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Global-Local Feature Learning via Dynamic
Spatial-Temporal Graph Neural Network in

Meteorological Prediction
Yibi Chen , Kenli Li , Senior Member, IEEE, Chai Kiat Yeo , and Keqin Li , Fellow, IEEE

Abstract—The meteorological environment has a profound im-
pact on global health (e.g., air quality), science and technology
(e.g., rocket launches), and economic development (e.g., poverty
reduction) etc. Meteorological prediction presents numerous chal-
lenges to both academia and industry due to its multifaceted nature
which encompasses real-time observations and complex modeling.
Recent research adopt graph convolutional recurrent network and
establish coordinate information to obtain local spatial-temporal
pattern. However, the model only utilizes the local spatial-temporal
information and fail to fully consider the dynamic meteorolog-
ical situation. To address the above limitations, we propose a
Dynamic Spatial-Temporal Graph Neural Network (DSTGNN) to
learn global-local meteorological features. Specifically, we divide
the global spatial-temporal information along the timeline to obtain
local spatial-temporal information. For the global aspect, we design
a random throwedge module during the neighborhood propagation
process in graph neural network (GNN) to extract the features and
adapt to the dynamic situation. We also establish convolution oper-
ation module to learn the features. Next, we perform information
fusion on the two modules to capture sufficient features. In addition,
we employ graph ordinary differential equation (ODE) network
and utilize the coordinate information to obtain the long-term
features and coordinate relationships. In the local aspect, we first
construct a GNN to conduct graph embedding. Then, we integrate
another GNN into a gated recurrent unit (GRU) and also use
the coordinate information to explore the features and coordinate
relationships. Finally, we combine the global and local features via
a global-local features learning layer for meteorological prediction.
Experimental results on the four real-world meteorological datasets
show that DSTGNN outperforms the baseline models.

Index Terms—Global-local meteorological features, graph
ODE network, dynamic spatial-temporal graph neural network,
meteorological prediction, random throw edge.
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I. INTRODUCTION

CURRENTLY, numerous nations are increasingly focusing
on the advancement of science and technology, lead-

ing to extensive exploitation and utilization of natural re-
sources. This has resulted in significant changes in the mete-
orological systems, including sea-level rise in cities like Los
Angeles, Melbourne, and Shanghai and increasingly extreme
weather phenomena [1]. Hurricane Lan devastated parts of
Florida in September 2022 causing $113.1 billion in dam-
age and killing at least 160 people. In the 27th United Na-
tions Climate Change Conference in 2022, United Nations
Secretary-General Guterres stated global warming is imminent.
Establishing an intelligent meteorological system will enhance
various meteorological aspects, such as climate and energy
through processes like data collection, data mining and tech-
nology development. Meteorological prediction plays a vital
role within the intelligent meteorological system as it enables
early detection and warning of severe weather events. This
proactive approach ensures the safety of people, their prop-
erty, and the environment, with particular relevance to smart
cities.

With the rapid development of deep learning, significant ad-
vancements have been achieved in the spatial-temporal research
on images and videos. Moreover, deep learning technology
exemplified by convolutional neural network (CNN) is very
efficient in extracting spatial pixel features in multiple temporal
dimensions to predict the future. Klein et al. [2] have proposed
a dynamic convolutional structure to jointly extract the existing
and previous feature maps for short-term weather forecasting.
STAM [3] builds a 3D CNN and attention mechanism to exploit
global features for spatial-temporal videos. Mehrkanoon [4]
have established a data-driven module and CNN to explore
multivariate weather data. There are existing literatures which
have proposed a number of CNN based spatial-temporal fore-
casting methods. A shortcoming of these methods is that it is
very expensive to extract high-quality data from the massive
collection of images and videos.

Given the irregular characteristics of the graph-structure, it
can thus be very flexible in representing a rich trove of informa-
tion [5], [6], [7]. Graph spatial-temporal data is a special graph
structure data [8], [9], which can construct the relationships
among multiple information. The advent of GNN methods [10],
[11] has revitalized the spatial-temporal graph, bringing it re-
newed vitality. DCRNN [12] proposes bidirectional random
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Fig. 1. The relationship of global and local spatial-temporal information.

walks and encoder-decoder structure for spatial and temporal
relationships. AGCRN [13] constructs an adaptive mechanism in
GCN to capture spatial-temporal features. CLCRN [14] adopts
an encoder-decoder structure based on a graph convolutional
recurrent network and coordinate information for meteorolog-
ical forecasting. Although these methods yield good results,
they only utilize local spatial-temporal information and do not
fully consider the dynamic situation, especially for complex
meteorological environments.

To overcome the above challenges, we design a dynamic
spatial-temporal graph neural network called DSTGNN, to learn
the global-local meteorological features. Fig. 1 shows the global
spatial-temporal information being divided along the timeline
to obtain multiple sets of local spatial-temporal information as
well as the relationship between the global and local informa-
tion. Compared to local spatial-temporal method, global-local
spatial-temporal method explores the interrelated and comple-
mentary features. A variety of relationships among nodes can
clearly describe the inner nature of things. Spatial-temporal
diversity graph enables the model to learn the spatial-temporal
diversity of meteorological data. For the global aspect, we
construct a random throwedge module during the neighborhood
propagation process in GNN to learn the features and consider
the dynamic meteorological situation. We also establish convo-
lution operation module to learn the features. Next, we perform
information fusion on the two modules to capture sufficient
features. Moreover, we construct graph ordinary differential
equation (ODE) network and utilize the coordinate information
to capture the long-term features and coordinate relationships.
For the local aspect, we first construct a GNN for graph embed-
ding. Then, another GNN is integrated into a gated recurrent unit
(GRU) which also uses the coordinate information to explore
the features as well as the coordinate relationships. Finally, we
combine the global and local features by a global-local features
learning layer for meteorological prediction. The proposed DST-
GNN outperforms existing baseline methods on four real-world
meteorological datasets.

The contributions of this paper are summarized as follows:
� We present a DSTGNN framework for meteorological

prediction. The model constructs multiple modules (i.e.,
throwedge, GNN, graph ODE network and GRU) to learn
global-local spatial-temporal features.

� We incorporate a random throwedge module during the
neighborhood propagation process in GNN to learn the
meteorological features and adapt to the dynamic situation.

� We design a graph ODE network to use the coordinate in-
formation to obtain the long-term spatial-temporal features
as well as the coordinate relationships.

� Experimental results show that the proposed DSTGNN
outperforms the baselines, validating the ability of DST-
GNN in improving meteorological prediction through
global-local feature learning.

II. RELATED WORK

Spatial-temporal data have multiple characteristics (e.g., dy-
namic and real-time), thus the spatial-temporal forecasting has
attracted the interest of researchers, especially for meteorologi-
cal forecasting in intelligent meteorological system. In this sec-
tion, we review prior literatures of two categories of prediction
techniques, namely, CNN-based spatial-temporal prediction and
GNN-based spatial-temporal prediction.

A. CNN-Based Spatial-Temporal Prediction

Many studies have applied CNN-based techniques to complex
spatial-temporal prediction. Klein et al. [2] have proposed a
dynamic convolutional structure to jointly extract the existing
and previous feature maps for short-term weather forecasting.
Grover et al. [15] have designed generative and discriminative
modules combined with data-driven function to capture the
weather information. Mehrkanoon [4] have established a data-
driven module and CNN to explore multivariate weather data.
SA-ConvLSTM [16] integrates ConvLSTM and self-attention to
capture long-term spatial-temporal information. ST-ResNet [17]
designs a 2D CNN and a residual structure to learn the spatial-
temporal data of multiple regions. LMST3D-ResNet [18] jointly
constructs a 3D CNN and resnet to deeply explore the spatial-
temporal relationships among multiple local regions. STAM [3]
builds a 3D CNN and an attention mechanism to exploit the
global features for spatial-temporal videos. Terren-Serrano et
al. [19] have adopted a multi-task recurrent neural network
to learn dynamic cloud information. Meng et al. [20] have
constructed a generative adversarial network, a VGG network
and a ConvLSTM to predict sea surface temperature. However,
CNN-based spatial-temporal prediction models only use 2D and
3D convolution to learn regularly arranged data such as images
and videos.

B. GNN-Based Spatial-Temporal Forecasting

Recently, GNN-based spatial-temporal architectures can effi-
ciently handle irregularly arranged data such as graph structure
data. DCRNN [12] proposes bidirectional random walks and
an encoder-decoder structure for spatial and temporal relation-
ship, respectively. TGCN [21] builds GCN and GRU to obtain
dynamic spatial-temporal dependence. STSGCN [22] designs a
synchronous GCN module to learn local spatial-temporal fea-
tures of different time periods. AGCRN [13] constructs an adap-
tive mechanism (i.e., node adaptive parameter and data adap-
tive graph generation) in GCN to capture the spatial-temporal
information. STGCN [23] proposes a GCN with multi-scale
spatial-temporal structure for middle-long term forecasting.
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SSH-GNN [24] proposes a hierarchical GNN based on semi-
supervised learning for air quality forecasting. AARGNN [25]
integrates GNN with long short-term memory (LSTM) to
learn the multiple dynamic features in traffic prediction. GST-
PRN [26] establishes a position convolution component and an
approximate personalized propagation to improve the spatial
dependence relationship and neighborhood information, respec-
tively. STGODE [27] adopts multiple TCN modules and an ODE
to capture the long-term traffic spatial-temporal information.
AutoSTS [28] presents a GNN-based model to obtain the local
spatial-temporal information, and built a CNN-based module to
extract the temporal dependent features from multiple ranges.
CLCRN [14] adopts an encoder-decoder structure based on a
graph convolutional recurrent network and coordinate informa-
tion for meteorological forecasting. However, it only utilized
local meteorological information and did not fully consider the
dynamic situation.

Compared to the aforementioned related work, the proposed
DSTGNN jointly models the global-local spatial-temporal fea-
tures and fully considers the dynamic situation in meteorological
prediction. Furthermore, DSTGNN is effective as it combines
multiple components, namely, throwedge, GNN, graph ODE
network and GRU, to explore more spatial-temporal features in
depth.

III. PRELIMINARIES AND PROBLEM DEFINITION

We introduce some fundamental concepts and problem defi-
nition pertaining to graph spatial-temporal meteorological pre-
diction.

Concept 1: Graph Meteorological Network. The graph me-
teorological network is a directed graph network as G =
(V,E,A), where V represents the node set, which is V =
[xMk = (xk,1, xk,2, xk,3) ∈M2 : k = 1, 2, . . .,K] to record the
coordinate information forK nodes. At time t,K correlated sig-
nals are located on the sphere manifold M2 and ||xMk ||2 = 1 is
requested. The expression for the nodes coordinate information
adopts the euclidean distance xD and the sphere xM . E takes
all edges as a set, andA ∈ RK×K denotes the adjacency matrix
which is obtained from CLCRN [14].

Concept 2: Graph Meteorological Feature Matrix. The fea-
tures of each node at time t is expressed as follows:

X(t) = [x
(t)
1 , . . ., x

(t)
K−1, x

(t)
K ] ∈ RK×F . (1)

The graph meteorological feature matrix indicates all the nodes’
information at various time points as follows:

X = [x1, . . ., xK−1, xK ]T ∈ RK×F×T , (2)

where T is the entire temporal period in the historical data and
F is the feature dimension of each node.

Concept 3: Coordinate Information. The irregular spatial
distribution of the coordinate information used in CLCRN [14]
is:

χ(xi
′
j ;xi) =

ψi′
j

2π
exp(− (ρi

′
j )

2

τ
)MLP (|xi′j , xi|). (3)

where a node j is within the neighborhood of a node i and the
angle bisector of pair (i, j) is computed, ψi′

j = arctan(zi
′
j ); the

angle scale denotes ψi′
j /2π, ρi

′
j =

√
(zi

′
j )

2 + (φi
′
j )

2 while the

distance scale represents exp(−(ρi′j )2/τ , where τ is a trainable
parameter. The approximator MLP (·) combines smooth acti-
vate function (e.g., tanh) to unify the criteria in selection of
orthogonal basis.

Problem Definition. The graph meteorological feature matrix
on graph meteorological network G, predicting meteorologi-
cal status of future ξ steps is showed as: X(t+1), . . ., X(t+ξ).
In meteorological forecasting, we aim to learn the historical
observation information through a function Pθ to predict the
meteorological conditions in the future ξ steps:

{X,G} Pθ−→ (X(t+1), . . ., X(t+ξ);G). (4)

IV. FRAMEWORK

In meteorological prediction, CLCRN [14] employs an
encoder-decoder structure based on a graph convolutional recur-
rent network and coordinate information. The method achieves
good results in learning the local spatial-temporal information.
This inspires us to also consider the global spatial-temporal
information and the dynamic situation. The importance of the
global spatial-temporal information is for the predictor to learn
the changing trends and overall interactions in meteorology. Fur-
thermore, the importance of considering the dynamic conditions
brings us closer to the real-world meteorological environment,
particularly in terms of real-time monitoring and variability.
Hence the proposed DSTGNN and CLCRN have the following
differences: (1) our framework jointly establishes the global-
local spatial-temporal information to explore interrelated and
complementary features. (2) In the global aspect, we construct
random throwedge module during the neighborhood propaga-
tion process in GNN to fully consider the dynamic situation; we
adopt graph ordinary differential equation (ODE) network and
utilize coordinate information to obtain the long-term spatial-
temporal features and coordinate relationships. (3) In the local
aspect, we do not need to construct an encode-decode structure.

The entire DSTGNN framework is presented in Fig. 2. We
input the global spatial-temporal information, i.e., the graph
meteorological feature matrix X ∈ RK×F×T , and then the in-
formation is divided to two branches. The first branch (i.e.,
green rectangle) learns the global spatial-temporal features while
the second branch (i.e., blue rectangle) obtains multiple local
spatial-temporal features X(:t) ∈ RK×F and extracts these fea-
tures.

In the first branch which learns the global features, we exploit
convolution operation for information fusion. We also design
a random throwedge module during the neighborhood propa-
gation process in GNN to learn the features and adapt to the
dynamic situation. Next, the information fusion combines the
output of the GNN and convolution operation to obtain suffi-
cient features. The graph ODE network learns the coordinate
information matrix χ(xi

′
) ∈ RK×K (i.e., (3)) and the output of

the information fusion to explore the long-term correlations of
the deep network and the coordinate relationships. Note that the
global and local spatial-temporal information in our method is
divided along the timeline (i.e., temporal dimension), thus we
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Fig. 2. The overall DSTGNN framework.

can employ the coordinate information (i.e., spatial dimension)
to correlate the global and local features.

In the second branch which learns the local features, the local
spatial-temporal information is obtained based on the global
spatial-temporal information. We first adopt a GNN to perform
the graph embedding. Then, we input the coordinate informa-
tion and graph embedding into the another GNN to learn the
feature dependencies and coordinate relationships. The GNN is
integrated into a GRU to further exploit the features, especially
for the local time series.

In the global-local features learning layer, we aggregate the
global features and local features, and then perform a convolu-
tion operation to handle these global-local features to generate
prediction.

A. Global Spatial-Temporal Information

Global spatial-temporal information can reveal the overall
changing trends and interactions, and contribute to better un-
derstanding of the meteorological characteristics of an area.

1) Convolution Operation: The purpose of the convolution
operation is to build a information fusion. We convert the
global spatial-temporal information X ∈ RK×F×T into X1 ∈
RF×K×T which performs the convolution operation to obtain
Hg1 ∈ RC×K×T .

2) Graph Neural Network With ThrowEdge: GNN adopts
message passing and information aggregation mechanisms to
capture the node features and neighborhood relationships. Me-
teorological environments are more dynamic and variable in
real-time than other types of spatial-temporal features such as
traffic conditions, especially when some features can be fleeting
and hence are lost at a point in time. Therefore, we design

Fig. 3. Graph neural network with throwedge for global spatial-temporal
features.

a throwedge module in GNN to fully consider the dynamic
situation as shown in Fig. 3. The ThrowEdge module randomly
throws a certain proportion of edges. Some non-zero data Qp

in the adjacency matrix A randomly enforces zeros, in which
Q represents the number of edges and p denotes the throwing
edges rate. The adjacency matrix Athrow is given as follows:

Athrow = A− Â, (5)

where A establishes the relationships of each pair edge (e.g.,
vi, vj) to presentAij . The sparse matrix Â is a random set of size
Qp extracted from the raw edges E. We apply re-normalization
for Athrow to obtain Ãthrow.

The global spatial-temporal featuresX ∈ RK×F×T are trans-
formed into X2 ∈ RT×K×F . GNN extracts X2 to get Hg2 ∈
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Fig. 4. The chartflow of multi-block ODE solver.

RT×K×C as shown:

Hg2 = ReLU(D̃−
1
2 ÃD̃−

1
2X2W2). (6)

where D̃ is the diagonal degree matrix with D̃ii =
∑

j Ãij .
The node degree is denoted as d = {d1, . . ., dK}, in which di
computes all the edge weights which are related to node i.
The diagonal elements of D̃ are given by d. Ã = A+ Im is an
adjacency matrix with added self-connection, Im is the identity
matrix. W2 ∈ RS×F×C is a transform matrix.

In (6), we replace Ã with Ãthrow for neighborhood propa-
gation, and the GNN with throwedge is expressed as follows:

Hg2 = ReLU(D̃−
1
2 ÃthrowD̃

− 1
2X2W2). (7)

Next, we further discuss GNN with throwedge. Throwedge
can bring multi-perturbations for the graph connections, gen-
erating various random changes to the input data. This process
can be regarded as a type of data augmentation mode for the
graph representation. For the neighborhood, throwedge ran-
domly deletes the edges in the original graph and then carries out
neighbor propagation; it aggregates a random subset rather than
all the neighborhood information during GNN training. Thus,
the GNN with throwedge can effectively adapt to the dynamic
meteorological environment.

3) Graph ODE Network: The graph ordinary differential
equation (ODE) network overcomes the limitation of the shallow
GNN as the latter is inefficient in capturing long-term spatial-
temporal information. This network constructs the continuous
dynamic system by parameterizing the derivative of the hidden
states. Fig. 4 shows a multi-block ODE solver that describes the
current state and the original state to infer the functions in the
hidden state. Moreover, we introduce coordinate information
in the graph ODE network to explore the spatial coordinate
relationships.

As shown in Fig. 2, one input to the graph ODE networkH{0}g3

adopts the output of a convolutional operation and the GNN with

throwedge, in which we transform Hg1 ∈ RC×K×T to H ′g1 ∈
RK×T×C and Hg2 ∈ RT×K×C to H ′g2 ∈ RK×T×C . Then, the
convolutional operationH ′g1 and the GNN with throwedgeH ′g2
are combined by a information fusion. The other input as shown
in Fig. 2 is the coordinate information χ(xi

′
). Next, the discrete

version of the ODE mathematical function is denoted as follows:

H
{l+1}
g3 = H

{l}
g3 ×1

α

2
Ã×2 U ×3 W

′ +H
{0}
g3 , (8)

where H{l}g3 denotes the spatial-temporal features of the hid-
den state on the l-th layer; α ∈ [0, 1] is a hyperparameter; ×i

represents the i mode of matrix multiplication; U indicates
the transform matrix in the temporal aspect; W ′ presents the
transform matrix in the feature aspect.

In this way, both the spatial and temporal features can be
handled simultaneously. The complex spatial-temporal relation-
ships are coupled based on the tensor multiplication of multiple
mode ×i. By expanding (8), the restart distribution H

{0}
g3 re-

strains the over-smoothing problem as follows:

H
{l}
g3 =

l∑
i=0

(
H
{0}
g3 ×1

α

2
Ãi ×2 U

i ×3 W
′i
)
, (9)

whereH{l}g3 aggregates the features of all layers while the original
features are utilized.

To verify the effective restart distribution, this version does
not consider H{0}g3 as follows:

H
{l+1}
g3 = H

{l}
g3 ×1

α

2
Ã×2 U ×3 W

′, (10)

the final form is:

H
{n}
g3 = H

{0}
g3 ×1

α

2
Ãn ×2 U

n ×3 W
′n. (11)

Suppose the eigenvalue decomposition of Ã is Ã = PΛPT ,
and Λ = diag(λ1, . . ., λz−1, λz) denotes the diagonal matrix:

Ãn = Pdiag(λ1, . . ., λz−1, λz)P
T

= λn
1Pdiag

(
1, (

λ2

λ1
)n, . . ., (

λz

λ1
)n
)
PT

⇒ λn
1Pdiag(1, 0, . . ., 0)P

T , (12)

where n is close to infinity with λ1 > λz−1 > λz . Note that the
diagonal elements only keep the largest factor while the other
elements are all zeros which result in loss of too many features.

The equation is extended to obtain the Riemann sum form
from 0 to n on i, and n is replaced with a continuous variable t
as follows:

H
{n}
g3 =

n∑
i=0

(H
{0}
g3 ×1

α

2
Ãi ×2 U

i ×3 W
′i)

=

n+1∑
i=1

(H
{0}
g3 ×1

α

2
Ã(i−1)×�t×2

U (i−1)×�t ×3 W
′(i−1)×�t � t), (13)
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When t = n, the condition�t = t+1
n+1 is satisfied. However, as

n is close to∞, the equation is thus defined as follows:

H
(t)
g3 =

∫ t+1

0

H
{0}
g3 ×1

α

2
Ãτ ×2 U

τ ×3 W
′τdτ (14)

Intuitively, we obtain the expression of ODE form as:

dH
(t)
g3

dt
= H

{0}
g3 ×1

α

2
Ãt+1 ×2 U

t+1 ×3 W
′t+1, (15)

where Ãt+1, U t+1, W ′t+1 entail complex computation pro-
cesses when t is not an integer.

For more detailed description and reasoning analysis of the
above equations, please refer to STGODE [27]. The expression
of ODESolver is presented as follows:

H
(t)
g3 = ODESolve

(
dH

(t)
g3

dt
,H
{0}
g3 , t

)
, (16)

where H{0}g3 presents the initial input, H(t)
g3 ∈ RK×T×C is the

output of the global spatial-temporal features;
dH

(t)
g3

dt = H
(t)
g3

×1 (
α
2 Ã− Im) +H

(t)
g3 ×2 (U − Im) +H

(t)
g3 ×3 (W − Im) +

H
{0}
g3 .
To explore the coordinate relationships among the nodes, we

replace the adjacency matrix Ã ∈ RK×K with the coordinate

information matrix χ(xi
′
) ∈ RK×K ;

dH
(t)
g3

dt = H
(t)
g3 ×1

(α2χ(x
i′)− Im) +H

(t)
g3 ×2 (U − Im) +H

(t)
g3 ×3 (W − Im)

+H
{0}
g3 .

Algorithm 1 summarizes the learning process of the global
spatial-temporal information.

B. Local Spatial-Temporal Information

The local spatial-temporal information can specifically reflect
the spatial state at a point in time, so extracting the information
can enable deep exploration of the range of the meteorological
conditions.

The different local spatial-temporal information X(:t) ∈
RK×F is obtained by dividing the global spatial-temporal in-
formation X ∈ RK×F×T along the timeline.

1) Graph Neural Network: GNN carries out graph embed-
ding to obtain H(:t)

l1 ∈ RK×C as follow:

H
(:t)
l1 = ReLU(D̃−

1
2 ÃD̃−

1
2X(:t)W3), (17)

where W3 ∈ RF×C is a transform matrix.
2) Gate Recurrent Unit With Graph Neural Network: We

input H(:t)
l1 and χ(xi

′
) into GNN to learn the features and the

different node coordinate relationships. The expression of GRU
with GNN is shown as:

z(t) = σ(χ(xi
′
))[H

(:t)
l1 , h(t−1)]Wz + bz),

u(t) = σ(χ(xi
′
))[H

(:t)
l1 , h(t−1)]Wu + bu),

Ĥ
(:t)
l2 = tanh(χ(xi

′
)[H

(:t)
l1 , z(t) � h(t−1)]Wĥ + bĥ),

Algorithm 1: Global Spatial-Temporal Information Algo-
rithm.

Require: The graph meteorological network G = (V,E,A);
Historical meteorological data: X;

Ensure: Learned Global Spatial-Temporal Information.
//Convolution operation;
X1 ← X;
3: Hg1 ← X1

//Graph neural network with throwedge;
Athrow ← A;

6: X2 ← X;
Hg2 ← ReLU(D̃−

1
2 ÃthrowD̃

− 1
2X2W2);

//Information fusion;
9: H ′g1 ← Hg1;
H ′g2 ← Hg2;

H
{0}
g3 ← H ′g1 +H ′g2;

12: //Graph ODE network;
χ(xi

′
)← X;

(H
{0}
g3 , χ(x

i′)) conveys to ODEsolver;
15: for all blocks (0,1,2) do

H
(t)
g3 = ODESolve(

dH
(t)
g3

dt , H
{0}
g3 , t);

end for
18: return H(t)

g3

H
(:t)
l2 = u(t) � h(t−1) + (1− u(t))� Ĥ(:t)

l2 (18)

where z(t) denotes the reset gate and u(t) represents the update
gate at t time; σ represents an activate function (i.e., Sigmoid);
h(t−1) is a hidden state at time t− 1; Wz , Wu and Wĥ are
training parameter matrices; � indicates Hadamard Product;
H

(:t)
l1 ∈ RK×C is the input; H(:t)

l2 ∈ RK×C is the output of
the local spatial-temporal features, and then we aggregate all
the local spatial-temporal features H

(:t)
l2 ∈ RK×C to obtain

H
(t)
l3 ∈ RK×T×C .
Algorithm 2 summarizes the learning process of local spatial-

temporal information.

C. Global-Local Features Learning Layer

The global spatial-temporal features are processed by a con-
volution operation, a GNN with throwedge and a graph ODE
network to obtain H(t)

g3 ∈ RK×T×C . The local spatial-temporal
features are extracted by the GNN and the GRU with GNN
modules to capture H(t)

l3 ∈ RK×T×C . The joint learning of the
global-local spatial-temporal features is expressed as:

H = H
(t)
g3 +H

(t)
l3 (19)

Finally, we perform a convolution operation onH to generate
the prediction.

Algorithm 3 summarizes the proposed DSTGNN model for
global-local spatial-temporal features learning.
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Algorithm 2: Local Spatial-Temporal Information Algo-
rithm.

Require: The graph meteorological network G = (V,E,A);
Historical meteorological data: X;

Ensure: Learned Local Spatial-Temporal Information.
D ← ∅;
2: for whole time interval T (1, . . ., t) do

//Obtaining local spatial-temporal information;
4: X(:t) ← X;

//Graph neural network;
6: H

(:t)
l1 ← ReLU(D̃−

1
2 ÃD̃−

1
2X(:t)W3);

//Gate recurrent unit with graph neural network;
8: H

(:t)
l2 ← (H

(:t)
l1 , χ(xi

′
));

(H(:t)
l2 ) conveys to D;

10: end for
while D �= ∅ do

12: Take each time point of the instance in D to
aggregate all local spatial-temporal features H(t)

l3 ;
end while

14: return H(t)
l3

Algorithm 3: DSTGNN Algorithm.

Require: The graph meteorological network G = (V,E,A);
Historical meteorological data: X ∈ RK×F×T ;

Ensure: Learned Global-Local Spatial-Temporal Features.
//Training model;
while stopping criteria is not met do
3: Initialize all training parameters θ in DSTGNN;

Put global spatial-temporal information X into the
model;

//Learned global spatial-temporal features;
6: H

(t)
g3 ← X;

//Learned local spatial-temporal features;
for whole time interval T (1, . . ., t) do

9: X(:t) ← X;
H

(:t)
l1 ← X(:t);

H
(:t)
l2 ← (H

(:t)
l1 , χ(xi

′
));

12: (H(:t)
l2 ) conveys to D;

end for
while D �= ∅ do

15: H
(t)
l3 ← D;

end while
//Learned global-local spatial-temporal features;

18: H ← (H
(t)
g3 , H

(t)
l3 );

Find the function Pθ;
end while
21: return

V. EXPERIMENTAL EVALUATION

We evaluate the proposed DSTDNN on four real world mete-
orological datasets as well as against multiple baseline methods
through a series of experiments.

A. Dataset

The datasets contain 2048 meteorological nodes which are
distributed across the earth, and the data are provided by Weath-
erBench [29]. We choose four types of meteorological data,
namely, temperature, surface wind, cloud cover and humidity,
and the units are K, ms−1, %× 10−1, %× 10−1 respectively.
The data are collected from 1/1/2010 to 12/31/2018.

B. Settings

The performance evaluation uses two common metrics, i.e.,
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE).

MAE(P
(t,T )
θ , P̄

(t,T )
θ ) =

1

T

T∑
n=t

|P̄ (n)
θ − P (n)

θ | (20)

RMSE(P
(t,T )
θ , P̄

(t,T )
θ ) =

1

T

√√√√ T∑
n=t

|P̄ (n)
θ − P (n)

θ |2 (21)

where P
(t,T )
θ is the ground truth and P̄

(t,T )
θ represents the

prediction.
The input is 12 time steps (i.e., 12 hours) of historical obser-

vation data and the prediction horizon is 12 time steps (i.e., 12
hours) in the future. The batch size is set to 32. All the methods
employ Adam optimizer to train to a maximum of 100 epochs.
The hyperparameters are set as follow: the learning rate is 0.005;
the hidden dimension of the GNN is 32; the throwedge rate is
0.1; the hidden dimension of multiple blocks on the graph ODE
network are 32, 16 and 32. The different random seeds,(2021,
2022, 2023, 2024, 2025) are used for training. Early stopping
is employed in the model training and the patience value is set
at 30.

C. Baseline Methods
� TGCN [21] employs a GCN and a GRU to capture dynamic

spatial-temporal dependence.
� STGCN [23] models a GCN and a multi-scale spatial-

temporal structure for middle-long term forecasting.
� MSTGCN [30] utilizes a GCN and convolution operation

to capture the spatial-temporal information.
� ASTGCN [30] constructs an attention module and a GCN

to learn the spatial-temporal correlations.
� NET3 [31] uses a GCN and long short-term memory to

explore the implicit temporal relationships.
� GCGRU [32] builds a GCN and a recurrent network for

graph-level classification and node-level prediction.
� DCRNN [12] designs a bidirectional random walk and

an encoder-decoder structure to capture the spatial and
temporal relationships.

� AGCRN [13] establishes an adaptive mechanism including
node adaptive parameter and data adaptive graph genera-
tion in GCN to capture the spatial-temporal features.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 26,2025 at 06:23:15 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: GLOBAL-LOCAL FEATURE LEARNING VIA DYNAMIC SPATIAL-TEMPORAL GRAPH NEURAL NETWORK 6287

TABLE I
METHOD RESULT COMPARISON ON METEOROLOGICAL PREDICTION

� CLCRN [14] proposes an encoder-decoder structure based
on a graph convolutional recurrent network and coordinate
information for meteorological forecasting.

D. Results Evaluation and Analysis on Meteorological
Prediction

Table I shows the performance of the proposed DSTGNN
against the multiple baselines. The results show that the DST-
GNN outperforms the SOTA baselines on the four meteorologi-
cal datasets. From Table I, it can be observed that comprehensive
performance of benchmark methods, TGCN, STGCN, MST-
GCN and ASTGCN achieve poorer results compared to NET3,
GCGRU, DCRNN, AGCRN and CLCRN, the latter group is
based on recurrent networks.

Therefore, we further analyze the recurrent network based
baseline methods. NET3, GCGRU, DCRNN and AGCRN con-
struct GCN-based recurrent networks to effectively capture the
spatial-temporal features. However, these methods do not model
the coordinate information. CLCRN adopts an encoder-decoder
structure, which establishes the coordinate information of the
meteorological features, but neither considers the global features
nor considers the dynamic situation fully.

The proposed DSTGNN models the global-local features, in
which convolution operation, GNN with throwedge and graph
ODE network learn the global features; GNN with GRU extracts
the local features. The throwedge module fully considers the dy-
namic meteorological situation. As a result, DSTGNN achieves
better prediction results than the SOTA baselines.

E. Results Analysis at Different Steps

We evaluate the prediction performance of DSTGNN and
the best performing two SOTA baselines when the prediction
horizon is varied for four meteorological datasets, namely tem-
perature, wind, cloud cover and humidity. Note that 1 time step
corresponds to 1 hour. The results are shown in Fig. 5. Generally,
as expected the prediction accuracy all degrades as the number
of steps or prediction horizon increases.

For the temperature dataset, we observe that the gap between
CLCRN and AGCRN decreases as the number of steps increases
as opposed to the other datasets where the gap between them
widens with the number of steps. On the other hand, DSTGNN
does not degrade as fast as them. For the wind dataset, the gap
among DSTGNN, CLCRN and DCRNN widens as the number
of steps increases. For the cloud cover and humidity datasets,
the gap between CLCRN and GCGRU increases with the num-
ber of steps while the degradation in DSTGNN’s performance
tapers off.

In summnary, DSTGNN has been proven to achieve good
results with much less performance degradation with increasing
prediction horizon compared to the SOTA baselines. This attests
to DSTGNN’s robustness and effectiveness.

F. Ablation Study

To further demonstrate the performance contribution of the
different modules in the proposed DSTGNN, we carry out
experiments omitting the different modules as follow:
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Fig. 5. MAE results of different steps.

Fig. 6. Performance of different components.

� DSTGNN-noGTE: omits the GNN with throwedge module
to study the robustness of the model for dynamic meteoro-
logical situation.

� DSTGNN-noODE: omits the graph ODE network mod-
ule to research the effect of deep networks on long-term
prediction.

� DSTGNN-noGRU: removes the GRU module to sutdy the
influence of the recurrent neural network.

From the results in Fig. 6(a) and (b), we observe that
DSTGNN-noODE has a slightly higher impact on performance
than DSTGNN-noGRU and DSTGNN-noGTE, which demon-
strates that this module is more sensitive. Furthermore, the small
performance change in DSTGNN-noGTE indicates that the
model is more robust especially under dynamic meteorological
conditions.

From the results in Fig. 6(c) and (d), we observe that
DSTGNN-noODE and DSTGNN-noGRU have slightly more
effect on performance than DSTGNN-noGTE, which shows that
these modules have better learning features ability.

In summary, the different components contribute to the overall
performance of DSTGNN, resulting in an effective framework
for meteorological forecasting.

G. Performance Analysis for Multiple ThrowEdge Rate

The throwedge module can reflect the dynamic meteorolog-
ical conditions more realistically, but the loss of some edge

information may degrade its performance. As such, we will
study the performance impact with different throwedge rates.
The different throwedge rates used are 0.1, 0.2 and 0.3.

From Fig. 7, it can be observed that the performance of DST-
GNN drops due to loss of edge information when the throwedge
rate is higher for the temperature and wind datasets. The same
outcome is observed in Fig. 8 for cloud cover and humidity.
Overall, the proposed DSTGNN is able to fully consider the
dynamic situations and maintains its performance even in the
presence of edge information loss.

H. Visualization

Figs. 9 and 10 show the visualization of the DSTGNN
prediction results versus ground-truths on the four dataset. We
observe that the prediction curve shows the same trend as the
ground-truth curve from 0 to 2000 hours.

In Fig. 9(a), the curves show an upward trend from t = 0 to
450 and a downward trend from t = 450 to 900, followed by
a sharp rise between t = 900 to 950, a decline from t = 950
to 1250 and thereafer, fluctuations. In Fig. 9(b), the prediction
curve is close to the ground-truth curve between t = 0 and 250,
slightly higher than the truth curve from t = 250 to 1700 and
fluctuations thereafter.

In Fig. 10(a), the curves are sparse between t = 0 and 220,
and very sparser from t = 220 to 410, relatively dense from t =
410 to 1100, dense from t = 1100 to 1650, then some sparseness
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Fig. 7. The performance of different throwedge rate on temperature and wind.

Fig. 8. The performance of different throwedge rate on cloud cover and humidity.

Fig. 9. Visualization of ground-truth and prediction on temperature and Wind.

from t = 1650 to 1800 and relatively dense from t = 1800 to
2000. In Fig. 10(b), the curves are relatively stable from t= 0
to 400 with obvious change from t = 400 to 1400, and some
change from t = 1400 to 2000.

In summary, Figs. 9 and 10 shows that the predictions closely
track the ground-truths, testifying to that our model is effective
in predicting future meteorological situation.

I. Results Analysis on Various Epochs

We evaluate DSTGNN using different epochs. From Tables II
and III, we can observe that the results improve with increasing
number of epochs. Table II shows that the model registers stable

changes between 60 and 80 and converges at epoch 90 on the
temperature dataset and between 60 and 90 on the wind dataset.
Table III shows that the model registers a steady improvement on
the cloud cover and the humidity datasets across the increasing
epoch number and converges at epoch 90.

J. Sensitivity Analysis

We vary the number of hidden units to evaluate the perfor-
mance of the proposed DSTGNN on the different datasets for
sensitivity analysis. From Fig. 11, we can observe that hidden
unit 16 performs worse compared to hidden units 32, 64. For
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Fig. 10. Visualization of ground-truth and prediction on cloud cover and humidity.

Fig. 11. Sensitivity of hidden units on different dataset.

TABLE II
THE RESULTS OF DIFFERENT EPOCHS ON TEMPERATURE AND WIND

TABLE III
THE RESULTS OF DIFFERENT EPOCHS ON CLOUD COVER AND HUMIDITY

hidden units 32 and 64, similar performance are obtained. There-
fore, our proposed DSTGNN is effective for different number
of hidden units in meteorological prediction.

K. Runtime

We evaluate the runtime of one epoch on the four differ-
ent datasets to compare DSTGNN against a baseline method,
CLCRN. From Fig. 12, it can be seen that the proposed DST-
GNN consistently has a lower runtime for one epoch compared
to CLCRN on the various datasets. It is to be noted that the
DSTGNN framework does not incorporate an encoder-decoder
structure for local spatial-temporal information learning.

VI. CONCLUSION

In this paper, we analyze and discuss the limitations of
existing literature which only utilizes local features and fails
to adequately consider dynamic meteorological situation. We
propose the DSTGNN framework which models global features
and multiple local features to jointly learn the global-local
features. For the global features, we design a random throwedge
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Fig. 12. Runtime comparison of one epoch.

module during the GNN neighborhood propagation process to
extract the global features and adapt to the dynamic situation.
We also establish convolution operation module to learn the
features. Next, we perform information fusion on the two mod-
ules to capture sufficient features. Moreover, we use a graph
ODE network and utilize coordinate information to obtain the
long-term features and coordinate relationships. For the local
features, we first construct a GNN for graph embedding. Then,
we design another GNN to integrate into a GRU and jointly
utilize the coordinate information to explore the features and
coordinate relationships. Finally, we combine the global and
local features using a global-local features learning layer for
meteorological prediction. Extensive experimental results show
that the proposed DSTGNN framework is superior the SOTA
models.
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