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a b s t r a c t

Mobile edge computing (MEC) allows mobile devices to offload computation tasks to nearby MEC
servers for achieving low latency and energy efficiency. This paper aims at scheduling security-
critical tasks, which require data encryption and thus incur extra runtime and energy costs, in a MEC
system consisting of multiple resource-limited MEC servers. The scheduling objective is to minimize
task completion time as well as the mobile device’s energy consumption. We propose two slow-
movement particle swarm optimization algorithms to solve the resultant NP-hard problem. Specifically,
we develop a position-based mapping scheme to map particles onto scheduling solutions. The mapping
method relies on the current best solution and a position-based probability model to generate high-
quality solutions that can inherit the good schemata from the current best solution. To prevent the
significant change in particles’ positions, we further propose a novel particle updating strategy to
slow down particles’ movements, in order to explore more high-quality solutions under the guide of
personal best particle and global best particle. Experimental results demonstrate that, the proposed
algorithms significantly outperform the conventional particle swarm optimization algorithm in terms
of both effectiveness and efficiency. Performance of the mapping method and the particle updating
strategy are also investigated.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The rapid development of mobile applications has imposed
a heavy demand of computation capability of mobile devices.
However, resource-limited mobile devices in general have limited
computing resources and thus cannot meet this demand. Mobile
edge computing (MEC)1 [1] has emerged to address this issue, by
allowing mobile devices to offload computation tasks to nearby
MEC servers for achieving low latency and energy efficiency [2].

In a MEC system, multiple MEC servers are deployed along
with base stations, and mobile devices communicate with base
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1 MEC is also known as multi-access edge computing in the literature.

stations by radio access networks to offload tasks to MEC servers.
Since it is impractical to deploy and maintain too many physical
servers along with base stations, MEC servers are considered
to have limited resources, in contrast to cloud platforms with
infinity resources. On the other hand, due to the benefits of MEC
systems, mobile users are willing to offload their tasks, leading
to the fierce competition for the computing resources of MEC
servers. To cope with this resource competition, MEC providers
have to restrict user parallelism on MEC servers. In other words,
concurrent processing tasks from a single user on any MEC server
is not allowed in such MEC systems with multiple resource-
limited MEC servers [3,4]. Technically, for any user, any MEC
server can provide a virtual machine (or an application container)
to execute the user’s offloaded tasks following a certain policy,
e.g. the commonly used first come first serve (FCFS) policy [5,6].

Security-critical tasks are a special type of tasks that require
data encryption before offloading. When choosing the MEC server
to offload these tasks, users tend to trust MEC providers with
good reputations, rather than those with no or even bad rep-
utations. In addition, users may choose different encryption al-
gorithms, which in turn provide different levels of data pro-
tection, before offloading the tasks [7]. The key challenge in
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this scenario is how to schedule a user’s multiple independent
security-critical tasks in a resource-limited MEC system, with
the objective of minimizing the completion time of all tasks (as
known as makespan) as well as the energy consumption of the
user’s mobile device.

To tackle the above-mentioned challenge, this paper stud-
ies and solves the security-critical task scheduling problem in
a resource-limited MEC system. We establish a rigorous opti-
mization model for the considered problem, and prove it to
be NP-hard. Accordingly, we propose two novel particle swarm
optimization (PSO) algorithms using a newly constructed slow-
movement particle updating strategy to solve the problem. The
proposed algorithms employ a task permutation to represent a
valid scheduling solution (or solution for simplicity). To evalu-
ate the particle’s fitness, we propose a position-based mapping
scheme to convert a particle into a solution. A greedy heuris-
tic is constructed to calculate the converted solution’s objective
that is regarded as the particle’s fitness. The mapping method
relies on the current best solution and a position-based prob-
ability model to generate a high-quality solution that can in-
herit good schemata from the current best solution. Moreover,
we present a theoretically analytical approach to determine ap-
propriate boundary values of particles’ positions to ensure the
inheritance effectiveness. Furthermore, to prevent the significant
change in particles’ positions, we propose a novel particle up-
dating strategy to slow down particles’ movements, in order to
explore more high-quality solutions under the guide of the per-
sonal best particle and the global best particle. Since the proposed
mapping method relies on the current best solution to perform
particle mapping, we use two task sorting policies, longest task
first (LTF) and biggest data task first (BTF), to generate the initial
best solution, and define the corresponding slow-movement PSO
algorithms as SPSO1 and SPSO2, respectively. We compare the
proposed algorithms with the conventional PSO algorithm using
the well-known ranked-order value (ROV) rule [8–10] and the
standard particle updating strategy. Simulation results demon-
strate that, both SPSO1 and SPSO2 generate better solutions to the
considered problem. In addition, the proposed algorithms achieve
over 2× speedups in computation time. Specifically, the mapping
scheme outperforms the ROV rule in terms of both effectiveness
and efficiency. The slow-movement strategy is significantly supe-
rior to the standard particle updating strategy. The LTF and BTF
policies are capable of generating a qualified initial best solution,
contributing to the high quality of the final scheduling solution. In
summary, the main contributions of this paper are listed below.

• We establish a rigorous optimization model to formulate the
security-critical task scheduling problem and prove it to be
NP-hard.

• We present a position-based mapping scheme that utilizes
particles’ positions as well as the current best solution to
convert particles into high-quality solutions.

• We develop a slow-movement particle updating strategy
to improve the solution exploration effectiveness of the
proposed scheduling algorithms.

• We propose two novel scheduling algorithms by employ-
ing the LTF/BTF solution initialization methods, the new
position-based mapping scheme and the novel slow -
movement particle updating strategy.

The reminder of this paper is organized as follows. Section 2
discusses existing scheduling algorithms for MEC systems. Sec-
tion 3 formulates the optimization model for the considered
problem. Sections 4 and 5 present the proposed algorithms and
simulation results, respectively. Finally, concluding remarks and
future works are given in Section 6.

2. Related work

In the literature, there are a number of existing algorithms
aiming at task scheduling in single-user MEC systems [3,4,7,
11–14], multi-user MEC systems [19–37], and MEC plus clouds
systems [15,38–40]. Comprehensive surveys are conducted in [2,
41,42]. Since the attention of this paper is focused on using
PSO-based algorithms for scheduling security-critical tasks in a
single-user resource-limited MEC system, in this section we dis-
cuss in detail existing studies that are closely related to this
work.

Mao et al. [3] studied the joint task offloading scheduling
and transmit power allocation problem in a single-user resource-
limited MEC system. Independent tasks are not allowed to ex-
ecute concurrently on a MEC server and have to be processed
in a FCFS manner. This problem is formulated as a mixed in-
teger nonlinear program. A heuristic based on the two-state
flowshop scheduling theory and convex optimization techniques
is developed to solve it. Kuang et al. [4] addressed the partial
offloading scheduling for independent tasks and power allocation
problem in a single-user resource-limited MEC system, and for-
mulated it as a non-convex mixed-integer optimization problem.
A family of heuristics are developed to solve this problem by
employing Lagrangian dual decomposition and convex optimiza-
tion techniques. Qin et al. [11] investigated a resource allocation
problem for maximizing the power-constrained available pro-
cessing capacity with unpredictable tasks in both single-user and
multi-user MEC systems. The authors also provided a theoretical
approach to derive the optimal solution to the scheduling prob-
lem in a single-user MEC system. Sahni et al. [12] proposed a
multi-stage greedy adjustment algorithm to tackle a data-aware
task scheduling problem in a resource-limited MEC system for
reducing latency. In this algorithm, both task placement and
network flows adjustment are taken into consideration to avoid
data transferring congestion. Xing et al. [13] studied a joint task
assignment and resource allocation problem in a D2D-Enabled
MEC system in which multiple mobile devices serve as a MEC
server. This problem was solved by a heuristic based on the con-
vex optimization and constraint relaxation. Different from afore-
mentioned methods that scheduling multiple independent tasks,
Zhang et al. [14] proposed a heuristic for scheduling dependent
tasks among which the relations are characterized by a concept
of directed call graph. The scheduling algorithms discussed above
are security-unaware, while we schedule security-critical tasks in
a single-user resource-limited MEC system in this paper.

It is worth mentioning the scheduling algorithm in [7], which
was developed for scheduling security-critical tasks of workflow
applications in a single-user MEC system consisting of resource-
sufficient servers. In this work, the relations among the tasks
to be scheduled are represented by a directed acyclic graphs
(DAG). Tasks not associated with any DAG edges are assumed
to be independent. Since this work assumes sufficient resources
on MEC servers, independent tasks can be processed in different
virtual machines on a MEC server concurrently. Based on a multi-
level security model, the tackled problem was formulated as
a mixed integer linear programming problem and solved by a
genetic algorithm (GA). Different from this work, we schedule in-
dependent security-critical tasks in a single-user resource-limited
MEC system and propose novel slow-movement PSOs to solve
it. Similar to the scheduling models in [3,4], concurrent task
processing is not allowed due to the resource constraint. For
this reason, the approach in [7] is not able to cope with our
considered independent security-critical task scheduling problem
in a resource-limited MEC system. Table 1 provides a summary
of aforementioned scheduling algorithms for single-user MEC
systems.
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Table 1
Summary of existing related work for task scheduling in a single-user MEC system.
Reference Environment Application Model Security-Critical Methodology

Mao et al. [3] Resource-limited MEC system Independent Tasks No Heuristic
Kuang et al. [4] Resource-limited MEC system Independent Tasks No Heuristic
Qin et al. [11] Resource-sufficient MEC system Independent Tasks No Theoretical Analysis
Sahni et al. [12] Resource-limited MEC system Workflow No Heuristic
Xing et al. [13] D2D-Enabled MEC system Independent Tasks No Heuristic
Zhang et al. [14] Resource-sufficient MEC system Workflow No Heuristic
Huang et al. [7] Resource-sufficient MEC system Workflow Yes Genetic Algorithm
This paper Resource-limited MEC system Independent Tasks Yes Slow-movement PSO

Table 2
Summary of existing work using PSOs to solve optimization problems in MEC environments.
Reference Tackled problem Innovations

Xie et al. [15] Schedule tasks of a workflow in a cloud-edge system A non-linear inertia weight updating method, a
selection policy and a mutation operator are used.

Jiang et al. [16] Minimize the total energy consumption by
optimizing the positions of ground vehicles and
unmanned aerial vehicles in a hybrid MEC system

A deep learning method is integrated.

Yadav et al. [17] Allocate service in a MEC system Crossover and mutation operators are incorporated.

Mseddi et al. [18] Jointly optimize the container placement and the
flexible service provisioning in a MEC system

A particle repair mechanism is employed.

This paper Schedule independent security-critical tasks in a
resource-limited MEC system

A position-based mapping scheme and a
slow-movement particle updating strategy are
proposed, and LTF and BTF are used to initialize
solutions.

We now discuss existing approaches employing PSOs to solve
optimization problems in MEC environments. Xie et al. [15] de-
veloped a directional and non-local-convergent particle swarm
optimization (DNCPSO) algorithm to schedule workflow tasks in
a cloud-edge system. This algorithm includes a non-linear inertia
weight updating method, a selection policy, and a mutation oper-
ator to achieve the joint optimization of makespan and cost. Jiang
et al. [16] considered a hybrid MEC system consisting of ground
stations, ground vehicles, and unmanned aerial vehicle that are all
deployed with MEC servers to enable offloading of computation
tasks from users’ devices. To minimize the total energy consump-
tion of all devices, a deep learning-based PSO approach was pro-
posed to dynamically determine the optimal positions of ground
vehicles and unmanned aerial vehicles. Yadav et al. [17] employed
a GA-based PSO algorithm to optimally allocate services in a
MEC system. This algorithm incorporates two well-known GA
operators, crossover and mutation, into PSO framework to avoid
being trapped into local optima. Mseddi et al. [18] presented
a PSO-based approach to solve the joint optimization problem
of container placement and flexible service provisioning in a
MEC system. For a particle violating any constraint(s) in the
optimization model, a repair mechanism is utilized to repair
this particle by changing its position in the particle space. How-
ever, the PSOs in above-mentioned researches do not take into
account the sequence of tasks/services/resources/containers on
MEC servers. A distinguishing property in our considered problem
is that task sequence is regarded as one of the decision variables.
Therefore, in our SPSO1 and SPSO2 algorithms, we develop a
position-based mapping operator to convert each particle into a
valid task sequence representing the scheduling solution. We also
develop a slow-movement particle updating strategy to improve
the solution exploration capability of the proposed algorithms.
Table 2 summarizes the application scenarios as well as the
kernel innovation of existing PSO-based algorithms developed for
MEC systems.

3. Problem description

We consider a resource-limited MEC system consisting of a
mobile device and multiple resource-limited MEC servers, each of

which is connected to a base station. Base stations are connected
by a core cellular network implemented by software defined
network (SDN) technology, which is capable of managing a net-
work in a logical center called SDN controller. The SDN controller
installs forwarding rules and routing tables to completely control
and manage this SDN-based cellular network. The mobile device
can offload computation tasks to all MEC servers [43]. On each
resource-limited MEC server, there is a dedicated virtual machine
(or an application container) with a single CPU core to process
the offloaded tasks in a FCFS manner [3,4]. Fig. 1 provides an
overview of this resource-limited MEC system.

The mobile device has n independent security-critical comput-
ing tasks to be offloaded to the m MEC servers. Following [3,4],
we assume that the mobile device has one single antenna and has
to offload only one task each time. We use a task permutation
ζ = (ζ1, ζ2, . . ., ζn) to define the order that the mobile device
follows to offload tasks. Each task ζi can be described by a tuple
⟨di, ci⟩, where di represents the amount of input data (in bits),
and ci indicates the average computation workload (in CPU cy-
cles/bit). The values of di and ci can be evaluated and obtained
by measurement tools [3,43]. The total computation workload wi
can be calculated by

wi = ci × di, i = 1, 2, . . . , n. (1)

If a task ζi is assigned to a MEC server sj (j = 1, 2, . . .,m),
it cannot be started execution until all its data have been trans-
mitted to the server. However, due to the task’s security-critical
feature, it is necessary to encrypt its input data and transfer
encrypted data via the network. As mentioned previously, users
may trust MEC servers in different levels. Generally, users trust
those usually-used MEC servers whose providers have good rep-
utations, rather than the unusually-used ones whose providers
have no or even bad reputations. Similar to [7,44], we define a
multi-level security policy set {p1, p2, . . ., pk}, in which each se-
curity policy pl is associated with a security level l, an encryption
algorithm, its encryption computation workload per bit αl (in CPU
cycles/bit), and its energy consumption per bit γl (in mJ/bit), as
well as the decryption computation workload per bit βl (in CPU
cycles/bit). Obviously, users select low-/high-level security policy
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Fig. 1. The overview of the resource-limited MEC system.

and use the corresponding encryption algorithm for data encryp-
tion when tasks are assigned to trusted/untrusted MEC servers.
We accordingly define a variable hjl to denote the relationship
between MEC servers and security policies: hjl = 1 indicates
users employ the security policy pl to protect data when tasks
are assigned to MEC server sj, and hjl = 0 otherwise. We further
define a decision variable xij to indicate the assignment between
tasks and MEC servers: xij =1 means the task ζi is assigned to the
MEC server sj, and xij =0 otherwise. In other words, the index of
the assigned MEC server is y= {j|xij = 1, j= 1, 2, . . .,m} and its
corresponding security policy is z = {l|hyl = 1, l = 1, 2, . . ., k}.
Based on y and z, for a specific task ζi, the total computation
workload of encryption and decryption (represented as wE

i and
wD

i ) can be calculated by

wE
i = αzdi, i = 1, 2, . . ., n, (2)

wD
i = βzdi, i = 1, 2, . . ., n. (3)

Data encryption is performed on the mobile device, and data
decryption and task execution are completed on the assigned
MEC server. Let f0 and fj be the CPU operating frequency of the
mobile device and the MEC server sj, respectively. The durations
of encryption data, decryption data and task processing for task
ζi, denoted by DE

i , D
D
i , and DP

i , can be calculated by

DE
i =

wE
i

f0
, i = 1, 2, . . ., n, (4)

DD
i =

wD
i

fy
, i = 1, 2, . . ., n, (5)

DP
i =

wi

fy
, i = 1, 2, . . ., n, (6)

Also, its completion time of data encryption CE
i is defined by

CE
i =

{
0, if i = 0.
CE
i−1 + DE

i , if i = 1, 2, . . ., n. (7)

When data encryption has been finished, the mobile device
needs to transmit the encrypted data to the assigned MEC server.
According to [45], for most encryption algorithms, the amount
of encrypted data is similar to that of original data. Thus, we
regard that the amount of encrypted data is still di. Similar
to [3,4], the transmission rate R that the mobile device transmits
the encrypted data to the base station coupled with the direct-
connected MEC server (i.e., MEC server A in Fig. 1) via radio access
networks can be obtained by

R = b log2

(
1 +

g0(u0/u)θp
bN0

)
, (8)

where b is the channel bandwidth, g0 is the path loss constant,
u0 is the reference distance, u is the distance between the mobile

device and the base station, θ is path loss exponent, p is the
transmission power of the mobile device, N0 is noise power spec-
tral density. Due to SDN-based technology used, the transmission
rate between any two MEC servers can be controlled and thus
considered as a constant [43]. Without the loss of generality,
we assume that the direct-connected MEC server of the mobile
device is s1. As a result, R1j (j = 2, 3, . . .,m) is a constant, and we
define R11 =∞ for uniform formulation. The duration of the data
transmission DT

i is given by

DT
i =

di
R

+
di
R1y
, i = 1, 2, . . ., n, (9)

in which the first term is the transmission duration from the
mobile device to the directly connected MEC server s1 and the
second term represents the transmission duration from the di-
rectly connected MEC server to the assigned MEC server. Note
that if the assigned MEC server is the directly connected one, the
value of the second term is 0 owing to R11 = ∞. A task’s data
can be transmitted if its data encryption has been finished and the
data transmission of its predecessor task in ζ has been completed.
Accordingly, the completion time of data transmission CT

i can be
obtained by

CT
i =

{
0, if i = 0.
max{CT

i−1, C
E
i } + DT

i , if i = 1, 2, . . ., n. (10)

Once data transmission has been completed, the assigned MEC
server decrypts the received encrypted data and process the task.
Let ϕ be a subsequence of ζ and ϕ includes all the tasks assigned
to the same MEC server as ζi does (i.e., the MEC server sy). Assume
that ζi is the tth task in ϕ. The completion time of ζi (denoted by
CP
i ) is equivalent to that of ϕt (denoted by CP

t (ϕ)), i.e.,

CP
i =CP

t (ϕ)=

⎧⎨⎩ 0, if t = 0.
max{CP

t−1(ϕ), C
T
i }

+DD
i + DP

i , otherwise.
(11)

where CP
t−1(ϕ) is the completion time of ϕt ’s predecessor task in

ϕ. The completion time of all tasks is determined as

Cmax = max{CP
i }, i = 1, 2, . . ., n. (12)

The energy consumption of the mobile device includes the
energy consumed for data encryption and the energy consumed
for transmitting the encrypted data, and can be determined as

Ei = γzdi + p
di
R
. (13)

Note that the energy consumption is independent on the order of
tasks in ζ , but relies on decision variable xij. The total energy for
offloading all n tasks is given by

E =

n∑
i=1

Ei. (14)
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As mentioned previously, the mobile device offloads tasks to
MEC servers for reducing latency and saving energy. Following [3,
4], we define the scheduling objective as the weighted sum of
makespan and energy consumption. We summarize below our
considered security-critical task scheduling problem:

minimize obj = Cmax + ηE (15)

subject to
m∑
j=1

xij = 1, i = 1, 2, . . ., n (16)

k∑
l=1

hjl = 1, j = 1, 2, . . .,m (17)

Eq. (15) is the objective function, where η is the weighting factor
that can be used for the tradeoff between the makespan and the
energy consumption of the mobile device. Eq. (16) ensures that
a task only can be assigned to a MEC server. Eq. (17) imposes a
constraint that each MEC server uses a specified security policy.
The optimization problem in Eqs. (15)–(17) is NP-hard, which can
be justified by the following theorem.

Theorem 1. The considered scheduling problem is NP-hard.

Proof. We prove this theorem by reducing the well-known paral-
lel machine scheduling problem (PMSP), which has been proved
to be NP-hard [46,47], to the considered problem. In PMSP, there
are n different jobs to be assigned to m identical machines, with
the objective of makespan minimization. PMSP can be reduced
to our considered problem by the following four assumptions (1)
all the MEC servers have the same CPU operating frequency; (2)
the user trust all the MEC servers and no data encryption and
decryption are required; (3) the transmission rate R and R1j (j =

2, 3, . . .,m) are considered to be infinity, and the duration of data
transmission can be regarded as 0; (4) the weighting factor η is
set to be 0. Since PMSP is NP-hard, our considered problem is also
NP-hard. ■

4. Proposed algorithms

In this section, we describe the proposed slow-movement
particle swarm optimization algorithms SPSO1 and SPSO2 for
solving the considered scheduling problem. All the key operators
and strategies are discussed in detail.

4.1. Representation and initialization

Each task permutation is considered as a solution in our
proposed scheduling algorithms. A valid task permutation should
include all scheduled n tasks without duplications. We further
define a swarm Ψ consisting of all |Ψ | particles. Each par-
ticle ψ t (t = 1, 2, . . ., |Ψ |) is associated with a position pt
and a velocity vt , which can be represented as n-dimensional
tuples (pt1, p

t
2, . . ., p

t
n) and (vt1, v

t
2, . . ., v

t
n), respectively. In addi-

tion, the position of the personal best particle (i.e., pbest) is
denoted by pt∗ = (pt∗1 , p

t∗
2 , . . ., p

t∗
n ). The position of the global

best particle tracked by the swarm (i.e., gbest) is denoted by
g∗

= (g∗

1 , g
∗

2 , . . ., g
∗
n ). Like most PSO algorithms in the literature,

e.g., [8–10], to avoid excessive roaming of particles outside the
search space, we restrict the values of pti (i = 1, 2, . . ., n) and
vti (i = 1, 2, . . ., n) within intervals [pmin, pmax] and [vmin, vmax],
respectively.

We randomly initialize all particles in the swarm. As afore-
mentioned, in order to evaluate particle’s fitness, we need to map
each particle onto a valid solution (i.e., a task permutation). For
this purpose, we propose a position-based mapping operator that
depends on the current best solution. Therefore, it is necessary to

first generate an initial solution and use it as the initial value of
the current best solution. Long task first (LTF) is a well-known
sorting policy for solution initialization, as LTF is verified to be
effective for solving the PMSP problem [47] that can be reduced
to our considered problem (refer to Theorem 1). We employ a
task’s total computation workload (i.e., wi in Eq. (1)) to evaluate
its duration. LTF arranges all tasks in a non-ascending order of wi
value. In this work, however, in addition to the total computa-
tion workload, data amount also has significant impact upon the
execution time of data encryption, transmission and encryption,
and in turn upon the total duration time. Hence, we develop a
new big data task first (BTF) sorting policy that arranges all tasks
according to their data amounts di in a non-ascending order. The
proposed SPSO1 and SPSO2 employ LTF and BTF to generate initial
best solutions, respectively.

4.2. Position-based mapping method

As mentioned above, we propose a position-based mapping
method to map particles onto their corresponding solutions. We
use the values of particles’ positions to calculate the probabilities
that tasks in the current best solution are copied to the solu-
tion converted from a particle. In this manner, good schemata
concealed in the current best solution can be inherited by the
mapped solution, for the purpose of ensuring its high quality. To
summarize, during the evolutionary procedure of the proposed
algorithms, solutions are explored in a probabilistic manner for
enabling the inheritance of good schemata.

We use ζ ∗ to denote the current best solution. For each par-
ticle ψ t (t = 1, 2, . . ., |Ψ |), the proposed mapping method starts
with an empty corresponding solution ζ t and makes it a complete
solution by a two-stage procedure. At the first stage, each task in
ζ ∗ is appended into ζ t with a probability ρ = e−pti . Accordingly,
ρ ∈ (0, 1) should be true as long as pti >0. In order to achieve this
target, we restrict the minimal value of position pmin>0. We then
eliminate all those appended tasks from a copy of the current best
solution (denoted by ζ copy∗) so as to avoid the destruction on ζ ∗,
which is used to produce corresponding solution for each particle.
In the second stage, each remaining task in ζ copy∗ is inserted into
ζ t in a uniformly distributed manner, i.e., each task in ζ copy∗ is
located at each position with the probability 1

|ζ t |
. Consequently,

ζ t becomes a complete task permutation and is the final result
of the mapping method. The complete procedure of the position-
based mapping method is given in Algorithm 1, in which lines 2–6
represent the first stage, and lines 7–8 denote the second stage.

According to the preceding analysis, the inheritance of good
schemata by the generated solution mainly take place at the first
stage, as those appended tasks in the mapped solutions follow
their relative order in the current best solution. In order to inherit
good schemata more effectively, we set 0 < pti ≤ − ln 1

2 (i =

1, 2, . . ., n) for any particle ψ t , such that more than half tasks
can be appended to the mapped solution without changing their
relative order. It is worth noting that, as solutions corresponding
to all particles in the swarm are generated based on the current
best solution, if all mapped solutions are identical to the current
best solution, our proposed algorithms would fail to explore new
solutions For this reason, it is necessary to analyze whether this
situation would happen. We have the following theorem.

Theorem 2. For a particle ψ t (with position pti ∈ [pmin, pmax])
mapped onto its corresponding solution ζ t by the proposed position-
based mapping method, by defining the probability of ζ t identical
to ζ ∗ as ρ

(
ζ t =ζ ∗

)
, if 0 < pti ≤ − ln 1

2 , we have ρ
(
ζ t =ζ ∗

)
∈

[Bn
(
1−e−pmax

)n
, Bn

(
e−pmin

)n
], where Bn =

∑n
l=0

1
(n−l)! .
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Algorithm 1: Position-Based Mapping Method
Input: The current best solution ζ ∗;
Output: A complete solution ζ t ;

1 Generate an empty solution ζ t ;
2 for i = 1 to n do
3 Create a uniformly distributed variable ε within the

interval [0, 1];
4 if ε ≤ e−pti then
5 Append ζ ∗

i to ζ t ; /* ζ ∗

i denotes the i-th task
in ζ ∗ */

6 end
7 end
8 Eliminate tasks appended to ζ t from ζ copy∗ ; /* ζ copy∗ is
a copy of ζ ∗ */

9 for i = 1 to |ζ copy∗| do
10 Insert ζ copy∗i into ζt at each position with the

probability 1
|ζt |

; /* ζ copy∗i denotes the i-th task
in ζ copy∗ */

11 end
12 return ζt ;

Proof. According to Algorithm 1, if l (l = 0, 1, . . ., n) tasks
are appended to ζ t at the first stage, and the remaining n − l
tasks are inserted at their original locations at the second stage,
the generated solution ζ t must be identical to ζ ∗. Let ρl be the
probability of ζ t = ζ ∗ for this particular case. The probability of
ζ t identical to ζ ∗ (i.e., ρ

(
ζ t = ζ ∗

)
) should be equal to the sum of

the probabilities in all cases, i.e.,

ρ
(
ζ t = ζ ∗

)
=

n∑
l=0

ρl. (18)

In order to calculate ρl, we define a task set Tl consisting of
all the l tasks appended into ζ t at the first stage. Obviously, the
number of possible Tl is C l

n (where l = |Tl|), i.e., the number of
task combinations with the length l selected from n tasks. Let δl be
the probability of tasks inserted at their original locations in the
second stage. We have δl = 1/An−l

n , in which An−l
n represents the

total number of task permutations with the length (n− l) selected
from n tasks. Consequently, by defining a set T including all tasks,
ρl can be calculated by

ρl = δlC l
n exp

⎧⎨⎩−

∑
∀ζ ti ∈Tl

pti

⎫⎬⎭ ·

∏
∀ζ ti ∈(T−Tl)

(
1 − e−pti

)
. (19)

Since 0 < pti ≤ − ln 1
2 , we have e−pti ≥

1
2 ≥ 1− e−pti . Referring

to Eq. (19), the following two equations hold.

ρl ≤ δlC l
n exp

⎧⎨⎩−

∑
∀ζ ti ∈Tl

pti

⎫⎬⎭ · exp

⎧⎨⎩−

∑
∀ζ ti ∈(T−Tl)

pti

⎫⎬⎭
=

l!
n!

·
n!

l!(n − l)!
· exp

{
n∑

i=1

pti

}

≤
1

(n − l)!
·
(
e−pmin

)n
. (20)

ρl ≥ δlC l
n

∏
∀ζ ti ∈Tl

(
1 − e−pti

)
·

∏
∀ζ ti ∈(T−Tl)

(
1 − e−pti

)

=
l!
n!

·
n!

l!(n − l)!
·

n∏
i=1

(
1 − e−pti

)

≥
1

(n − l)!
·
(
1 − e−pmax

)n
. (21)

By combining Eqs. (18), (20), and (21), we have

Bn
(
1 − e−pmax

)n
≤ ρ

(
ζ t = ζ ∗

)
≤ Bn

(
e−pmin

)n
. (22)

That is, ρ
(
ζ t =ζ ∗

)
∈ [Bn

(
1−e−pmax

)n
, Bn

(
e−pmin

)n
]. ■

Theorem 2 indicates that the lower-bound and upper-bound
of the probability that the mapped solution is identical to the
current best solution not only depend on the problem size n
(i.e., the number of tasks to be scheduled), but also rely on the
values of pmax and pmin. In fact, this probability value is small
for large-size problems, and is close to 0 when the size n is
sufficiently large. This conclusion can be verified by the following
corollary. Before providing the corollary, we first introduce a
lemma to prove the corollary.

Lemma 1. limn→∞ Bn = e.

Proof. This lemma is very well-known and its proof can be found
on most advanced math books. For the sake of completeness, we
provide the proof in brief. We define f (x) = ex and apply the
following Taylor series expansion:

f (x) = f (0) +
f ′(0)
1!

+
f (2)(0)
2!

+ · · · +
f (n)(0)
n!

+ o(xn). (23)

Let x = 1, we have

f (1) =

n∑
l=0

1
(n − l)!

+ o(xn) = Bn + o(xn) = e.

Therefore, we can draw the conclusion. ■

Corollary 1. limn→∞ ρ
(
ζ t = ζ ∗

)
= 0.

Proof. According to Eq. (22), we have

lim
n→∞

Bn
(
1−e−pmax

)n
≤ lim

n→∞
ρ
(
ζ t = ζ ∗

)
≤ lim

n→∞
Bn
(
e−pmin

)n
.

Due to the fact that 0 < 1 − e−pmax < 1 and 0 < e−pmin < 1,
the following two equations hold.

lim
n→∞

ρ
(
ζ t = ζ ∗

)
≥ lim

n→∞
Bn
(
1 − e−pmax

)n
= lim

n→∞
Bn lim

n→∞

(
1 − e−pmax

)n
= e × 0 = 0.

lim
n→∞

ρ
(
ζ t = ζ ∗

)
≤ lim

n→∞
Bn
(
e−pmin

)n
= lim

n→∞
Bn lim

n→∞

(
e−pmin

)n
= e × 0 = 0.

Consequently, we have 0 ≤ limn→∞ ρ
(
ζ t = ζ ∗

)
≤ 0, and we

conclude that limn→∞ ρ
(
ζ t = ζ ∗

)
= 0. ■

Corollary 1 shows that for large-size problems, the solutions
generated by the proposed mapping method are rarely identical
to the current best solution without respect to the values of par-
ticles’ positions. However, for small- and medium-size problems,
it is necessary to manipulate the boundary values of particles’
positions by setting appropriate pmin and pmax values. As indicated
by Theorem 2, in order to maintain a small value of ρ

(
ζ t = ζ ∗

)
,

we need to set relatively small lower-bound and upper-bound
values. On one hand, pmax cannot be set as a large value, since
a larger pmax value would lead to a larger lower-bound value.
By taking into account the condition 0 < pti ≤ − ln 1

2 , we set
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pmax =− ln 1
2 . For the lower-bound value, on the other hand, pmin

cannot be set as an extremely small value, in order to avoid an
overly large upper-bound value. Thus, we set pmin = 0.05.

4.3. Greedy heuristic

In order to calculate the objective value of a solution generated
in previous mapping procedure, we propose a greedy heuristic, in
which tasks of the given solution are assigned to MEC servers one
by one in a greedy manner, and the objective can be eventually
obtained when the assignment is finished. In this heuristic, for a
task ζ ti in a specific solution ζ t , the index of the assigned MEC
server y can be obtained by

y =

{
j
⏐⏐⏐⏐ min

∀ζ ti assigned to sj
{objtij}, j = 1, 2, . . .,m

}
, (24)

where objtij represents the objective value by assigning the task ζ ti
to MEC server sj. Algorithm 2 summarizes the algorithmic flow of
the proposed greedy heuristic.
Algorithm 2: Greedy Heuristic

Input: A solution ζ t ;
Output: The objective value of ζ t ;

1 for i = 1 to n do
2 Get the i-th task ζ ti from ζ t ;
3 Set E = 0 ; /* the total energy cost */
4 Set objt = 0 ; /* the objective value of ζ t */
5 for j = 1 to m do /* the loop for calculating

the objective value */
6 Calculate wi, wE

i , w
D
i , D

E
i , D

D
i , D

P
i , C

E
i , R, D

T
i , C

T
i , and

CP
i by Eqs. (1)–(11), respectively;

7 Calculate Ei by Eq. (13);
8 Calculate objtij = CP

i + η(E + Ei);
9 end

10 Determine the index of the assigned MEC server y by
Eq. (24);

11 Update E = E + Ey and objt = objtiy;
12 end
13 return objt ;

4.4. Slow-movement particle updating strategy

In PSO framework, particles move towards both the personal
best particle and the global best particle by the conventional
particle updating strategy [48]. During each iteration, the velocity
vt and the position pt of a particle ψ t are updated by Eqs. (25)
and (26), respectively.

vti = ωvti + c1r1(pti − pt∗i ) + c2r2(pti − g∗

i ), (25)

pti = pti + vti . (26)

In Eq. (25), ω represents the inertia weight, whereas c1 and
c2 indicate the individual cognition component and the social
communication component, respectively [48]. r1 and r2 are two
uniformly distributed numbers within [0, 1]. According to these
two equations, the particle’s movement velocity in the ith dimen-
sion (i.e., vti ) mainly depends on the values of pti −pt∗i and pti −g∗

i .
As a result, the movement velocity could have a large value,
leading to a significant change in the particle position. Since the
position values are used to calculate the probability of tasks in the
current best solution being inherited by the mapped solutions,
the significant variations of particles’ positions may cause the
proposed algorithms to miss certain good solutions during the
evolutionary procedure.

To address the above-mentioned issue, we propose a slow-
movement particle updating strategy to slow down particles’
movements. In this strategy, the velocity is updated as follows:

vti = ωvti + c1r1 · sgn(pti , p
t∗
i )λ+ c2r2 · sgn(pti , g

∗

i )λ, (27)

sgn(x, y) =

{
+, if x ≤ y.
−, if x > y. (28)

where sgn indicates the sign function and λ is a positive constant
with a small value determined by experiments in Section 5.2. The
position updating rule is the same as in conventional PSO. Ac-
cording to Eqs. (26) and (27), we can observe that if pti ≤ pt∗i and
c1r1 · sgn(pti , p

t∗
i )λ > 0, the values of positions will increase. Oth-

erwise, c1r1 · sgn(pti , p
t∗
i )λ < 0, denotes the decrease of positions’

values. A similar observation can be made for c2r2 · sgn(pti , g
∗

i )λ.
Therefore, by our proposed particle updating strategy, particles
also move towards both the personal best particle and the global
best particle, enabling to explore good solutions. This capability
is similar to that of the conventional one. However, in a distinct
manner, we employ a small-value positive constant λ rather than
pti − pt∗i and pti − g∗

i for the purpose of maintaining a small-
value movement velocity and further avoiding the substantial
variation of the positions’ values. Consequently, the proposed
particle updating strategy not only enables the proposed algo-
rithms to discover high-quality solutions under the guide of both
personal best particles and global best particle, but also helps
proposed algorithms to avoid the trap of missing good solutions
by maintaining a small-value movement velocity.

4.5. Descriptions of proposed algorithms

The proposed SPSO1 and SPSO2 start with the parameter
initialization procedure (line 1), in which MG represents the max-
imal number of generations. All particles in the initial swarm are
generated randomly (line 2), and each particle is regarded as its
personal best particle (line 3). SPSO1/SPSO2 employs LTF/BTF to
initialize the current best solution ζ ∗ (line 4), of which the objec-
tive value can be calculated by the proposed greedy heuristic (line
5). All particles are evaluated by an iterative procedure described
in lines 6–15, in which the global best particle is initialized. The
evolutionary procedure is shown by lines 16–29, in which each
particle is updated by the proposed particle updating strategy
(line 18) and mapped onto the corresponding solution (line 19)
that is evaluated by the proposed greedy heuristic (line 20). In
this procedure, the personal best particle is updated if a better
one is discovered (line 21). If a new better solution is found (line
22), the current best solution and its objective value as well as the
global best particle are updated (lines 23–25), accordingly. The
complete algorithmic procedure of SPSO1 and SPSO2 is given in
Algorithm 3.

4.6. Complexity analysis

We analyze the computational complexities of the proposed
operators and algorithms as follows. The complexities of LTF and
BTF both are O(n · log n) since they are implemented by using the
quick sort method. The mapping operator described in Algorithm
1 has a linear complexity O(n), which is lower than the complex-
ity of the ROV rule O(n·log n). As will be justified by experimental
results, the proposed algorithms achieve good computational ef-
ficiency by employing this low-complexity mapping operator. In
addition, according to Algorithm 2, the complexity of the greedy
heuristic used for evaluating the quality of a candidate solution is
O(m·n). To conclude, the complexities of our proposed algorithms
are both O(MG · |Ψ | · mn2), where MG and |Ψ | represent the
maximum number of generations and swarm size, respectively.
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Algorithm 3: Slow-movement Particle Swarm Optimiza-
tion Algorithms SPSO1/SPSO2

Input: A task set T;
Output: The objective of the obtained best solution obj∗;

1 Initialize all parameters including MG, pmin, pmax, vmin,
vmax, ω, c1, c2 and λ, respectively;

2 Generate all |Ψ | particles in the swarm Ψ , randomly;
3 Set each particle to be its personal best particle;
4 Generate the initial best solution ζ ∗ by LTF/BTF;
/* SPSO1 uses LTF and SPSO2 uses BTF. */

5 Call Algorithm 2 to calculate solution ζ ∗’s objective value
obj∗;

6 for t = 1 to |Ψ | do
7 Get the i-th particle ψ t ;
8 Call Algorithm 1 to map ψ t onto its corresponding

solution ζ t ;
9 Call Algorithm 2 to calculate ζ t ’s objective objt ;

10 if objt < obj∗ then
11 ζ ∗

= ζ t ;
12 obj∗ = objt ;
13 Set ψ t as the global best particle;
14 end
15 end
16 while g < MG do
17 for t = 1 to |Ψ | do
18 Update ζ t by the proposed particle updating

strategy;
19 Call Algorithm 1 to map ψ t onto its corresponding

solution ζ t ;
20 Call Algorithm 2 to calculate ζ t ’s objective objt ;
21 Update the personal best particle if ζ t is better

than the original personal best particle;
22 if objt < obj∗ then
23 ζ ∗

= ζ t ;
24 obj∗ = objt ;
25 Set ψ t as the global best particle;
26 end
27 end
28 g = g + 1;
29 end
30 return obj∗;

5. Simulation results

In this section, like most existing approaches (e.g., [3,4,7,11–
14,40]), we conduct extensive simulation experiments to evaluate
the performance of the proposed SPSO1 and SPSO2, in terms of
both effectiveness and efficiency. We first describe the testing
instances and parameter determination criteria, followed by the
detailed evaluation results.

5.1. Testing instances

To thoroughly evaluate the performance of scheduling algo-
rithms for problems of different sizes, we generate a testing
instance set consisting of 5 groups with the sizes (i.e., the number
of tasks n) in {10, 20, 30, 40, 50}. Each group contains 10 different
testing instances. In total, there are 50 testing instances used
for performance evaluation. Following [3,4], for each task, the
amount of input data di and average computation workload ci
are uniformly distributed within [0, 2davg] and [0, 2cavg], where
davg = 1000 bits and cavg = 797.5 cycles/bit, respectively.

We construct a multi-level security policy set that takes into
account six policies, of which the details are provided in Ta-
ble 3. In [44], six encryption algorithms and their corresponding
execution durations (in ms/KB) as well as energy consumption
(in mJ/KB) were introduced. In this work, we employ these en-
cryption policies and express the energy consumption values in
units of mJ/bit. In addition, as we use computation workload
(in CPU cycles/bit) αl to differentiate encryption algorithms, we
define αl values according to the observation reported in [44] that
the execution duration of an encryption algorithm increases as
the security level raises. The values of decryption computation
workloads (in CPU cycles/bit) βl are determined relying on the
relations between the decryption durations and encryption as
reported in [49–51]. For instance, referring to the IDEA encryption
algorithm in [51], the durations of decryption and encryption are
nearly identical. Therefore, for security policy p4 employing the
IEA encryption algorithm, we set decryption computation work-
load β4 = 300, which is identical to the α4’s value. Decryption
computation workloads for the other security policies are set in
a similar way.

We consider a resource-limited MEC system with six MEC
servers. The CPU operating frequencies (in GHz) of all MEC servers
are uniformly distributed within [2, 4]. In order to use all six se-
curity policies listed in Table 3, all MEC servers randomly selects
one of the six security policies in a one–one mapping manner.
In [43], the transmission durations between any two MEC servers
si and sj (i ̸= j) are set as τij × DR, where DR represents the
transmission duration between the mobile device and the base
station and τij is uniformly distributed within [1, 1.5]. In this
work, the transmission rate (R1j) between the direct-connected
MEC server s1 and another one sj (j = 2, 3, . . ., 6) is set as
τj×R, where τj is uniformly distributed within the interval [0.67,
1.0]. The parameters for calculating R are set identically to those
in [3,4], i.e., b= 1 MHz, g0 =−40 dB, u0 = 1 m, u= 100 m, θ = 4
and N0 =−174 dBm/Hz. For the mobile device in the MEC system,
its CPU operating frequency and transmission power are set as
1 GHz and 100 mW, respectively.

5.2. Parameter determination

In this section, we determine the values of several impor-
tant parameters, including the inertia weight (ω), the weights of
individual cognition and social communication (c1 and c2), and
λ for updating the movement velocity in our proposed particle
updating strategy (refer to Eq. (27)). As indicated in [52], the
inertia weight ω should be within the interval [0.2, 1.2]. In this
work, we set ω ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}. Also, following
existing PSO-based algorithms [9,10,48,52], c1 and c2 are set as
identical values. Thus, we use c1 = c2 = c ∈ {1, 2, 3, 4, 5}. In
addition, according to the analysis in Section 4.2, we set pmin =

0.05 and pmax = − ln 1
2 . The values of vti (i = 1, 2, . . ., n) are

restricted within interval [ln 1
2 ,− ln 1

2 ], i.e., vmin = ln 1
2 and vmax =

− ln 1
2 .

For each testing instance, we use the well-known relative error
(RE) metric to evaluate algorithm effectiveness, which is defined
as

RE =

(
R∑

r=1

objr − obj∗

obj∗

)/
R × 100% (29)

where R is the total number of replications, objr represents the
scheduling result produced by a specific algorithm in the rth
replication, and obj∗ denotes the best one among the results
produced by all compared algorithms during R replications. Due
to the same obj∗ value used in Eq. (29), RE is capable of evaluating
the scheduling effectiveness of different algorithms. The lower
the RE value is, the better the corresponding effectiveness is.
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Table 3
Details about security policies.
Security
policy

Security
level

Encryption
algorithm

αl
(CPU cycles/bit)

γl
(10−4mJ/bit)

βl
(CPU cycles/bit)

p1 1 RC4 100 2.5296 90
p2 2 RC5 200 5.0425 280
p3 3 BLOWFISH 250 6.8370 350
p4 4 IDEA 300 7.8528 300
p5 5 SKIPJACK 350 8.7073 400
p6 6 3DES 1050 26.3643 1700

Fig. 2. Mean REs and 95% LSD intervals obtained by SPSO1 and SPSO2 with different λ values.

Fig. 3. Mean REs and 95% LSD intervals obtained by SPSO1 and SPSO2 with different ω values.

Fig. 4. Mean REs and 95% LSD intervals obtained by SPSO1 and SPSO2 with different c values.
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As mentioned in Section 4.4, λ denotes the movement step
length and should be determined appropriately. On the one hand,
a small λ value could cause the proposed algorithms to converge
slowly. On the other hand, a large λ value leads to a high ve-
locity that may cause the metaheuristics to miss certain good
solutions during the evolutionary procedure. For this reason, we
restrict λ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
0.1}. The minimum and maximum values of λ are of the same
magnitudes as pmin and pmax values, respectively. Thus, there
are totally 6 × 5 × 10 = 300 combinations for parameters ω,
c , and λ. Considering that SPSO1 and SPSO2 both are meta-
heuristics involving randomness, each algorithm is performed on
each instance with each parameter combination for 5 separate
replications (i.e., R = 5). Accordingly, in total, each algorithm
is performed 50 × 5 × 300 = 75000 rounds, providing suffi-
cient samples to perform a statistical analysis. We employ the
well-known multi-factor analysis of variance (ANOVA) method
to evaluate algorithm effectiveness in a statistical way. In order
to fine-tune all the parameters, we run the proposed algorithms
with the weighting factor value η ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 2,
3, 4, 5}. We first fix η value at 1, i.e., the makespan and the
amount of energy consumption are equally weighted. Figs. 2–4
plot the mean REs and least-significant difference (LSD) intervals
with 95% confidence obtained by SPSO1 and SPSO2 with regard to
λ, ω, and c , respectively. Non-overlapping intervals between any
two plots indicate that the observed differences in mean values
are statistically significant at the specified confidence level. The
results indicate that SPSO1 achieves the lowest mean RE with
parameter combination {λ = 0.06, ω = 0.2, c = 1}, and the best
parameter combination for SPSO2 is {λ = 0.09, ω = 0.2, c = 1}.
This conclusion is due to the fact that with ω=0.2 and c=1, both
algorithms are capable of maintaining a relatively low velocity of
each particle. Similar observations can be made for other η values,
and similar conclusions can be drawn. Due to limited space, we
do not provide the complete comparison for all η values.

5.3. Performance evaluation

We now evaluate the performance of the proposed SPSO1 and
SPSO2 in terms of both effectiveness and efficiency. Considering
that there is no existing algorithm for solving the considered
problem, we select the conventional particle swarm optimization
algorithm (CPSO) as the baseline. The parameters of CPSO are set
identically as those in the original work [53]. The well-known
ROV rule is employed by CPSO to map particles onto solutions.
All three algorithms to be compared, i.e., SPSO1, SPSO2, and CPSO,
are implemented by Java and performed on the same aforemen-
tioned computer with different η values (η ∈ {0, 0.2, 0.4, 0.6, 0.8,
1, 2, 3, 4, 5}). The RE metric in Eq. (29) is used for effectiveness
evaluation and each algorithm is run for five replications (R=5).

For the sake of fair comparison, we use unified experimental
setup and parameter settings for all algorithms to be evaluated.
The population size is set as 30 and the maximum number of
generations is set as 1000. In other words, we evaluate each
algorithm by using 30×1000 = 30,000 particles for each run.
All algorithms were implemented by Java programming with
Java Runtime Environment 1.8.0 on Windows 10 64-bit operating
system. In addition, all algorithms were performed on a machine
equipped with an eight-core CPU operating at 1.8 GHz and 8-GB
memory. We first present and analyze the evaluation results for a
typical case in which η=1, indicating that the makespan and en-
ergy consumption have identical weights. We will subsequently
discuss the results for the cases with other η values.

Fig. 5 provides the comparison of mean REs and LSD intervals
with 95% confidence level for the three compared algorithms
when η=1. The results show that the mean REs of CPSO, SPSO1

Fig. 5. Mean REs and 95% LSD intervals obtained by CPSO, SPSO1, and SPSO2
with η = 1.

Table 4
Computation times (in milliseconds) of CPSO, SPSO1, and SPSO2.
Groups CPSO SPSO1 SPSO2

n = 10 130.20 88.06 94.42
n = 20 416.80 208.34 228.56
n = 30 953.46 342.94 392.92
n = 40 2135.60 685.58 790.42
n = 50 3219.18 832.30 991.88

Average 1371.05 431.44 499.64

and SPSO2 are 1.58, 0.34 and 0.71, respectively, indicating that
SPSO1 and SPSO2 are both more effective than CPSO. More im-
portantly, as there is no overlapping between their LSD intervals,
we can conclude that SPSO1 and SPSO2 both outperform CPSO
significantly. Fig. 6 plots the mean REs and 95% LSD confidence
intervals for the three compared algorithms when η is set as other
values. The comparison results justify the advantage of SPSO1
and SPSO2 over CPSO for all investigated η values. Accordingly,
we can draw the final conclusion that the proposed SPSO1 and
SPSO2 can achieve good effectiveness and they outperform CPSO
significantly regardless of the η value.

The high effectiveness of both SPSO1 and SPSO2 is due to the
use of the position-based mapping method, the slow-movement
particle updating strategy and LTF/BTF policy in these two algo-
rithms. First, in the proposed mapping scheme, good schemata
contained in the current best solution can be inherited by the
generated solutions to ensure their high qualities. Second, for
achieving effective inheritance, we determine appropriate maxi-
mum and minimum values for particles’ positions by an analytical
procedure. Based on these boundary values, the slow-movement
particle updating strategy not only can discover high-quality so-
lutions under the guide of personal best particle and global best
particle, but also can avoid missing good solutions by main-
taining small-value movement velocity. Finally, LTF/BTF provides
SPSO1/SPSO2 with a good initial solution, contributing to the
high quality of the final scheduling solution. These points will be
justified by subsequent experiments for evaluating the impacts of
several key operators upon the scheduling results.

Having verified algorithm effectiveness, we now compare the
computational efficiency of the three algorithms to be evaluated.
The computation times in Table 4 indicate that, for five groups
of different sizes, CPSO, SPSO1, and SPSO2 consume on average
1371.05 ms, 431.44 ms, and 499.64 ms to solve the scheduling
problem, respectively. Considering that the computation times
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Fig. 6. Mean REs and 95% LSD intervals obtained by CPSO, SPSO1, and SPSO2 with different η values.

for large-size groups dominate the average value, for the sake of
fair comparison, we introduce a new performance metric that is
independent on group size to evaluate the efficiencies of schedul-
ing algorithms. We define normalized efficiency (NE) achieved by
each algorithm for each group of testing instances as

NE =
d

dbaseline
(30)

where d denotes the computation time of an algorithm to be eval-
uated, and dbaseline means the computation time of the baseline
algorithm. Clearly, a lower NE value indicates higher computa-
tional efficiency. As in the previous set of experiments, CPSO is
selected as the baseline. When calculating the NE value, since
each algorithm is performed R rounds on each testing instance, d
and dbaseline are determined as their mean values during R replica-
tions. Fig. 7 illustrates the mean NEs for all compared algorithms
on all testing instances when η = 1. The NE values achieved by
SPSO1, SPSO2, and CPSO are 0.42, 0.47, and 1.0, respectively. In
other words, SPSO1 and SPSO2 both are more computationally
efficient than CPSO by achieving 2.38× and 2.13× speedups,
respectively. The evaluation results for other η values support the
same conclusion, and thus are not detailed due to limited space.
The main reason for the high efficiency of SPSO1 and SPSO2 is
that, both algorithms are implemented by employing the low-
complexity position-based mapping method to convert a particle
into a scheduling solution.

Fig. 7. Mean NEs obtained by SPSO1, SPSO2, and CPSO with η = 1.

5.4. Impacts of key operators

We perform further experiments to evaluate the impacts of
these key operators upon the scheduling results. We compare
SPSO1/SPSO2 with SPSO1_R/SPSO2_R, in which ROV rule is used
instead of the position-based mapping method to map particles
onto solutions, and other operators remain unchanged. In addi-
tion, we construct two new algorithms SPSO1_C and SPSO2_C
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by using the conventional particle updating strategy to replace
the proposed slow-movement particle updating strategy. Fur-
thermore, for the purpose of investigating the impacts of LTF
and BTF, we establish three new algorithms SPSO3, SPSO4, and
SPSO5 by replacing LTF/BTF in SPSO1/SPSO2 with the well-known
shortest task first (STF) policy, the smallest data task first (MTF)
policy, and the random policy to generate the initial best solution,
respectively. The parameters of these seven newly constructed
algorithms are assigned the same values as in SPSO1 and SPSO2.
We perform these nine algorithms with all candidate η values
(i.e., η ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5}, and observer similar
results in all cases. For the sake of conciseness, we select a typical
case, in which η = 1, to show comparison results and in turn
analyze the impacts of key operators. Figs. 8 and 9 present the
mean REs and 95% LSD confidence levels, and the mean NEs
for the nine compared algorithms, respectively. Table 5 further
lists the computation times of all algorithms taken into account
for evaluating the impacts of key operators. The impacts of key
operators are analyzed as follows.

• Position-based mapping method: Fig. 8 shows that
SPSO1/SPSO2 outperforms SPSO1_R/SPSO2_R significantly,
demonstrating that the proposed position-based mapping
operator is superior to the ROV rule. During the particle
mapping procedure, good schemata in the current best
solution can be inherited to produce a high-quality mapped
solution. On the other hand, the complexity of the pro-
posed mapping method is O(n), which is lower than ROV’s
complexity O(n · log n). The comparison of computation
times in Table 5 and comparison of mean NEs in Fig. 9
confirm that our proposed mapping method is more ef-
ficient than ROV. In this set of experiments, SPSO2_R is
considered as the baseline and all the nine algorithms built
upon the proposed mapping method achieve better effi-
ciency than the two algorithms using the ROV rule. In
brief, the position-based mapping method not only im-
proves the scheduling effectiveness, but also enhances the
computational efficiency.

• Slow-movement particle updating strategy: The results in
Fig. 8 also show that SPSO1/SPSO2 outperforms
SPSO1_C/SPSO2_C significantly. This conclusion indicates
that the proposed slow-movement particle updating strat-
egy is more effective than the conventional one. The reason
is that, the proposed particle updating strategy not only
enables the proposed algorithms to discover high-quality
solutions under the guide of the personal best particle
and the global best particle, but also helps the proposed
algorithms to avoid missing good solutions by maintaining
small-value movement velocity.

• Solution initialization policy: We can further observe from
Fig. 8 that, SPSO1 outperforms SPSO3 and SPSO5, and SPSO2
is more effective than SPSO4 and SPSO5. This observation
indicates that LTF and BTF are more effective than STF,
MTF and the random policy. As our proposed algorithms
are highly dependent on the initial best solution, both LTF
and BTF are capable of generating high-quality initial best
solutions, and in turn make substantial contributions to the
high effectiveness of SPSO1 and SPSO2.

6. Conclusions and future work

This paper presents two slow-movement particle swarm op-
timization algorithms for scheduling security-critical tasks in a
resource-limited MEC system. The scheduling problem is formu-
lated as a NP-hard optimization model, with the objective of min-
imizing the makespan and energy consumption. The proposed

Fig. 8. Mean REs and 95% LSD intervals obtained by different algorithms with
η = 1.

Fig. 9. Mean NEs obtained by different algorithms with η = 1.

algorithms employ effective task ordering policies to generate the
initial best solutions, based upon which the position-based map-
ping method can map each particle into a high-quality solution
to the considered problem. A slow-movement particle updating
strategy is further developed to enhance the ability of the pro-
posed algorithms in exploring high-quality solutions. Extensive
simulations are performed to justify that, compared with the
conventional PSO algorithm using the ROV task sorting policy and
standard particle updating strategy, the scheduling algorithms
presented in this paper not only can produce better scheduling
solutions but also can achieve higher computational efficiency.

It is also necessary to discuss several potential limitations
when applying our proposed algorithms to cope with practical
problems. SPSO1 and SPSO2 are oriented toward the MEC en-
vironment in which the mobile device has one single antenna
and can only offload one task each time. As such, our proposed
algorithms may not be applicable to solving the problem consid-
ering mobile devices with multiple antennas. In future, we plan
to tackle this challenge by reformulating the optimization model
and redesigning the solution evaluation heuristic. In addition, our
algorithms assume that some input parameters are constant and
known in advance, such as the duration of task execution and the
transmission rate between the mobile device and the base station.
For this reason, we need to rely on measurement tools or profiling
methods to determine the values of these parameters. However,
in practical scenarios, task durations and transmission rates may
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Table 5
Computation times (in milliseconds) of different algorithms for evaluating the impacts of key operators.
Groups SPSO1 SPSO1_C SPSO1_R SPSO2 SPSO2_C SPSO2_R SPSO3 SPSO4 SPSO5

n = 10 88.06 93.28 134.62 94.42 101.44 137.88 96.34 93.14 97.30
n = 20 208.34 216.66 424.94 228.56 242.80 434.82 224.96 216.82 230.38
n = 30 342.94 359.80 979.46 392.92 419.48 1000.94 378.06 359.30 390.68
n = 40 685.58 723.20 2218.02 790.42 861.90 2261.28 768.40 722.20 789.24
n = 50 832.30 877.94 3306.90 991.88 1082.00 3378.46 946.88 874.74 976.22

Average 431.44 454.18 1412.79 499.64 541.52 1442.68 482.93 453.24 496.76

vary slightly due to environmental uncertainty and unpredictable
latency issues. To extend the applicability of our algorithms in
the presence of such variations, we need to incorporate stochastic
optimization techniques to cope with variation-aware scheduling
problems.
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