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a b s t r a c t

With the development of social economy and smart technology, the explosive growth of vehicles has
caused traffic forecasting to become a daunting challenge, especially for smart cities. Recent methods
exploit graph spatial–temporal characteristics, including constructing the shared patterns of traffic
data, and modeling the topological space of traffic data. However, existing methods fail to consider the
spatial position information and only utilize little spatial neighborhood information. To tackle above
limitation, we design a Graph Spatial–Temporal Position Recurrent Network (GSTPRN) architecture for
traffic forecasting. We first construct a position graph convolution module based on self-attention and
calculate the dependence strengths among the nodes to capture the spatial dependence relationship.
Next, we develop approximate personalized propagation that extends the propagation range of spatial
dimension information to obtain more spatial neighborhood information. Finally, we systematically
integrate the position graph convolution, approximate personalized propagation and adaptive graph
learning into a recurrent network (i.e. Gated Recurrent Units). Experimental evaluation on two
benchmark traffic datasets demonstrates that GSTPRN is superior to the state-of-art methods.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, Intelligent Transportation Systems (ITS)
Dogra et al., 2022; Ying et al., 2022) are being piloted in both de-
eloped and developing countries as a part of the transformation
o smart cities. Building ITS requires transport infrastructures (Pa-
ageorgiou & Kotsialos, 2002), technology studies, data analysis,
tc. ITS can help to manage and optimize city traffic and alleviate
raffic accidents given the massive growth of vehicles in the urban
reas. According to a report by USA National Safety Council (NSC),
eaths from motor vehicles rose 8% in 2020 compared to 2019,
ith as many as 42,060 fatalities from vehicle crashes. Traffic

orecasting can thus ensure safe travel and contributes positively
o the sustainable development of ITS and the building of smart
ities.
The rapid advancement of deep learning technology has

chieved impressive results in processing the spatial–temporal
nformation (Ali, Zhu, & Zakarya, 2022) of Euclidean data. Taking
convolution neural network (CNN) as an example, it mainly

earns the spatial pixels of spatial–temporal data (e.g. images
nd videos). However, high-quality images and videos in the
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real world are not that readily available and available data can
be limited in information content such as remote sensing data.
Compared to Euclidean data, graph-structured information (An
et al., 2021; Wu et al., 2020) which typifies non-Euclidean data
contains richer features and complex relationships.

Graph-based traffic data is irregular as it can establish multiple
spatial–temporal characteristics and relationship types for the
different regions. Hence, graph-based traffic forecasting can more
accurately predict the future situation. Fig. 1 shows the spatial–
temporal dependence information of a central region (e.g. region
1) with its surrounding regions as well as its propagation along
the spatial and temporal dimensions. Region 1 is affected by the
regions of varying distances from it at the same time step and
their influence on Region 1 decreases as the distance increases;
this is called spatial dependence. A future scenario of a region is
predicted according to the situation changes at various historical
moments in the same region; this is called temporal dependence.
Spatial–temporal dependence combines spatial and temporal di-
mension of every region causing the change in itself and other
regions at any time. The position information of every region and
the propagation distance among every region and its surrounding
regions both affect the amount of information obtained by these
regions, especially for dynamic and real-time changes in the
traffic of smart cities. Traffic situation forecasting is thus a great
challenge for mining information from the spatial–temporal data.
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Fig. 1. Spatial–Temporal dependence.
Classical approaches predict the traffic situation based on
ime series such as Auto-Regressive Integrated Moving Average
ARIMA) (Lee & Fambro, 1999) and Multivariate Structural Time-
eries (MST) (Ghosh, Basu, & O’Mahony, 2009). Although these
ethods have achieved good results, they have not extracted the
on-linear features. The emergence of CNN effectively addresses
he non-linear features problem. ST-ResNet (Zhang, Zheng, & Qi,
017) utilizes convolutional residual neural network in different
ranches (i.e. period, trend and closeness). LMST3D-ResNet (Chen
t al., 2021) designs a 3D convolutional residual neural network
o learn the spatial–temporal features in multiple local regions
nd considers external related factors (e.g. weather).
Recently, research works in graph neural networks provide a

ew direction for traffic forecasting. ST-MetaNet (Pan et al., 2019)
onstructs two network modules whereby the graph attention
etwork (GAT) learns spatial dependency information and the
ecurrent neural network captures the temporal correlation fea-
ures. ASTGCN (Guo, Lin, Feng, Song, & Wan, 2019) proposes an
ttention mechanism and a graph convolutional network (GCN)
hich extracts the spatial–temporal information simultaneously,
nd then aggregates the weights to obtain the forecast results.
TSGCN (Song, Lin, Guo, & Wan, 2020) proposes a synchronous
CN model to capture the heterogeneous local spatial–temporal
haracteristics in the different time points. AGCRN (BAI, Yao, Li,
ang, & Wang, 2020) establishes an adaptive GCN mechanism

o learn the spatial–temporal correlations via adaptive parameter
earning and inter-dependencies. Despite these methods achiev-
ng good performance, they fail to consider the spatial position
nformation. Moreover, spatial neighborhood information is lim-
ted by the propagation range of the node resulting in it not being
ully exploited.

To overcome the above limitation, we present an end-to-end
ramework called GSTPRN, that models traffic series to obtain
igh-quality embedding for traffic forecasting. More precisely, we
onstruct a position graph convolution based on self-attention,
hat utilizes position embedding matrix and computes the depen-
ence strengths among the multiple nodes to capture the spatial
ependence relationship. Furthermore, we develop approximate
ersonalized propagation which aggregates an unlimited num-
er of neighborhood propagation layers to extend the range of
ode neighborhood propagation, thereby capturing more spatial
eighborhood information. We also employ power iteration to
educe the computational complexity. We further integrate the
osition graph convolution module, approximate personalized
ropagation and adaptive graph learning into a recurrent network
i.e. Gated Recurrent Units), whereby the adaptive graph learning
tilizes adaptive node parameters and graph generation to en-

ance the GCN. We apply GSTPRN and multiple baseline methods
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on two real-world datasets for the traffic forecasting task. Exten-
sive experimental results show that our model outperforms the
state-of-art (SOTA) baselines.

We summarize the main contributions as follows:

• We present a novel architecture called GSTPRN, that system-
atically integrate position graph convolution, approximate
personalized propagation and adaptive graph learning into
a recurrent network.

• In GSTPRN, we construct a position graph convolution mod-
ule based on self-attention to capture spatial dependence
relationship among nodes.

• Our approach adopts approximate personalized propagation
to obtain more spatial neighborhood information, and only
requires a few parameters.

• The experimental results on two real-world datasets
demonstrate that our GSTPRN is superior to the SOTA meth-
ods.

2. Related work

2.1. Time-series forecasting

Traffic forecasting based on time-series still attracts the at-
tention of researchers despite having been studied for a while.
Linear feature learning methods represented by historical aver-
age (HA) and vector autoregressive (VAR) (Zivot & Wang, 2006)
consider the internal dependencies in multiple time series. Dial
(2006) proposed the user-equilibrium traffic assignment model
to choose the optimal path. Nuzzolo and Russo (1996) designed
a random utility and space–time network models to handle low
frequency transit services. Cascetta and Cantarella (1991) es-
tablished a doubly dynamic assignment framework to model
different days and different subperiods in one day. Di Gangi and
Croce (2005) integrated dynamic traffic assignment and Kalman
filtering for short time flow prediction. To improve their poor
performance, machine learning-based approaches (e.g. Wu, Ho, &
Lee, 2004 and Van Lint & Van Hinsbergen, 2012) capture complex
relationship through effectively handcrafted characteristics.

From the non-linear feature perspective, deep learning-based
methods extract features from the spatial–temporal data. Tang
et al. (2020) designed local dependencies and global tempo-
ral dynamics to improve useful global temporal distribution by
memory network. ST-ResNet (Zhang et al., 2017) proposes a
combination of 2D CNN and residual network to capture the
spatial dependence of any two regions. STDN (Yao et al., 2018)
adopts long short-term (LSTM) and local 2D CNN to extract

the temporal and spatial information of local regions of a city,
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espectively. LMST3D-ResNet (Chen et al., 2021) designs a 3D
onvolutional residual neural network to learn spatial–temporal
eatures in multiple local regions and considers external re-
ated factors (e.g. weather). The above-mentioned CNN-based
pproaches model Euclidean traffic data by 2D or 3D convo-
ution, while failing to learn road topology information from
on-Euclidean data.

.2. GCN-based spatial–temporal forecasting

Recently, GCN-based methods to tackle non-Euclidean traffic
ata have become mainstream. DCRNN (Li, Yu, Shahabi, & Liu,
017) establishes bidirectional random walks to learn spatial cor-
elation information, and designs an encoder–decoder structure
o capture the temporal information. MRA-BGCN (Chen et al.,
020) proposes a GCN to obtain the interaction of nodes and
dges in a graph in both node-wise and edge-wise manner. ST-
CN (Yan, Xiong, & Lin, 2018) develops an automatic learning
odel to establish dynamic skeletons to address the limitations
f hand-crafted features in spatial–temporal prediction. Deep-
TN+ (Lin, Feng, Lu, Li, & Jin, 2019) aims to obtain long-range
patial correlation information via ConvPlus component and PoI
rior knowledge. STDN (Yao, Tang, Wei, Zheng, & Li, 2019) pro-
oses an attention mechanism and a gating module to capture
emporal shifting and spatial correlation information between
ifferent locations. AGCRN (BAI et al., 2020) proposes node adap-
ive parameter learning and data adaptive graph generation for
ach traffic sequence and different traffic sequences without pre-
efined graphs. DSTGNN (Huang et al., 2022) creates a spatial de-
endence graph and utilizes the inhomogeneous Poisson process
o learn dynamical relationship and infer intensity, respectively.
TGODE (Fang, Long, Song, & Xie, 2021) constructs an ODE and
wo TCN blocks with residual structure to learn traffic informa-
ion. T-GCN (Zhao et al., 2019) integrates the modules of GCN
nd GRU to extract complex spatial dependencies and dynamic
emporal dependencies, respectively. ASTGCN (Guo et al., 2019)
mploys an attention mechanism and graph convolutional net-
ork to form a spatial–temporal network to learn the dynamic
patial–temporal correlations information.

.3. Attention mechanism

The attention mechanism assigns different weights to the var-
ous information in order to extract key information such that
he model can achieve more accurate judgments. It is widely
pplied in many fields (e.g. image classification Cai & Wei, 2020
nd pattern recognition Wang, Zhang, Kan, Shan, & Chen, 2020).
SANet (Huang, Wang, Wu, & Tang, 2019) designs two paral-
el convolutional components and self-attention mechanism to
ointly learn the dynamic periodic time series. GMAN (Zheng,
an, Wang, & Qi, 2020) proposes an encoder–decoder and adopts
n attention mechanism to model the relationships of the his-
ory and future time steps based on different road locations.
STGNN (Guo, Lin, Wan, Li, & Cong, 2021) presents a multi-
ead self-attention module to obtain global receptive information
nd dynamic temporal features to learn data heterogeneity and
olve the limitation of long-term prediction. GALSTM (Wei &
heng, 2020) integrates attention mechanism and LSTM to cap-
ure spatial–temporal information. BuildSenSys (Fan et al., 2020)
escribes two attention mechanisms which are combined with
recurrent neural network to capture correlation information of
earby traffic from building sensing data. ST-GRAT (Park et al.,
020) aims to model multiple road situations from spatial de-
endence attention, temporal dependence attention, and spatial
entinel vectors. Wang, Zhu, Sun, and Tian (2021) proposed an

STM to learn dynamic traffic information and capture temporal
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relationship and an attention mechanism to extract temporal
relationship.

In summary, our proposed GSTPRN is quite different from
the above-mentioned. GSTPRN can capture spatial dependence
relationship among nodes and more spatial neighborhood in-
formation. Moreover, GSTPRN systematically integrates different
modules (i.e. position graph convolution, approximate personal-
ized propagation and adaptive graph learning) into a recurrent
network to fully learn spatial–temporal information.

3. Preliminaries

Traffic Spatial–Temporal Graph Definition. For a traffic
spatial–temporal graph G = (V , E, A), in which |V | = N is
the number of nodes (e.g. N traffic observation detectors), E
epresents the set of edges, A ∈ RN×N is an adjacency matrix. The
istorical observation data of each node at different time is rep-
esented as X = {X:,0, X:,1, . . . , X:,t}. The traffic spatial–temporal
graph signal matrix is expressed as X:,t = {x1,t , . . . , xi,t , . . . ,
xN,t}

T
∈ RN×C , that is the situation of N nodes at time t , and

C is the number of features.
Problem Definition. We aim to predict the future situation of

the regions based on the historical observed traffic data. Given
traffic spatial–temporal graph signal matrix based on historical
observation data, predicting traffic situation is expressed as:
X:,t+1, . . . , X:,t+τ . For traffic spatial–temporal forecasting, we de-
scribe the problem as learning a function fθ to predict the future τ

steps situation from the historical record data in the past T steps:

{X:,t+1, . . . , X:,t+τ } = fθ (Xt−T+1, Xt−T+2, . . . , X:,t;G) (1)

4. Methodology

In this section, we introduce our proposed GSTPRN framework
to learn spatial–temporal features for traffic forecasting. The mo-
tivation of this architecture is to obtain spatial dependence rela-
tionship through position graph convolution and to capture more
spatial neighborhood information through approximate personal-
ized propagation, to achieve high-quality embedding. Therefore,
we systematically integrate position graph convolution, approxi-
mate personalized propagation and adaptive graph learning into
the recurrent network.

The overall GSTPRN architecture is shown in Fig. 2. Denoting
the historical traffic observation data by X = (Xt−T+1, Xt−T+2, . . . ,

X:,t ) ∈ RN×C×T , we employ the linear projection of the initial
embedding layer to transform X into a high-dimensional repre-
sentation X ′

∈ RN×d×T , and then perform loop input in temporal
step size, where d ≫ C . For example, the first input is the spatial–
temporal features at Time 0. To obtain position embedding matrix
Esp

∈ RN×d, we introduce an additional embedding vector for
each node while preserving the graph structure characteristics.
The process of extracting spatial–temporal features includes po-
sition graph convolution, approximate personalized propagation
and adaptive graph learning. Position graph convolution based
on self-attention captures the spatial dependence information by
calculating the spatial dependence strengths among the nodes.
Approximate personalized propagation extends the propagation
range of the node spatial information to obtain more spatial
neighborhood information. Adaptive graph learning utilizes adap-
tive node parameter and adaptive graph generation to enhance
GCN and then obtains the node embedding matrix. The hidden
state (i.e. h′

0, h
′

1, . . . , h
′

t−1) in recurrent network indicates that the
spatial–temporal information of this step is passed to the spatial–
temporal information of the next step. We fuse spatial–temporal
features of each step, and then adopt an aggregation layer to

consolidate these features to generate the prediction.
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Fig. 2. GSTPRN architecture.
Fig. 3. Spatial position embedding.
s
.1. Position graph convolution network

The GCN utilizes message passing among nodes and aggre-
ates node neighborhood information to learn the matrix which
s represented by the traffic section information. However, spatial
osition information and relationship strength of multiple nodes
ail to be considered in GCN, resulting in the inability to capture
igh-level spatial information.
Given the above limitation, we construct position graph con-

olution based on self-attention, utilizing spatial position matrix
nd then calculate the dependence strengths of the spatial di-
ension to capture the spatial dependence relationship. In Fig. 3,
e take t time as an example: each node is represented by

eature embedding based on the spatial–temporal feature matrix
′
:,t ∈ RN×d. For position encoding, we introduce an additional
mbedding vector for each node and then adopt a list of node
ndices to produce the corresponding position embedding (i.e. po-
ition embedding matrix Esp

:,t ). E
sp
:,t then adds X ′

:,t to it to form
he final embedding X ′sp

:,t ∈ RN×d as the input of the position
raph convolution. We take the matrix X ′sp

:,t , and then the spatial
ependence weight matrix Sp represents the spatial dependence
:,t
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trengths among the nodes by self-attention. Sp:,t is obtained as
follows:

Sp:,t = softmax

(
X ′sp

:,t · X ′sp
:,t

T

√
d

)
∈ RN×N (2)

Sab reflects the dependence strength between nodes a and
b in Sp:,t . A big value represents a stronger dependency while
a small value indicates weaker dependence. Next, we utilize
spatial dependence weight matrix Sp:,t to adjust the static matrix
(i.e. D̃−

1
2 ÃD̃−

1
2 = In +D−

1
2 AD−

1
2 ). The position graph convolution

is expressed as follows:

S ′

:,t = σ ((̃D−
1
2 ÃD̃−

1
2 · Sp:,t )X

′sp
:,t W ). (3)

where, σ is a nonlinear activation function (i.e. ReLU), In denotes
an unit matrix, Ã = In + A represents the adjacency matrix with
introduced self-connection, D̃ii =

∑
j Ãij is the diagonal degree

matrix, and W ∈ Rd×f is a projection matrix.
Our proposed model obtains Sp:,t to better adapt to the dy-

namic changes of the spatial–temporal traffic data. The rea-
sons for better adaptation to the traffic situation are as follows:
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1) The recurrent network interacts with the information in the
idden state, so that the spatial position information embedding
an identify the core or non-core regions, thereby helping in
he diversion of traffic flow efficiently. (2) The spatial position
nformation embedding contributes valuable semantic informa-
ion to our model, such as the change of traffic flow from the
esidential region to the working region in the morning and from
he working region to the residential region in the evening.

.2. Approximate personalized propagation

In traffic graph data, a region (i.e. a node) affects its nearby and
urther regions, especially the center region. Therefore, the ag-
regation and exchange of information among regions is limited
y the range of propagation. The multiple GCN layers aggregate
ode neighborhood information within a number of few-hop
eighbors. However, GCN will result in over-smoothing and over-
itting as the number of layers increases, leading to performance
egradation.
To tackle the limitation of node neighborhood propagation in

raffic graph data, we develop approximate personalized propa-
ation that extends the propagation range to obtain more spatial
eighborhood information. More precisely, approximate person-
lized propagation is to aggregate an unlimited number of node
eighborhoods through personalized PageRank, and then utilize
pproximate method to reduce the number of calculations. Fig. 4
hows the neighborhood information propagation scheme.
Personalized PageRank first obtains each root node based on

he teleport (or restart vector) (i.e. one-hot vector), such that the
oot node b ∈ N is generated by the teleport vector kb. Person-
lized PageRank describes the root node b through a recurrent
quation:

ppr (kb) = (1 − α)̃D−
1
2 ÃD̃−

1
2 τppr (kb) + αkb, (4)

here α ∈ (0, 1] is the teleport probability which can con-
rol the root nodes’ propagation range to obtain the different
eighborhood information. Next, we solve Eq. (4) to get:

ppr (kb) = α(In − (1 − α)̃D−
1
2 ÃD̃−

1
2 )−1

· kb. (5)

The influence score between nodes b and c is expressed as
(b, c), which is proportional to the cth element of τppr (kb).
ully personalized PageRank matrix is achieved by replacing the
ndicator vector kb with an unit matrix In, and the equation is
escribed as follows:

ppr = α

(
In − (1 − α)̃D−

1
2 ÃD̃−

1
2

)−1
, (6)

K (b, c) ∝ Π
(bc)
ppr is the influence score of (bc) pair, where different

ode pairs produce different influence scores.
In our propagation scheme, we encode the different spatial–

emporal feature matrix (e.g. X ′
:,t ) by GCN (Kipf & Welling, 2016)

to capture the node embedding matrix (e.g. H:,t : RN×d
→

N×f ). Then, fully personalized PageRank propagates each node
ith its own features to faraway neighbors to aggregate more
eighborhood information as follows:

s
:,t = α

(
In − (1 − α)̃D−

1
2 ÃD̃−

1
2

)−1
H:,t . (7)

From Eq. (7), we observe that fully personalized propagation
computes the dense matrix RN×N with memory requirement
(n2). Therefore, approximate personalized propagation employs
ower iteration for fully personalized PageRank, and utilizes the
parse structure form of the graph (i.e. Ãsparse) to avoid the matrix
RN×N . This scheme can result in linear computation complexity.
Unlike the power iteration of normal PageRank which employs a
regular random walk, the personalized PageRank is related to a
344
restart random walk. Each iteration of approximate personalized
propagation is computed as follows:

M (0)
:,t = X s

:,t ,

M (j)
:,t = (1 − α)̃D−

1
2 ÃsparseD̃−

1
2 M (j−1)

:,t + αX s
:,t ,

M:,t = M (J)
:,t ,

(8)

X s
:,t is both an initial vector and a set of teleport vector, and J is

the number of power iteration (j ∈ [0, J − 2]).
Compared with the GCN method which adds the additional

layers and learns more parameters, approximate personalized
propagation captures more neighborhood information via a few
parameters and without the need to establish additional layers.
Due to the propagation scheme utilizing the unlimited neigh-
borhood aggregation layers, the gradient flows during backprop-
agation thus bring about more information to improve model
accuracy.

4.3. Adaptive Graph Learning

Adaptive Graph Learning aims to improve GCN’s ability via
adaptive node parameter and adaptive graph generation. Adap-
tive node parameter decomposes the parameters in GCN, and
then the specific parameters of the node are obtained from the
shared set of weights and bias in all the nodes based on the node
embedding. Adaptive graph generation infers node embedding
from the data to produce the graph during training.

The GCN of one order Chebyshev produces the node embed-
ding matrix, and reduces the number of parameters by sharing
parameters among all the nodes. Thus, different spatial–temporal
feature matrix (e.g. X ′

:,t ) is described as follows:

H :,t = (In + D̃−
1
2 ÃD̃−

1
2 )X ′

:,tΘ + b, (9)

where, X ′
:,t ∈ RN×d and H :,t ∈ RN×f represent the input and

output of the GCN respectively, Θ ∈ Rd×f is the weights and
b ∈ Rf is the bias.

In traffic series, the interaction among nodes are affected by
external factors (e.g. weather, event) and show different situa-
tions at different times. It is an effective method to establish a
specific-parameter space for each node, but arranging parameters
for each node needs a large number of parameters (i.e. Θ ∈

RN×d×f ) to be optimized, which leads to over-fitting. Therefore,
adaptive node parameter utilizes the idea of matrix factorization
to enhance GCN. Taking weight as an example, Θ = EG · WG is
produced by the node embedding matrix EG ∈ RN×F and a large
shared weight pool WG ∈ RF×d×f , in which F ≪ N . For a single
node (e.g. node i), node embedding E i

G extracts parameter Θ i from
WG, which can be viewed as finding a set of specific parameters
for node learning. Likewise for bias b. Adaptive node parameter
improves GCN’s ability as follows:

H :,t = (In + D̃−
1
2 ÃD̃−

1
2 )X ′

:,tΘ + EGbG, (10)

Adaptive graph generation can automatically capture implicit
dependencies from the data. Firstly, all nodes are randomly ini-
tialized to generate the node embedding (i.e. EA ∈ RN×de ), in
which each row of EA denotes a node embedding and de is the
node embedding dimension. Next, we calculate EA to multiply ET

A
to infer the dependency between each pair of nodes as shown:

A = D̃−
1
2 ÃD̃−

1
2 = softmax(ReLU(EA · ET

A )) (11)

By replacing Ã, the matrix D̃−
1
2 ÃD̃−

1
2 is produced to reduce

the unnecessary recalculation during training. EA can automati-
cally capture the hidden dependencies among nodes during the
training process to capture the adaptive matrix, shown as follows:

H = (I + A)X ′ Θ (12)
:,t n :,t
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Finally, we combine adaptive node parameter (i.e. Eq. (10))
nd adaptive graph generation (i.e. Eq. (12)) to obtain adaptive
raph learning:

H :,t = (In + A)X ′

:,tΘ + EGbG (13)

.4. Traffic prediction

In this section, we integrate position graph convolution, ap-
roximate personalized propagation and adaptive graph learning
nto the recurrent network (i.e. Gated Recurrent Units), described
s follow:

S̃ = S ′
[X ′

:,t , h
′
t−1],

M̃ = M[X ′

:,t , h
′
t−1],

H̃ = H[X ′

:,t , h
′
t−1],

rt = σ (̃Sr + M̃r + H̃r ),

zt = σ (̃Sz + M̃z + H̃z),

kt = tanh(S ′
[X ′

:,t , r ⊙ h′
t−1]

+M ′
[X ′

:,t , r ⊙ h′
t−1]

+H ′
[X ′

:,t , r ⊙ h′
t−1]),

kt = z ⊙ h′
t−1 + (1 − z) ⊙ kt .

(14)

here the input and the output at time t are X ′
:,t and kt , re-

pectively. The reset gate and the update gate are r and z. ⊙ is
the operation of Hadamard Product. σ is the sigmoid activation
function.

In GSTPRN framework, we choose L1 loss function to obtain
our training objective, and employ Adam optimizer to optimize
all the parameters. The loss function is expressed as follows:

L(θparameters) =

t+τ∑
t+1

|X:,i − X ′

:,i| (15)

here θparameters is all the parameters in GSTPRN, X:,i and X ′

:,i
express the ground truth and model prediction, respectively.

5. Experiment

To evaluate our proposed GSTPRN, we conduct a series of
experiments on two real datasets (i.e. PeMSD4 and PeMSD8) from
Caltrans Performance Measurement System (PeMS). PeMS data
are collected in real-time from nearly 40,000 individual detectors
spanning the freeway system across all major metropolitan areas
of California. The datasets collect highway data in real-time every
30 s, and the traffic data are aggregated from the original data
in 5-min interval. The datasets contain three data types (i.e total
flow, average occupancy and average speed).

5.1. Dataset

PeMSD4: This dataset contains the traffic data of 307 traffic
observation detectors in the San Francisco Bay region. The detec-
tors collect data on the traffic flow of the highway from 1/1/2018
to 2/28/2018.
 p
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Table 1
Baseline comparison on traffic forecasting.
Method PeMSD4 PeMSD8

MAE RMSE MAPE MAE RMSE MAPE

VAR 24.67 38.77 17.35% 19.31 30.24 12.61%
GRU-ED 23.49 38.69 16.72% 21.79 35.12 12.99%
DSANet 22.68 34.88 15.98% 17.05 26.64 11.23%
DCRNN 21.57 33.98 15.14% 16.98 26.91 10.98%
MSTRPGNN 21.98 34.21 15.49% 17.67 27.51 12.14%
ASTGCN 21.91 34.09 15.36% 17.55 27.24 12.01%
STSGCN 21.43 33.72 14.83% 17.31 27.03 11.51%
STODE 21.17 32.98 14.74% 16.81 25.94 10.66%
AGCRN 20.08 32.84 13.42% 16.98 26.99 10.90%

GSTPRN 19.45 31.91 12.96% 15.68 24.96 10.09%

PeMSD8: This dataset contains the traffic data of 170 traffic
observation detectors in the San Bernardino region. The detectors
collect data on the traffic flow of the highway from 7/1/2016 to
8/31/2016.

5.2. Settings

We divide the two datasets into training set, validation set,
and test set with a ratio of 6:2:2. We adopt three widely used
evaluation metrics, namely, Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE) to compare the performance of the baseline methods.

We adopt one-hour historical observation data to forecast next
one-hour traffic situation, in which the input is 12 steps (i.e. 12
horizons) of historical observation data and the output is next
12 steps (i.e. 12 horizons). Hyperparameter settings used in our
model are : learning rate is 0.001; hidden dimension is 64; power
iteration step is 10, teleport probability is 0.1. Early stopping
algorithms are applied to our model, and we set the patience
threshold to 15.

5.3. Baseline methods

• VAR (Zivot & Wang, 2006) considers the internal dependen-
cies in multiple time series.

• GRU-ED (Cho et al., 2014) constructs two recurrent neural
etworks and combines encoder–decoder architecture to learn
raffic time series features.

• DSANet (Huang et al., 2019) designs two parallel convolu-
ional components and self-attention mechanism to jointly learn
he dynamic periodic spatial–temporal features.

• DCRNN (Li et al., 2017) utilizes RNN structure, which es-
ablishes bidirectional random walks to learn the spatial corre-
ation information. It also designs an encoder–decoder structure
o capture the temporal information.

• MSTRPGNN (Cascetta & Cantarella, 1991; Nuzzolo & Russo,
996) extracts multiple spatial–temporal information by random

arameters in graph neural network.
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Fig. 5. PEMSD4 (Left) and PEMSD8 (Right).
Fig. 6. Visualization of prediction and truth.
• ASTGCN (Guo et al., 2019) employs the attention mechanism
nd graph convolutional network to form a spatial–temporal net-
ork to learn dynamic spatio-temporal correlations information.
• STSGCN (Song et al., 2020) proposes a synchronous GCN

odel to capture heterogeneous local spatial–temporal charac-
eristics during the different time points.

• STGODE (Fang et al., 2021) constructs an ODE and two TCN
locks with residual structure to learn traffic information.

• AGCRN (BAI et al., 2020) proposes node adaptive param-
ter learning and data adaptive graph generation for each traf-
ic sequence and different traffic sequences without pre-defined
raphs.

.4. Performance comparison and analysis on traffic prediction

In Table 1 , our proposed GSTPRN is compared with multiple
aseline methods, and the experimental results show that our
ethod is superior to the SOTA methods on two traffic datasets.
e observe that the methods based on spatial–temporal dimen-

ion (e.g. DSANet, DCRNN, ASTGCN, STSGCN, STGODE, AGCRN,
STPRN) achieve better performance than the methods based
n temporal dimension (e.g. VAR, GRU-ED), because the spatial
imension information reflects the influence among regions at
ifferent distances, especially in smart cities.
Therefore, we conduct further analysis on the above spatial–

emporal dimension methods. DSANet, DCRNN, ASTGCN, STS-
CN and STGODE employ shared patterns of parameters to learn
346
traffic graph data, while they fail to achieve node-specific pat-
terns. AGCRN determines the parameters and generates the graph
adaptatively but it does not utilize the high-level information.

Our proposed GSTPRN can obtain high-level information and
constructs position graph convolution to utilize position embed-
ding matrix to capture the spatial dependence relationship among
multiple nodes. GSTPRN also adopts approximate personalized
propagation to obtain more spatial neighborhood information.
Thus, GSTPRN achieves better performance.

5.5. Prediction performance analysis at each horizon

We further validate GSTPRN’s performance for different hori-
zons (i.e. different steps) using the two datasets and the results
are shown in Fig. 5. We observe that the prediction performance
decreases (i.e. MAE, RMSE, MAPE increases) when the horizon
increases. However, the performance change is small from the
one horizon to the next horizon, showing that our proposed
GSTPRN is stable.

Overall, the gradual prediction performance trajectory and
small performance changes across horizons show that our model
is effective.

5.6. Visualization analysis

Fig. 6 shows the traffic flow across time to reflect the predic-
tion versus the truth. From Fig. 6(a), we observe that the traffic
flow increases gradually before 11:00, and then decreases. The
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raffic flow fluctuates more obviously around 12:00. In Fig. 6(b),
he traffic flow registers a slight decrease and then increases
apidly. A peak is reached after a period of 12:00, followed by
decline.
Compared to Fig. 6(b), Fig. 6(a) shows that the truth has high

nd fluctuating traffic flow. Correspondingly, the prediction also
luctuates accordingly. The visualization of the prediction versus
he truth illustrates that our GSTPRN is effective.

.7. Performance of multiple time intervals

We evaluate the effect of several methods (i.e. GSTPRN,
GCRN, STSGCN) on multiple time intervals, as shown in Figs. 7
nd 8.
On two datasets, each method consistently improves in perfor-

ance as the time decreases. From Fig. 7, we observe that STSGCN
eclines significantly in MAE and MAPE compared to GSTPRN and
GCRN. In Fig. 8, the performance of STSGCN and AGCRN is close
n terms of MAE and RMSE.

Overall, our proposed GSTPRN outperforms AGCRN and STS-
CN in multiple time intervals by the two datasets.

.8. Ablation study

To further illustrate the performance of GSTPRN, we con-
uct ablation experiments to reflect the effects of the different
odules.
• GSTPRN-noAGL: this method removes the adaptive graph

learning module to study the benefits of specific parameters and
data inference.

• GSTPRN-noAPP: this method deletes the approximate per-
sonalized propagation module to study the advantages of extend-
ing node neighborhood information.
 i
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Table 2
Performance of different modules on PeMSD4.
Method PeMSD4

MAE RMSE MAPE

GSTPRN 19.45 31.91 12.96%
GSTPRN-noAGL 19.75 32.42 13.17%
GSTPRN-noAPP 19.87 32.65 13.31%
GSTPRN-noPGC 19.94 32.75 13.48%

Table 3
Performance of different modules on PeMSD8.
Method PeMSD8

MAE RMSE MAPE

GSTPRN 15.68 24.96 10.09%
GSTPRN-noAGL 15.93 25.69 10.31%
GSTPRN-noAPP 16.18 25.88 10.47%
GSTPRN-noPGC 16.35 26.34 10.69%

• GSTPRN-noPGC: this method does not consider position
raph convolution module to study the importance of position
nformation and spatial dependence.

From the experimental results in Table 2, we can see that
STPRN-noAGL, GSTPRN-noAPP and GSTPRN-noPGC all registered
erformance degradation compared to GSTPRN. We observe that
emoving the position graph convolution (i.e. GSTPRN-noPGC)
as a greater impact on performance, which shows that position
nformation and spatial dependence are more sensitive to the
odel. Moreover, GSTPRN-noAGL achieves better performance

han GSTPRN-noAPP, which shows that expanding the propa-
ation range of nodes neighborhood is more effective than the
daptive graph learning module.
We also evaluate the performance on PeMSD8 dataset, which

s shown in Table 3. Specifically, we find that GSTPRN-noAGL
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chieves better performance than GSTPRN-noAPP and GSTPRN-
oPGC, which shows that position information, spatial depen-
ence and expansion of neighborhood propagation range are
ore important in traffic prediction. Furthermore, when compar-

ng GSTPRN-noAPP and GSTPRN-noPGC, we observe that position
nformation and spatial dependencies bring more benefits than
ode neighborhood information.
The results of the ablation experiments show that the indi-

idual modules do contribute towards GSTPRN’s improvements,
esulting in a very effective architecture for traffic prediction.

. Conclusion

In this paper, we aim to analyze and tackle the problems of
patial position information, spatial dependence and the propa-
ation of node neighborhood information in traffic forecasting.
Our proposed GSTPRN architecture is an end-to-end structure

nd jointly integrate position graph convolution, approximate
ersonalized propagation and adaptive graph learning into the
ecurrent network (i.e. Gated Recurrent Units). More precisely, we
onstruct position graph convolution based on self-attention, that
tilizes position embedding matrix and computes spatial depen-
ence strengths to capture the spatial dependence among multi-
le nodes. Moreover, our architecture incorporates approximate
ersonalized propagation which aggregates an unlimit number
f neighborhood propagation layers to extend the range of node
eighborhood propagation to capture more neighborhood infor-
ation. For a comprehensive comparison against the various
aseline methods, we also design multiple experiments (e.g. dif-
erent modules and time intervals on PeMSD4 and PeMS08) for a
ore complete performance analysis. The extensive experimental

esults show that our model outperforms the SOTA baselines.
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