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Graphs are effective for representing various relationships in the real world and have been
successfully applied in many areas, such as publication citations and movie networks.
Compared to homogeneous graphs (i.e., nodes and edges of a single relation type), hetero-
geneous graphs have heterogeneity and richer information (i.e., nodes and edges of differ-
ent relation types). How to tackle complex non-pairwise graph-structured data and model
various relation-types is a daunting challenge for heterogenous graphs. However, the exist-
ing unsupervised methods focus on node attribute learning, while node neighborhood
information utilizes very limited because they only consider node propagation that is
within few steps. In this paper, we propose an unsupervised method, called APPTE, that
models adequate node neighborhood information in local context, and captures the global
neighborhood information. Meanwhile, our method considers the robustness and general-
ization ability. Specifically, we construct approximate personalized propagation in local
context to utilize an infinite number of neighborhood aggregation layers for extending
node neighborhood propagation range, and then fuse these local context to capture global
neighborhood information. Additionally, we improve the robustness and generalization
ability of model, employing throwedge to increase the randomness and diversity of the
graph connections by randomly deleting a part of edges. The experimental results on three
benchmark datasets containing heterogeneous graphs demonstrate that our proposed
method is superior to the available state-of-the-art methods.

� 2022 Published by Elsevier Inc.
1. Introduction

1.1. Motivation

Deep learning approaches [1,2] have been successful in many applications and have obtained impressive results in pro-
cessing Euclidean data. For example, a convolutional neural network (CNN) can effectively extract image and video data (i.e.,
the spatial organization of pixels) [3,4]. Extending Euclidean data [5] processing to non-Euclidean data processing is the
development trend of deep learning technology. Typical non-Euclidean data can be represented by graph-structured data
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[6–8], which are usually irregular because they contain complex structural relationships. A graph contains nodes and edges
and can establish various relation types in the real world, such as in social networks [9,10] and publication citations [11,12].

Heterogeneous graphs [13,14] have nodes and edges of different relation-types, and the nodes are related to each other in
various ways. Taking the Association for Computing Machinery (ACM) dataset as an example, two papers written by the
same author have established connections by choosing the metapath as Paper-Author-Paper; two papers have established
connections based on the same subject by choosing the metapath as Paper-Subject-Paper. Various types of relationships
can be used to generate different graphs through different metapath forms. These graphs are usually related, and they
can help each other to achieve multiple downstream tasks (i.e., node classification, similarity searches and node clustering).
Furthermore, each node has a potential relationship with its neighbors and can be affected by its close and distant neighbors
at any time. Generally, the smaller the distance between a node and its neighbors is, the greater influence the neighbors have
on the node. The propagation distance between a node and a neighboring node affects the amount of information obtained
by the neighboring node, especially for different types of nodes with different characteristics and neighborhood relations.
Based on the above analysis, the great challenge is to fully extract node neighborhood information and model various
relation-types.

Existing supervised methods have performed graph representation learning in heterogeneous graphs. Sankar et al. [15]
established a model for determining the key attributes based on the spatial convolution idea. Chen et al. [16] established
a heterogeneous information network model to tackle the potential geometrical inflexibility in metric learning. Wang
et al. [17] adopted a semi-supervised approach that processes node-level and semantic-level information separately through
an attention mechanism and then performs information fusion. However, these methods apply node labels during training,
but these labels are expensive.

Recently, several unsupervised methods have been put forward to solve above problem. Velickovic et al. [18] proposed to
learn node attributes representations based on maximizing the mutual information (MI) between local patches and graph
summaries, but are limited in single network. Follow that, Park et al. [19] established an attributes multiplex network,
the differences among node relationship types based on local structure features are minimized through a consensus regu-
larization, and real samples were distinguished by discriminators without considering the relationship types. Although
the above methods have achieved good results, they are aimed at local and global attribute information. However, these
methods are limited in the following respects. 1) They only consider the one-hop propagation of nodes. Therefore, it limits
the propagation range of nodes and causes neighborhood information of nodes in a few utilized, especially for unsupervised
method. 2) Heterogeneous graphs have heterogeneity and richer information based on different relation-types so that it are
closer to dynamic changes in the real world. But, above methods does not consider the robustness and generalization ability.
1.2. Our contributions

To address these limitation, we develop an unsupervised method called APPTE that capture abundant node neighborhood
information to achieve high-quality embeddings. Meanwhile, APPTE considers robustness and generalization ability. More
precisely, we model the local context (i.e., each type) by personalized propagation which utilizes an infinite number of neigh-
borhood aggregation layers. Then, approximate personalized propagation adopts an approximate method (i.e., power itera-
tion) so that the computational complexity of the personalized propagation process is linear and the node neighborhood
information is sufficient obtained. Next, we fuse these local context to capture global neighborhood information. Inspired
by the above linear complexity of approximate personalized propagation that some edges information can be reduced, thro-
wedge randomly deletes a part of edges to increase the randomness and diversity of the graph connections so that the model
obtains better robustness and generalization ability. Moreover, APPTE requires only a few parameters to propagate informa-
tion to more distant neighbors. Our method is validated on three benchmark heterogeneous graph datasets and is superior to
the state-of-art baseline.

We summarize the main contributions in this paper as follows.

� We propose an unsupervised method called APPTE for heterogeneous graphs. This method enlarges the node neighbor-
hood propagation range to capture adequate node neighborhood information.
� APPTE has an end-to-end structure, in which a part of edges are deleted to increase the randomness and diversity of the
graph connections so that the model obtains better robustness and generalization ability.
� Our approach requires only a few parameters to propagate information to more distant neighbors.
� The experimental results on three benchmark datasets containing heterogeneous graphs demonstrate that our proposed
APPTE method is superior to the available state-of-the-art methods.

1.3. Organization

The rest of this paper is organized as follows. Section 2, we review development of various graph technologies. Section 3
presents the preliminary notations and the task. In Section 4, we propose an unsupervised method and describe in detail our
proposed APPTE framework. In Section 5, we perform extensive experiments and show the results. The conclusions are pre-
sented in Section 6.
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2. Related work

With the development of various graph technologies, we review previous approaches, such as GCNs, message passing and
multiplex network embedding.
2.1. Graph convolutional network

A GCN extracts node features and local neighbor information for graph-structured data. Bruna et al. [20] proposed
domain-based hierarchical clustering on general graphs with local connection and pooling operations to reduce parameters
and the graph Laplacian spectrum, which produces a convolution operator for global graph structures. Defferrard et al. [21]
created a fast localized convolution filters for graphs based on the idea of a CNN. Kipf et al. [22] devised a spectral graph
convolution method for semisupervised classification to select a local first-order approximation convolution structure to
scale the number of graph edges and to represent the local graph structure and node features in hidden layers. Zhuang
et al. [23] constructed a dual CNN that simultaneously considers both the local consistency and global consistency of knowl-
edge. Guo et al. [24] designed a three-objective optimization scheme (i.e., partitioning-updating-tracking) for regions of
interest. Rong et al. [25] proposed some edges are removed in homogeneous graph, which solves over-smoothing and
over-fitting in deep GCN. Hamilton et al. [26] presented a method for learning node features and local neighborhoods on
large graphs to obtain node embeddings of unknown graphs. Velivckovic et al. [18] described a method to maximize MI
between patch representations and advanced graph summaries based on a GCN to enhance the correlations among the infor-
mation, but this method is limited to a single network.
2.2. Message passing

Message passing is how nodes share information with their neighbors. Li et al. [27] introduced a combined message pass-
ing algorithm with cotraining and self-training in semisupervised learning to tackle the over-smoothing problem. Ying et al.
[28] investigated combining randomwalk and graph convolution to obtain a node embedding, and then integrated it into the
MapReduce model. Xu et al. [29] designed a jumping knowledge network, which aims at the different neighborhood range of
each node to obtain a better graph structure representation. Kawamoto et al. [30] pointed out that whether a graph neural
network obtains higher accuracy is determined by the backpropagation result or the architecture, and the mean value theory
of the minimum graph neural network was designed. Guo et al. [31] proposed a multiobjective optimization method to
improve the robustness of the model to explore Pareto-optima with time change. Chen et al. [32] employed the nonback-
tracking operator to enhance a graph neural network to obtain the loss values at the global and local minima. Klicpera
et al. [33] developed a message passing algorithm to separate a GCN and PageRank for semi-supervised classification. Wang
et al. [17] adopted an attention mechanism to obtain the node-level and semantic-level features of heterogeneous graph and
then fused them; however, this approach fails to consider mutual information.
2.3. Multiplex network embedding

Multiplex network embedding is composed of multiple relation-type information formed among single-type nodes to
map an embedding space. Zhang et al. [34] performed high-dimensional embedding and low-dimensional embedding for
each relation type and then exploited a network embedding model to learn multiple pieces of information. Fu et al. [35] pro-
posed performing multiple prediction training tasks on a target relationship set to learn potential node information. Ma et al.
[36] proposed to obtaining independent information in each dimension and relevant information across dimensions to learn
the hierarchical representation of a multidimensional network embedding. Dong et al. [37] proposed constructing node
neighborhoods on heterogeneous graphs with the random walk, and then simultaneously modeling both the structural
and semantic correlations in heterogeneous networks. Park et al. [19] mentioned that the differences among node relation-
ship types based on local structure features are minimized through a consensus regularization, and real samples were dis-
tinguished by discriminators without considering the relationship types, but the limited node propagation range leads to
insufficient utilization of node neighborhood information.

In summary, we emphasize that APPTE is very different from the abovementioned literature. A novel heterogeneous
graph architecture are designed to extract adequate node neighborhood information in local context, and capture the global
neighborhood information. The robustness and generalization ability are considered in our model.
3. Preliminary

We define some concepts and task descriptions for heterogeneous graphs.
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Definition 1. (Multiplex network): A multiplex network defined as G ¼ G1;G2; . . . ;GjKj
n o

¼ V ; n;Xf g. V is the node set, n is

the edge set and X is the node feature matrix. X 2 Rn�f includes n nodes and each node has f feature information.

Gk ¼ V ; n kð Þ;X
n o

is a relation-type graph, k 2 K; jKj ¼ 1 is a single network, and jKj > 1 is a multiplex network. The adjacency

matrix is denoted as A ¼ A 1ð Þ; . . . ;A jKjð Þ
n o

, and A kð Þ 2 0;1f gjV j�jV j represents the adjacency matrix of network Gk.
Definition 2. (Metapath): A metapath P is described as P1�!R1 P2�!R2 � � � �!Rn Pnþ1, where R ¼ R1 � R2 � � � � Rn illustrates the
composite relation between P1 and Pnþ1 and � is a composition operator that describes these relations.

Task 1 (Heterogeneous graph unsupervised embedding): Given metapath P, multiplex network G and adjacency matrix
A, the task of heterogeneous graphs unsupervised embedding aims to learn the d-dimensional representation of each node
v i 2 V without use of labeled data.

4. The proposed APPTE framework

In this section, we describe in detail our proposed APPTE framework from three modules: Heterogeneous graph
structured-data extraction mechanism, Mutual information and Consensus regularization. Fig. 1 presents the our method
architecture.

We learn a high-quality embedding in heterogeneous graphs through APPTE. In Fig. 1, the purple line represents the pro-
cess from the initial network to the corrupted network that initial node features X (i.e., positive samples) are destroyed to

generate corrupted node features eX (i.e., negative samples). Heterogeneous graph structured-data extraction mechanism
consists of throwedge, GCN and approximate personalized propagation to obtain each type of node embedding matrix

m kð Þ, and then we fuse node embedding matrix of these type to generate the relation-type node embedding matrix M0 kð Þ

(i.e., global neighborhood information). Mutual information contains readout function and discriminator, in which the read-

out function calculatesM0 kð Þ to obtain the global summary representation, and then discriminator which represents yellow D
computes the MI between the positive sample pairs and negative sample pairs for maximization, respectively. Consensus
regularization establishes the multiple relation-type embedding matrix of the positive sample (i.e., green cuboid) and neg-
ative sample (i.e., purple cuboid) to minimize disagreements. Finally, we employ Adam optimizer to optimize the model and
calculate the sum of the loss values to obtain objective function.

4.1. Heterogeneous graph structured-data extraction mechanism

The idea of single network [18] and multiplex network [19] both extracts node attributes to obtain node embedding

matrix h kð Þ and eh kð Þ via a GCN, which is described in Section 4.1.1. They only consider one-hop neighbors so that node neigh-
Fig. 1. Architecture of APPTE.
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borhood information are limited. This motivates us to capture more neighborhood information by expanding node neighbor-
hood propagation range. For multiplex network, expansion of the node neighborhood range directly on the embedding of
multiple relation-types bring each node obtaining more redundancy information from it neighbors, this cause the model
to not achieve high-quality embedding. Therefore, we model each graph represented by each type to expand node neighbor-
hood range, which capture adequate neighborhood information from relative simple relation-type to avoid above redun-
dancy information. Furthermore, we considered robustness and generalization ability based on the above scheme.

We describes the extraction mechanism and provides its mathematical definition and derivations. We explain how
extending node neighborhood propagation range and enhancing model robustness and generalization ability. Extraction
mechanism framework is shown in Fig. 2.
4.1.1. Graph convolutional network

In APPTE, the GCN performs convolution operations for each type k 2 K to obtain node embedding matrix h kð Þ of all nodes

in G kð Þ. The node feature matrix X 2 Rn�f and adjacency matrix A kð Þ 2 Rn�n are used as the inputs of the GCN. The output of the
GCN is represented as Rn�f ! Rn�d:
h kð Þ ¼ ReLU D
�1
2

k A kð ÞD
�1

2
k XW kð Þ

� �
; ð1Þ
where, A kð Þ ¼ A kð Þ þ In denotes the adjacency matrix with added self-loops, In is a unit matrix, Dii ¼
P

jAij is diagonal degree

matrix and W kð Þ 2 Rf�d is a weight matrix.
The corrupted node feature matrix is obtained by shuffling the initial node feature matrix in a row-wise manner, it

destroying the information of initial feature matrix, i.e., X ! eX . The GCN corrupted feature matrix as follows:
eh kð Þ ¼ ReLU D
�1
2

k A kð ÞD
�1

2
k
eXW kð Þ

� �
: ð2Þ
4.1.2. ThrowEdge
We randomly deletes a part of the edge to disturb graph connections data for each type, this increase data the random-

ness and diversity so that the model obtains better robustness and generalization ability. This manner can be seen as a data
augmentation technology especially for heterogeneous graphs, similar to traditional image augmentation technology such as

rotation and cropping. Specifically, Tf non-zero elements of the adjacency matrix A kð Þ are randomly set to zeros, where T rep-
resents the number of edges and f represents the throwing rate. We obtain adjacency matrix Athrow as follows:
Athrow ¼ A� A0; ð3Þ
where A0 represents a sparse matrix which is a random subset of the size Tf generated by the initial edge n. Furthermore, we

obtain Athrow to perform the re-normalization operation on Athrow. Noted that throwedge was not used in the validation and
testing process.
Fig. 2. Flowchart of heterogeneous graph structured-data extraction mechanism.
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4.1.3. Approximate personalized propagation
We firstly describe how personalized propagation obtains more node neighborhoods information, and then approximate

personalized propagation applies an approximate method on personalized propagation to reduce the amount of calculation.
Personalized PageRank can aggregate an infinite number of node neighborhood layers. It considers the probability of tele-

porting back to every root node, and the neighborhood of each root node v j 2 V is encoded based on the PageRank score. The

root node v j is determined by teleport vector Iv j
which preserves the neighborhood of the root node. Taking G kð Þ as an exam-

ple, the recurrent equation realizes adaptation of personalized PageRank for root nodes; this is represented as follows:
s kð Þ
ppr Iv j

� �
¼ 1� að ÞD�1

2A kð ÞD�
1
2s kð Þ

ppr Iv j

� �
þ aIv j

; ð4Þ
where a 2 0;1ð � is the teleport probability for adjusting the descending speed of a neighboring node as it moves away from
the root node. In other words, it controls the neighborhood range of each node. By solving Equation (4), we can obtain:
s kð Þ
ppr Iv j

� �
¼ a In � 1� að ÞD�1

2A kð ÞD�
1
2

� ��1
Iv j

: ð5Þ
Each root node has different influence scores for its neighboring nodes. For example, I v j;vy
� �

represents the influence

score of the root node v j on node vy, which is proportional to the y-th element of personalized PageRank s kð Þ
ppr Iv j
� �

. Further-

more, the indicator vector Iv j
is replaced with identity matrix In to obtain a fully personalized PageRank matrix, which is

described as follows:
P kð Þ
ppr ¼ a In � 1� að ÞD�1

2A kð ÞD�
1
2

� ��1
; ð6Þ
P kð Þ
ppr v jvyð Þ ¼ P kð Þ

ppr vyv jð Þ indicates that the influence between node v j and node vy is the same, and I v j;vy
� � / P kð Þ

ppr v jvyð Þ.
For personalized propagation, we encode the node feature matrix with GCN to obtain node embedding matrix of each

type (i.e., h kð Þ and eh kð Þ), and then fully personalized PageRank propagates h kð Þ and eh kð Þ to aggregate more node neighborhood

information. Taking h kð Þ as an example, the equation is described as follows:
m kð Þ ¼ a In � 1� að ÞD�1
2A kð ÞD�

1
2

� ��1
h kð Þ

: ð7Þ
In Equation (7), we see that personalized propagation is used to calculate dense matrix Rn�n to obtain memory require-
ment of O n2

� �
. To tackle this problem, approximate personalized propagation utilizes power iterations for personalized prop-

agation to obtain a linear computational complexity; we employ the adjacency matrix Athrow obtained in throwedge to
represent the graph structure, and the matrix Rn�n is never constructed. Different from the original PageRank method, which
adopted the normal random walk, the power iteration of personalized propagation is connected to the restarting random
walk method, which considers a process for teleporting back to the root nodes. Each power iteration process is described
as follows::
m kð Þ
0ð Þ ¼ h kð Þ

;

m kð Þ
nð Þ ¼ 1� að ÞD�1

2A kð Þ
throwD

�1
2m kð Þ

n�1ð Þ þ ah kð Þ
;

m0 kð Þ ¼ m kð Þ
Nð Þ;

ð8Þ
where h kð Þ serves as both the teleport set and the beginning vector, and N represents the number of power iterations (i.e.,
n 2 0;N � 2½ �).

Compared with the GCN that needs to provide more parameters for each additional layer, approximate personalized
propagation only requires a few parameters and no additional layers to propagate very far neighbors. In the propagation
scheme, the gradient flows participate in the backpropagation process of infinite neighborhood aggregation layers, which
greatly improves model accuracy. We fuse each type of neighborhood information to capture relation-type embedding

matrix (i.e., M0 kð Þ ¼ m 1ð Þ;m 2ð Þ; ::;m kð Þ� �
).

4.2. Mutual information

MI between the local patches and the global summary representation is maximized to learn the graph-structured repre-

sentation. We obtain local patches m kð Þ
1 ;m kð Þ

2 ; ::;m kð Þ
i

n o
as follows:
m kð Þ
1 ;m kð Þ

2 ; ::;m kð Þ
i

n o
2 M0 kð Þ; ð9Þ
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where m kð Þ
i represents the i-th row vector of the matrix M0 kð Þ.

Global summary representation q kð Þ is computed through a Readout function Rn�d ! Rd as follows:
q kð Þ ¼ Readout M0 kð Þ
� �

¼ Sigmoid
1
N

XN
i¼1

m kð Þ
i

 !
: ð10Þ
Note that different pooling methods (e.g., SAGPool [38]) can also be applied in lieu of the Readout function.

Then, MI is maxmized for positive sample pairs (i.e., m kð Þ
i and q kð Þ) and negative sample pairs (i.e., em kð Þ

j and q kð Þ). m kð Þ
i andem kð Þ

j are generated in the initial network and corrupted network, respectively. We compute the binary cross entropy loss
function between the local patches and global summary representation as follows:
L kð Þ ¼
XN
j¼1

log 1� D em kð Þ
j ; q kð Þ

� �� �
þ
XN
v i2V

logD m kð Þ
i ; q kð Þ

� �
; ð11Þ
where discriminator D : Rd � Rd ! R obtains the score of a patch summary pair, such as m kð Þ
i ; q kð Þ

� �
. We employ a simple

pattern (i.e., a bilinear scoring function) in the experiment:
D m kð Þ
i ; q kð Þ

� �
¼ Sigmoid m kð ÞT

i J kð Þq kð Þ
� �

; ð12Þ
where J kð Þ 2 Rd�d is a scoring matrix that is shared among all relation types k 2 K , (i.e., J ¼ J 1ð Þ ¼ . . . ¼ J Kð Þ).

4.3. Consensus regularization

The embedding matrices of different relation types are based on node neighborhood information to achieve mutual help-
ing by consensus regularization.

More precisely, all relation-type matrices can achieve consensus after the introduction of consensus matrix Z 2 Rn�d. One

regularizer minimizes the disagreement between the set of relation-type matrices M0 kð Þ; k 2 K
� �

and the consensus matrix Z

in the initial network; another regularizer maximizes the disagreement between the set of relation-type matriceseM 0 kð Þ; k 2 K
� �

and the consensus matrix Z in the corrupted network. The equation is as follows:
Lcr ¼ Z �X M0 kð Þ; k 2 K
� �� �2

� Z �X eM 0 kð Þ; k 2 K
� �� �� �2

:

�
ð13Þ
X indicates that the aggregation function can combine the set of the multiple relation-type matrices into a single matrix.
We employ a simple pattern to calculate a set of multiple relation-type matrices to improve model efficiency:
M ¼ X M0 kð Þ
� �

¼ 1
jKj
X
k2K

M0 kð Þ: ð14Þ
4.4. Optimization

We employ Adam optimizer to optimize the model, and calculate the sum of the loss values jointly with the relation-type
loss in Equation (11) and the consensus regularization loss in Equation (13) to obtain objective function:
C ¼
X
k2K

L kð Þ þ kLcr þ ljjWjj2; ð15Þ
where k adjusts the importance degree of consensus regularization and l is a trainable parameter set that controls L2 reg-

ularization on W ¼ W kð Þ; J; Z
n o

. We sumarize APPTE in Algorithm1.
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Algorithm1 APPTE Algorithm

Require: A multiplex network G ¼ V ; n;Xf g, adjacency matrix A ¼ A 1ð Þ; . . . ;A jKjð Þ
n o

;

the metapath P ¼ P1; . . . ; Pnþ1f g.
Ensure: Training the APPTE model.
for Pi 2 P do
for k ¼ 1 . . .K do
//From initial information to corrupted information;eX kð Þ  X kð Þ;
//Generating each type node embedding matrix;

h kð Þ  ReLU D�
1
2

k A kð ÞD�
1
2

k XW kð Þ
� �

;eh kð Þ  ReLU D�
1
2

k A kð ÞD�
1
2

k
eXW kð Þ

� �
;

//ThrowEdge;
Athrow  A� A0;
//Fully personalized PageRank;

P kð Þ
ppr  a In � 1� að ÞD�1

2AthrowD�
1
2

� ��1
;

//Approximate personalized propagation;
for n ¼ 1 . . .N do

m kð Þ
0ð Þ  h kð Þ;

m kð Þ
nð Þ  1� að ÞD�1

2A kð Þ
throwD

�1
2M kð Þ

n�1ð Þ þ ah kð Þ;

m0 kð Þ  m kð Þ
Nð Þ;em0 kð Þ  em kð Þ
Nð Þ;

end for
//Relation-type fusion;

M0 kð Þ  m 1ð Þ;m 2ð Þ; ::;m kð Þ� �
//Mutual information;

m kð Þ
1 ; ::;m kð Þ

i

n o
2 M0 kð Þ;

em kð Þ
1 ; ::; em kð Þ

i

n o
2 eM 0 kð Þ;

q kð Þ  Readout M0 kð Þ
� �

;

Calculate maximizing the average MI with the cross entropy loss L kð Þ;
//Calculate consensus regularization;

Lcr  Z �X M0 kð Þ
� �� �2

� Z �X eM 0 kð Þ� �� �2
;

end for
//Objective function;

C  P
k2KL

kð Þ þ kLcr þ ljjWjj2;
end for
return
5. Experimental evaluation

In this section, our APPTE method is compared with other baseline methods on three benchmark datasets.

5.1. Datasets

We describe the datasets (i.e., ACM, DBLP and IMDB) in detail and summarize them in Table 1.
ACM. This dataset contains data from Knowledge Discovery and Data Mining (KDD), MobiCOMM and other journals. It

contains 3025 papers (P), 5835 authors (A), and 56 subjects (S), corresponding to the relation type representation in Table 1;
these papers are classified as databases, wireless communications, and data mining; the published papers are labeled. We
choose the metapath set as P ¼ PAP; PSPf g in our experiment.

DBLP. This dataset contains 14328 papers (P), 4057 authors (A), 8789 terms (T) and 20 conferences (C), corresponding to
the relation type representation in Table 1. The authors’ research fields are labeled based on conferences they attended and
294



Table 1
Statistics of the datasets in the experiments.

Dataset Relations(A-B) Type A Type B Relations Relation type Node feature Labeled data

ACM Paper-Author 3025 5835 9744 PAP 1830 600
Paper- Subject 3025 56 3025 PSP

DBLP Paper-Author 14328 4057 19645 APA 334 800
Paper-Conf 14328 20 14328 APCPA
Paper-Term 14327 8789 88420 APTPA

IMDB Movie-Actor 3550 4441 10650 MAM 1007 300
Movie-Director 3550 1726 3550 MDM

Y. Chen, Y. Hu, K. Li et al. Information Sciences 600 (2022) 287–300
are classified into databases, data mining, machine learning, and information retrieval. We choose the metapath set as
P ¼ APA;APCPA;APTPAf g in our experiment.

IMDB. This dataset contains 3550 movies (M), 4441 actors (A) and 1726 directors (D), corresponding to the relation type
representation in Table 1. Based on movie genre, they are divided into action, comedy, and drama. We choose the metapath
set P ¼ MAM;MDMf g in our experiment.

5.2. Implementation details

5.2.1. Hyperparameters
We employ a random process to divide the dataset into a training set, validation set and test set. We set the learning rate

to 0:005 and set the number of hidden dimension to 64. The throwedge rate f is 0:1. The teleport probability and power iter-
ation steps are set to a ¼ 0:6 and N ¼ 10, respectively. The consensus regularization coefficient k is 0:001, the L2 regulariza-
tion coefficient l is 0:0001. Early stopping algorithms are applied to our model, and we set the patience threshold to 80 (e.g.,
when the loss value does not change for 80 consecutive epochs, the model stops training).

5.2.2. Evaluation metrics
We adopt three classical performance evaluation indicators (i.e., node classification, node clustering and similarity

search) to evaluate the different baseline methods. For node classification, we calculate Macro-F1 and Micro-F1 on the test
set; the logistic regression classifier is trained by learning embeddings on the training set for node evaluation on the test set.
For the similarity search, we calculate the cosine similarity scores of the node embeddings among all node pairs, and rank the
nodes based on the similarity score of each node. Then, the ratio of the top-5 nodes that belong to the same class is calculated
and is called Sim@5. For node clustering, we adopt the k-means algorithm and evaluate the clustering results through nor-
malized MI (NMI).

5.3. Comparision of the baseline methods

We compare some classic methods in graph representation learning that contain the state-of-art benchmarks to illustrate
the effectiveness of our proposed APPTE method. We conduct our experiments on NVIDIA TITAN RTX GPU card with 24 GB
memory.

5.3.1. Random walk-based methods
DeepWalk [39]. A truncated random walk method obtains the local information of homogeneous graphs based on the

network embedding method. However, we perform DeepWalk on heterogeneous graphs without considering the hetero-
geneity of the nodes.

Metapath2vec [37]. This method constructs node neighborhoods on heterogeneous graphs by a random walk method,
and then simultaneously models both the structural and semantic correlations in heterogeneous networks.

HERec [40]. This method employs a random walk method to generate node sequences on heterogeneous graphs. Node
embeddings are converted by a fusion function and then transferred to extended matrix factorization.

5.3.2. Graph neural network-based methods
GCN [22]. A method which encodes local structure and node features to learn graph representations. We test the GCN and

report its performance.
GAT [41]. A method which employs masked self-attentional layers in which a node participates in its neighborhoods’ fea-

tures and then assigns different weights to different nodes in the neighborhoods.
DGI [18]. An unsupervised method which learns node representations based on maximizing MI between local patches

and graph summaries.
HAN [17]. A method which applies an attention mechanism to heterogeneous graphs and considers node level and

semantic-level attention.
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Table 2
Baseline comparison on node classification tasks.

Method ACM DBLP IMDB

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DeepWalk 72.63% 73.56% 76.71% 78.44% 51.21% 53.68%
Metapath2vec 68.17% 68.24% 88.13% 88.62% 52.53% 54.18%

HERec 69.28% 69.12% 89.67% 90.02% 52.68% 54.53%
GCN 85.79% 86.01% 90.06% 90.87% 59.24% 60.09%
GAT 85.62% 85.97% 90.71% 91.14% 59.81% 60.47%
DGI 86.53% 86.55% 88.37% 88.95% 60.37% 60.72%
HAN 88.29% 88.43% 91.88% 92.45% 61.99% 62.16%

MAGNN 89.46% 89.69% 91.95% 92.58% 62.91% 63.23%
HGT 88.52% 88.77% 91.74% 92.33% 62.38% 62.59%
DMGI 88.91% 88.92% 91.51% 92.27% 63.56% 63.87%

APPTE 90.26% 90.25% 92.25% 92.99% 65.20% 65.22%

Table 3
Baseline comparison on the similarity search and node clustering tasks.

Method ACM DBLP IMDB

Sim@5 NMI Sim@5 NMI Sim@5 NMI

DeepWalk 69.59% 30.42% 75.66% 68.41% 49.21% 11.21%
Metapath2vec 66.97% 30.89% 67.43% 67.43% 49.53% 12.46%

HERec 67.28% 40.11% 86.32% 68.52% 50.01% 12.98%
GCN 84.59% 52.87% 86.89% 68.01% 56.96% 16.51%
GAT 85.12% 56.92% 87.04% 66.37% 57.19% 17.06%
DGI 86.53% 58.88% 88.95% 71.33% 57.88% 17.91%
HAN 87.89% 60.41% 89.33% 73.88% 59.07% 17.24%

MAGNN 88.81% 62.23% 90.54% 74.57% 59.85% 18.68%
HGT 88.26% 61.29% 90.41% 74.00% 59.51% 18.10%
DMGI 88.53% 61.78% 90.27% 74.05% 60.33% 19.33%

APPTE 89.21% 63.31% 90.79% 75.18% 61.31% 20.18%
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MAGNN [42]. This method establishes node content transformation and multiple metapath aggregation to produce node
embedding of heterogenous graph.

HGT [43]. This method utilizes a transformer mechanism to design a dedicated representation for nodes and edges in
heterogenous graphs.

DMGI [19]. A method which minimizes disagreements among the node embeddings of relation types and distinguishes
the real samples regardless of relation type. We test DMGI and report its performance.
5.4. Performance evaluation and analysis

In Tables 2 and 3, we compare the performance of different baseline methods. Our proposed APPTE is superior to the
state-of-art benchmarks of different datasets. APPTE is an unsupervised method that does not require any labeled data.

We observe that the experiment results of the graph neural network-based methods (i.e., GCN, GAT, DGI, HAN, and DMGI)
are generally better than those of the random walk-based methods (i.e., DeepWalk, Metapath2vec and HERec).

Random walk-based methods employ generated sequences to define the proximity relationship between nodes. With
enough sampling, these methods can be used to well describe the proximity information between nodes. However, they
do not aggregate node features and neighborhood information.

We conducted an in-depth analysis of graph neural network-based methods. The GCN can aggregate a node’s features and
its neighborhood information and can construct a multilayer network. However, it does not calculate the importance of
neighboring nodes. GAT introduces a self-attention mechanism and utilizes the current node features and neighboring node
features to obtain the importance of the neighboring nodes. However, it is not applied to heterogeneous graphs.

HAN applies an attention mechanism to heterogeneous graphs and establishes node level and semantic-level attention.
However, MI is not considered in this method. MAGNN establishes node content transformation and multiple metapath
aggregation to produce node embedding of heterogenous graph but fails to consider the robustness and generalization abil-
ity. HGT utilizes transformer mechanism to design a dedicated representation for nodes and edges in heterogenous graphs
but fails to consider the consensus regularization. DGI learns node representations through MI between local patches and
graph summaries, but it is limited to a single network. DMGI introduces a consensus regularization framework and universal
discriminator on multiplex network embeddings to learn d-dimensional vector representations, but the limited node prop-
agation range leads to insufficient utilization of node neighborhood information.
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Our proposed APPTE explores more neighborhood information by expanding the node propagation range and randomly
deletes a part of edges to obtain better robustness and generalization ability so that the unsupervised embeddings in hetero-
geneous graphs are achieved. On the ACM dataset, we remove 2525 edges; on the DBLP dataset, we remove 498891 edges;
on the IMDB dataset, we remove 6597 edges. Therefore, APPTE obtains better performance, as shown in bold in Tables 2 and 3.
5.5. The performance of our proposed APPTE method

We evaluate the performance of APPTE on the datasets (i.e., ACM, DBLP and IMDB) through different numbers of power
iterations steps and epochs values.

Under the different power iteration steps, Fig. 3 shows the evaluation indicators of Macro-F1 and Micro-F1 for node clas-
sification. We observe that before the power iteration step N ¼ 10, the performance of APPTE increases as the propagation
range expands, but there is a slight decrease when N ¼ 12. Fig. 4 shows the evaluation indicators of NMI for node clustering.
We can clearly see that the best results are achieved in the power iteration steps N ¼ 10; the other results are also good.
According to Figures 3 and 4, APPTE proves that expanding the node neighborhood range can improve the performance
of node classification and node clustering.

Under the different epochs values, we observe the performance changes. Fig. 5 shows the changes in the Macro-F1 and
Micro-F1 scores. We can clearly see that the ACM dataset and IMDB dataset reach convergence in 2000 epochs; the DBLP
dataset reaches convergence in 3000 epochs. Fig. 6 shows the situational changes in NMI, and then we find that the ACM,
DBLP and IMDB datasets converge in 2000 epochs. Based on Figs. 5 and 6, APPTE converges with fewer epochs than the
state-of-art benchmark DMGI, which converges in 10000 epochs.
5.6. Ablation study

To evaluate robustness and generalization ability in APPTE, we employ ablation studies of multiple groups on the DBLP
dataset for sensitivity analysis. According to different throwedge rates (i.e., f ¼ 0:1 and f ¼ 0:2), we set 3 random seeds to
conduct performance tests shown as Table 4. When the throwedge is f ¼ 0:1, we observe that APPTE’s performance has only
changed slightly with different random seeds, which indicates that our framework has good robustness and generalization
Fig. 3. Different power iteration steps for node classification.

Fig. 4. Different power iteration steps for NMI.
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Fig. 6. Different epochs for NMI.

Table 4
Performance comparison on node classification, similarity search and node clustering.

Throwedge Rate Random Seed DBLP

Macro-F1 Micro-F1 Sim@5 NMI

1 92.26% 93.02% 90.78% 75.11%
f = 0.1 2 92.22% 92.97% 90.75% 75.05%

3 92.21% 92.98% 90.77% 75.07%

1 91.09% 91.88% 89.19% 73.89%
f = 0.2 2 91.08% 91.86% 89.15% 73.84%

3 91.04% 91.89% 89.09% 73.86%

Fig. 5. Different epochs for node classification.
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ability in small variance. Compared with a throwedge of f ¼ 0:1, performance degrades when throwedge the is f ¼ 0:2, indi-
cating that a large amount of loss of edge information leads to the insufficient extraction of key information by the model.

We also construct different modules to illustrate their performance, as shown in Table 5. The first group of ablation exper-
iments (i.e., APPTE-noTE) considers approximate personalized propagation, consensus regularization and MI, but not thro-
wedge. The second group of ablation experiments (i.e., APPTE-noAPP) considers throwedge, consensus regularization and
mutual information, but not approximate personalized propagation. The third group of ablation experiment (i.e., APPTE-
noCR) is throwedge, approximate personalized propagation and mutual information, but not consensus regularization. From
Table 5, we find that the performance of APP-noTE is slightly lower than that of APPTE because throwedge values in a rea-
sonable range reduces the convergence speed of over-smoothing to reduce information loss. The performance of APPTE-noCR
is lower than APP-noTE because consensus regularization aggregates the information of the initial and corrupted. Compared
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Table 5
Performance of different modules on DBLP.

Method DBLP

Macro-F1 Micro-F1 Sim@5 NMI

APPTE 92.25% 92.99% 90.79% 75.18%
APPTE-noTE 92.01% 92.69% 90.54% 74.85%
APPTE-noCR 91.79% 92.47% 90.30% 74.53%
APPTE-noAPP 91.63% 92.34% 90.18% 74.21%
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with APPTE, we observe that the performance of APPTE-noAPP is significantly lower, indicating that the node neighborhood
information has a greater impact on the model.

6. Conclusions

In this paper, we analyze and tackle the problem that limits the propagation range of node neighborhoods in heteroge-
neous graphs. Our APPTE framework is an unsupervised method that has an end-to-end structure to achieve multiple down-
stream tasks (i.e., node classification, similarity searches and node clustering). We construct model to adequate node
neighborhood information in local context, and captures the global neighborhood information. Meanwhile, our method
deletes a part of edges to increase the randomness and diversity of the graph connections so that the model obtains better
robustness and generalization ability. The experimental results demonstrate that APPTE is superior to several state-of-the-
art baseline methods.

In future work, we will explore more effective propagation schemes for more complex practical applications, such as
drug-drug interactions (DDIs).
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