
Journal of Grid Computing (2022) 20:11
https://doi.org/10.1007/s10723-022-09599-x

Mobility-Aware and Code-Oriented Partitioning
Computation Offloading in Multi-Access Edge
Computing

Yaqin Liu ·Chubo Liu · Jing Liu ·Yikun Hu ·
Kenli Li ·Keqin Li

Received: 15 March 2021 / Accepted: 20 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Multi-Access edge computing (MEC) ena-
bles less resourceful smart mobile devices (SMDs)
to use computation and memory intensive applica-
tions by offloading them to edge servers with tol-
erant latency, significantly improving the computing
paradigm of SMDs. But, when involving mobility in
MEC, offloading strategy and overhead can be signifi-
cantly influenced by the movements of SMDs. What′s

Y. Liu · C. Liu (�) · Y. Hu · K. Li · K. Li
Department of Information Science and Engineering,
Hunan University, Changsha, China
e-mail: liuchubo@hnu.edu.cn

C. Liu
e-mail: liuyaqin@hnu.edu.cn

Y. Hu
e-mail: yikunhu@hnu.edu.cn

K. Li
e-mail: lkl@hnu.edu.cn

K. Li
e-mail: lik@newpaltz.edu

Y. Liu · C. Liu · K. Li · K. Li
National Supercomputing Center in Changsha, Changsha
410082, China

K. Li
Department of Computer Science, State University of New
York, New Paltz, NY 12561, USA

J. Lui
Department of Computer Science and Technology, Wuhan
University of Science and Technology, Wuhan 430065,
China
e-mail: Idealer@126.com

more, the movements of SMDs make it harder to deal
with precedence among subtasks. However, to the best
of our knowledge, few articles have studied mobil-
ity management in code-oriented partitioning offload-
ing. To give an efficient solution, we propose the
cost-saving offloading policy with mobility prediction
using convex optimization and Lagrangian approach.
Our scheme can help moving SMDs in MEC like
driverless vehicles efficiently complete their tasks and
reveal the impact of task dependency on completion
time. The experimental results show that our algorithm
can achieve at least 12% performance improvement on
average than other three common methods.

Keywords Computation offloading · Multi-access
edge computing · Mobility management · Resource
allocation · Task dependency

1 Introduction

1.1 Motivation

Recently, smart mobile devices (SMDs) including
phones, tablets and IoT or driveless vehicles have become
more and more popular because of their convenience
and increased capability, driving many computation-
intensive and delay-sensitive applications (e.g., inter-
active online games [1], image and video processing [2],
cloud-like services such as m-health-care [3], and espe-
cially some frequent applications like object detec-
tion in autonomous driving [2].) However, due to the

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-022-09599-x&domain=pdf
mailto:liuchubo@hnu.edu.cn
mailto:liuyaqin@hnu.edu.cn
mailto:yikunhu@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:Idealer@126.com

 11 Page 2 of 15 J Grid Computing (2022) 20:11

limited resources of SMDs (battery energy, storage
size, and computing capability), users cannot often
get satisfied with the quality of service (QoS). To
handle the explosive computation demands and the
ever-increasing QoS requirements, multi-access edge
computing (MEC) was proposed as one of the most
promising solutions [4].

MEC aims to provide nearby users some cloud-
like services with low latency by deploying lim-
ited computing and storage resources close to them.
Resource-hungry devices can offload computation-
intensive jobs to edge servers via wireless access to
release resource tension. Compared with traditional
cloud computing, MEC is closer to users in both net-
work and geographical distances, and thus can greatly
reduce network delay and bandwidth consumption to
improve performance. But, designing a cost-saving
offloading scheme with expected delay is challeng-
ing, especially when end devices move across cover-
age areas of multiple MEC centers carrying directed
acyclic graph (DAG, consists of subtasks from a divis-
ible application and their dependency relationships.)

The reason lies in that movement makes the
device′s surrouding keep chaging, and parameters of
MEC servers and network will be changing with it,
which makes SMDs trigger frequent service migra-
tion, need remote comunication, or take temporarily
optimal policies. It also makes task dependency harder
to handle. As shown in Fig. 1, task 6 need task 4′s
result to start execution according to task dependency,
while unpredictable service migrations make where to
get the result unknown, e.g., when Car 1 moves from

Location 1 to 2, Server 4 is also in touch. Car 1 may
suffer a disconnection with server 1 or it may migrate
task 4 to the new server. Task 6′s execution time is
unpredictable for making offloading strategy, until its
completion. Moreover, Car 1 may find that it should
offload task 4 to Server 3 at the beginning because
the uploading rate to Server 3 increases fast when it is
approaching and the whole cost is thus lower than that
of Server 2.

1.2 Related Work

Computation offloading is critical in MEC. It deter-
mines computation efficiency and achievable perfor-
mance [5]. Various computation offloading strategies
have been developed in the literature, and they can be
generally categorized as: delay based offloading [6–
9], energy based offloading [10–13], and offload-
ing based on trade-off between execution delay and
energy consumption [3, 14, 15].

Delay based offloading policies first considered
either network delay [6] or execution delay [7], they
finally aggregated both [8, 9] but failed to be energy-
saving. Energy based offloading policies aimed to
lower energy consumption [10] or charge SMDs by
acquiring energy from other devices [11]. They fur-
ther studied the multi-user scenario which involves
channel interference, request collision, and queue
model [12, 13]. More and more researches now tar-
get at minimizing execution overhead (a weighted sum
of both execution delay and energy consumption).
In [14], Mao et al. reduced overhead by adjusting

Fig. 1 Mobility management in highly overlapped server coverage areas

J Grid Computing (2022) 20:11 Page 3 of 15 11

Ta
bl
e
1

C
om

pa
ri
so
ns

be
tw
ee
n
pr
op
os
ed

al
go
ri
th
m

an
d
ot
he
r
of
fl
oa
di
ng

sc
he
m
es

Sc
he
m
es

E
nv
ir
on
m
en
ta
lc
ha
ra
ct
er
is
tic

(s
)

Ta
sk

de
pe
nd
en
cy
M
ob
ili
ty

m
an
ag
em

en
tO
bj
ec
tiv

e(
s)

Su
n
et
al
.[
8]

M
ul
tip

le
SM

D
s
an
d
M
ul
tip

le
R
es
ou

rc
e-
lim

ite
d
M
E
C
se
rv
er
s

N
O

N
O

M
in
im

iz
e
av
er
ag
e
de
la
y

Sa
rd
el
lit
ti
et
al
.[
12
]M

ul
tip

le
SM

D
s
an
d
M
ul
tip

le
M
E
C
se
rv
er
s

N
O

N
O

M
in
im

iz
e
en
er
gy
,S

at
is
fy

de
la
y
co
ns
tr
ai
nt

M
ao

et
al
.[
14
]

O
ne

SM
D
an
d
O
ne

M
E
C
se
rv
er

N
O

N
O

tr
ad
eo
ff
be
tw
ee
n
de
la
y
an
d
en
er
gy

W
an
g
et
al
.[
22
]

O
ne

SM
D
an
d
M
ul
tip

le
M
E
C
se
rv
er
s

N
O

Y
E
S

M
in
im

iz
e
de
la
y

X
u
et
al
.[
23
]

O
ne

SM
D
an
d
M
ul
tip

le
H
et
er
og
en
eo
us

M
E
C
se
rv
er
s

N
O

Y
E
S

tr
ad
eo
ff
be
tw
ee
n
de
la
y
an
d
en
er
gy

D
in
g
et
al
.[
24
]

O
ne

SM
D
an
d
M
ul
tip

le
M
E
C
se
rv
er
s

N
O

Y
E
S

M
in
im

iz
e
de
la
y
w
hi
le

sa
tis
fy

en
er
gy

co
ns
tr
ai
nt

/
M
in
im

iz
e
en
er
gy

w
hi
le
sa
tis
fy

de
la
y
co
ns
tr
ai
nt

M
C
PO

O
ne

SM
D
an
d
M
ul
tip

le
R
es
ou
rc
e-
lim

ite
d
H
et
er
og
en
eo
us

M
E
C
se
rv
er
sY

E
S

Y
E
S

tr
ad
eo
ff

be
tw
ee
n
de
la
y
an
d
en
er
gy
,
Sa
tis
fy

de
la
y

co
ns
tr
ai
nt

transmission power and task offloading strategies. In
[3] and [15], like Mao, applications were divided
into a collection of consecutive or independent sub-
tasks, but the authors studied scenarios of multiple
edge servers, which makes offloading problem more
complex because of server selection and switch.

Although the last two algorithms partitioned the appli-
cations, they did not investigate code-oriented partitioning
offloading (COPO), i.e., investigate applications that can
be split into subtasks with dependencies. COPO has
been studied in [16–18]. In [16], Yang et al. considered
both the partitioning of computations for multi-users and
the scheduling of offloaded computations on cloud
resources. While lin et al. scheduled tasks on not only
cloud resources but also local cores [17], but they did
not partition the cloud servers into several virtual
machines like Yang. Deng et al. in [18] offered solu-
tion for partitioning offloading in cloud-enhanced
small cell networks, an environment more similar to
MEC. All of them studied COPO with resourceful
servers and targeted either delay or energy. Some even
disregard data transferring time or data receiving time.
Ding et al. involved COPO with MEC, but they also
once optimized only one target [19]. What′s more,
these researches failed to reveal that SMDs always
weight completion time of some predecessors more
because of task dependency requirements.

Moreover, none of the aforementioned researches have
taken SMDs′ mobility into account. When involv-
ing mobility in MEC, making computation offloading
strategy becomes even harder. There are emerging
some work studying this issue [20–24]. Tarik et al.
in [20] raised service migration policy to cope with
mobility. In [21], Lordan et al. offered a approach
to deal with both mobility and trade-off between
performance and energy. But they are designed for
mobile cloud computing, and can not be well applied
in MEC. Wang et al. delivered a Q-learning based
mobility management policy with partial server-side
information [22]. In [23], Xu et al. also studied the par-
tial information scenario, and they introduced service
migration cost. Ding et al. in [24] developed differ-
ent service migration strategies depending on mobility
types. But neither did they consider the challenges
mobility brings to COPO (the unpredictable comple-
tion time caused by mobility makes static scheduling
policies not applicable for COPO to reduce cost.) nor
did they solve the impact of movements on offload-
ing during data transmission process, i.e., they ignore

 11 Page 4 of 15 J Grid Computing (2022) 20:11

the influence of distances with servers on data upload-
ing rates. They simply use the instant uploading rates
when the task is ready to make offloading policies
(Table 1).

1.3 Our Contributions

Although computation offloading and mobility man-
agement have been two popular research directions in
edge computing, few articles have considered user mobi-
lity in computation offloading, let alone COPO. This arti-
cle aims to provide a cost-saving offloading strategy for
SMDs represented by driverless vehicles moving in
multi-MEC enabled networks, and show how the strat-
egy help them efficiently complete their computation-
intensive and delay-sensitive tasks with MEC. The
optimal offloading policy is made by comparing the
execution cost of the tasks executed on different enti-
ties. And our policy minimizes execution overhead of
SMDs by controlling the CPU clock frequency and
managing users′ mobility.

The main contributions and differences of this
paper are listed as follows:

– We consider SMDs′ mobility in computation
offloading stage including data uploading phase.
Using mobility prediction method to avoid dis-
connection and considering the changes of data
uploading rate caused by movements of SMD.

– We formulate the problem into an execution over-
head minimization problem under constraints of
completion deadline and task dependency, prove
there exists an optimal solution to the problem,
and reveal how they influence computation com-
pletion time.

– We characterize the performance of our algorithm,
and demonstrate the impact of mobility and various
parameters on offloading strategy by extensive
experiments. Moreover, the experiments adopt
resource-constraint heterogeneous MEC servers.

The rest of the paper is organized as follows. We first
introduce the system model and formulates the prob-
lems mentioned above in Section 2. Then we propose
and describe the corresponding algorithm, a mobility-
aware and code-oriented partitioning offloading algo-
rithm (MCPO) in Section 3. In Section 4, some simu-
lation experiments are done to evaluate the algorithm
in this paper. Finally, we carry on a summary to this
article in Section 5.

2 System Model and Problem Formulation

In this section, we formally formulate our system
model and corresponding optimization problem.

2.1 Network and Task Model

Figure 1 shows our mobile edge environment with
deployment of edge servers owning heterogeneous
network and computing resources. Let M be the num-
ber of MEC servers and M = {1, . . . , M} be the
corresponding server set. Especially, 0 represents the
local SMD. The maximum CPU frequency and cov-
erage radius of a server m ∈ M are represented
respectively by Fmax and Occ(m).

SMDs move in the mobile edge environment with
a computing application to be executed locally or
remotely. Each application can be described as a four-
tuple 〈D, L, γ, Tmax〉, where D is the size of input
data, Dmax is the maximum possible size, and L is the
computation workload, that is, how many CPU cycles
are needed to execute the task. γ represents the out-
put of a task, and γk,n indicates the data size that task
n need to receive form its predecessor k′s output, and
Tmax represents the completion deadline. Computing
applications are dynamically divided into N ordered
subtasks, denoted by N = {1, . . . , N}. The dynamic
partitioning method in [25] is adopted in this paper,
and other partitioning methods can also be used [26,
27]. Denote Dn and Ln respectively as the data size
and the computation workload of subtask n. Use χ ={
χn,m|n ∈ N , m ∈ M ∪ {0}} ∈ {0, 1}N×(M+1) to
represent task offloading strategy matrix, and χn,m =
1 to indicate that task n is unloaded to server m for
execution.

Dependencies between subtasks can be represented
by a DAG G = (V , E). Each node i ∈ V in
G represents a subtask and a directed edge e(i, j)

indicates the precedence constraint between tasks i

and j such that task j cannot start execution until
its precedent task i completes. Taking face recog-
nition as an example. Face recognition application
is executed in two separate phase: face detection
and face recognition. In detection phase, taking algo-
rithm to narrow the initial set of face location can-
didates to the final set of detected face locations.
Then the detected face will be compared with tem-
plate image in a database separately using other
algorithm.

J Grid Computing (2022) 20:11 Page 5 of 15 11

fm,n indicates CPU frequency that server m can allo-
cate to task n. Especially, f0,n represents local CPU fre-
quency dealingwith task n. Distance between entity (local
SMD orMEC servers)m′ andmwhen task n is ready is
denoted by D= {

dn,m′,m|n ∈ N , m′, m ∈ M ∪ {0}}.
Since no prior knowledge about the user′s trajectory is
needed, the trajectory can be generated by any mobil-
ity model such as a random path-point model. For a
task n∈N , when dn,0,m<Occ(m), it can be offloaded
to server m for remote execution. In our work, we
denote A (n)⊆M as the set of available MEC servers
for task n.

2.2 Communication Model

The input data of subtasks should be transmitted to
the chosen edge server for remote execution. Denote
server m ∈ A (n) as the subtask n offloaded to, and
pn as the transmission power. Using the set V =
{vn,m|n ∈ N , m ∈ M } to represent the velocity
the SMD relative to server m when executing task n.
According to the Rayleigh fading channel model [28],
the achievable rate of task n transferred from entity m′
to entity m can be given as

R
(
n,m′,m

) = Wm′,m log2

(

1 + G0 (d0/dis)θ pn

N0Wm′,m

)

, (1)

where G0 is the path loss constant, θ is the path loss
index, d0 is reference distance, N0 is the noise power
spectral density of the MEC server receiver, Wm′,m is
the channel bandwidth. dis represents the distance of
the SMDm′ to edge serverm, so, given the speed vn,m,
dis = dn,m′,m + vn,mt .

2.3 Computation Model

We use CT l
n, CT c

n,m to represent the completion delay
of task n executed locally or remotely (running on
the server m), and use ET l

n, ET l
n,m, T Tn,m to repre-

sent the local execution delay, remote execution delay
and the transfer time respectively. Next we define the
ready time and Weighted Cost of Energy and Delay
(WCED) for task n.

Definition 1 (Ready Time) The ready time of a task
is defined as the earliest time when all its immedi-
ate predecessors have been completed. The formula is
defined as

RTn = max
k∈pred(n)

{CTk}, (2)

where pred(n) represents the set of all predecessors
of task n.

Definition 2 (Weighted Cost of Energy and Delay)
Weighted Cost of Energy and Delay (WCED) is
defined as a weighted sum of energy consumption and
the corresponding completion delay. When theWCED
for performing a task is low, we call it cost-saving. The
WCED of task n can be expressed as

Zn = ωE
n En + ωT

n CTn, (3)

where 0≤ ωE
n En ≤ 1 and 0≤ ωT

n CTn ≤ 1 represent
the weights of energy consumption and completion
time respectively when making offloading strategy of
task n, and ωE

n + ωT
n = 1. Devices can set different

weight values to satisfy different types of applications
such as delay-sensitive applications and delay-tolerate
applications.

2.3.1 Local Computing

Denote ξ = [
f0,n, n ∈ N

]T as the local CPU clock
frequency (GHz) vector. Then the local execution
delay of task n can be represented as

ET l
n = Ln/f0,n. (4)

The energy consumed by the local processing of the
corresponding task is

El
n = αLnf

2
0,n, (5)

where α is a constant, depending on the effective
optional capacitance of the chip structure. In order to
make the energy consumption of the local processing
consistent with that in [29]

(
αf 3 = 0.8w

)
, α = 10−5

in this paper. We can adjust the clock frequency of
CPU chips by using DVFS technology to achieve the
optimal computation time and energy consumption on
mobile devices.

Obviously, the local completion time of task n is

CT l
n = RTn + rtkm′,m + ET l

n, (6)

where rtk
m′,m represents delay for receiving partial

result of predecessor k from m′. And rtk
m′,m =

γk,m/R
(
n, m′, m

)
, especially, rtk

m′,m = 0 if m′ = m.
Then the local WCED of task n is

Zn,0 = ωE
n El

n + ωT
n CT l

n. (7)

 11 Page 6 of 15 J Grid Computing (2022) 20:11

2.3.2 Remote Computing

With data transmission rate R
(
n, m′, m

)
, data transfer

delay can be given as

T Tn,m = Dn/R
(
n, m′, m

)
. (8)

Then the corresponding energy consumption is

Ec
n,m = T Tn,mpn + Econst

n , (9)

where Econst
n represents the energy consumption that

the SMD contends access channel for uploading task
n (determined by MAC protocol channel contention
time and cloud acceptance control) plus the tail energy
that can keep the channel for some time after data
transmission.

As defined above, the CPU frequency that server m

can allocate to task n is fm,n, so the execution delay
of task n on server m is

ET c
n,m = Ln/fm,n. (10)

Then the completion time for task n on server m is

CT c
n,m = RTn + T Tn,m + rtkm′,m + ET c

n,m. (11)

Completion time consists of task ready time, data
uploading time, execution delay, and predecessor
results receiving time. Note that because completion
times of n′s predecessors are unpredictable, data trans-
mission of task n must begin after their completion.

From (9) and (11), it can be concluded that the
WCED of task n on server m is

Zn,m = ωE
n Ec

n,m + ωT
n CT c

n,m. (12)

We can observe from formula (8) and (9) that low data
transmission rate R

(
n, m′, m

)
will lead to long trans-

mission time for offloading input data to the server
and high energy consumption for wireless access. In
this case, computing tasks locally is much better for
mobile devices.

2.4 Problem Formulation

For a given task sequence set N of the application,
the WCED of the application can be calculated as

Z=
N∑

n=1

Zn

=
N∑

n=1

M∑

m=0

χn,mZn,m

=
N∑

n=1

[
χn,0

(
ωE

n El
n + ωT

n CT l
n

)

+
M∑

m=1

χn,m

(
ωE

n Ec
n,m + ωT

n CT c
n,m

)]
, (13)

where, both CT l
n and El

n are functions of local clock
frequency, while the others are constants. In this paper,
the optimal offloading decision and the optimal CPU
frequency are obtained to reduce the WCED of the
application. Then, the problem that the application has
the lowest WCED and meets the application delay
limit can be expressed as

P : minχ,ξ

∑N
n=1 Zn, (14)

s.t. maxn∈N {CTn} ≤ Tmax, (15)

0 ≤ fm,n ≤ Fmax, (16)

maxk∈pred(n) CTk ≤ RTn, (17)

∀χn,m ∈ {0, 1}, (18)

if χn,m = 1, m ∈ {0} ∪ A (n) , (19)

where χ is the task offloading strategy matrix, and
ξ is the local CPU clock frequency vector. The con-
straint (15) indicates that the maximum completion
time of all subtasks is limited by the specified appli-
cation completion delay Tmax. The setting of Tmax

depends on the application′s delay requirement, i.e.,
the delay-tolerant application can have a high max-
imum completion time; otherwise, it is best to set
a low maximum completion time. The (16) is the
CPU frequency constraint. The constraint (17) indi-
cates that the start time of the task cannot be earlier
than the completion time of all its predecessors. The
constraint (18) indicates that task n can and must be
offloaded to edge servers for execution or executed
locally. The constraint (19) indicates that task n can
only be offloaded to the servers with which the SMD
has connection or executed locally. While with mobil-
ity,A of the SMD is changing along time, so solutions
should be taken to avoid disconnection.

The key challenge to solve the optimization prob-
lem P in (14) is that integer constraint χn,m ∈
{0, 1} makes problem P a mixed integer nonlinear
programming problem, which is non-convex and NP
hard in common [30]. To solve the problem, the
binary offloading decision variable is relaxed to a real

J Grid Computing (2022) 20:11 Page 7 of 15 11

number between 0 and 1, as in literature [31, 32].
To satisfy the constraint (15), we obtain a Lagrangian
function of problem (14),

L (κ, ξ, χ) =
N∑

n=1

M∑

m=0

χn,mZn,m + κ (CT − Tmax) ,

(20)

where CT represents the completion time of the lat-
est completed subtask, and κ is the penalty factor on
the objective function, which makes the function tend
to be optimal under the constraints of time conditions
(15). It is the cost that the algorithm must pay in order
to satisfy the constraints. According to [33], the dual
problem of the original problem (14) is

max
κ

min
χ,ξ

L (κ, ξ, χ) . (21)

Using layering as Optimization Decomposition
(LOD) method to decompose the dual problem (21)
into two-layer structures [33]. LOD can yield an opti-
mal solution for the dual problem (21) and its original
problem (14), which has no duality gap with (21). The
first layer is the internal minimization of (21). The
second layer, external maximization in the equation.

3 MCPO Algorithm

We can see from problem P , each application owns a
completion deadline and its subtasks have dependency
constraints. The system aims to lower the execution
overhead by allocating the subtasks to best perfor-
mance entity. When involving mobility management,
we adopt a mobility prediction method to eliminate
its impact on COPO and deliver offloading decisions
which is more likely not temporally optimal as shown
in algorithm 1.

3.1 Local Clock Frequency Control

When task n is processed locally, χn,0 = 1, χn,m =
0, m
= 0. The local clock frequency f0,n should
satisfy the following WCED minimization formula,

Zn =
N∑

n=1

[
χn,0

(
ωE

n El
n + ωT

n CT l
n

)

+
M∑

m=1

χn,m

(
ωE

n Ec
n,m + ωT

n CT c
n,m

)]
, (22)

and be bound by the condition (16). (22) is a convex
function of f0,n, and we could rewrite this as

min
f0,n

(
ωt

nCT l
n + ωE

n El
n + κCT l

n

)
. (23)

Algorithm 1MCPO algorithm.

Require: N :the set of N ordered tasks; A (n):the set of
available severs for task n; pred(n):the set of immedi-
ate predecessors of task n; D :the set of distances; V :the
set of velocity of the SMD; ε:an infinitesimal number;

Ensure: {χ, ξ}:optimal clock frequency control and
offloading decision;

1: Initialize:Dn, Ln, ω
E
n , ωT

n , step(x), κ, {f0,n}and itera-
tion index x ← 1;

2: for n = 1 → N do
3: /*Calculation of ready time*/
4: if pred(n) == ∅ then
5: RTn ← 0
6: else
7: RTn = maxk∈pred(n){CTk}
8: end if
9: /*Clock frequency control*/
10: x ← 1
11: repeat
12: Compute ET l

n, El
n, CT l

n, Zl
n,0by using (4)–(7)

13: Calculate Cl
n = zl

n + κCT l
n

14: Compute the clock frequency f0,n by using (25)
15: Update Lagarangian multipliers κ(x + 1) by

using (31)
16: x ← x + 1
17: until |κ(x + 1) − κ(x)| < ε

18: /*Accurate distance computing*/
19: x ← 1
20: for m = 1 → M do
21: if m
∈ A (n) then
22: Cc

n,m ← +∞
23: end if
24: Compute T Tn,m by using (8) and (27)
25: Compute Ec

n,m, ET c
n,m, CT c

n,m

26: if dn,m′,m + vn,mT Tn,m > Occ(m) then
27: CT c

n,m ← CT c
n,m + τ

28: end if
29: Compute Zn,m by using (12)
30: Calculate Cc

n,m = Zn,m + κCT c
n,m

31: end for
32: Cc

n ← min{Cc
n,m}

33: /*Computation offloading selection*/
34: if Cc

n > Cl
n then

35: χn,0 ← 1
36: else
37: χn,argm min {Cc

n,m} ← 1
38: end if
39: end for

 11 Page 8 of 15 J Grid Computing (2022) 20:11

It′s not difficult to see that the function is consec-
utive except for the point f0,n = 0. RTn is a constant
associated only with the completion delay of precur-
sor task, which is known here. Taking the derivative
function, and then setting the derivative to be 0, that is

min
f0,n

[(
ωt

n + κ
) (

Lnf
−1
0,n + RTn

)
+ ωE

n αLnf
2
0,n

]
.

(24)

The value of f0,n that minimizes (23) can be obtained,

f0,n = 3

√
ωt

n + κ

2ωE
n α

. (25)

As you can see, the optimal clock frequency for
processing task n depends on the weight of the
completion time ωT

n , the weight of the energy
consumptionωE

n , and the lagrangian multiplier κ .
When ωT

n and κ increases, i.e., when the system
attaches more importance to the completion time and
the completion deadline constrain, the local frequency
increases. When ωE

n increases, the system will pay
more attention to a low energy consumption, so the
frequency decreases.

3.2 More Accurate Data Transmission Delay

We adopt a mobility prediction method to manage
movements of SMDs. During the data uploading
period, if SMD moves at a high speed, it may move
out of the coverage area of some servers, resulting
in disconnection with them. While SMD is near the
center of a server, a small shift can also cause a big
change in the data uploading rate. Therefore, we con-
sider SMDs′ mobile tendency, i.e., close to or away
from the servers, and capture the variation of the dis-
tances to edge servers during the uploading period.
The speed of SMD relative to the server is predicted
by the mobility of the SMD before (the movement of
SMDs has inertia, and its mobility generally changes
little in a short time). To get a more accurate uploading
delay mainly includes two parts: one is considering
the changes of data uploading rate caused by dis-
placements of SMDs during data uploading time; the
other is reducing the possible disconnection caused by
movements of SMDs.

If task n is processed in the cloud, problem P seems
to be a fixed value, which does not change with the
behavior of the SMD, but in fact, the data upload time
is a function of the distance between the SMD and the

server. The upload data size is the integral of upload
rate R

(
n, m′, m

)
to time t , then the data upload time

T Tn,m can be calculated by the following formula,

∫ T Tn,m

0
Wm′,m log2

(

1 + G0 (d0/dis)θ pn

N0Wm′,m

)

dt=Dn,

(26)

where dis = dn,m′,m + vn,mt , and it captures the
distance variation of the SMD during the uploading
time to help calculate a more accurate uploading time,
while dn,m′,m does not. Suppose that the SMD′s dis-
tances to servers are recorded at set intervals. Given
the set interval inter and distances dis, we can get
vt
n,m = (

dist − dist−1
)
/inter . In this way, we can

avoid analysing the concrete mobility model of the
SMD for managing its mobility. However, it is hard to
get accurate T Tn,m directly through (26) via Intergra-
tion by Substitution and Part or get an approximation
via various interpolation methods. So the distance dis

is calculated by a number of iterations, the result of
which can be approximately regarded as the average
distance between the SMD and the server during data
uploading time. The calculation steps are as follows:

eL = dn, m′, m + DnV
2R(n,m′,m)

,

R
(
n, m′, m

) = Wm′,m log2
(
1 + G0(d0/eL)θpn

N0Wm′,m

)
,

(27)

among them, eL is an intermediate variable used to
hold the updated distance of each iteration. After
several iterations, eL obtained approaches the actual
average distance, which is more accurate than the one
when the task is ready, i.e., dn, m′, m.

Method to relieve the disconnection problem is to
predict which servers the SMD may lose connection
with. If dn,m′,m + vn,mT Tn,m > Occ(m), we think
the SMD will lose connection with the server m. Add
extra time costs τ to completion times of the task
on those servers, indicating that, in practice, the task
needs to transfer data through core network or perform
service migration, which causes additional overhead.
Then, the completion delay can be compared with that
of other servers.

3.3 Selection Policy

The most important function of computation offload-
ing is to help the SMD decide whether the current

J Grid Computing (2022) 20:11 Page 9 of 15 11

task should be uploaded to the cloud, and if so, which
server should be selected for offloading. The selec-
tion strategy for computation offloading in this paper
is based on the goal of loweringWCED. Local WCED
can be expressed as, Cl

n = Zl
n + κCT l

n. And Cc
n,m =

Zc
n,m +κCT c

n,m represents WCED at each edge server.
So the WCED of remote execution, i.e., the lowest
WCED at all edge servers is, Cc

n = min
{
Cc

n,m

}
, m ∈

A (n). As a result,

χn,0 =
{
0, Cc

n < Cl
n;

1, otherwise.
(28)

When χn,0 = 1, χn,m = 0, m ∈ A (n). While χn,0 =
0, i.e., Cc

n < Cl
n, the optimal decision can be gotten

from,

minχn,m

∑M
m=1 χn,mCc

n,m,

s.t. (18) and (19). (29)

If Cc
n,j = min

{
Cc

n,m

}
, χn,j = 1, and χn,m = 0, m
=

j .
As can be seen from the above formulas of WCED,

the final offloading strategy is related to the local
clock frequency, data transmission power, data upload
speed and the completion delay of precursor tasks.
When the WCED of local execution at the optimal
CPU frequency is lower than the minimum WCED
of all remote execution, the data will be executed
locally. The optimal CPU frequency is determined
by the Lagrange penalty factor, the weight of energy
consumption and the weight of execution delay.

3.4 Update the Lagarangian Multiplier

The outer layer maximization problem in (21) can be
solved by subgradient method. The partial derivative
of (20) with respect to Lagrange multiplier κ is,

∂L (κ, ξ, χ)

∂κ
= CT − Tmax, (30)

So for a given set of local clock frequencies, we can
through the following formula to update the Lagrange
multiplier,

κ (x + 1) =
[
κ (x) − step (x)

∂L(κ,ξ,χ)
∂κ

]+

=
[
κ (x) − step (x) (Tmax − CT)

]+
, (31)

where the step (x) function is a function of the num-
ber of iterations x. In order to ensure that the final
increment of κ is less than an infinite number ε, i.e.,

it converges to a certain local maximum value, the
value of step (x) cannot be too large, which will cause
the function to oscillate back and forth around the
maximum value and cannot converge.

4 Experiment Analysis

In this section, a simulation study is carried out to
verify our analysis and evaluate the performance of
the proposed mobility management scheme. To the
best of the authors′ knowledge, there is little work
studying the problem of code-oriented and cost-saving
offloading when mobile devices move in the highly
overlapped coverage of edge servers. The solution to
this problem requires a combination of computation
offloading strategy and mobility management, which
means considering the mobility of devices in com-
putation offloading phase to avoid frequent service
migration. So, in this case, we′re going to use E2M2

[23], another offloading algorithm with mobility man-
agement, the delay-optimal algorithm and the energy-
optimal algorithm as the comparison algorithms.

E2M2: the whole trip duration is divided into I

frames, and each frame contains J periods, i.e., T =
IJ . Set the weight of energy consumption zero and
reset the weight of delay per frame. In each period, the
weight of energy consumption is calculated accord-
ing to the energy deficit queue. The server with a
weighted minimum of time delay and energy con-
sumption in each period is selected for offloading.
E2M2 considers SMDs′ mobility but don′t consider
the task dependency.

Delay-optimal: divides the application into a fine-
grained set of tasks. The task will be offloaded to the
server with the lowest latency or be executed locally
when the local latency is less then the edge cloud.

Energy-optimal: the application is divided into a
fine-grained set of tasks. The task will be offloaded to
the server with the lowest energy consumption or be
executed locally when the energy consumption is less
then the edge cloud.

4.1 Parameter Set Up

Consider a typical mobile user with one SMD mov-
ing T time periods (T is unknown, while the value of
each time period is fixed and same) in the network.
This article simulated an 800 m × 800 m square gird

 11 Page 10 of 15 J Grid Computing (2022) 20:11

area with 25 servers. Properties such as server distri-
bution, server performance and coverage radius can be
set arbitrarily according to the real situation. In this
paper, for the sake of simplicity, it is assumed that all
the servers are uniformly distributed in the square grid
region, i.e., each server is located in one small cell′s
center, and the grid size is 160 m. Coverage diam-
eter of each server is 250 m. Each time period is 2
minutes. User′s application data size is D ∈ [0, 5]
MB and workload is L ∈ [0, 5000] Mega Cycles per
period. The Maximum CPU frequency of all servers
is Fm = 20 GHz, and background load μm ∈ [0, 16]
GHz [23]. For wireless access points, set G0 = −40
db, d0 = 1 m, θ = 4, W = 1 MHz, N0 = −174
dbm/Hz, p = 1 w [14].

4.2 Single Time Period and Multiple Time Period
Results

In this subsection, we will compare the proposed algo-
rithm with E2M2, the delay-optimal algorithm, and
the energy-optimal algorithm (the last two also adopt
application partitioning technique), to show that our
algorithm is a long-term cost-saving strategy. For a
single time period, we adopted the face recognition
application with a data volume of 2 MB in [34], and
divided the application into a set of 10 task with
certain dependencies, as shown in Fig. 2. The data
size and the CPU Cycles needed of the 10 tasks
follow the gaussian distribution of CN(μ1, σ

2
1) and

CN(μ2, σ
2
2), respectively, where constant μ1 = 200

KB, constant μ2 = 200 Mega Cycles [32], σ1 =
50, σ2 = 20. The energy weight ωE and the time delay
weight ωT were both 0.5. The computation workloads
of multi-period is processed the same as the single-
period one, which divides the application into a set of
multiple tasks with dependencies in Fig. 2. This paper
takes fifteen time periods, namely T = 15, a cer-
tain time span that can reflect the performance of our
algorithm in a long period of time without too much
experimental calculation.

Figure 3 shows the energy consumption and com-
putation delay of the four algorithms in a single time
period. It is not difficult to see from the figure that
the delay-optimal algorithm has the best performance
in computation delay, but its energy consumption is
much higher than other algorithms, which is about
three times of the energy consumption of our algo-
rithm. In contrast, the energy consumption of the

Fig. 2 An example of relationships among the subtasks

energy-optimal algorithm is the lowest, whose compu-
tation delay is much higher and just slightly lower than
E2M2 algorithm. The performance of our algorithm is
second only to the energy-optimal algorithm in terms
of energy consumption, and second only to the delay-
optimal algorithm in terms of computation delay. Our
algorithm receives the lowest WCED. In addition, the
poor performance of E2M2 in a single period results
from that it focus on the system performance in a
long period and did not adopt partitioning method to
use the parellel processing capability of multiple MEC
servers.

Figure 4 shows the energy consumption and com-
putation delay of each algorithm in fifteen time peri-
ods. It can be seen that the delay-optimal algorithm
still performs best in terms of computation delay and
that of our algorithm is slightly higher than the delay-
optimal algorithm, but much smaller than the other
two. As for energy consumption, the energy-optimal
algorithm is always the best. Energy consumptions of
our algorithm and the E2M2 algorithm are approach-
ing it sometimes but much higher than it at most time.
It is not difficult to find that our algorithm owns the
lowest WCED in most conditions. The computation
delay of E2M2 algorithm is still very large in multi-
periods, because its algorithm only considers to meet

J Grid Computing (2022) 20:11 Page 11 of 15 11

Fig. 3 Comparison of delay
and energy consumption for
different algorithms in a
single time period

the energy consumption limit in a long time, and also
because it does not divide the application.

4.3 Impact of Weights ωE and ωT

As mentioned before, the dynamic change of the
weights ensure that SMDs can make more cost-saving
offloading decisions which are more in line with the
user′s needs and improve the user′s satisfaction. In
this subsection, we will discuss the impact of ωE and
ωT on the offloading strategy by comparing the com-
putation delay and energy consumption at different

values of ωE and ωT . As can be seen from Fig. 5, for
certain tasks, its completion time decreases with the
increase of ωT , while its energy consumption is just
the opposite. Its energy consumption went down with
the increase in ωE , and the delay was just the oppo-
site. This is because according to (25), the increase
of ωE will lead to the decrease of the local clock fre-
quency f , which will result in the reduction of energy
consumption. A lower clock frequency means that the
computation delay of local execution increases, result-
ing in an increase in overall application completion
time. Moreover, the value of WCED is directly related

Fig. 4 Comparison of delay and energy consumption for different algorithms in four time periods

 11 Page 12 of 15 J Grid Computing (2022) 20:11

Fig. 5 Comparison of delay and energy consumption under different values of weights

toωE andωT , andWCED is the basic index that deter-
mines the offloading strategy. When ωE increases, the
system will pay more attention to energy consumption
cost. And for some other tasks, energy consumption
and delay seems not to have changed significantly with
each change of ωE and ωT . This is because the task
scheduling decision will not change with the weights′
change if both the two consecutive offloading decision
have chosen to offload tasks to edge servers. And the
transmission power is a constant, when the channel

state and the server side state changed little, the
task processing delay and energy consumption don′t
change.

4.4 The Influence of Mobility

In this subsection, we will show the relationship
between data size, smart mobile devices’ velocity
and uploading rate to prove our mobility manage-
ment is needed and helpful for making a cost-saving

Fig. 6 Displacements during upload time at different initial
distances to MEC servers when the task is ready. a data size=
0.25MB, the displacement of the SMD under different speeds.

b v=5m/s, the displacement of the SMD under different data
volumes

J Grid Computing (2022) 20:11 Page 13 of 15 11

offloading selection, based on experimental results.
We can see form Fig. 6 that when SMDs’ veloci-
ties or the datasizes of their subtasks are large, SMDs
can move several meters away from original place
(device′s distance offset) during the uploading time.
They might move out of the connected server′s cov-
erage, disconnecting with the current server, which
causes service migration or remote communication
to degrade offloading performance. We can also see
from Fig. 6 that, device′s distance offset grows faster
and faster as dn,m′,m (distance between local SMD
m′ and MEC server m when task n is ready) grows
when velocity and datasize are settled. It means that
uploading rate is changing with the distance between
local SMD and MEC server during uploading time,
while this distance is changing with SMDs’ move-
ment. So we designed more complicated calculations
to get an average uploading rate over uploading period
rather than an uploading rate at a time, and then get
a more accurate transmission delay. As you know,
transmission delay is important in selecting the most
cost-saving offloading scheme.

4.5 Impact of Completion Constraint on WCED

In this subsection, we will show the effect of the appli-
cation completion constraint on the delay and energy
consumption, and illustrate one of the considerations
of our algorithm from the side. As can be seen from
Fig. 7, as the completion limit gradually increases, the
overall WCED of the application further decreases,

Fig. 7 Experimental result of deadline′s impact on WCED

and then starts to level off when the completion con-
straint reaches 1 second. Because devices can choose
between the cloud and the local to do more cost-saving
offloading options when the completion limit grows.
In other words, tight completion constraint of the
delay-sensitive application forces the SMDs to cost
more, while our algorithm can release this problem to
a certain extent.

5 Conclusion

In this paper, the problem of how to realize cost-
saving computation offloading in MEC is studied
when SMDs carrying DAG move across coverage
areas of multiple MEC centers. We propose a novel
algorithm to help moving SMDs like driverless vehi-
cles in MEC efficiently achieve their tasks. The algo-
rithm with mobility prediction, MCPO, is composed
of three parts: local clock frequency control, accurate
upload delay calculating, and computation offloading
selection, to make the offloading strategy with the
lowest WCED. We find that the computation offload-
ing selection is determined not only by the computa-
tion workload of the task, but also by the maximum
completion time of its predecessors, the local CPU
frequency, and the mobility of the SMD. In addition,
it can be observed that the optimal clock frequency
for the SMD to perform the task (making the local
WCED lowest) depends on the balance between com-
pletion time and energy consumption, as well as the
penalty factor for the required application completion
time. Finally, through the simulation of actual sce-
narios, the experimental results show that our MCPO
algorithm can effectively reduce energy consumption,
application computation delay and service migration
frequency by adjusting the local CPU clock frequency
and managing mobility compared with the existing
offloading strategies. This paper is an online algorithm
that uses the current data in reality. We will further
study computation offloading mainly for driverless
vehicles in MEC, offering more efficient offloading
policies based on their particular features like known
trajectory.

Acknowledgements This work was partially supported by
the Programs of National Natural Science Foundation of China
(Grant Nos. 62072165, U19A2058), Open Research Projects
of Zhejiang Lab (No. 2020KE0AB01), and the Fundamental
Research Funds for the Central Universities.

 11 Page 14 of 15 J Grid Computing (2022) 20:11

Data Availability The data analysed during the current study
are available from the first author onup reasonable request.

References

1. Carrasco, R., Waycott, J., Baker, S., Vetere, F.: Designing
the lost self: Older adults’. In: Conference on Designing
Interactive Systems, pp. 441–452 (2018)

2. Al-Ars, Z., Vlugt, S., Jskelinen, P., Linden, F.: ALMARVI
system solution for image and video processing in health-
care, surveillance and mobile applications. J. Signal Pro-
cess. Syst. 91(1), 1–7 (2019)

3. Dinh, T., Tang, J., La, Q., Quek, T.: Offloading in mobile
edge computing: Task allocation and computational fre-
quency scaling. IEEE Trans. Commun. 65(8), 3571–3584
(2017)

4. Ahmed, A., Ahmed, E.: A survey on mobile edge com-
puting. In: 10th International Conference on Intelligent
Systems and Control (ISCO), pp. 1–8 (2016)

5. Wang, X., Ning, Z., Guo, S.: Multi-agent imitation learning
for pervasive edge computing: A decentralized computation
offloading algorithm. IEEE Trans. Parallel Distrib. Syst.
32(2), 411–425 (2020)

6. Sun, X., Ansari, N.: PRIMAL: PRofIt maximization avatar
placement for mobile edge computing. In: IEEE Internatio-
nal Conference on Communications (ICC), pp. 1–6 (2016)

7. Jia, M., Liang, W., Xu, Z., Huang, M.: Cloudlet load bal-
ancing in wireless metropolitan area networks. In: IEEE
INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, pp. 1–9 (2016)

8. Sun, X., Ansari, N.: Latency aware workload offloading in
the cloudlet network. IEEE Commun. Lett. 21(7), 1481–
1484 (2017)

9. Liu, J., Mao, Y., Zhang, J., Letaief, B.K.: Delay-optimal
computation task scheduling for mobile-edge computing
systems. In: IEEE International Symposium on Information
Theory (ISIT), pp. 1451–1455 (2016)

10. Munoz, O., Pascual-Iserte, A., Vidal, J.: Optimization of
radio and computational resources for energy efficiency
in latency-constrained application offloading. IEEE Trans.
Veh. Technol. 64(10), 4738–4755 (2015)

11. You, C., Huang, K., Chae, H.: Energy efficient mobile
cloud computing powered by wireless energy transfer.
IEEE J. Selected Areas Commun. 34(5), 1757–1771 (2016)

12. Sardellitti, S., Scutari, G., Barbarossa, S.: Joint optimiza-
tion of radio and computational resources for multicell
mobile-edge computing. IEEE Trans. Signal Inform. Pro-
cess. Netw. 1(2), 89–103 (2015)

13. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user
computation offloading for mobile-edge cloud computing.
IEEE/ACM Trans. Network. 24(5), 2795–2808 (2016)

14. Mao, Y., Zhang, J., Letaief, B.K.: Joint task offloading
scheduling and transmit power allocation for mobile-edge
computing systems. In: IEEE Wireless Communications
and Networking Conference (WCNC), pp. 1–6 (2017)

15. Li, Y., Chen, Y., Lan, T., Venkataramani, G.: MobiQoR:
Pushing the envelope of mobile edge computing via

quality-of-result optimization. In: IEEE 37th International
Conference on Distributed Computing Systems (ICDCS),
pp. 1261–1270 (2017)

16. Yang, L., Cao, J., Cheng, H., Ji, Y.: Multi-user computation
partitioning for latency sensitive mobile cloud applications.
IEEE Trans. Comput. 64(8), 2253–2266 (2015)

17. Lin, X., Wang, Y., Xie, Q., Pedram, M.: Task schedul-
ing with dynamic voltage and frequency scaling for energy
minimization in the mobile cloud computing environment.
IEEE Trans. Serv. Comput. 8(2), 175–186 (2015)

18. Deng, M., Tian, H., Fan, B.: Fine-granularity based appli-
cation offloading policy in cloud-enhanced small cell net-
works. In: Proceedings IEEE Int. Conf. Commun. Work-
shops, pp. 638–643 (2016)

19. Ding, Y., Liu, C., Zhou, X., Liu, Z., Tang, Z.: A code-
oriented partitioning computation offloading strategy for
multiple users and multiple mobile edge computing servers.
IEEE Trans. Industr. Inform. 16(7), 4800–4810 (2020)

20. Lordan, F., Badia, R.M.: COMPSs-Mobile: Parallel
programming for mobile-cloud computing. In: 16th
IEEE/ACM International Symposium on Cluster Cloud and
Grid Computing (CCGrid) (2016)

21. Taleb, T., Ksentini, A., Frangoudis, P.A.: Follow-me cloud:
When cloud services follow mobile users. IEEE Trans.
Cloud Comput. 7(2), 369–382 (2019)

22. Wang, J., Liu, K., Li, M., Pan, J.: Learning based mobility
management under uncertainties for mobile edge com-
puting. IEEE Global Communications Conference IEEE,
pp. 1–6 (2018)

23. Xu, J., Sun, Y., Chen, L., Zhou, S.: E2M2: Energy effi-
cient mobility management in dense small cells with mobile
edge computing. In: IEEE International Conference on
Communications (ICC), pp. 1–6 (2017)

24. Ding, Y., Liu, C., Li, K., Tang, Z., Li, K.: Task offloading
and service migration strategies for user equipments with
mobility consideration in mobile edge computing. In: 17th
IEEE intl conf on parallel and distributed processing with
applications. IEEE (2020)

25. Yang, L., Cao, J., Cheng, H., Ji, Y.: Multi-user computation
partitioning for latency sensitive mobile cloud applications.
IEEE Trans. Comput. 64(8), 2253–2266 (2015)

26. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.:
ThinkAir: Dynamic resource allocation and parallel execu-
tion in the cloud for mobile code offloading. In: Proceed-
ings IEEE Infocom, pp. 945–953 (2012)

27. Zhou, B., Dastjerdi, V.A., Calheiros, R., Srirama, S., Buyya,
R.: mCloud: A context-aware offloading framework for
heterogeneous mobile cloud. IEEE Trans. Serv. Comput.
10(5), 797–810 (2017)

28. Sklar, B.: Rayleigh fading channels in mobile digital com-
munication systems. I. Characterization. IEEE Commun.
Mag. 35(9), 136–146 (1997)

29. Miettinen, A., Nurminen, J.: Energy efficiency of mobile
clients in cloud computing. In: Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing
(HotCloud’10), pp. 1–7 (2012)

30. Liu, L., Zhang, R., Chua, K.: Wireless information and
power transfer: A dynamic power splitting approach. IEEE
Trans. Commun. 61(9), 3990–4001 (2013)

J Grid Computing (2022) 20:11 Page 15 of 15 11

31. Zhao, M., Yang, Y.: Optimization-based distributed algo-
rithms for mobile data gathering in wireless sensor networks.
IEEE Trans. Mob. Comput. 11(10), 1464–1477 (2012)

32. Guo, S., Liu, J., Yang, Y., Xiao, B., Li, Z.: Energy-
efficient dynamic computation offloading and cooperative
task scheduling in mobile cloud computing. IEEE Trans.
Mob. Comput. 18(2), 319–333 (2019)

33. Chiang, M., Low, S., Calderbank, A., Doyle, J.: Layering
as optimization decomposition: A mathematical theory of
network architectures. Proc. IEEE. 95(1), 255–312 (2007)

34. Praseetha, V., Vadivel, S.: Face extraction using skin color
and PCA face recognition in a mobile cloudlet environment.
In: 2016 4th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (Mobile-
Cloud), pp. 41–45 (2016)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

	Mobility-Aware and Code-Oriented Partitioning Computation Offloading in Multi-Access Edge Computing
	Abstract
	Introduction
	Motivation
	Related Work
	Our Contributions

	System Model and Problem Formulation
	Network and Task Model
	Communication Model
	Computation Model
	Local Computing
	Remote Computing

	Problem Formulation

	MCPO Algorithm
	Local Clock Frequency Control
	More Accurate Data Transmission Delay
	Selection Policy
	Update the Lagarangian Multiplier

	Experiment Analysis
	Parameter Set Up
	Single Time Period and Multiple Time Period Results
	Impact of Weights E and T
	The Influence of Mobility
	Impact of Completion Constraint on WCED

	Conclusion
	References

