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MAPD: An FPGA-Based Real-Time Video Haze
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Abstract—Real-time video dehazing plays a key role in help-
ing autonomous driving detect pedestrians or obstacles in severe
foggy weather to prevent potential hazards. Existing video dehaz-
ing methods achieve good restoration performance but still suffer
from oversaturation and low dehazing speed, especially for high-
definition (HD, high-resolution) videos. In this article, we propose
a mixed atmosphere prior information video dehazing accelera-
tor (MAPD) and implement it on field programmable gate array
(FPGA) to achieve real-time haze removal for HD video. MAPD
provides a mixed atmospheric light model by applying hetero-
geneous atmospheric light in the foreground area to balance
brightness deviation, and maintaining the global atmospheric
light in the background region. Considering the parallel charac-
teristics of FPGA, MAPD leverages the redundant information
between adjacent frames to accelerate the dehazing process and
designs an indirect transmission estimation to decrease resource
consumption. For comparison, we also implement six dehaz-
ing solutions (DCP, color ellipsoid prior (CEP), RDCP, FFVD,
MHVD, and REFD) on FPGA, and deploy a graphics processing
unit (GPU)-based method (D4) on the platform with Nvidia 3080
GPU. Experiments using two widely used benchmarks show that
MAPD increases the performance by up to 36.5%, 53.5%, 36.3%,
33.3%, 11.9%, and 23.3%, decreases resource consumption by up
to 79.7%, 75.0%, 74.8%, 25.6%, 22.6%, and 73.9% and enhances
FPS for HD videos by up to 241.6%, 145.9%, 151.7%, 68.6%,
50.6%, and 62.4%, compared with DCP, CEP, RDCP, FFVD,
MHVD, and REFD. Compared to D4, MAPD also promotes the
dehazing performance by up to 21.8%, and increases FPS by up
to 487.0%.

Index Terms—Autonomous driving, field programmable gate
array (FPGA), mixed atmosphere prior, real-time, video
dehazing.

I. INTRODUCTION

AUTONOMOUS vehicle technology, which plays an
important role in helping drivers avoid collision [1] and
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reduce accidents to save human lives [2], has now become
a frontier hot spot because of the advances in automobile
intelligence and advanced driver assistant systems. However,
unfavorable weather such as fog, which will blur or occlude
objects and humans on the road, leads to a grand challenge
for the stereo vision system of autonomous vehicles [3]. The
blurred video images may mislead stereo vision system mod-
ules (such as object detection [4] or object tracking [5]) to
make incorrect judgments for potential dangers or sudden
situations, and lead to traffic accidents [6]. The figures in
Section V-C show the influence of fog weather on object detec-
tion. From the first image of Fig. 9(c), it can be observed that
two two-wheelers are omitted by the object detection module.
This omission perhaps leads the autonomous vehicle system to
make a decision to evade to the right and causes an accident at
such a close distance. Besides, the loss of contrast and details
in the video frame also seriously degrade the performance of
other Internet of things (IoT) devices like traffic surveillance
cameras [7], smart parking monitors [8], and face recogni-
tion terminals [9]. Therefore, a real-time video haze removal
method can effectively improve the performance and accuracy
of IoT systems (e.g., autonomous vehicle systems) to reduce
the number of accidents.

In recent years, there have been several algorithms for sin-
gle image dehazing proposed to solve the problems caused
by haze or fog. They can be categorized into three aspects,
i.e., dehazing method based on image enhancement [10], [11],
neural network dehazing [12], [13], [14], [15], [16], [17], and
prior-based image dehazing algorithms [18], [19], [20], [21].
Wang and Zhou [10] used Fourier and exponential transform
to remove image shadow caused by uneven illumination and
strengthen image local details. However, these transforma-
tion techniques are not suitable for low-luminosity images.
Jobson et al. [11] proposed an algorithm called Retinex
to enhance fog-degraded images by using color constancy
of objects. Unfortunately, Retinex will weaken the original
details of the image because of its color range compression
through logarithmic transformation. Moreover, these image
enhancement dehazing methods ignore the essence of fog
image degradation which leads to a lack of dehazing effect
and robustness. To get a more accurate clear-day image,
researchers begin to use a neural network to process the
fog-degraded image. Cai et al. [12] proposed DehazeNet to
estimate transmission, and get a remarkable improvement.
MSCNN [13] modeled a multiscale deep network structure to
estimate the scene transmission and suppress halo artifacts of
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dehazed images. PMS-Net [14] used the convolutional neural
network (CNN) to generate the patch map from fog-degraded
images and selects the patch size dynamically which can
improve the performance in haze removal. However, these neu-
ral network dehazing methods have several limitations. First,
for a specific scene, the given training set can achieve superior
performance, but in other scenarios, the haze removal accu-
racy drops dramatically. Second, these neural network methods
(such as CNN) cannot meet the requirement of real-time pro-
cessing since the parameters of each layer have to be learned
from training [22]. Compared with the two categories of meth-
ods mentioned before, prior-based image dehazing algorithms
are more widely used because of less computation overhead.
Tan [18] used the prior information that the contrast of haze
degraded image is higher, and proposed that maximizing the
local contrast of haze degraded image can restore haze image.
But the restored image tends to be supersaturated and is prone
to have halo effects if the depth of field changes suddenly.
He et al. [20] proposed a single image haze removal algorithm
based on dark channel prior information to recover a clear-
day image and obtained significant effects for indoor images.
However, the dehazing performance for outdoor images is
supersaturated. Bui and Kim [21] used color ellipsoid prior
(CEP) information to dehaze a single image by embedding
a fuzzy segmentation process to calculate the transmission
and perform the refinement process at the same time. But it
will lead to visible color artifacts due to overdehazing of the
input hazy image. Moreover, all these single image dehazing
methods do not fully take into account the feature of abun-
dant correlation information between video frames so that
they are hard to satisfy the real-time requirement for video
dehazing.

Unlike the single image dehazing approaches, video dehaz-
ing is much more complicated [23]. To achieve the goal of
real-time video haze removal, we not only need to make
full use of the correlation information between video frames
to accelerate the process but also cannot ignore the situa-
tion of sharp changes in brightness caused by video scene
switching. Xu et al. [23] proposed a contrast-limited adaptive
histogram equalization-based (CLAHE) approach to clear-
ing the fog from video sequences by fusing the foreground
and background images into new frames, while this image
enhancement method still neglects the nature of hazy images.
Shiau et al. [22] implemented a haze removal algorithm
based on the dark channel prior for multiple continuous
dynamic image systems. It is also applied to video dehazing
by designing a dynamic adjustment strategy for atmospheric
light which addresses flicker issues in videos. However, due
to the excessive pursuit of brightness, the image pixels are
oversaturated. Kumar et al. [24] designed a high-speed very-
large-scale integration (VLSI) architecture for video defogging
to reduce the power and memory requirements, but their two-
stage process for airlight estimation cannot obtain optimal
results.

As the preprocessing step of object detection in autonomous
driving systems [22], the real-time processing capability of
video defogging has become another crucial factor in avoid-
ing potential collisions and accidents. It means more time can

be left for other visual perception systems to deal with sudden
situations. For example, when a vehicle is traveling at 40 km/h,
the total braking distance is 23.1 m if the video dehazing time
is 1 s while the distance is decreased to 12.21 m if the video
defogging time is lowered to 10 ms. This reduction in dis-
tance reduces the chance of collision from nearly 38% to less
than 3% based on the computation model of this article [25]
(assuming the distance to the obstacle is 50 m). Park and
Kim [26] proposed a fast video dehazing system using field
programmable gate array (FPGA) that simplifies the atmo-
spheric light solution of the original dark channel algorithm.
Majoka and Raja [27] realized a low-delay dehazing system by
introducing a two-stage architecture. The work in [22] and [24]
leveraged VLSI architecture to achieve real-time video defog-
ging. However, these video haze removal methods are based
on the theory of homogeneous atmospheric light prior, which
is a simplified model but is not applicable to real-world sce-
narios, so that the recovery image is inclined to supersaturate
or over enhance.

In this article, we propose a new FPGA-based video dehaz-
ing accelerator, namely, FPGA-based mixed atmosphere prior
information video dehazing accelerator (MAPD), effectively
exploiting the hardware parallelization characteristics and the
redundant information between adjacent frames for decom-
posing the video dehazing process, achieving real-time video
dehazing and improving dehazing performance. MAPD per-
forms parallel computation on input video frames by dividing
independent hardware modules. First, a mixed atmospheric
light model is proposed to utilize heterogeneous atmospheric
light and global atmospheric light for the foreground and back-
ground regions of frames, respectively. Second, unlike the
traditional transmission estimation, we combine the hardware
characteristics to design an indirect transmission approxi-
mation module that can effectively decrease resource con-
sumption. Third, a haze-free video reconstruction module is
implemented to gather the mixed atmospheric light and the
indirect transmission for the final clear-day output frame.
Finally, a program system module is designed to manage the
accelerator.

The main contributions of our work are as follows.
1) We propose a new FPGA-based video dehazing accel-

erator, called MAPD, which takes full advantage of the
hardware parallelization characteristics and the redun-
dant information between adjacent frames to efficiently
dehazing the foggy videos and decrease dehazing time. It
can satisfy the demand for real-time systems and obtain
high defogging performance.

2) We design a mixed atmospheric light model to cal-
culate the atmospheric light accurately. We switch the
estimation for the foreground region with more com-
plex brightness distributions to the heterogeneous atmo-
spheric light model and keep the global atmospheric
light for the background region where brightness varies
less. By leveraging the correlation of adjacent frames,
we parallelize the estimation on FPGA so that it can
finish in one iteration.

3) We explore an indirect transmission approximation mod-
ule by combining the hardware characteristics to reduce
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unnecessary division operations which will lead to extra
resource consumption in FPGA.

4) We conduct a series of evaluations on real-world hazy
video datasets to compare MAPD with six FPGA-
based solutions (DCP, CEP, RDCP, FFVD, MHVD,
and REFD) and a graphics processing unit (GPU)-
based method (D4) to demonstrate the effectiveness of
our work. For comparison, the first six methods are
also implemented in the same FPGA platform and D4

is evaluated with the Nvidia 3080 GPU. The experi-
mental results show that MAPD has superior dehazing
performance and achieves real-time, 244 FPS for a 480p
video and 39 FPS for a 1080p video.

The remainder of this article is organized as follows.
Section II introduces background and motivation. Section III
illustrates a detailed design of MAPD and the relevant
algorithms. Section IV describes the hardware implementa-
tion of MAPD. Section V presents the evaluation results.
Section VI introduces related work. In Section VII, we summa-
rize our results and provide a number of conclusions. Finally,
Section VII provides the acknowledgments.

II. BACKGROUND AND MOTIVATION

A. Atmospheric Scattering Model

To describe the formation of fog in a blurred fog image,
Koschmieder [28] developed a simplified atmospheric scatter-
ing model. Most haze removal algorithms are derived from
this model, and it can be expressed as follows [29]:

I(x) = J(x)t(x)+ A(1− t(x)) (1)

where x is the coordinate of the pixel. J(x) represents the
clear-day image while I(x) means the fog-degraded image.
A is the global atmospheric light. These three variables are
all 3-D vectors in RGB (RED, GREEN, BLUE) space. t(x)
means the transmission coefficient, which indicates the fog
density of a hazy image. However, in this equation, I(x) is the
only known variable whose value is much less than that of
unknowns, i.e., this is an underdetermined equation. In order
to solve this equation, some additional constraints or priors
have to be obtained. With this priori information, the haze-
free image J(x) could be restored by estimating the global
atmospheric light A and the transmission t(x).

B. Fast Guided Filtering and Side Window Filtering

Fast guided filtering (FGF) is an accelerated version of
guided filtering (GF) which is used to smooth the input image
while keeping the edges at the same position as in the guid-
ance image. According to the GF theory, the filtering output
image J can be expressed as follows:

J(x) = axG(x)+ bx (2)

where G(x) is the guidance image, and ax and bx are the aver-
age linear coefficients of all local patches overlapping x which
can be computed by a mean filter, respectively. Since the main
computation is a series of box filters, the time complexity of
GF is O(N). Compared with the original GF algorithm, FGF
speeds up the time from O(N) to O(N/s2) by subsampling the

Fig. 1. Side window filter. The green rectangles present the candidate
templates and the red ones mean the target pixel.

input image and the guidance image with a subsampling ratio s
and then upsampling to the original size after the computation
of box filters finish.

Unlike most traditional filters that align the center of the
window with the pixels being processed, the side window
filtering (SWF) uses its corner or side instead to improve
the edge preserving capability of the image significantly. As
shown in Fig. 1, SWF preserves the edge information by com-
puting eight candidate templates of the target pixel and then
picking the one with the minimal distance from the pixel to
be processed. More detail information about FGF and SWF
can be found in [30] and [31], respectively.

C. Motivation

Although the current video dehazing methods have gained
decent performance, there still exist some issues that need to
be addressed.

First, most of them are based on the assumption of the
homogeneous atmospheric scattering model, while this simpli-
fied model is not suitable for the atmospheric light distribution
in reality because of the diverse composition of the atmo-
sphere [12], [32]. Due to the uneven distribution of the
atmospheric particle, estimating a global atmospheric light A
for the whole image will lead to color distortion. Fig. 2(a)–(d)
(i.e., DCP [20], CEP [21], RDCP [33], and MHVD [24])
demonstrates this phenomenon, especially for the sky regions
in these figures (more details will be discussed in Section V).
Shiau et al. [22] proposed an optimized global atmospheric
light estimation by calculating an atmospheric light value for
the foreground and background areas, respectively, and assign-
ing different weights for them. However, its final atmospheric
light is still limited to the global value for the entire image so
that the restored image tends to be supersaturated, as shown in
Fig. 2(e) (i.e., FFVD). Du et al. [34] proposed a fusion defog-
ging method based on gray-scale and linear transmission to
produce a more brightly restored image, but it also had the
side effect of quality noise that severely blurs the visual effect
of images, as shown in Fig. 2(f) (i.e., REFD). In the area
of GPU-based dehazing solutions, Yang et al. [15] designed
a self-augmented image dehazing framework to improve the
dehazing performance by decomposing the estimation of trans-
mission into the prediction for density and depth map, while its
estimation for the atmospheric light still followed the homoge-
neous atmospheric scattering model. Besides, it also suffered
from the overestimation of transmission for extremely bright
areas, leading to a supersaturated recovered result, as shown
in Fig. 2(g) (i.e., D4). Based on the above experimental results
and analysis, we propose a new mixed atmosphere scattering
prior algorithm that accurately calculates the atmospheric light,
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Fig. 2. Dehazing performance on reality images. (a) DCP. (b) CEP. (c) RDCP.
(d) MHVD. (e) FFVD. (f) REFD. (g) D4. (h) Our MAPD.

TABLE I
DEHAZING TIME OF A 1080P VIDEO FRAME FOR DIFFERENT METHODS

which presents a superior dehazing performance, as shown in
Fig. 2(h). More evaluation details are illustrated in Section V.

Second, with the improved quality of video captured by
cameras in autonomous driving systems, it will take a longer
time to dehaze the frames in the video, which makes it harder
to meet real-time requirements. Table I represents the dehaz-
ing time of a frame in a 1080p (1920 × 1080) video for six
FPGA-based solutions (DCP, CEP, RDCP, FFVD, MHVD, and
REFD). It can be seen that even with FPGA acceleration, it
takes at least 38 ms (26 FPS) to dehaze a frame of video. If
the video resolution is increased to 2K (2560×1440), then the
frame rate will be less than 14 fps, which obviously cannot
satisfy the demand for real-time dehazing systems. Therefore,
we propose a new FPGA-based video haze removal acceler-
ator by implementing our mixed atmosphere scattering prior
algorithm on FPGA to achieve real-time video dehazing.

III. DESIGN

In this section, we describe the MAPD design, which lever-
ages the parallelization characteristics of FPGA by designing
several separate modules to efficiently dehaze the fog-degraded
video with lower time consumption.

A. MAPD Overview

As shown in Fig. 3, the processing system (PS) mod-
ule is responsible for video frame buffer control and
dehaze parameter initialization. The programmable logic
(PL) module is the main component of MAPD, which
consists of three submodules, namely, mixed atmospheric
light module (CalM_Module), transmission calculation mod-
ule (CalT_Module), and image reconstruction module
(RecJ_Module), respectively. The hazy video frame In(x) is the
input and the hazy-free video frame is obtained as the output.
In CalM_Module, the heterogeneous atmospheric light An(x)
and the global atmospheric light Aback

n are calculated first,
then they are combined based on the mixed atmosphere scat-
tering prior information to generate the final coarse-grained
atmosphere map Mn(x). In order to eliminate the block effect,

Fig. 3. Accelerator hardware circuit. The accelerator can be divided into
two main parts, which consist of the processing system module and the PL
module.

the final atmospheric light map Mref
n (x) will be refined from

Mn(x) by performing a fused fast guided filter operation that
is slightly modified from the original filter algorithm to reduce
time consumption. In the CalT_Module, considering that hard-
ware implementation needs to make full use of the parallel
characteristics of FPGA, we first approximate the transmission
by the side window filter and then estimate an indirect trans-
mission map Tn(x) with the fixed transformation parameter.
More details will be introduced in the following sections.

B. Mixed Atmospheric Light Model

As we described in Section II, atmospheric light plays
a significant role in haze removal to recover a clear-day
image. FFVD, which is another FPGA-based video defog-
ging method, optimizes the estimation of global atmospheric
light by using a weighting function. It first picks a subglobal
atmospheric light value for the foreground portion and the
background portion, respectively, and then weights these two
values into a new global atmospheric light. Although it makes
the haze-free images look brighter, there exists oversaturation
in some image pixels because of the unnecessary weighting
for these areas. The essential reason is that this article [22]
still employs the global value for the entire image, while the
atmospheric particle distribution is uneven in reality. We fur-
ther observe that the grayscale distribution of the foreground
area is in a wide range while the background region usually
concentrates in a small interval, which means the atmospheric
light varies less in the background region. Based on this obser-
vation and analysis, we establish the mixed atmospheric light
model by applying heterogeneous atmospheric light in the
foreground area to balance brightness deviation and maintain
the global atmospheric light in the background region. We
follow the design of Shiau et al. [22] to distinguish the fore-
ground and background regions. The segmentation threshold
can be calculated as follows:

threshold =
sum
x∈I

(
Igray(x)

)

w× h
(3)

where w and h are the width and height of the input frame
I(x), respectively, and Igray(x) means the grayscale image of
I(x). Through this segmentation, we can divide the pixels into
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Algorithm 1 Heterogeneous Atmospheric Light Algorithm

Input:
In(x, y): Input hazy frame
r: Length of the heterogeneous atmospheric light chunk

Output:
An(x, y): Heterogeneous atmospheric light map
1) /* Iterate the atmospheric light chunks */
2) for (x, y)← (1, 1) to (h/r, w/r) do
3) /* Iterate the chunk and find the max value */
4) Imaxg ← −1
5) for (xc, yc)← (1, 1) to (r, r) do
6) if (Igray(xc, yc) < threshold)
7) Imaxg ← MAX(Igray(xc, yc), Imaxg)
8) end if
9) end for

10) if (Imaxg == −1)
11) /* Belong to background regions, ignore this chunk */
12) An(x, y) ← −1
13) else
14) An(x, y) ← I(arg(Imaxg))
15) end if
16) end for
17) return An(x, y)
18) End

two categories. Those whose grayscale value is less than the
threshold belong to the foreground region. Otherwise, they are
part of the background region. The visual result is illustrated
in Fig. 9(c) of Section V. So, mixed atmospheric light map
Mn(x) is expressed in the following:

Mn(x) =
{

An(x), x ∈ Ifore

Aback
n , x ∈ Iback

(4)

where Ifore and Iback are the foreground region and background
region, respectively, n is the current input frame number. Aback

n
represents the global atmospheric light for the background
region while An(x) means the heterogeneous atmospheric light
for the foreground region. In the background region, we follow
the traditional global atmospheric light solutions [18], i.e., the
pixel with the maximum grayscale value will be selected and
assigned to Aback

n . The expression is shown in the following:

Aback
n =

{
In(y) | y = Coordinate

(
max

x∈Iback
Igray(x)

)}
(5)

where Coordinate indicates the coordinate of the pixel.
Algorithm 1 shows the procedure of estimating An(x), which

is the heterogeneous atmospheric light map for foreground
regions. First, we separate the region into chunks (steps 1–
4). Second, the maximum grayscale value Imax in each chunk
is calculated (steps 5–9). If the chunk contains a mix of
foreground and background pixels, we only consider the fore-
ground pixels (steps 6–8). Third, if Imax is equal to −1, it
means that this chunk belongs to the background area and
will be ignored, otherwise the related pixel is taken as the
atmospheric light of the chunk (steps 10–16). Finally, the het-
erogeneous atmospheric light map An(x) is generated after the
iteration finishes (step 17).

After we finish the estimation for Aback
n and An(x), a coarse-

grained atmospheric light map Mn(x) can be generated by
mixing them. Because the chunk separation operations dur-
ing the estimation result in the block effect which can be

seen in the third column of Fig. 9(b), we follow up with a
FGF operation [30] to smooth the output and obtain the final
mixed atmosphere map Mref

n (x). So, the (1) can be updated as
follows:

In(x) = Jn(x)t(x)+Mref
n (x)[1− t(x)]. (6)

C. Transmission Estimation Module

For dehazing a fog-degraded image according to (1), there
are two critical values (i.e., the atmospheric light and the trans-
mission) needed to be estimated. In Section III-B, we have
calculated the atmospheric light with the mixed atmosphere
scattering model. In this section, we will combine the hard-
ware characteristics of FPGA to accurately estimate the value
of the transmission.

In the widely used dark channel model [20], the transmis-
sion t(x) is estimated as follows:

t(x) = 1− ω min
y∈�(x)

(
min

c

Ic(y)

Ac

)
(7)

where Ic(y) means a color channel of I(y), and �(x) is a
local patch centered at where the transmission is presumed
to be a constant. Ac represents the given global atmospheric
light, and ω is a constant parameter range from zero (exclu-
sive) to one (inclusive) to hold a little haze for distant
objects. miny∈�(x)(minc(Ic(y))) is the dark channel of the
image (Ic(y)). Based on the dark channel prior theory, we
observe that the global atmospheric light values for each color
channel are very close. Therefore, the transmission map can
be approximated from the following:

t(x) = 1− ω

min
y∈�(x)

(
min

c
Ic(y)

)

Ac
(8)

but the transmission tends to be discontinuous in local areas
if the value of image pixels changes suddenly, especially for
the outlines of objects, which leads to phenomena like strong
halos. Although a smaller patch can address this problem, it
will decrease the accuracy of the transmission map. Guided
filter [30], [35] is another solution that can alleviate the phe-
nomena, but the irreversible loss of edge information reserve
is still unsolved. To address this issue, we use a side win-
dow filter [31] instead of the minimal filtering dark channel
to preserve the edge information which will spread along the
normal direction in the dark channel prior dehazing algorithm.
By moving the filter anchor from the center to the edge of the
windows, we suppress the reverse diffusion of the edge dur-
ing minimum filtering. Combined with the mixed atmospheric
light, the transmission t(x) can be approximated using

t(x) = 1− ω ×
swf

(
min

c

(
Ic(x)

))
M(x)

(9)

however, this approximation may result in some performance
penalties because the observation may not be valid in the
foreground area. Fortunately, the performance loss is within
acceptable limits, especially when compared to the reduction
in resource consumption. We evaluated the influence of this
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Fig. 4. High-level block diagram of the dehazing accelerator implementation,
which comprises mixed atmospheric estimation, transmission calculation, and
haze-free frame reconstruction modules and their interconnections.

approximation through an ablation experiment, and further
details are presented in Section V.

After the mixed atmospheric light Mref
n (x) and the trans-

mission Tn(x) are estimated, the haze-free output Jn(x) can be
obtained by transforming (6) as follows:

Jn(x) = In(x)−Mref
n (x)

Tn(x)
+Mref

n (x). (10)

IV. IMPLEMENTATION

In this section, we present the implementation details of
the MAPD architecture on the FPGA platform. We take full
advantage of the parallel characteristics of FPGA to accelerate
our proposed video dehazing algorithm, as shown in Fig. 4.
Besides, for the experimental comparisons in Section V, DCP,
CEP, RDCP, FFVD, MHVD, and REFD algorithms are also
implemented on the same FPGA platform. More details are
introduced in the following sections.

A. Implementation of Mixed Atmospheric Light Module

From Section III-B, we can see that multiple iterations
for the whole frame are needed to generate the final mixed
atmospheric light map (such as the threshold calculation
and the atmospheric light estimation), which will lower the
dehazing speed for the video. Considering the parallel char-
acteristics of FPGA, we should parallelize them so that the
estimation can finish in one iteration. However, the data depen-
dency in the process is still an issue. For example, we have
to calculate the segmentation threshold before the estima-
tion for the atmospheric light. Fortunately, unlike the single
image, there exists abundant correlated redundant information
between video frames that we can leverage. Based on this
observation, we adopt a parallel implementation flow by using
the information in adjacent frames. As shown in Fig. 4, we
reuse the values of threshold and global atmospheric light from
the previous frame for the current frame, which can enable
parallelization of these processes to reduce the dehazing time.

Fig. 5 shows the hardware architecture of the mixed atmo-
spheric light module which is divided into five stages. First, in
stage 1, we turn the input frame into a grayscale image by cal-
culating the grayscale value of each pixel and then classify the
pixels into background and foreground portions by the com-
parator, which will be handled by the global atmospheric light
for background (GALB) and heterogeneous atmospheric light
for foreground (HALF) circuit modules, respectively. Second,

the GALB and HALF circuits execute in parallel to calculate
the relevant atmospheric light values in stage 2 and stage 3.
For the background regions, the GALB circuit will latch the
pixel with the maximum grayscale value until the frame fin-
ish signal (EOF) comes and outputs the global atmospheric
light. For the foreground portions, since a local patch of the
pixel will be selected to calculate its heterogeneous atmo-
spheric light, the pixels of all rows are needed to be cached
resulting in the high overhead of BRAM resources. To fur-
ther reduce the resource consumption of FPGA, we design
a preprocessing unit called the row–column circuit in the
HALF module, which contains a row subsampling subcircuit
(Row_Sample) and a column buffer subcircuit (Col_Buffer) to
reduce the consumption of BRAM. the Row_Sample consists
of several triggers and muxes to select the maximum grayscale
value from every r incoming consecutive data which will be
sent to the Col_Buffer. Since the image data is loaded as a
data stream, there is a necessary to design a column buffer
(i.e., Col_Buffer) to cache the subsampled row pixels. The
Col_Buffer is made up of r Linebuffers and every Linebuffer
is composed of w/r trigger. With the data flowing in, the
Linebuffer move their cached data to the next until none of
them are empty. Then, the data from the same column will be
compared by the comparator and output the pixel with maxi-
mum grayscale value as the heterogeneous atmospheric light
value of the r × r chunk. Based on the ablation study result
in Section V-H, the value of r is set to eight. After the het-
erogeneous atmospheric light map An(x) is obtained, we need
to perform a fast guided filter operation to eliminate the block
effect caused by the local chunk in the heterogeneous atmo-
sphere estimation. Since we have divided the grayscale image
into chunks earlier, there is no need to subsample the An(x)
again, which will consume extra hardware resources. So, we
combine these two steps to design the hardware architecture of
our fused fast guide filter. As shown in stage 4, we first split the
An(x) into three color channels (red, blue, green) and compute
the local linear coefficients. Second, the upsampling circuits
are used to bilinearly upsample the two coefficient maps to
the original size. Finally, The refined results are obtained by
the multiplier and adder circuits. With our fused fast guide
filter, the sampling operations and mean-filter operations are
reduced by 50% and 22%, respectively. In stage 5, the final
mixed atmospheric light map Mref

n (x) will be generated by
merging the global atmospheric light and the heterogeneous
atmospheric light map.

In most cases, our solution works well because there is a
temporal relation between the adjacent frames of the video.
However, when drastic changes occur in adjacent frames, the
flicker problem is caused [36], which means that the global
atmospheric light and threshold of the previous frame are no
longer valid for the current frame. Reusing the threshold seg-
mentation will result in bias in the global atmospheric light
value of the background area and mislead the next frame. To
address these issues, we propose a two-step prediction strat-
egy, as shown in the left and top right of Fig. 5. First, we
compute a global atmospheric light Gn by selecting a small
area of the image data stream and then compare it with Gn−1
to predict the flicker scene. If the difference is greater than a
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Fig. 5. Hardware architecture of mixed atmospheric light module, which consists of five stages. Stage 1: Grayscale conversion circuit module. Stage 2 and
Stage 3: HALF and GALB circuit modules. Stage 4: FFGF circuit module. Stage 5: MIX circuit module.

specific threshold θ , we switch back to heterogeneous atmo-
spheric light estimation for the current frame. Meanwhile,
since the threshold segmentation is invalid, a global atmo-
spheric light for the entire image is also computed for the
next frame. To prevent the failure of the first step prediction,
which would affect the next frame, we calculate the differ-
ence between the global atmospheric light of the current frame
(i.e., Aback

n ) and the previous frame (i.e., Aback
n−1 ), and compare

it with θ to predict the next frame. Since the work [22] has
observed hundreds of frames after video defogging and sum-
marized the optimal value of θ , we also set it to three by
following their setting. Additionally, when the flicker scene
is predicted, we average the global atmospheric light of the
previous frame and the atmospheric light value of the current
frame to yield a smooth result. With the prediction strategy,
MAPD can also achieve good effects in drastically changing
scenes. More visual results are shown in Section V-D.

B. Indirect Transmission Estimation Module

In Section III-C, we get the transmission map Tn(x) by (9).
However, there exist several issues in the hardware implemen-
tation. First, in most traditional dehazing methods, the mixed
atmospheric light map Mref

n (x) is assumed to be known, when
the transmission is calculated. It means that we have to wait
until the estimation of Mref

n (x) is finished, i.e., the calcula-
tions of Mref

n (x) and Tn(x) cannot be processed in parallel,
resulting in increased dehazing time. Shiau et al. [22] used
the atmospheric light of the previous frame to calculate the
transmission, while it is not suitable for scenes with dras-
tic changes in foreground and background regions. Second,
during the process of (9), there is a division operation on
Mref

n (x). However, when we leverage (10) to recover the haze-
free frame, another division operation is performed on Tn(x).
Since there will be a lot of hardware resource consumption
for division operation in FPGA, it is necessary to simplify the
calculation before designing the circuit. Combining (9) and
(10), we can transform the expression of the haze-free output
Jn(x) as follows:

Jn(x) =
(

In(x)− Swf
n (x)× ω

Mref
n (x)− Swf

n (x)× ω

)
×Mref

n (x) (11)

Fig. 6. Hardware architecture of indirect transmission estimation module.

where Swf
n (x) is the side window filter result for the input frame

In(x). From (11), it can be seen that the extra division operation
is eliminated successfully. Moreover, the calculation of Swf

n (x)
no longer depends on Mref

n (x), which means that the indirect
transmission estimation module can be parallelized and has no
negative effect on scenes with drastic changes. Based on this
transformation, we design the indirect transmission estimation
hardware module as shown in Fig. 6, which depicts a hard-
ware implementation of side-window filtering for the minimal
single-channel of the input frame In(x).

C. Haze-Free Frame Reconstruction Module

After we obtain the value of Mref
n (x) and Swf

n (x), the haze-
free frame Jn(x) can be calculated by (11). Fig. 7 shows the
hardware implementation of the haze-free frame reconstruction
module. First, we divide the input frame In(x) and the mixed
atmospheric light map Mref

n (x) into three single-channel sig-
nals, and leverage a multiplier to get the value of Swf

n (x)×ω.
Second, for each channel, two subtractors are used to calculate
the numerator and denominator of (11), respectively. Finally,
the haze-free frame is reconstructed through the multiplier and
divider.

V. EVALUATION

In this section, we run a set of experiments to evaluate
the dehazing performance of MAPD on an FPGA platform,
namely, MZ7100FA, by using multiple types of video and
image datasets, which demonstrates that MAPD has several
advantages in haze removal performance and dehazing speed
compared with other methods. We also implement DCP, CEP,
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Fig. 7. Hardware implementation of haze-free frame reconstruction module.

RDCP, FFVD, MHVD, and REFD on the FPGA platform and
deploy D4 on the Nvidia GPU platform for comparison.

A. Experimental Setup

The experimental platform is a Xilinx XC7Z100-2FFG900I
FPGA SoC (System on Chip) with an ARM Cortex-A9 dual-
core processor. As we have depicted in Section III-A, the
only MAPD components implemented on the PS side are the
video frame buffer controller and dehaze parameter initial-
ization. All other components are deployed on the PL side.
This also applies to the implementation of the comparison
algorithms which we will mention later. For comparison, we
select two classical haze removal algorithms, i.e., DCP and
CEP, and implement them on our FPGA platform. Since these
two algorithms are both derived from the simplified atmo-
spheric scattering model, we implement the hardware modules
of their estimation for the global atmospheric light A and the
transmission t(x), and then restore the haze-free frame by a
reconstruction hardware module, whose hardware implemen-
tation flow is similar to MAPD. In addition, we also compare
our MAPD to other FPGA-based solutions, such as RDCP,
FFVD, MHVD, and REFD, which are all ported to our FPGA
hardware platform for a fair comparison. All experiments are
performed on our FPGA hardware platform, where the clock
frequency is set to 100 MHz and the bit-width is set to eight.
To measure the runtime power consumption of the whole SoC,
we plug a power meter in the FPGA platform. Moreover, since
GPUs are commonly used in autonomous driving, we select
the latest GPU-based dehazing solution, namely, D4 [15], for
comparison. Following the guidelines in this article [15], we
deployed D4 on our platform equipped with the Nvidia 3080
GPU. Considering the differences in platforms, we only com-
pare MAPD with D4 in terms of dehazing performance and
dehazing time, while also presenting the resource utilization
and power consumption results of D4 in Section V-F.

We use four datasets in this article—1) RESIDE [37];
2) I-HAZE (35 indoor image pairs) [38]; 3) O-HAZE (45
outdoor image pairs) [39]; and 4) REVIDE (2031 frame
pairs) [40]. RESIDE is a realistic single-image dehazing
dataset, while I-HAZE and O-HAZE are real-world scene
datasets. REVIDE is the real-world high-definition video
haze removal dataset that contains four kinds of indoor fog-
degraded videos (i.e., the Laboratory style, the Corridor style,
the Western style, and the Eastern style). We run these datasets
to evaluate our proposed method and the other seven dehazing

algorithms. For REVIDE, the video stored in the SD card is
first decoded into video frames on the PS side and then sent
to the dehazing core on the PL side for haze removal pro-
cessing. Finally, the haze-free frames are output to the screen
or encoded and saved back to the SD card. For other image
datasets, the process is similar to REVIDE except that there
is no need to encode and decode images.

B. Qualitative Comparison on Real-World Images

To fully assess the proposed MAPD, we evaluate the dehaz-
ing performance in the case of different hazy images on
a real-world dataset of over 40 images collected by Color-
Lines [41]. As shown in Fig. 8(b), DCP helps reveal some
details masked by fog, but darkens some regions of the recov-
ered image, resulting in color variations within dense fog
(such as the city skyline in the third image). CEP in Fig. 8(c)
enhances the scene to some extent but leaves a lot of white
artifacts around object boundaries (like tree leaves). For most
examples, RDCP in Fig. 8(d) and MHVD in Fig. 8(f) pro-
vide more satisfactory results. However, color distortion still
occurs in some areas, especially in regions of the sky and
darker backgrounds. As shown in Fig. 8(e), FFVD achieves
a brighter visual experience in most scenes while exacerbat-
ing the color distortion phenomenon. Fig. 8(g) shows that
REFD does not perform well on real-world images because
the fog cannot completely be removed and even some noise
is generated. The recovery of object details in D4, as shown
in Fig. 8(h), is impressive, but some areas, such as the top
left region in the first and third images and the trees in the
second picture, appear oversaturated. In comparison, MAPD
preserves most of the details and compensates for the bright-
ness of local areas by using the heterogeneous atmospheric
light in the foreground area. Additionally, MAPD addresses
the common phenomena of illumination deviation and contour
fuzziness present in real outdoor dehazing images, resulting in
a visually appealing output.

C. Qualitative Performance for Autonomous Vehicles

To better demonstrate the benefit of our proposed method
in real-time systems, we discuss several use-cases of MAPD
utility in this section. We select four typical types of scenarios
in the autonomous vehicle for evaluation. Fig. 9 shows the six
fog-degraded images, the haze-free results dehazed by MAPD,
and some visualizations of intermediate results.

MAPD is an efficient pre-PS for a variety of autonomous
vehicle tasks (e.g., object detection and target tracking).
Fig. 9(a)–(c) demonstrates the effectiveness of defogging in
lanes, which will be beneficial to enhance the safety of
autonomous driving and advanced driver assistant systems.
MAPD can help the object detection module distinguish the
blurred pedestrians or objects in fog in advance, which can
reserve more time for processing to avoid potential accidents
in sudden situations. For example, in Fig. 9(a), the in-vehicle
cameras show clearer and more natural images after dehazing
with MAPD, which makes the cars in the fog more prominent
and easy to recognize. Fig. 9(b) and (c) exhibits similar results.
Fig. 9(d) extends MAPD to application scenarios beyond road
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Fig. 8. Qualitative comparison of different haze removal methods on real-world images collected by Color-Lines [41]. (a) Hazy image. (b) DCP. (c) CEP.
(d) RDCP. (e) FFVD. (f) MHVD. (g) REFD. (h) D4. (i) MAPD.

Fig. 9. Dehazing performance on various scenarios. The first and the last row
consists of two image pairs, respectively, which include a fog-degraded image
and the haze-free result dehazed by MAPD. The image pairs in the second
and the third row are listed from left to right as the hazy image, the visual
image for segmentation, the visual image for the mixed atmospheric light map,
and the haze-free result dehazed by MAPD. (a) Automobile driver assistant
systems. (b) Roadway traffic camera. (c) Pedestrain prone zebra crossing and
intersection. (d) Aerial(drone-based) building.

traffic, such as aerial imagery from drones. In severe fog
weather, drones run the risk of crashing into buildings, so
the real-time defogging system has become a major advan-
tage of air vehicle technology. In our experimental results,
the building surfaces and roofs in the distance are restored to
their original colors and distinguished from the sky, which is
conducive for drones to plan a route to avoid a collision. In
addition, we present the visualization images for segmentation
and mixed atmospheric light map, as shown in the second and
third columns of Fig. 9(b) and (c), respectively. From these
intermediate figures, we demonstrate that the segmentation
for the foreground area and background region achieves well
effects, even in severe fog weather.

To further demonstrate the effectiveness of MAPD, we use
the recently popular YOLOv4 object detection algorithm [42]
to detect objects on haze-free images dehazed by DCP, CEP,
RDCP, FFVD, MHVD, REFD, D4, and MAPD, respectively.
The experimental results are shown in Fig. 10(j). In the first
row, only MHVD and MAPD recognize the distant car, while
other methods, such as DCP, CEP, RDCP, FFVD, REFD, and
D4, omit that car. However, MHVD does not detect the fore-
most car in the second row. Moreover, in the last row, all
methods except our proposed MAPD failed to detect the truck
in the front right, which means that the stereo vision system
modules could be misled to make incorrect judgments and lead
to a traffic accident. The evaluations show that MAPD recov-
ery better in detail and brightness in the foreground regions
that can help autonomous driving cars detect more objects.

D. Qualitative Performance on Hazy Video

For evaluating real video applications, the case we con-
sider is a high-definition (HD, the resolution is 1920× 1080)

video dehazing from the REVIDE dataset by splicing the
video clips into a whole video. We compare our proposed
method with MHVD and FFVD, which are also both the
video defogging approaches. Fig. 11 shows the qualitative
performance comparison for adjacent frames. It can be seen
that MAPD has superior performance than MHVD and FFVD
in color details and brightness recovery. Especially when dras-
tic changes occur in adjacent frames, MAPD shows better
flicker reduction performance than MHVD and FFVD.

Furthermore, to demonstrate the effectiveness of the
prediction strategy, we conduct an ablation evaluation by
removing the prediction hardware designs (denoted as
MAPD_NP). The experimental results are presented in the
fourth row of Fig. 11. Compared to MAPD_NP, MAPD
achieves superior dehazing performance in drastically chang-
ing scenes (Frame 692). Since the prediction strategy success-
fully detects the drastic changes that occur in adjacent frames
and switches back to the heterogeneous atmospheric light esti-
mation for Frame 692, it avoids image color distortion caused
by reusing the segmentation threshold and global atmospheric
light of the previous frame (i.e., Frame 691).
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Fig. 10. Object detection comparison using YOLOv4 [42]. Only MHVD and MAPD recognize the distant car in the first case, and all results of other seven
methods fail to detect the truck in the third case. Our method works well on all cases. (a) Hazy image. (b) DCP. (c) CEP. (d) RDCP. (e) FFVD. (f) MHVD.
(g) REFD. (h) D4. (i) MAPD.

Fig. 11. Dehazing performance on adjacent frames. Frame 691 is the previous
scene and Frame 692 to 694 are the current scenes. (a) Frame 691. (b) Frame
692. (c) Frame 693. (d) Frame 694.

E. Quantitative Dehaze Performance Comparison

In order to further evaluate the effectiveness of MAPD for
video defogging, we use the well-known PSNR (signal-to-
noise ratio) indicator to perform a quantitative comparison.
The quantitative comparison is performed on the computer
with a python script by exporting the dehazing images from
the FPGA platform. Fig. 12 shows the experimental results
for MAPD and FFVD. In Fig. 12, the abscissa is the frame
number and the ordinate means the PSNR which indicates the
stochastic error between the haze-free image and the clear-
day image. It demonstrates that MAPD outperforms MHVD
and FFVD in PSNR and is more pronounced when the
scene changes drastically. Especially from frames 480 to 650,
MHVD and FFVD have severe video flicker phenomena, while
MAPD almost eliminates these flicker issues.

Moreover, we also compare MAPD with DCP, CEP, RDCP,
FFVD, MHVD, REFD, and D4 for a quantitative evaluation
by adding another two objective indicators, namely, structural

Fig. 12. Quantitative dehaze performance (PSNR) of MHVD, FFVD, and
MAPD for video dehazing.

similarity (SSIM) and color difference full reference model
(CIEDE2000), in the case of two different workloads (I-HAZE
and O-HAZE) collected from the real world to make the
comparison more convincing.

Table II shows the quantitative performance results for
seven haze removal methods with PSNR, SSIM, and
CIEDE2000. For PSNR and SSIM, the high value indi-
cates well dehazing performance, while it is the opposite for
CIEDE2000. On the PSNR indicator, MAPD achieves the best
dehazing performance for the I-HAZE workload while D4

performs better in the O-HAZE workload. For the I-HAZE
workload, MAPD promotes the PNSR by 33.3%, 53.5%,
22.0%, 29.1%, 5.3%, 8.2%, and 14.5%, compared to DCP,
CEP, RDCP, FFVD, MHVD, REFD, and D4. For the O-HAZE
benchmark, the PNSR of MAPD also outperforms that of DCP,
CEP, RDCP, FFVD, and REFD by 10.6%, 19.9%, 10.4%,
18.8%, and 23.3%, and is very close to MHVD. Although
MAPD has a 6.3% lower PSNR than D4, it exhibits a more
stable performance because MAPD does not rely on the trained
dataset. The quantitative results of CIEDE2000 show a similar
trend.

In the middle row of Table II, we present the experimental
results of SSIM, which is an image quality evaluation index to
measure the structural information maintenance ability of an
algorithm. It can be seen that MAPD performs the best SSIM
on the I-HAZE dataset. Although the SSIM indicator for the
O-HAZE workload in MAPD is not the best among all meth-
ods, it is very close to the highest value. In addition, MAPD
promotes the SSIM by 23.0% and 7.3% compared with CEP,
9.4%, 5.4% compared with RDCP, 15.7%, 10.0% compared
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TABLE II
QUANTITATIVE DEHAZING PERFORMANCE

with FFVD and also exceeds REFD by 5.6%, and 9.2% in both
scenes, respectively. The evaluation results demonstrate that
MAPD is superior in restoring image structural information
to other dehazing methods because of the mixed atmospheric
light module.

The last row of Table II displays the quantitative results
for object detection. We select hundreds of images related
to autonomous driving scenarios from the RESIDE dataset
to compute the object detection accuracy indicator (denoted
as ACC). Compared with the other seven methods, MAPD
promotes the ACC by 25.2%, 51.6%, 25.0%, 57.1%, 19.5%,
49.6%, and 26.5%, respectively. The more accurate map
of atmospheric light and transmission in MAPD enables
recovered images to preserve more details, which can help
autonomous driving cars detect more objects.

F. Video Dehazing Time

We also measure the video dehazing time to evaluate seven
haze removal methods under different video resolutions. For
comparison, we transcode the video generated in Section V-D
to different resolutions (360p, 480p, 720p, and 1080p). Since
DCP, CEP, and RDCP need to cache the data of the current
frame to wait for the result of the global atmospheric light
in transmission calculation, their BRAM resources exceed the
limit of our platform in the 1080p experiment. REFD also has
to traverse the whole image to obtain the maximum and mini-
mum values in their gray-scale comparison module, it has the
same issue in the 1080p experiment. In addition, we observe
that the synthesis results are consistent with the actual results
in the other three resolutions. Based on these reasons, we use
the synthesis results for DCP, CEP, RDCP, and REFD in the
1080p experiment, while FFVD, MHVD, and our MAPD still
employ the actual results because of the application of adjacent
frame information. Besides, for D4, we measure the dehazing
time by recording the time of its dehazing core algorithm.

The evaluation results are shown in Fig. 13. It can be
seen that MAPD obtains the highest FPS (i.e., the minimum
dehazing time) in almost all video resolutions except 1080p,
compared to the other seven methods. Compared with DCP,
CEP, RDCP, FFVD, MHVD, REFD, and D4, MAPD pro-
motes the FPS by 252.2%, 130.4%, 148.7%, 69.6%, 47.8%,
52.2%, and 487.0% for the 360p video, and also achieves
377.1%, 59.0%, 142.2%, 65.6%, 45.4%, 52.9%, and 262.5%
improvement for the 480p video. When the video resolution

Fig. 13. Comparison of FPS for different resolution. The x-axis represents
the resolutions, and the y-axis shows the value of FPS.

is increased to 720p, MAPD outperforms by 242.7%, 141.9%,
147.6%, 68.4%, 48.7%, 59%, and 34.8%, respectively. Even
for a high-resolution video dehazing (1080p), MAPD improves
the FPS by 241.6%, 145.9%, 151.7%, 68.6%, 50.6%, and
62.4%, respectively, compared with the other six FPGA-based
methods, and is still up to 39 FPS. D4 achieves a relatively
stable dehazing time at all resolutions and is even ahead in
1080p resolutions. However, the consumption of GPU memory
and runtime power is up to 5728 MB and 135 W, respec-
tively, which makes it a challenge to achieve real-time on
autonomous vehicles [4]. The evaluation results demonstrate
that our proposed methods can satisfy the demand for real-time
systems such as autonomous driving.

G. Resource Utilization and Power Consumption

In this section, we compare the overhead of the REVIDE
workload in DCP, CEP, RDCP, FFVD, MHVD, REFD, and
MAPD. Fig. 14 shows the utilization of hardware resources at
720p resolution. As shown in Fig. 14, MAPD achieves signif-
icant gains in BRAM utilization. Compared with DCP, CEP,
RDCP, FFVD, MHVD, and REFD, MAPD reduces BRAM
utilization by 74.9%, 75.0%, 74.8%, 25.6%, 22.6%, and
73.9%. The reason is that we entirely decouple the atmospheric
light calculations in our indirect transmission estimation mod-
ule, which eliminates the requirement for additional memory
to cache the current frame while waiting for the atmospheric
light results. To address this issue, MHVD and FFVD also
use the information from the previous frame, but they do not
perform well in the scenes with drastic changes in foreground
and background regions, as shown in Fig. 11. The experimen-
tal results also demonstrate that the other four methods (i.e.,
DCP, CEP, RDCP, and REFD) are unable to meet the require-
ment of high-definition video (1080p or even 2K resolution)
haze removal because their BRAM utilization is nearly 100%
at 720p resolution. DCP even has to convert some BRAM
resources into LUT resources to run the dehazing program on
board.

Table III shows the runtime power consumption in 720p and
1080p. The first row depicts that at 720p resolution MAPD
lowers the power consumption by 12.5%, 11.1%, 6.7%, 5.1%,
and 9.7%, respectively, compared to DCP, CEP, FFVD, and
REFD, and is similar to MHVD. For the 1080p resolution
evaluation, as we have discussed in Section V-F, DCP, CEP,
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Fig. 14. Resource utilization for running video dehazing application. The x-
axis expresses the type of hardware resources (e.g., LUT, FF, DSP, an BRAM),
and the y-axis represents the resource utilization rate.

TABLE III
POWER CONSUMPTION (W) AT DIFFERENT RESOLUTION

TABLE IV
ABLATION STUDY ON O-HAZE

RDCP, and REFD are unable to measure the runtime power
consumption because of the exceeded resources. Therefore,
we use backslashes instead, as shown in the second row.
Compared to the other two FPGA-based solutions (i.e., FFVD
and MHVD) which can be performed on our FPGA plat-
form, MAPD reduces the power consumption by 10.6% and
1.7%, respectively. The experimental results demonstrate that
MAPD has a smaller proportion of whole resources and power
consumption and reserves excellent defogging performance.

H. Ablation Study

In this section, we first aim to validate the effectiveness
of our proposed transmission approximation. We replace (9)
with (7), where Ac is also changed to M(x), and use (10)
to recover the haze-free image while keeping all other set-
tings unchanged (denoted as MAPD_NT). The ablation results
are presented in Table IV. Compared to MAPD_NT, MAPD
incurs only a slight reduction in dehazing performance of up
to 2.92% (PSNR), while simultaneously reducing resource
consumption by up to 43.37% (BRAM). This indicates
that decoupling atmospheric light from transmission signifi-
cantly reduces overhead with a relatively small performance
penalty.

Second, for illustrating the advantage of our proposed FPGA
accelerator, we extend our algorithm to the GPU platform,
denoted as MAPD_G, and compare it with our FPGA accel-
erator, as shown in Table V. Observing Table V, we can see
that the dehazing performance between MAPD and MADP_G
is very close because they follow the same haze removal

TABLE V
EVALUATIONS FOR MAPD AND MAPD_G ON O-HAZE AT 720P

RESOLUTION

Fig. 15. Normalized PSNR and LUT for MAPD. The x-axis expresses the
different size of the local patch and the y-axis represents the normalized result
of dehazing performance (PSNR) and resource consumption (LUT).

procedure. Although the dehazing time of MAPD_G is a lit-
tle superior to MAPD, its power consumption is as high as
89W, which is hard to be applied for autonomous vehicles [4].
The evaluation results demonstrate that our FPGA accelerator
is more suitable to meet the limited resource requirement of
autonomous vehicles.

Finally, to evaluate the impact of chunk size r on
performance and resources, we increase r from 1 to 32 and
measure the PSNR and LUT, respectively. Fig. 15 presents
the normalized experimental results. It can be seen that the
dehazing performance shows a trend of first increasing and
then decreasing. This is because the confidence level of locat-
ing the most haze-opaque pixel for the local patch increases
initially with the chunk size. However, for images with het-
erogeneous haze, the haze level may vary sharply from one
region to another [43]. Thus, excessive chunk size may cause
the estimated value of atmospheric light in one area to be taken
in another area, which leads to a decrease in performance.
Besides, a larger chunk size will also bring more resource
consumption. Based on the ablation experiment and analysis,
we set the value of r to eight.

VI. RELATED WORK

Video Haze Removal Methods: Most video dehazing meth-
ods try to recover the haze-free frames of a hazy video by
leveraging the inverse function of (1) with estimated atmo-
spheric particles and transmission through the fog-degraded
frames, which is similar to the single image haze removal
algorithms. Guo et al. [44] proposed a Gaussian-based dark
channel algorithm for the atmospheric light calculation and a
fusion-based transmission method with two different transmis-
sion models combined to establish an optical scattering model.
They also combined an improved CLAHE to improve the fine-
detail performance and maintain the color fidelity. RDCP [33]
simplified the atmospheric light calculation of DCP to speed
up the dehazing process and estimated an optimized medium
transmission to handle the sky regions that are flawed in
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DCP. Kumar et al. [24] employed a smaller tile-based method
for the atmospheric light estimation to reduce the memory
overhead. For the transmission calculation, an improved dark
channel prior approach with Gaussian filtering was proposed
to overcome halo artifacts in DCP, which are caused by
abrupt changes in the frame pixel values. However, these video
dehazing algorithms are all improvements to the classic DCP
algorithm, which assumes that the global atmospheric light is
homogeneous. In contrast, the atmospheric particle in reality
is general an uneven distribution. Shiau et al. [22] realized the
problem and extended the dark channel prior model to generate
brighter and more colorful frames by calculating an appropri-
ate atmospheric light according to the threshold value with a
weighting technique. But the atmospheric light values of the
bright portion and the dark portion are still global constants
for their respective regions. It results in that the true atmo-
spheric light of the entire image, which is the weighted sum
of atmospheric light values in bright and dark regions, is still
homogeneous. AtJwD [43] aimed to handle nonhomogeneous
haze images where the haze distribution is uneven, i.e., some
regions in an image are covered with denser haze while other
areas are covered with shallower haze. It constructed a neural
network architecture to combine the direct estimation approach
for the haze-free image and the indirect physical parameters
calculation method by estimating a spatially varying weight
map. Although AtJwD obtained improved image quality, the
computational resources and power overhead cannot meet the
requirement of real-time processing. Besides, it does not con-
sider the video dehazing which is much more complicated than
the single image haze removal. Our MAPD designs a mixed
atmospheric light model with an adaptive estimating scheme
for the foreground region and the background area and makes
full use of adjacent frames to support nonhomogeneous video
dehazing.

Hardware-Accelerated Defogging Methods: In order to
apply the dehazing methods to realistic applications like auto-
matic driving, the real-time requirement is another key factor
that should be taken into consideration. Researchers have
implemented their haze removal methods on various hard-
ware platforms, such as application specific integrated circuit
(ASIC), GPU, and FPGA, to achieve the demand of real-time
applications. Kumar et al. [24] designed an ASIC imple-
mentation for their video defogging method and achieved a
high throughput. But the ASIC implementation lacks in terms
of flexibility. Most neural network-based methods [12], [15],
[16], [17] deploy their models on a single GPU to achieve
real-time requirements, while the computational resources and
power consumption of these methods are high, as well as
the memory usage. Compared with GPU, FPGA can achieve
the goal of low-cost and real-time processing, which makes
it suitable for hardware implementation of video dehazing
methods [22], [24], [33]. However, existing FPGA-based video
dehazing methods neglect to deal with nonhomogeneous haze
videos which are more general in real-world scenarios. Our
MAPD proposes an FPGA-based video dehazing accelerator
by implementing the mixed atmospheric light model on FPGA
to adapt to the heterogeneous situation and meet the real-time
requirement.

VII. CONCLUSION

In this article, we have proposed a new FPGA-based
accelerator, namely, MAPD, for real-time video dehazing in
autonomous vehicles. By taking full advantage of the hard-
ware parallelization characteristics, MAPD decomposes the
entire video dehazing process into different separate mod-
ules to reduce the data independence and achieve real-time
video dehazing. For calculating the atmospheric light, MAPD
establishes a mixed atmospheric light model, which uses het-
erogeneous atmospheric light in the foreground area to balance
brightness deviation and keeps the global atmospheric light
in the background region. For the transmission estimation,
MAPD designs an indirect transmission estimation transfor-
mation to lower the logic resource consumption in FPGA.
Evaluations using I-HAZE, O-HAZE, and REVIDE work-
loads show that MAPD promotes the dehazing performance
and can be extended to more IoT applications including traffic
surveillance systems and road navigation markings.
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