calculated, with
the larger value determining the subsequent splitting direction. This adaptive parti-
tioning process continues until it has no empty sub-block or itself is empty.

In addition to its adaptive capability in spatial data partitioning, the FBKDTree
algorithm can rapidly backfill data from the k-d tree structure into the densgrid. Its
main steps include traversing all depth levels treeDepth of the tree and perform-
ing operations such as calculating node boundaries, calculating node sizes, and
adjusting index steps for all leaf nodes leafCnt[treeDepth] at each level. By tra-
versing all elements in the node range, the values are read from the tree[treeDepth]
[count[treeDepth]] and filled into the densgrid. Please refer to Algorithm 1 for
implementation details.

ns ns Ns nz
ns nr dive
_alx | +
ns e ns Ne
ns Ne divz
ns +
ni N2 N4 ns N4 ns
z divy
y +
n n2
X n n2

Fig.7 3D Example of the adaptive FBKDTree, demonstrating recursive splitting that terminates when a
node becomes either a full data block or empty

@ Springer

An efficient lossy compression framework for density. .. Page 130f29 1631

Algorithm 1 FBKDTree algorithm.

Input: k-d tree information
Output: densgrid data
1: memset(count, 0, treeDepth);
2: strideZ < grid * grid;
3: strideY < grid;
4. strideX < 1;

5: for each i € [0,treeDepth — 1] do

6: for cach j € [0,leafCnt[i] — 1] do

7: get the block b information zBegin, ..., zEnd;
8: calculate block size bSize for this node;

o: of fsetX « strideX * bSize;

10: of fsetY <« strideY * bSize;

11: of fsetZ < strideZ % bSize;

12: for each data(z,y,z) € b do

13: id—xxoffsetX +yxoffsetY + zxof fsetZ;
14: densgrid[id] < tree[i|[count[i]];

15: count[i] + +;

16: end for

17: end for

18: end for

return reconstructed data

Compared with the original design, FBKDTree has the following advantages: 1)
Reduce array access: By precomputing the stride (strideX, strideY, strideZ), reduce
the number of accesses to the dense grid array and improve data access efficiency;
2) The calculation of the step size is based on the grid size and block size, ensuring
the consistency and accuracy of the index calculation; 3) The original nested loop is
relatively complex, but our method can avoid unnecessary complex calculations and
improve execution efficiency through efficient index calculation of the inner loop.

Complexity analysis: The FBKDTree algorithm implements the backfilling
operation of k-d tree structure data to the AMR grid, and its time complexity can
be decomposed into key steps such as tree depth traversal, leaf node traversal, and
data space traversal. First, the time complexity of the outermost tree depth traversal
process is O(maxTreeBlk), where maxTreeBlk represents the maximum depth of the
tree. Second, the time complexity of the leaf node traversal process is O(leafCnt[i]),
with leafCnt[i] denoting the number of leaf nodes at depth i. Furthermore, to ana-
lyze the time complexity of the data space traversal process, assume that the size
of each data block at depth i is defined as follows: xSize = xEnd — xBegin + 1,
ySize = yEnd — yBegin + 1, and zSize = zEnd — zBegin + 1. In this case, the time
complexity of this step is expressed as O(xSize X ySize X zSize). If the total number
of leaf nodes is S and the total number of grid points is N = grid®, the time com-
plexity in the worst-case scenario is O(N X maxTreeBlk). In an ideal scenario, each
grid point only needs to be accessed once, resulting in a time complexity of O(N).
In addition, the space complexity of the FBKDTree algorithm is mainly determined

@ Springer

1631 Page 14 of 29 Y.Lietal

by the input data scale and the tree structure. The overall space complexity is O(N),
classifying it as an efficient and scalable algorithm.

4.3 ELRP strategy for high-density AMR data

The algorithm of ELRP includes calculating the number and offset of grid blocks
(bIkX, blkY, blkZ), traversing all blocks from bottom right to top left, and calculat-
ing the average density avgDensity of adjacent blocks of each block. If there are
adjacent blocks that are non-empty, update the density value of the current block,
using the avgDensity as the patch value of the current empty area. Please refer to
Algorithm 2 for implementation details.

Algorithm 2 ELRP algorithm.

Input: AMR data

Output: Data after patching
1: get the number of blocks, blkX, bIkY, blkZ;
2: for z = blkZ downto 1 do
3: for y = blkY downto 1 do

4: for x = blkX downto 1 do

5: if (block b(z,y, z) is empty) then

6: avgDensity < 0.0;

7 Count « 0;

8: hasNeighbor < false;

9: if b has a non-empty neighbor in XYZ directions then
10: hasNeighbor « true;

11: count Count;

12: avgDensity = E{b'sNeighbors}/Count;
13: end if

14: else

15: continue;
16: end if

17: end for
18: end for

19: end for
return patched data

Compared with the original design, ELRP has the following advantages: 1)
Using a reverse loop of grid blocks improves the hit rate of data prediction, thereby
improving the accuracy of data patching for the empty areas; 2) For each block, cal-
culate the avgDensity of its surrounding neighbor blocks, only consider non-empty
neighbors, and skip the central block itself when calculating the avgDensity; 3) If
there are non-empty neighbors, update the density values of all grid points in the
current block. If the grid points have not been processed yet, update the density val-
ues directly; otherwise, update based on the weighted average.

Complexity analysis: The computation time of the ELRP algorithm mainly con-
sists of three components: adjacent data checking, data density calculation, and data
block update operations. Specifically, for the process of checking adjacent data
within a data block in three-dimensional space, its time complexity is O(3%) = O(1),
which is a constant time. When calculating data density, the running time of this

@ Springer

An efficient lossy compression framework for density. .. Page 150f29 1631

process is affected by the length of the data block, and the time complexity is
expressed as O(blkSize X blkSize X C), where C is a constant representing the data
offset in a specified direction within the data block (C < blkSize). In the data block
update operation, its time complexity is affected by the size of the data block, which
is O(blkSize®) = O(n3). When it is necessary to traverse all data blocks contained in
the space, the time complexity of the ELRP algorithm is expressed as

T(n) = O(N X Wiize + 1), where N represents the number of grids. If the offset C is

much smaller than blkSize, T(n) = O(N); if the offset C is approximately equal to
blkSize, T(n) = O(2N), which is a linear complexity. In addition, the space complex-
ity of the ELRP algorithm is composed of two parts: input data and auxiliary data
structures. Therefore, the space complexity of the ELRP algorithm is O(N), making
it an efficient and scalable algorithm.

5 Evaluation

In this section, we first illustrate the experimental setup and evaluation metrics and
then analyze the experimental results. We consider multiple indicators for exper-
imental evaluation, including data compression ratio, multiple quality metrics for
data distortion, compression speed, etc. The experiments are conducted based on
multiple real-world scientific datasets from AMReX, which are described as follows.

5.1 Experimental setup

1) Execution environment: We conduct our experiments on a Linux server with OS
kernel of Linux 5.15, CPU of 12th Gen Intel(R) Core(TM) 19-12900K, main mem-
ory of 32 GB DDR5 RAM, and storage device of 1'TB M.2 Gen4 NVMe SSD.

2) Applications: Our experimental evaluation focuses on the AMReX frame-
work and in particular the Nyx cosmological simulations. Nyx is a state-of-the-art
extreme-scale cosmology code that uses AMReX to generate multiple fields includ-
ing baryon density, dark matter density, temperature, and velocity.* Specifically, we
employ a 64-Mpc region, using seven datasets derived from two real-world simula-
tion runs with different numbers of AMR levels.

Table 3 outlines the key information of the test datasets, including the number of
AMR levels, and presents the following details ranging from coarse to fine: the grid
size of each level, the number of data blocks, the data density distribution across
levels, as well as the size of each dataset. Here, AMR levels are denoted as Level 0,
Level 1, Level 2, ..., in the order from Coarse to Fine.

Furthermore, the first simulation run yielded datasets such as Grid_Z2, Grid_Z3,
Grid_Z5, and Grid_Z10. The AMR refinement level was set to 2, which means there
are both a coarser level (Level 0) and a finer level (Level 1). The grid sizes for Level
0 and Level 1 are 512 and 256, respectively. It is important to note that the number

4 https://amrex-astro.github.io/Nyx/

@ Springer

https://amrex-astro.github.io/Nyx/

1631 Page 16 of 29 Y.Lietal

Table 3 Our tested datasets

Dataset Levels Grid Size Block Count Density Total Size
Grid_7Z2 2 512/256 20,494/12,274 62.54%/37.46% 43GB
Grid_Z3 2 5127256 20,934/11,834 63.89%/36.11% 44 GB
Grid_Z5 2 512/256 19,197/13,571 58.58%/41.42% 4.1GB
Grid_7Z10 2 5127256 7,597/25,171 23.18%/76.82% 2.1 GB
Run2_ T2 2 256/128 8/4,088 0.20%/99.80% 102.0 MB
Run2_T3 3 512/256/128 8/184/32,576 0.02%/0.57%1/99.41% 106.2 MB
Run2_T4 4 1024/512/256/128 8/56/5,888/256,192 0.08%/0.02%/2.17%/97.73% 119.4 MB

of data blocks contained in the grid refinement varies across different levels, result-
ing in an uneven distribution of data density. Among them, the density of the finest
level describes the proportion of data in the dataset that reaches the highest resolu-
tion; in other words, a higher density of the finest level indicates that a larger amount
of data is refined to the highest resolution.

For the convenience of discussion, we classify levels based on AMR data density:

e A level is categorized as a low-density level if its density is below 50%.

e [t is classified as a medium-density level if the density ranges between 50% and
70%.

¢ A high-density level refers to one with a density exceeding 70%.

This classification allows us to demonstrate the effectiveness of our proposed method
for different density distribution characteristics. For instance, in the Grid_Z2, Grid_
73, and Grid_Z5 datasets, Level O contains more data blocks, which implies that a
higher solution accuracy is set for this refined level, leading to a higher data den-
sity. In the Grid_Z10 dataset, however, Level 1 contains more data blocks (with a
data density as high as 76.82%), so Level 1 is defined as the level with high-density
AMR data in this case.

The second simulation run generated datasets including Run2_T2, Run2_T3, and
Run2_T4 by setting different AMR refinement levels (2, 3, and 4). The refined grid
scale was expanded from 128 to a maximum of 1024. For example, Run2_T4 was
configured with an AMR refinement level of 4; the number of data blocks at Level 3
reached 256,192, which is much higher than that of other levels, and its data density
reached 97.73%, thus being defined as the level with high-density AMR data. Simi-
larly, the data densities of Level 1 in Run2_T2 and Level 2 in Run2_T3 are as high
as 99.80% and 99.41%, respectively, both of which fall into the category of high-
density levels.

3) Comparison baseline: We adopt two 3D comparison baselines. Specifically, (1)
the primitive 3D baseline: Different AMR levels are unified to the same resolution
for 3D compression; (2) the state-of-the-art 3D compressor TAC, which involves
multiple density-based strategies to process AMR data.

@ Springer

An efficient lossy compression framework for density. .. Page 17 0f29 1631

5.2 Evaluation metrics

We perform the evaluation based on four critical metrics:

(1) Compression ratio (CR): We use compression ratio to evaluate the reduction
in data size. The compression ratio is defined as the reduction ratio of the original
AMR data size to the compressed data size (CR = %) Bit rate (bits/value)
represents the amortized storage cost of each value. For example, the bit rate of sin-
gle/double-precision floating-point data before compression is 32/64 bits per value.
For single/double-precision floating-point data, the product of the compression ratio
and the bit rate is 32/64. Therefore, the compression ratio will be higher when the
bit rate is lower.

(2) Rate-PSNR plots: Peak signal-to-noise ratio (PSNR) is an important metric in
lossy compression ratio distortion evaluation.

vrange(D,)
\/mse(D,,D,) @

where D, represents the data before compression, D, represents the data after decom-
pression, and vrange represents the numerical range of the data before compression.

(3) Rate-SSIM plots: Moreover, to justify that the similarities are high and com-
mon between AMR levels, we introduce one quality assessment metric named
Structural Similarity Index Measure (SSIM). The SSIM is a method for measuring
the similarity between two images, which has been widely used in the community of
HPC scientific data compression [18]. The higher the SSIM value, the more similar.
The formula for calculating SSIM with original data D; and decompressed data D,
is:

PSNR = 201log,

(ZﬂD]ﬂDz + Cl)(ZColeD2 +G,)

SSIM(D,,D,) =
PR+ 4+ C)(6) + b+ Cy)

3)

where p is the mean, o2 is the variance, C is constant and the cov represents the
covariance between two data.
(4) Compression speed: We check the overall compression throughput of our

AMRDPC framework to show the low computational overhead in our solution.
__original size
compression time (MB/s).

Compression throughput is defined as CT =

5.3 Compression ratio

As shown in table 4, we compared the compression performance of AMRDPC, 3D
baseline, and TAC for high-density AMR data under different absolute error bounds
6, and introduced the Normalized Root Mean Square Error (NRMSE) to evaluate the
deviation between decompressed data and real data. NRMSE shows the statistical
difference between the original values and the values decompressed. Furthermore,

@ Springer

Y.Lietal.

Page 18 of 29

1631

ndySnoayy uorssardwo)) ;1) ‘oner uorssardwo) YD ‘(19119q Jojewrs) FSIARIN N

99'161 19°Le1 car'l SEvol ¥6'9¢€ €-H8'L 0C9sT YL'869 €-H0'8 1Tc6T LT'8ST THeT 6+dS
44! 09111 el 8¢°L61 LT 66C €Hy’L [94%¢ LY'C19 €-HS'L 11°06C 88'70C Tdee 6+dy
16811 L1°96 [4cIN! S1°961 6€°L9C €-H0'L S6'1ST 5808 €469 £5¥8¢ 68°CS1 H0'C 6+de
LO'SY1T LOYL €-HS9 66061 seelIc €-dv'9 YI'IST 9¢'6LE €-40'9 167C8¢ 26011 [ac ! 6+dc
I Iyl 0C'8y €-HET 8¢°061 L6611 €dI'C Y¥'ove 06'LET €-H0'v 8'6ST 1¥°69 £-H6'8 6+dl IdTINYV
cc96l 06°s8 €H9'S YL'TET 09°Cs1 €-HT'S 20°¢6T I1rove €-HOI 91°0l¢ 10°92¢ TH9¢ 6+dS
vel6l 19°¢€L €-H0°S LY'LTCT G8°¢Cl €-d8'v 98°L8C 06°S81 €-HE'6 66'70¢ 86'9L1 Tdase 6tdy
177981 66'65 €-HCY €6°81¢C £0'v6 €-HTY 1¥7'9LC 60°Cel €-Hy'8 C8°L6T L6'6C1 THTC 6+d¢
ELOLT (94 €HEC 66'80C 9¢'19 €-HEC 6L7C9C 9¢'8L €-HO'L 26'06C 6¢'88 cde6'l 6+4C
L1°891 orre €61 99961 CLE €-H0'C £8'CYC €SIy €HTY €1°09¢ 08y CTHT'1 6+dl JVL
€l 'l S-HET 06’8 10°01 S-Hv'L L6°19 LYY 7-d9°¢ 96691 [X341 $-H0'9 6+dS
'l L9'1 S-HI'C VL'8 LS8 G-H0'L 119 19°6S V-ay'e €6°L91 80°0¢1 S-49°¢ 6tdy
171 'l S-H8'1 w98 689 S-d¥'9 1€°09 96°cY y-dT'e LS €91 80901 S-HI'S 6+d¢
! 01l S-HS'T 91’8 8LV G-H8°¢ 1L°8S ¥8'8¢C 7-d8°C LL'6ST L6'VL S-HSv 6+4¢
8I'1 Lo S-H0'T (44 6¢'C S-HI'v cT9s LETT €HI'C 60°LST er'Le G-de'e 6+dl aseq-de
1D q0 N 1D q40 N 1D q0 N 1D q40 N
L Tuny €L cuny L cuny 01Z PHD ¢ POy

s1eseIep YNV ANSUap-ySIy In0J Uo SOLIOUW SSO[UOTIRULIOJU] § 3|qe]

pringer

AQs

An efficient lossy compression framework for density. .. Page 190f29 1631

we calculated the compression throughput to evaluate the computational overhead of
the algorithms.

When the absolute errors are the same, both AMRDPC and TAC achieve signifi-
cant improvements in CR and CT over the 3D baseline. Across the four tested data-
sets, AMRDPC demonstrates a consistent and substantial advantage in CR, which
is its primary design objective. For instance, on the Run2_T2 dataset at 6 = 1E + 9,
AMRDPC achieves a CR of 237.90, which is 5.73% higher than that of TAC (41.53),
while also reducing the NRMSE. Similar CR improvements are observed in the
Grid_Z10, Run2_T3, and Run2_T4 tests.

It is noteworthy that while AMRDPC’s CT is highly competitive and often supe-
rior, we observed a slight throughput trade-off on the Run2_T?2 dataset (e.g., 246.44
vs. 242.83 at 6 = 1E +9). This is attributed to the highly irregular and fine-grained
mesh structure of Run2_T?2, which maximizes the CR gain through our patching and
encoding techniques but introduces manageable computational overhead. This illus-
trates a well-justified trade-off, as the significant gain in compression efficiency far
outweighs the minor cost in processing speed for high-density AMR data. To further
explore the effectiveness of AMRDPC, we analyzed the rate distortion of the data
using PSNR and SSIM.

5.4 Post-analysis quality

In the following text, we present the overall rate-distortion results of AMRDPC ver-
sus another comparison baseline, in regard to different quality metrics.

As shown in Fig. 8dcba, we used PSNR to perform rate distortion tests on four
high-density AMR datasets. The results on the Grid_Z10 and Run2_T2 datasets
show that while AMRDPC does not achieve the highest PSNR at all bitrates, it deliv-
ers a highly competitive rate-distortion performance characterized by an exceptional
compression ratio. Consequently, for AMR applications where the primary objective
is to maximize data reduction, AMRDPC’s design strategically prioritizes overall
storage efficiency over the pursuit of uniformly peak fidelity. Specifically, AMRDPC
achieves 14.27% to 36.21% improvement in compression ratio on Grid_Z10 dataset
than TAC when PSNR is around 30-80, and 5.73x improvement in compression
ratio on Run2_T?2 dataset when PSNR is 47.24.

0 2 4 6 05 1.0 15 0.5 1.0 15 0.5 1.0 15 2.0
Bit Rate Bit Rate Bit Rate Bit Rate

(a) Grid_Z10 (Level 1) (b) Run2_T2 (Level 1) (c) Run2_T3 (Level 2) (d) Run2_T4 (Level 3)

Fig.8 Rate distortion evaluation (PSNR)

@ Springer

1631 Page 20 of 29 Y.Lietal

On the Run2_T3 and Run2_T4 data sets, it can be observed that at the same bit
rate, the PSNR curve of TAC is generally above that of AMRDPC. This indicates
that the data fidelity of AMRDPC is lower than that of TAC at these data levels.

From the mechanism of AMR refined grids, it starts from the entire data domain
and determines whether to refine a data block into smaller sub-blocks based on the
set error bounds. Data at higher refinement levels (Level 2, Level 3) may contain
more key features with strong locality, small scale, but large numerical variation. In
such cases, AMR may incorrectly identify these regions as smooth areas. For com-
pressors based on prediction models, when some sub-data blocks face the challenge
of over-aggregation, the processing mechanism of ELRP will cause these fine but
important physical features to be smoothed out or directly lost during the compres-
sion process, thereby reducing the overall fidelity of the data.

This phenomenon also reveals that when the AMRDPC method processes more
complex high-density AMR level data, there may be costs associated with data over-
aggregation. However, in terms of the overall improvement in compression perfor-
mance, compared with TAC, AMRDPC achieves a compression ratio increase of
1.21x to 2.46x and 49.25% to 62.79%, respectively.

We further explore the rate distortion of the evaluation data using SSIM. Fig. 9
shows the rate-SSIM plots of different methods, AMRDPC uses less bit rate while
maintaining better fidelity of decompressed data than TAC. In the plots, the x-axis is
bit rate and the y-axis is SSIM. Although the SSIM values are relatively low on the
Run2_T3 and Run2_T4 datasets, this is negligible in terms of the overall compres-
sion performance improvement.

For accurate rate-distortion comparison, the 3D baseline was excluded as it
employs a uniform compression method that does not account for the complex
density variations across AMR levels. Consequently, to evaluate the fidelity of
AMRDPC on high-density data, our analysis specifically targets those AMR levels
that meet the high-density criterion.

5.5 Comprehensive compression overhead analysis

AMRDPC achieves substantial performance gains in medium-density AMR data
compression, driven by its FBKDTree strategy which minimizes pre-compression
overhead without compromising compression performance.

SSIM
SSIM

92 04 97.0
02 04 06 08 10 12 05 10 15 05 10 15 05
Bit Rate Bit Rate Bit Rate

(a) Grid_Z10 (Level 1) (b) Run2_T2 (Level 1) (c) Run2_T3 (Level 2) (d) Run2_T4 (Level 3)

0 15 20
Bit Rate

Fig.9 Rate distortion evaluation (SSIM)

@ Springer

An efficient lossy compression framework for density... Page210f29 1631

Table 5 quantifies the full pipeline overhead for all methods. The results confirm
the superior efficiency of AMRDPC, particularly in pre-compression, where it out-
performs the 3D baseline by a wide margin.

As shown in Fig. 10cba, AMRDPC improves end-to-end throughput by up to
18.83% (Grid_Z2), 17.42%, and 14.48% across the datasets. Critically, these gains
originate entirely from the pre-compression phase, with compression and decom-
pression overheads remaining consistent with baseline methods.

As shown in Fig. 11 and Fig. 12cba, AMRDPC improves compression speed
while maintaining data fidelity. We further analyzed whether the data fidelity
changes under different absolute error bounds. We do not introduce a 3D baseline

Table 5 Compression overhead comparison (Time: seconds)

Dataset Method Pre-compression Compression Decompression

Grid_Z2 AMRDPC 0.0466 1.2823 0.5840
TAC 0.0670 1.2905 0.5854
3D baseline 9.9825 1.8028 2.9806
Grid_Z3 AMRDPC 0.0462 1.3241 0.5989
TAC 0.0668 1.3273 0.6003
3D baseline 10.0191 1.8134 0.7885
Grid_75 AMRDPC 0.0456 1.2496 0.5595
TAC 0.0677 1.2611 0.5596
3D baseline 9.4321 1.8479 0.8138

= Dbaseine = TAC wm AMADRC] = Dbaseine = TAC wm AMADPC] = SDbaseline == TAC e AMRDPC

Compression Throughput (MB/s)
Compression Throughput (MB/s)
Compression Throughput (MB/s)

1649 2649 3649 4E+9 SE+9 1649 2649 3649 4E+9 SE+9 1649 2649 3649 4E+9 SE+9

AMR Levels Absolute Error Bound AMR Levels Absolute Error Bound AMR Levels Absolute Error Bound

(a) Grid_-Z2 (b) Grid_Z3 (c¢) Grid_Z5
Fig. 10 Comparison of compression throughput with different absolute error bounds

8- TAC A AMRDPC, 4~ TAC &~ AMRDPC

— - TAC - AMRDPC

g 23201
= =
o £ 310
3 3
£310 2300 -
A S
£ 300 £200{-
F =
§290 §280
§ § 270
5280 5
£ : ; =« E260
© 78 80 82
PSNR PSNR PSNR
(a) Grid-Z2 (Level 0) (b) Grid_Z3 (Level 0) (c) Grid-Z5 (Level 0)

Fig. 11 Comparison of data compression speed under the same PSNR

@ Springer

1631 Page 22 of 29 Y.Lietal

Tac AMRDPC Tac AMRDPC Tac AMRDPC

g 320 2320

= = =

g3 =310 =

2 2 2 300

§,31° 5300 5

2300 £200 2

(= = =280

§290 5 280 S

2 @ @

270

5280 5 5260

5 £ 260 3

© 993 994 995 996 99.7 99.8 ° 99.0 992 994 996 © 9 97 98 99

SSIM SSIM
(a) Grid_Z2 (Level 0) (b) Grid_Z3 (Level 0) (c) Grid_Z5 (Level 0)

Fig. 12 Comparison of data compression speed under the same SSIM

and focus on the differences between AMRDPC and TAC when dealing with spe-
cific level-based medium-density AMR data. At identical PSNR or SSIM levels,
AMRDPC consistently delivers faster compression than TAC. These results con-
firm that for medium-density AMR data, our method accelerates processing without
compromising data quality.

5.6 System-level evaluation on Tianhe supercomputer

To quantitatively validate our core claim that AMRDPC mitigates real-world I/O
bottlenecks, we conducted system-level experiments on the Tianhe supercomputing
platform. The results demonstrate that our method delivers substantial gains by tar-
geting the most costly aspects of HPC I/O: storage capacity and end-to-end work-
flow efficiency.

As quantified in Table 6, AMRDPC directly attacks this problem by reduc-
ing storage requirements by over 98% across all tested datasets. This effectively
increases the effective storage capacity by more than 50x, which proportion-
ally reduces the capital cost of storage hardware and the operational cost for data

Table 6 System-level storage benefits

Dataset Original — Compressed Storage reduction CR 1/0 Speedup
Grid_Z72 656.38 MB — 8.40 MB 98.72% 78.13% 82.3x
Grid_Z3 700.41 MB — 9.62 MB 98.63% 72.83% 73.8%
Grid_Z5 652.43 MB — 10.67 MB 98.36% 61.12% 61.1x

Table7 Comparative
performance on Tianhe
supercomputers

Dataset Compression Decompression Total time (s)
time (s) time (s)

TAC AMRDPC TAC AMRDPC TAC AMRDPC

Grid_Z2 7.95 7.01 321 230 11.16 9.31
Grid_7Z3 6.55 6.12 254 221 9.09 833
Grid_Z5 7.90 7.55 275 273 10.65 10.28

@ Springer

An efficient lossy compression framework for density...

Page 23 of 29

1631

2FP_baseline

= AMRDPC+ZFP

2Fp_baseline

= AMRDPC+ZFP

2Fp_baseline

m— AMRDPC+ZFP

Compression Throughput(MB/s)

Compression Throughput(MB/s)
Compression Throughput(MB/s)

1649 2649 3649 aE+o 5649
AMR Level Absolute Error Bound

1640 2649 349 Ty SE49 1649
AMR Level Absolute Error Bound

2649 349 aE+9 SE+9

AMR Level Absolute Error Bound

(a) Grid-Z2 (b) Grid-Z3 (c) Grid-Z5

Fig. 13 AMRDPC+ZFP compression throughput at varied asolute error bounds

Table 8 Information loss metrics on three high-density AMR datasets

Method o Run2_T2 Run2_T3 Run2_T4

CR CT CR CT CR CT

ZFP baseline 1E+9 6.14 80.27 0.42 23.09 0.14 3.25
2E+9 13.58 81.16 1.26 24.06 0.18 3.42
3E+9 24.26 81.24 3.85 24.82 0.26 3.78
4E+9 36.41 83.18 4.06 25.18 0.31 4.15
SE+9 42.14 83.25 4.68 25.49 0.35 4.49

AMRDPC+ZFP 1E+9 60.07 218.80 64.27 208.05 15.20 117.89
2E+9 68.20 223.60 72.07 219.34 18.73 108.23
3E+9 78.81 233.84 81.91 222.90 22.38 122.47
4E+9 80.83 234.48 82.95 218.31 24.06 113.48
SE+9 92.86 237.68 94.38 230.72 32.30 106.78

transfers over the network or to/from tape archives. Furthermore, AMRDPC also
reduces the total computational overhead compared to a baseline method (TAC).
Table 7 shows that AMRDPC achieves faster compression and decompression

times across all datasets. This acceleration directly results in faster end-to-end work-
flow execution.

5.7 Generality analysis

To address the question of whether our AMRDPC method is specifically tailored
to the SZ compressor or represents a general-purpose optimization, we conducted
comprehensive generality experiments with ZFP, a compressor based on orthogonal
transforms rather than data prediction.

As illustrated in Fig. 13, for medium-density AMR data, AMRDPC+ZFP con-
sistently outperforms the ZFP baseline across various error bounds. A notable exam-
ple is the Grid_Z5 dataset, where our method achieves a compression throughput
improvement of up to 44.86%.

@ Springer

1631 Page 24 of 29 Y.Lietal

The performance advantage is even more pronounced on high-density AMR data-
sets, as quantitatively summarized in Table 8. The results for datasets Run2_T2, T3,
and T4 demonstrate that AMRDPC+ZFP delivers dramatically higher compression
ratios (CR) and compression throughput (CT) compared to ZFP alone. For instance,
on the Run2_T?2 dataset with an error bound of 1E+9, AMRDPC+ZFP boosts the
compression ratio from 6.14 to 60.07 and accelerates the compression throughput
from 80.27 to 218.80 (a 2.7x speedup). This trend of substantial improvement is
consistent across all tested configurations. Our analysis confirms the superior gener-
ality of the integrated AMRDPC+ZFP approach.

5.8 Discussion

This work focuses on application-layer compression, which addresses the fundamen-
tal challenge of storing complex, irregular scientific data structures such as AMR.
Looking ahead, we propose a collaborative, multi-layered compression pipeline for
HPC systems. In this envisioned paradigm, domain-specific methods like ours form
the foundational first stage. This stage achieves significant data reduction for long-
term storage while adhering to strict scientific constraints. The resulting output is
a substantially smaller dataset that retains full semantic integrity. This compacted
dataset subsequently serves as the ideal input for a network-layer compression stage,
where high-speed lossless techniques such as Blosc or LZ4 can be applied with
greater efficiency. By operating on this pre-reduced data, network transfer times are
minimized without compromising the storage efficiency gains achieved in the first
stage. This synergistic approach establishes a holistic strategy wherein each layer
addresses the specific problem it is best suited for, culminating in an optimal end-to-
end data handling solution.

6 Related work

Lossy compression for scientific data: Data compression is becoming a critical
technique in the HPC domain. Although lossless compression can ensure data fidel-
ity, it is not suitable for processing large-scale scientific data [36, 37]. Today’s Sci-
entific applications often require more than 10X data reduction ratio [11]. However,
state-of-the-art lossless compressors can only achieve a low data compression ratio
(about 2x), which to some extent restricts the widespread application of this technol-
ogy [38]. Therefore, lossy compressors have been favored by researchers in recent
years and have been widely used in the HPC community. In general, they can be
divided into four categories: prediction-based models, transformation-based mod-
els, higher-order singular value decomposition-based models, and machine learning-
based models. The prediction-based compressors predict the current data based on
the adjacent data, such as using Lorenzo prediction method [15], spline interpola-
tion prediction method [17], etc., and then use quantization methods to control the
prediction error within the error range specified by the users, which effective ensure
data fidelity. Typical compressors include FPZIP, SZ2 [16], SZ3 [17], QoZ [18],

@ Springer

An efficient lossy compression framework for density. .. Page 250f29 1631

MGARD [19]. The principle of the transform-based compressors is to transform the
original data into another coefficient domain to effectively remove the dependen-
cies between the data. The coefficient data obtained by the transformation is easier
to compress due to its relatively high sparsity. A typical compressor is ZFP, which
compresses and decompresses data at the block level and uses orthogonal block
transforms to decorrelate the data and embedded encoders to compress the trans-
form coefficients [39]. One typical dimension-reduction compressor is TTHRESH,
which is intended for Cartesian grid data of three or more dimensions and lever-
ages the higher-order singular value decompression(HOSVD) to compress data [21].
Compressors based on machine learning leverage neural network techniques such
as autoencoders to compress and reconstruct data. Typical compressors such as
LFZIP [40] and AE-SZ [41]. Despite the recent impressive success of lossy com-
pression, existing work on how to effectively combine error-bounded lossy compres-
sion with AMR applications is still in its infancy, and there is still much room for
improvement.

Exploration for AMR applications: AMR is an efficient numerical technique
that is widely used in the HPC community to solve partial differential equations. In
recent years, some works have emerged in the research of large-scale AMR applica-
tions. Specifically, it is divided into offline AMR data compression and in-situ AMR
data compression. zMesh provides an offline compression solution for AMR data,
which is designed to exploit data redundancy at different AMR levels [23]. It reor-
ders the AMR data in different refinement levels through methods such as Z-order-
ing and forms a 1D array, further improving the smoothness of the data. However,
when eliminating the high redundancy between different AMR levels data, zMesh
does not make good use of the similarity among the adjacent AMR levels, besides,
it takes a lot of time to rebuild the AMR hierarchy. To address this problem, LAMP
proposes a level-associated mapping method that fully considers the data similarity
between AMR adjacent levels [24]. Compared with the verification of zMesh on the
AMR applications, LAMP effectively reduces the time overhead of AMR hierar-
chy construction while improving the data compression ratio. To further explore the
high-dimensional AMR compression, TAC provides a 3D compression method [25].
Different from the 1D compression strategy, TAC considers the density distribution
of AMR data at different levels, efficiently divides different areas, and proposes mul-
tiple strategies to solve data processing under different densities to match the data
compression mechanism of existing data compressors. In the in-situ compression of
AMR data, AMRIC further reduces the I/O cost by introducing a 3D in-situ AMR
compression framework through HDF5 while improving compression quality for
AMR applications [26].

7 Conclusions

In conclusion, we proposed an efficient lossy compression framework AMRDPC for
AMR applications, which improves the data compression ratio while reducing the
computational overhead of data processing. AMR hierarchical data has the charac-
teristic of uneven density distribution, and we designed two optimization strategies

@ Springer

1631 Page 26 of 29 Y.Lietal

to deal with it, respectively. Our main contributions include two points. First, a fast
k-d tree data backfilling density grid strategy is designed for medium-density AMR
data, which can further improve data compression throughput while ensuring that
the data compression ratio remains unchanged. Second, for high-density AMR data,
we designed a loop reversal data patching strategy, which can effectively improve
the data compression ratio. We evaluate the effectiveness of the AMRDPC method
on seven practical AMReX application datasets. Experimental results show that
AMRDPC improves the data compression ratio by up to 5.73x while ensuring high
data fidelity compared with the state-of-the-art method. The data compression speed
is increased by up to 18.83% without reducing the data quality.

In future work, we plan to investigate how to scale our optimization technique on
GPUs and apply our compression framework to in-situ AMR applications. Further-
more, we will evaluate AMRDPC in a wide range of HPC systems.

Acknowledgements This work was supported in part by the National Key R&D Program of China
(Grant No. 2023YFB3001705); in part by the National Natural Science Foundation of China (Grant No.
U21A20461, 62472160, 62572180, 2024JJ7375); in part by the Natural Science Foundation of Hunan
Province of China (Grant No. 2024JJ7375) and in part by the Aid Program for Science and Technology
Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author contributions Yida Li wrote the main manuscript text and all authors reviewed the manuscript.

Data availability No datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Jin S, Di S, Vivien F, Wang D, Robert Y, Tao D, Cappello F (2024) Concealing compression-accel-
erated i/o for hpc applications through in situ task scheduling. In: Proceedings of the Nineteenth
European Conference on Computer Systems, pp. 981-998

2. Zhang W, Almgren A, Beckner V, Bell J, Blaschke J, Chan C, Day M, Friesen B, Gott K, Graves D
(2019) Amrex: A framework for block-structured adaptive mesh refinement. J Open Source Softw
4(37):1370-1370

3. Stone JM, Tomida K, White CJ, Felker KG (2020) The athena++ adaptive mesh refinement frame-
work: Design and magnetohydrodynamic solvers. Astrophys J Suppl Ser 249(1):4

4. Zhang W, Almgren AS, Day M, Nguyen T, Shalf J, Unat D (2016) Boxlib with tiling: An adaptive
mesh refinement software framework. SIAM J Sci Comput 38(5):S156-S172

5. Colella P, Graves D, Ligocki T, Martin D, Modiano D, Serafini D, Van Straalen B Chombo (2009)
software package for amr applications design document. Available at the website: URL:http://seesar
Ibl.gov/ANAG/chombo/

6. Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, Colella P, Graves D, Lijewski M, Lof-
fler F (2014) A survey of high level frameworks in block-structured adaptive mesh refinement pack-
ages. J Parallel Distrib Comput 74(12):3217-3227

7. Sala K, Rico A, Beltran V (2020) Towards data-flow parallelization for adaptive mesh refinement
applications. In: International Conference on Cluster Computing, pp. 314-325

8. Nguyen T, Unat D, Zhang W, Almgren A, Farooqi N, Shalf J (2016) Perilla: Metadata-based optimi-
zations of an asynchronous runtime for adaptive mesh refinement. In: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 945-956

@ Springer

An efficient lossy compression framework for density. .. Page 27 0f29 1631

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Xie B, Oral S, Zimmer C, Choi JY, Dillow D, Klasky S, Lofstead J, Podhorszki N, Chase JS (2020)
Characterizing output bottlenecks of a production supercomputer: Analysis and implications. ACM
Trans Storage 15(4):1-39

Fedeli L, Huebl A, BoillodCerneux F, Clark T, Gott K, Hillairet C, Jaure S, Leblanc A, Lehe R,
Myers A, Piechurski C, Sato M, Zaim N, Zhang W, Vay J, Vincenti H (2022) Pushing the frontier
in the design of laser-based electron accelerators with groundbreaking mesh-refined particle-in-cell
simulations on exascale-class supercomputers, pp. 1-12

Cappello F, Di S, Li S, Liang X, Gok AM, Tao D, Yoon CH, Wu X-C, Alexeev Y, Chong FT (2019)
Use cases of lossy compression for floating-point data in scientific data sets. Int J High Perform
Comput Appl 33(6):1201-1220

Meister D, Kaiser J, Brinkmann A, Cortes T, Kuhn M, Kunkel J (2012) A study on data deduplica-
tion in hpc storage systems. In: International Conference on High Performance Computing, Net-
working, Storage and Analysis, pp. 1-11

Dubois Y, BloemReddy B, Ullrich K, Maddison CJ (2021) Lossy compression for lossless predic-
tion. Adv Neural Inf Process Syst 34:14014-14028

Di S, Cappello F (2016) Fast error-bounded lossy hpc data compression with sz. In: IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp 730-739

Tao D, Di S, Chen Z, Cappello F (2017) Significantly improving lossy compression for scientific
data sets based on multidimensional prediction and error-controlled quantization. In: IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp 1129-1139

Liang X, Di S, Tao D, Li S, Li S, Guo H, Chen Z, Cappello F (2018) Error-controlled lossy com-
pression optimized for high compression ratios of scientific datasets. In: IEEE International Confer-
ence on Big Data, pp 438-447

Zhao K, Di S, Dmitriev M, Tonellot TD, Chen Z, Cappello F (2021) Optimizing error-bounded
lossy compression for scientific data by dynamic spline interpolation. In: International Conference
on Data Engineering, pp 1643-1654

Liu J, Di S, Zhao K, Liang X, Chen Z, Cappello F (2022) Dynamic quality metric oriented error
bounded lossy compression for scientific datasets. In: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp 1-15

Liang X, Whitney B, Chen J, Wan L, Liu Q, Tao D, Kress J, Pugmire D, Wolf M, Podhorszki N
(2021) Mgard+: Optimizing multilevel methods for error-bounded scientific data reduction. IEEE
Trans Comput 71(7):1522-1536

Lindstrom P, Isenburg M (2006) Fast and efficient compression of floating-point data. IEEE Trans
Visual Comput Graphics 12(5):1245-1250

BallesterRipoll R, Lindstrom P, Pajarola R (2020) Tthresh: Tensor compression for multidimen-
sional visual data. IEEE Trans Visual Comput Graphics 26(9):2891-2903

Liang X, Gong Q, Chen J, Whitney B, Wan L, Liu Q, Pugmire D, Archibald R, Podhorszki N,
Klasky S (2021) Error-controlled, progressive, and adaptable retrieval of scientific data with mul-
tilevel decomposition. In: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1-13

Luo H, Wang J, Liu Q, Chen J, Klasky S, Podhorszki N (2021) zmesh: Exploring application char-
acteristics to improve lossy compression ratio for adaptive mesh refinement. In: IEEE International
Parallel and Distributed Processing Symposium, pp 402—411

LiY, Luo H, Li F, Wang J, Li K (2023) Lamp: Improving compression ratio for amr applications via
level associated mapping-based preconditioning. IEEE Trans Comput 72(12):3370-3382

Wang D, Pulido J, Grosset P, Jin S, Tian J, Ahrens J, Tao D (2022) Tac: Optimizing error-bounded
lossy compression for three-dimensional adaptive mesh refinement simulations. In: International
Symposium on High-Performance Parallel and Distributed Computing, pp 135-147

Wang D, Pulido J, Grosset P, Tian J, Jin S, Tang H, Sexton JM, Di S, Zhao K, Fang B, Lukic
Z, Cappello F, Ahrens JP, Tao D (2023) Amric: A novel in situ lossy compression framework for
efficient i/o in adaptive mesh refinement applications. In: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1-15

Xu L, Anthony Q, Zhou Q, Alnaasan N, Gulhane R, Shafi A, Subramoni H, Panda DKDK (2024)
Accelerating large language model training with hybrid gpu-based compression. In: IEEE Interna-
tional Symposium on Cluster, Cloud and Internet Computing, pp 196-205

Lee M, Jin H, Kim I, Kim T (2009) Improving TCP goodput over wireless networks using kernel-
level data compression. In: Proceedings of the 18th International Conference on Computer Commu-
nications and Networks, pp 1-6

@ Springer

1631 Page 28 of 29 Y.Lietal

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Li Y, Kashyap A, Chen W, Guo Y, Lu X (2024) Accelerating lossy and lossless compression on
emerging bluefield DPU architectures. In: IEEE International Parallel and Distributed Processing
Symposium, pp. 373-385

Roache PJ, Knupp PM (1993) Completed richardson extrapolation. Commun Numer Methods Eng
9(5):365-374

Lu T, Liu Q, He X, Luo H, Suchyta E, Choi J, Podhorszki N, Klasky S, Wolf M, Liu T (2018)
Understanding and modeling lossy compression schemes on hpc scientific data. In: IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp 348-357

Tao D, Di S, Liang X, Chen Z, Cappello F (2019) Optimizing lossy compression rate-distortion
from automatic online selection between sz and zfp. IEEE Trans Parallel Distrib Syst 30:1857-1871
Zou X, Lu T, Xia W, Wang X, Zhang W, Zhang H, Di S, Tao D, Cappello F (2020) Performance
optimization for relative-error-bounded lossy compression on scientific data. IEEE Trans Parallel
Distrib Syst 31(7):1665-1680

Bentley JL (1975) Multidimensional binary search trees used for associative searching. communica-
tions of the ACM 18(9), 509-517

Hoang D, Bhatia H, Lindstrom P, Pascucci V (2024) Progressive tree-based compression of large-
scale particle data. IEEE Transact Vis Comput Graph 30(7):4321-4338

Burtscher M, Ratanaworabhan P (2009) Fpc: A high-speed compressor for double-precision float-
ing-point data. IEEE Trans Comput 58(1):18-31

Meister D, Kaiser J, Brinkmann A, Cortes T, Kuhn M, Kunkel JM (2012)A study on data dedu-
plication in hpc storage systems. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp 1-11

Lu T, Zhong Y, Sun Z, Chen X, Zhou Y, Wu F, Yang Y, Huang Y, Yang Y (2023) Adt-fse: A new
encoder for sz. In: International Conference for High Performance Computing, Networking, Storage
and Analysis, pp 1-13

Lindstrom P (2014) Fixed-rate compressed floating-point arrays. IEEE Trans Visual Comput Graph-
ics 20(12):2674-2683

Chandak S, Tatwawadi K, Wen C, Wang L, Ojea JA, Weissman T (2020)Lfzip: Lossy compression
of multivariate floating-point time series data via improved prediction. In: Data Compression Con-
ference, pp. 342-351

Liu J, Di S, Zhao K, Jin S, Tao D, Liang X, Chen Z, Cappello F (2021) Exploring autoencoder-
based error-bounded compression for scientific data. In: International Conference on Cluster Com-
puting, pp 294-306

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Yida Li' - Huizhang Luo' - Yufeng Zhang' - Keqin Li' - Kenli Li’

DX

Huizhang Luo
luohuizhang @hnu.edu.cn

Yida Li
liyida@hnu.edu.cn

Yufeng Zhang
yufengzhang @hnu.edu.cn

@ Springer

An efficient lossy compression framework for density. .. Page 290f29 1631

Keqin Li
likg@hnu.edu.cn

Kenli Li
Ikl@hnu.edu.cn

The College of Computer Science and Electronic Engineering, Hunan University,
ChangSha 410082, China

@ Springer

	An efficient lossy compression framework for density partitioning in AMR applications
	Abstract
	1 Introduction
	2 Background
	2.1 AMR principles and data distribution
	2.2 Compressors for scientific data compression
	2.3 K-d tree for multi-dimensional spatial data partitioning

	3 Motivation
	4 Design methodology
	4.1 Framework
	4.2 FBKDtree strategy for medium-density AMR data
	4.3 ELRP strategy for high-density AMR data

	5 Evaluation
	5.1 Experimental setup
	5.2 Evaluation metrics
	5.3 Compression ratio
	5.4 Post-analysis quality
	5.5 Comprehensive compression overhead analysis
	5.6 System-level evaluation on Tianhe supercomputer
	5.7 Generality analysis
	5.8 Discussion

	6 Related work
	7 Conclusions
	Acknowledgements
	References

