
288 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Multi-Objective Deep Reinforcement Learning for
Function Offloading in Serverless Edge Computing
Yaning Yang , Student Member, IEEE, Xiao Du, Student Member, IEEE, Yutong Ye , Student Member, IEEE,

Jiepin Ding , Ting Wang , Senior Member, IEEE, Mingsong Chen , Senior Member, IEEE,
and Keqin Li , Fellow, IEEE

Abstract—Function offloading problems play a crucial role in
optimizing the performance of applications in serverless edge com-
puting (SEC). Existing research has extensively explored function
offloading strategies based on optimizing a single objective. How-
ever, a significant challenge arises when users expect to optimize
multiple objectives according to the relative importance of these
objectives. This challenge becomes particularly pronounced when
the relative importance of the objectives dynamically shifts. Con-
sequently, there is an urgent need for research into multi-objective
function offloading methods. In this paper, we redefine the SEC
function offloading problem as a dynamic multi-objective optimiza-
tion issue and propose a novel approach based on Multi-objective
Reinforcement Learning (MORL) called MOSEC. MOSEC can
coordinately optimize three objectives, i.e., application completion
time, User Device (UD) energy consumption, and user cost. To
reduce the impact of extrapolation errors, MOSEC integrates
a Near-on Experience Replay (NER) strategy during the model
training. Furthermore, MOSEC adopts our proposed Earliest First
(EF) scheme to maintain the policies learned previously, which
can efficiently mitigate the catastrophic policy forgetting problem.
Extensive experiments conducted on various generated applica-
tions demonstrate the superiority of MOSEC over state-of-the-art
multi-objective optimization algorithms.

Index Terms—Serverless edge computing, function offloading,
multi-objective optimization, deep reinforcement learning.

I. INTRODUCTION

S ERVERLESS computing is an emerging cloud computing
framework in which applications are constructed from fine-

grained functions, known as Function as a Service (FaaS) [1],

Received 14 May 2024; revised 16 September 2024; accepted 23 October
2024. Date of publication 31 October 2024; date of current version 6 February
2025. This work was supported in part by the Natural Science Foundation of
China under Grant 62272170, and in part by Shanghai Trusted Industry Internet
Software Collaborative Innovation Center. (Corresponding authors: Mingsong
Chen; Ting Wang.)

Yaning Yang is with the MoE Engineering Research Center of Hard-
ware/Software Co-design Technology and Application, East China Normal
University, Shanghai 200062, China, and also with the School of Physics
and Electronic Information Engineering, Ningxia Normal University, Guyuan
756500, China.

Xiao Du, Yutong Ye, Jiepin Ding, Ting Wang, and Mingsong Chen are
with the MoE Engineering Research Center of Hardware/Software Co-design
Technology and Application, East China Normal University, Shanghai 200062,
China (e-mail: twang@sei.ecnu.edu.cn; mschen@sei.ecnu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSC.2024.3489443, provided by the authors.

Digital Object Identifier 10.1109/TSC.2024.3489443

[2], [3]. Within this model, developers focus solely on coding and
deploying functional components, whereas managing the under-
lying hardware and servers falls upon cloud service providers.
Concurrently, resource consumption can dynamically scale with
the demands of applications. As such, users incur costs for
the resources they actually consume rather than for continuous
server operation. Prominent platforms for serverless computing
include AWS Lambda [4], Google Cloud Functions [5], and
Azure Functions [6].

By extending the serverless computing model to the edge of
the network, a Serverless Edge Computing (SEC) framework has
been proposed. Due to the capability of offering low-latency and
cost-effective services, this framework has gained significant
attention from both industry and academia [7], [8], [9]. Extensive
research has been conducted on SEC architecture [10], applica-
tion deployment [11], and function offloading [12]. Given the
pivotal role of function offloading in enhancing application per-
formance, optimizing function offloading strategies has become
a critical research focus in this field.

Compared to serverless computing environments hosted
solely in the cloud, SEC is characterized by a heterogeneous col-
laboration between edge servers and cloud centers. Application
functions can be offloaded to the cloud center or heterogeneous
edge servers for execution. Different offloading strategies can
lead to different performances, including application completion
time, User Device (UD) energy consumption, and user costs.
Consequently, SEC can provide optimal function offloading
strategies tailored to different optimization objectives. By focus-
ing on user optimization needs and improving user experience
satisfaction, service providers can increase the number of user
requests, thereby increasing service provider revenue. However,
in SEC platforms, the limited resources of edge servers prevent
the deployment of all application functions and the configuration
of execution environments for each function, thereby restricting
which edge servers can execute the offloaded functions. Addi-
tionally, when utilizing the available resources of edge servers to
execute functions, the cold start latency of function containers
must be considered. These factors collectively make function
offloading optimization in SEC environments significantly more
complex.

To develop the optimal offloading strategy, extensive research
has investigated function offloading methods in SEC [13],
[14], [15], [16]. Most focus on optimizing a single perfor-
mance objective, such as minimizing energy consumption or

1939-1374 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0005-8173-9396
https://orcid.org/0000-0002-6874-5741
https://orcid.org/0000-0002-3924-5107
https://orcid.org/0000-0002-7223-8849
https://orcid.org/0000-0002-3922-0989
https://orcid.org/0000-0001-5224-4048
mailto:twang@sei.ecnu.edu.cn
mailto:mschen@sei.ecnu.edu.cn
https://doi.org/10.1109/TSC.2024.3489443

YANG et al.: MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING FOR FUNCTION OFFLOADING IN SERVERLESS EDGE COMPUTING 289

application completion time. However, users often need to bal-
ance multiple objectives, such as completion time, UD energy
consumption, and user costs, based on objectives preferences,
which may change dynamically. For instance, when processing
latency-sensitive applications, users may prioritize minimizing
completion time. Conversely, in budget-constrained scenarios,
they may focus on reducing energy consumption while also
considering delays and user costs. In such cases, single-objective
optimization methods are insufficient, underscoring the need for
multi-objective function offloading approaches.

Multi-objective optimization algorithms are well-suited for
decision-making scenarios involving multiple conflicting objec-
tives [17], [18], [19]. Recently, Multi-objective Reinforcement
Learning (MORL) algorithms have gained significant research
interest based on the effectiveness of Deep Reinforcement
Learning (DRL) algorithms in dynamic environments [20], [21],
[22]. MORL has been widely used in various fields, including
communication [23], [24], electric power [25], and medical
treatment [26]. Furthermore, MORL-based algorithms have
been extended to task offloading in edge computing [28]. How-
ever, traditional edge computing approaches cannot be directly
applied to SEC due to additional complexities, such as function
deployment constraints and cold start latencies. These factors
make SEC function offloading optimization more intricate, high-
lighting the urgent need for research in multi-objective function
offloading tailored to SEC environments.

In this paper, we employ a multi-objective optimization ap-
proach to address the SEC function offloading problem. We
model the application as a Directed Acyclic Graph (DAG) and
focus on optimizing application completion time, UD energy
consumption, and user costs. The relative importance of these
objectives is captured through dynamic preference vectors. We
aim to devise optimal function offloading strategies that can
dynamically adapt to varying preferences among the three ob-
jectives. The primary contributions of this paper are summarized
as follows:
� We formalize the SEC function offloading problem as

a multi-objective optimization problem, which optimizes
application completion time, UD energy consumption, and
user cost based on the dynamic preference vectors of three
objectives.

� To address the above problem, we propose a novel MORL-
based method named MOSEC, which incorporates a Near-
on Experience Replay (NER) to suppress the impact of
extrapolation errors. Furthermore, MOSEC adopts our pro-
posed Earliest First (EF) scheme to maintain previously
learned policies, efficiently mitigating the policy forgetting
problem.

� We conduct extensive experiments on a collection of ar-
tificially generated test applications with diverse topolo-
gies and task profiles. The experimental results show that
our MOSEC approach outperforms state-of-the-art multi-
objective optimization algorithms.

The rest of this paper is organized as follows. Section II
presents a comprehensive overview of the related work. A formal
definition of the SEC scenario and multi-objective optimization
problem is presented in Section III. Section IV describes our

proposed approach in detail. In Section V, we present the results
of our experimental study. Section VI discusses the advantages
and limitations of this work, as well as future work. We conclude
the paper in Section VII.

II. RELATE WORK

This section provides a comprehensive overview of function
offloading in SEC, in which both the independent and dependent
function offloading approaches are investigated. Furthermore,
we delve into multi-objective optimization for task offloading in
edge computing.

A. Function Offloading in SEC

1) Function Offloading for Independent Functions: Various
methods have been proposed to investigate the independent
functions offloading in SEC. For instance, Anirban et al. [15]
proposed a dynamic function placement framework to optimize
the completion time of an application under constraints of cost
and deadline. Aslanpour et al. [13] presented an energy-aware
function offloading algorithm with an SEC prototype to reduce
energy consumption on the edge nodes. Additionally, Tang
et al. [29] designed a multi-agent function offloading approach
based on a stochastic game to obtain the optimal offloading
scheme for a given objective. However, these methods mainly
perform to obtain optimal offloading strategies for independent
functions. At the same time, they focus on optimizing a sin-
gle objective, disregarding the complex dependencies among
functions, and optimizing multiple objectives. Hence, they are
unsuitable for more complex applications and scenarios for
optimizing multiple objectives.

2) Function Offloading for Dependent Functions: Due to
the interdependencies among functions in complex serverless
applications, the function offloading problem becomes more
challenging. Numerous methods have been proposed to address
the optimal offloading problem in complex applications. For
example, Liu et al. [30] proposed GenDoc, an approximate
function placement algorithm that minimizes the completion
time of applications in edge clouds. Deng et al. [31] presented
a dependent function embedding approach to determine the
optimal starting time and execution location for each function. Li
et al. [12] developed a PASS algorithm to minimize completion
time while considering function assignment and communication
mode. Zheng et al. [32] introduced a multi-level progressive
optimization approach that minimizes the completion time dur-
ing the function offloading process. Xie et al. [14] introduced a
PSO-PA algorithm, which maximizes user utility by scalarizing
application completion time and energy consumption. However,
these methods focus on optimizing single objectives in solving
function offloading problems, resulting in inadequate perfor-
mance in optimizing multiple objectives, especially when the
preference vectors of multiple objectives change dynamically.

B. Multi-Objective Optimization for Task Offloading

Multi-objective optimization algorithms are broadly used in
task offloading for edge computing networks. For example, Liu

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

290 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Fig. 1. System architecture of SEC.

et al. [25] proposed a multi-objective offloading algorithm to
minimize the average latency and energy consumption of task
offloading in edge cloud environments. In [26], Almasri et al.
considered task dependencies and data distribution in mobile
edge computing, proposing a multi-objective evolutionary algo-
rithm constrained by deadlines and power consumption. These
multi-objective methods independently optimize completion
time and energy consumption without considering the balance
between the two conflicting objectives. Pan et al. [34] proposed
the CHCE algorithm to minimize execution costs and energy
consumption for multiple workflows under deadline constraints.
Although this method optimizes execution costs and energy
consumption simultaneously, the dynamics of optimization ob-
jectives preference is not considered.

Some existing works in edge computing have optimized
multiple conflicting objectives simultaneously in task offloading
and balanced the objectives through dynamic preferences. Song
et al. [28] proposed a modified MORL approach to optimize the
application completion time, energy consumption, and usage
cost in a mobile edge computing environment. Based on [28],
Liu et al. [39] extended the MORL approach to UAV-assisted
mobile edge computing to optimize the application completion
time and energy consumption during tasks offloading process.
Furthermore, Yang et al. [40] utilized the MORL approach to
solve the multi-task offloading problem in edge computing.
While these methods effectively balance multiple conflicting
objectives in edge computing through dynamic preferences,
the challenges of function deployment and cold start latency
in constrained resources SEC add significant complexity to
the multi-objective function offloading problem. Therefore, it
is necessary to study the problem of multi-objective function
offloading for SEC scenarios.

This paper proposes a novel MOSEC approach to address
the function offloading problem for SEC optimizing application
completion time, UD energy consumption, and user costs, in
which the dynamic preference of objectives is dynamic change.
To our knowledge, this work is the first attempt to solve function
offloading problems in SEC using a MORL-based method.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, our SEC architecture is composed
of a cloud center, multiple edge servers, and a UD. The cloud
center is far from UD and has substantial memory and computing
resources. In contrast, the edge servers are positioned close to
UD but have limited memory and computing resources. The

cloud center and edge servers collaborate to offer services for
application requests from UD. A serverless application com-
prises multiple functions that exhibit inter-dependencies. Each
function is an indivisible task. To execute a function instance,
the server must pre-deploy the corresponding function to create
a function execution environment. In other words, only servers
with pre-deployed functions are capable of executing the respec-
tive function instances. Typically, the cloud center has abundant
resources to pre-deploy all functions of a serverless application.
However, the edge servers can only pre-deploy a subset of the
functions due to limited resources.

The requests generated by UD are transmitted through wire-
less uplinks to the edge servers. If an edge server lacks resources
or undeployed a specific function, it will be unable to execute
the function, and we set the execution time to infinity. Once
the application is completed, the results are transmitted back
to UD through the downlinks. We assume that the volume of
execution results is small and that there is sufficient downlink
bandwidth for transmitting the results. Hence, the return time
can be neglected.

A. Serverless Application Model

A serverless application is represented by a DAG and de-
noted by G = (V,E), in which V represents a set of stateless
functions, denoted by V = {v0, v1, . . ., vN−1}, and E is a set
of dependency constraints between the functions. Each element
eij = (vi, vj) in E represents a immediate dependency rela-
tionship between vi and vj . Specifically, vi is an immediate
predecessor of vj , and vj is an immediate successor of vi.
pred(vi) and succ(vi)denote the sets of immediate predecessors
and immediate successors of vi, respectively. Before offloading
vi, all functions in pred(vi) must complete their execution. As
indicated in Fig. 1, pred(v4) = {v1, v2}, and succ(v4) = {v6}.
Therefore, v4 can only be offloaded after both v1 and v2 have
been completed. Functions with no immediate predecessor are
entry functions denoted by ventry . Similarly, functions with
no immediate successor are exit functions, denoted by vexit.
As depicted in Fig. 1, ventry and vexit are {v0} and {v6},
respectively.

Each function is defined by a tuple vi = 〈di, qi,memi, cwi〉,
where di and qi represent the input data size and output data
size of vi, respectively. Additionally, memi and cwi represent
the memory size and CPU cycles required to execute vi, respec-
tively. The input data of the function is generated from UD and
transmitted to an edge server via a wireless link. Once the vi
is completed, the output data is immediately forwarded to the
servers where the subsequent functions will be executed.

B. Server Model

As shown in Fig. 1, the servers in our SEC system include
one cloud server denoted by X0 and a set of edge servers char-
acterized by {X1, X2, . . ., XM}. The servers set is denoted by
X={X0}

⋃{X1, X2, . . ., XM}. Assuming that the servers are
heterogeneous and equipped with multiple CPU cores, we define
the clock frequency of each server as ω = {ω0, ω1, . . ., ωM}.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING FOR FUNCTION OFFLOADING IN SERVERLESS EDGE COMPUTING 291

Each server operates as a serverless platform with a group of con-
tainers serving as units for function execution. Each container
is equipped with a certain number of memory resources, and its
computing resources are proportional to the number of memory
resources that it possesses [35]. After a container completes a
function instance, it enters a no-load state for a period, ready
to execute the following offloaded function. If no function is
offloaded to the container during the no-load period, its resources
will be recycled. We denote the functions deployed across all
servers as F ={F0, F1, . . ., FM}, where Fm ⊆ V , m ∈ [0,M].
Here, F0 = V indicates that all functions in G are deployed
on the cloud server, and Fm ⊂ V , m �= 0 implies that an edge
server deploys partial functions in G.

The containers on edge servers have three states, i.e., oc-
cupied, idle, and available. Occupied containers represent re-
sources that are currently executing a function. Idle containers
are resources that are in a no-load state. Available containers are
recycled resources that can be restarted to execute a new func-
tion. We useDm

i = 1 to indicate the presence of idle containers
for vi on the server Xm, and Dm

i = 0 represents the absence of
idle containers. Furthermore, Rm

i = 1 indicates adequate avail-
able resources to execute vi on the server Xm, while Rm

i = 0
indicates inadequate available resources. When vi is offloaded to
Xm and Dm

i = 1, vi can be executed immediately; otherwise,
Dm

i = 0 and Rm
i = 1, an available container on Xm will be

restarted to execute the function, resulting in a cold start time Tc
on Xm.

C. Problem Formulation

SEC can offer diverse offloading strategies for applications,
resulting in different completion times, UD energy consump-
tion, and user costs. For instance, offloading functions to the
cloud center increases transmission latency, leading to longer
completion time and higher UD energy consumption, although
it may reduce user costs. In contrast, offloading functions to edge
servers reduces transmission latency and UD energy consump-
tion but often results in higher user costs. Additionally, if the
offloaded edge server takes available resources to execute the
function, starting a new container will lead to cold start latency,
thereby increasing the completion time. Conversely, if the edge
server possesses an idle container to execute the function, it
significantly reduces function completion time.

Our MOSEC framework seeks to optimize application com-
pletion time, UD energy consumption, and user costs during
the functions offloading process. The service provider considers
these three objectives from the user’s perspective to improve the
user experience. Improving satisfaction can lead to an increase in
user requests, thereby boosting the revenue of service providers.
However, these optimization objectives are interrelated and often
conflicting, necessitating a careful balance. The dynamic nature
of their relative importance is captured through preference vec-
tors.

We denote application completion time, UD energy con-
sumption, and user costs as T , E, and C, respectively. Let
w represent a preference vector, where w =

〈
wT , wE , wC

〉
reflects the relative importance of these three objectives. Each

element in preference vector ranges in [0, 1] and satisfies the
constraint

∑
i∈(T,E,C) w

i=1. The optimization problem can be
formulated as a multi-objective optimization problem, which is
defined as follows

Optimizeli,w : (T,E,C)

Subject to :

C1 : li ∈ {0, 1, . . .,M} , ∀i ∈ {0, 1, . . ., N − 1} ,
C2 : wi ∈ [0, 1] ,

∑
wi=1, wi ∈ w, i ∈ (T,E,C),

C3 : FTj ≤ STi, ∀vi ∈ V, vj ∈ pred(vi).
(1)

Constraint C1 presents the function offloading strategies. C2
indicates the constraints of preferences for multiple objectives.
ConstraintC3 denotes the dependency relationship among func-
tions, specifying that function vi can only start after all of its
immediate predecessor functions have been completed.

D. Completion Time Model

The completion time of a serverless application represents the
total latency incurred in function execution and data transmis-
sion. It is calculated by the time difference between the start of
the transmission of input data for ventry and the completion
of vexit. To calculate T , we need to iteratively consider the
processing time of each function.

1) Transmission Time: Assume that li represents the offload-
ing strategy for the function vi. If vi is offloaded to the server
Xm, li equals m. We define Ti_t as the transmission time of
vi, which consists of the transmission time for input data from
UD and the maximum transmission time for output data from
all functions in pred(vi). The transmission time for input and
output data are denoted by Ti_in and Ti_pred, respectively. We
calculate Ti_in as

Ti_in =

{
di

rw
li > 0,

tec li = 0,
(2)

where di represents the input data size of vi, and rw is the
transmission rate between UD and the edge server. According
to [16], we denote rw as

rw = Bwlog2(1 + SNR), (3)

whereBw andSNR are the bandwidth and Signal Noise Ratio of
the wireless channel, respectively. Since UD and the cloud center
communicate through the public network, it is influenced by
multiple factors, such as link quality, path variations, server load,
network congestion, etc., making it challenging to accurately
estimate transmission time. Furthermore, the offloading strategy
does not impact the transmission latency between the UD and
the cloud. To simplify the model, we assume a fixed transmission
time of tec from the UD to the cloud center.

Assume that the edge servers are connected by stable and
reliable links. The transmission rate of the links is fixed and

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

292 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

defined by re. Thus, we define Ti_pred as

Ti_pred =

⎧⎨
⎩
tec lj × li = 0, lj �= li,
max(qjre) lj × li �= 0, lj �= li,

0 others,
(4)

where lj and qj are the offloading strategy and the output data
size of vj , respectively, vj ∈ pred(vi). Hence, Ti_t is calculated
as

Ti_t = max(Ti_in, Ti_pred). (5)

2) Execution Time: We define Ti_e as the execution time of
vi, and it can be calculated as

Ti_e=

⎧⎨
⎩
Tc+cwi×ωm li �=0, vi∈Fm, D

m
i =0, Rm

i =1,
cwi×ωm (li=0) or(li �=0, vi∈Fm, D

m
i = 1),

+∞ others,
(6)

3) Completion Time: Based on the above description, we
denote Ti as the time spent on processing vi. Ti is defined as

Ti = Ti_t + Ti_e. (7)

Assume that STi represents the earliest start time, and FTi
denotes the latest finish time of function vi. We define STi as

STi =

{
0 vi = ventry,
maxvj∈pred(vi){FTj} vi �= ventry.

(8)

The FTi is denoted as

FTi = STi + Ti. (9)

Therefore, the completion time of the whole serverless applica-
tion can be defined as

T = max{FTi}, vi ∈ vexit. (10)

E. UD Energy Consumption Model

The total UD energy consumption encompasses the energy
consumption during input data transmission and the energy
consumption during idle periods. The transmission energy con-
sumption Et is calculated as

Et = pt ×
N−1∑
i=0

Ti_in, (11)

where pt is the transmission power of UD. The idle energy
consumption Ei is defined as

Ei = pi ×
(
T −

N−1∑
i=0

Ti_in

)
, (12)

where pi is the idle time power of UD. Therefore, the total energy
consumption E can be defined as

E = Et + Ei. (13)

F. User Cost Model

When functions are executed on either edge servers or cloud
center, users are required to pay fees to the network provider
based on pricing schemes. In industry and academia, AWS

Lambda and Lambda@edge pricing schemes are widely used for
serverless computing. The total user cost primarily depends on
three factors: i) the number of function requests, ii) the memory
size allocated by the platform, and iii) the execution time of
the function. We define Cr_i as the request cost of vi, which is
calculated as

Cr_i = Ni × ρ, (14)

where Ni is the number of requests for vi, and ρ is the request
cost coefficient, which represents the cost per million requests.
Let Ce_i is the computing cost of vi, and it is defined as

Ce_i = Ni ×mema
i × Ti_e × ψ, (15)

where ψ represents the computing cost coefficient andmema
i is

the actual execution memory allocated for the function vi.
Following the AWS Lambda rules [35], the platform allocates

the memory resources for each function within a specific range,
where the minimum is 128 MB and the maximum is 3008 MB.
Besides, the platform enforces the allocations in increments of
64 MB, resulting in a discrete set of available memory values.
This means that functions can only be allocated memory in
the form of {128 MB, 192 MB, 256 MB, . . ., 3008 MB}. If the
required memory size memi for vi does not correspond to any
of the allowed discrete values, the platform will allocate an
actual execution memory size mema

i to vi, which is the closest
available option, even if it is slightly larger than the required
size. The mema

i is defined as

mema
i =

{
128 memi ≤ 128,
128 + 64× ⌈memi−128

64

⌉
memi > 128.

(16)

For example, when thememi is 186 MB, the platform allocates
mema

i as 192 MB (i.e., the closest allowed value).
Let Ci be the cost for processing vi, and it is calculated as

Ci = Cr_i + Ce_i. (17)

As a result, the total user costs C for completing the serverless
application is defined as

C =

N∑
i=0

Ci. (18)

IV. PROPOSED APPROCH

In this section, we first establish a Multi-objective Markov
Decision Process (MOMDP) to describe the multi-objective
optimization problem defined by (1). Afterward, we offer a
detailed description of our proposed MOSEC method.

A. Modeling MOMDP

By defining a priority sequence for each function in the appli-
cation, we transform the function offloading decision problem
of DAG applications into a sequential decision problem. The of-
floading decision for each function depends solely on the current
environmental state and objectives preference, without being
influenced by previous states. As defined in (1), our optimization
objectives include application completion time, UD energy con-
sumption, and user costs. These objectives are conflicting and

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING FOR FUNCTION OFFLOADING IN SERVERLESS EDGE COMPUTING 293

Fig. 2. Architecture of MOSEC.

require multi-objective trade-offs using a preference vector. The
preferences of these objectives change dynamically over time.
To address the multi-objective optimization problem in dynamic
SEC environments, we model the problem as an MOMDP.

According to [28], an MOMDP can be defined as a 6-tuple
〈S,A,P, r,Ω, f〉, whereS represents the state space,A denotes
the action space,P represents the transition probability matrix of
states, r(s, a) is the vector of the reward function, Ω represents
the space of multi-objective preference vectors, and f is a linear
scalarization function that maps the value function V π to a
scalar value for policy π. Each element in Ω is a preference
vector w, which has been defined in Section III-C. With the
linear function f , we denote f(V π,w)=w · V π , where V π is
the value function of policy π.

States: We use S to denote the state space of the SEC envi-
ronment. Specifically, we define S as

S = {st|st = (ut, gt, ct), t = 0, . . ., N − 1}, (19)

where st denotes the state at step t. ut represents the features of
the function to be offloaded, whilegt represents the channel con-
ditions between UD and the servers. Furthermore, ct indicates
the computing capacity of the servers.

Actions: The action space is A = {at|at ∈ {0, 1, . . ., |M |}},
where at denotes the execution location of the function vt. Note
that vt is the function to be offloaded at step t. Letat = 0 indicate
that vt is offloaded to the cloud center; otherwise, vt is offloaded
to an edge server.

Rewards: We use rt = (rTt , r
E
t , r

C
t) to define the reward

function, where rTt , rEt , and rCt are scalar rewards for three
objectives, i.e., completion time, UD energy consumption, and
user cost. Assume that U is the sequence of functions with pri-
orities, and Ut is the subsequence, including the first t functions
in the U . We denote T (Ut) as the completion time of Ut. To
minimize T (Ut), we define rTt = T (Ut−1)− T (Ut), which is
the negative increment of T (Ut−1) after executing function vt.
For the reward rEt , we defineEt as the UD energy consumption
and denote rEt = −Et. Similarly, we set rCt = −Ct, where Ct

is the usage charge for executing vt.

B. Architecture of MOSEC

Fig. 2 depicts the architecture and learning process of
MOSEC. The architecture of MOSEC includes an experience
replay buffer with NER strategy, a preference space, an encoun-
tered preference set with EF scheme, and neural networks. The
experience replay buffer is responsible for storing transitions
generated during the execution phase, and the NER strategy is
employed to sample a batch of transitions from the experience re-
play buffer. The preference space contains all preference vectors
associated with three objectives, while the encountered prefer-
ence set stores history-trained preference vectors alongside their
corresponding latest episode numbers. We use a Double Deep
Q-network (DDQN) to implement the MOSEC. The network
structure of DDQN is described in Appendix A, available online.

C. Learning Process of MOSEC

The learning process of MOSEC includes the execution phase
and the training phase. In the execution phase, MOSEC collects
transitions and stores them in the experience replay buffer while
updating the encountered preference set. In the training phase,
MOSEC samples batch transformations from the experience
replay buffer through NER strategy and selects the historically
trained preference vector wh from the encountered preference
set with EF scheme. The current preference wk, the historical
preference wh, and the sampled transitions are combined as the
input of the Q network and the target Q network to calculate the
Q value and the target Q value. A more detailed description is
supplied in the Appendix B, available online.

With the Q-values and target Q-values, MOSEC calculates
the loss function and updates the Q-network parameters through
gradient descent, synchronizing the target Q-network. The loss
function for any transition (si, ai, s

′
i,wk, ri) is defined as:

Li =
[|Qi −Q(si, ai|wh)|+ |Q′i −Q(si, ai|wk)|]

2
, (20)

whereQi represents the Q-value vector obtained by taking action
ai under [si,wk]. Qi and Q′i are defined as:

Qi = ri + γ · Q̂ (si+1, argmaxa∈AQ(si+1, a|wh)wh : wh) ,
(21)

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

294 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Algorithm 1: NER Sample Strategy.
Input: i) λ, sample coefficient; ii) b, batch size; iii) B,
experience replay buffer; iv) wt, current preference; v) st,
current state;

Output: H , a set for collection the sampled transions;
1: for k = 0, . . ., λb do
2: 〈sk, wk, ak, s

′
k, rk〉 ← Select(B) ;

3: pk ← ‖sk − st‖2 + ‖wk − wt‖2;
4: I ← Store(〈sk, wk, ak, s

′
k, rk〉 , pk);

5: end
6: Sort(I, p);
7: for j = 0, . . ., b do
8: H ← Store(Ij);
9: end

10: retrun H;

Q′i = ri + γ · Q̂ (si+1, argmaxa∈AQ(si+1, a|wk)wk : wk) .
(22)

1) NER Strategy: Since our MOSEC is based on an off-
policy learning method, it faces a state distribution shift issue,
which derives from a state distribution mismatch in the data
gathered from the behavior policies and target policies [38]. This
data distribution shift introduces extrapolation errors, which can
significantly impact the performance of off-policy algorithms.
Similar to the above statement, in the dynamic multi-objective
scenarios, a buffer with transitions associated with older prefer-
ence vectors might not encompass any state-action pairs that a
policy derived from a value network conditioned on the current
preference vector [27]. This discrepancy gives rise to substantial
extrapolation errors.

To effectively reduce the extrapolation errors, we adopt
the NER sample strategy to our MOSEC, which is men-
tioned in [27]. The NER strategy considers the similarity when
sampling transitions from the experience replay buffer. The
similarity is calculated as the sum of the state-similarity and
preference-similarity. The state-similarity is defined as the
second-order norm between the current state and the state of the
sampled transition, while the preference-similarity is defined as
the second-order norm between the current preference vector
and the preference vector at the time of the sampled transition
produced. Transitions with higher similarity are closer to the
current policy distribution, enabling the current policy network
to rapidly adapt to new preferences.

Algorithm 1 describes the NER strategy in detail. At first,
the NER strategy samples λb transitions from the replay buffer
and calculates similarity scores for each of these transitions
(lines 2-3), where λ is a positive integer representing the sample
coefficient. Second, it adds the transition and its associated
similarity score to the set I (line 4). Third, the NER strategy
sorts the similarity scores in ascending order and selects a batch
of b transitions with the highest similarities for network training
(lines 6–9), where b is the batch size.

2) EF Scheme: In MOSEC, the agent aims to learn and
maintain a set of optimal policies for distinct preference vectors
of three objectives. However, when the agent learns a policy

Algorithm 2: Learning Process of MOSEC.
Input: i) K, # of episodes; ii) N , # of functions; iii) Ω,
preference space; iv) E, encountered preference set; v) B,
replay buffer; vi) b, batch size; vii) λ, sample coefficient;
viii) θ, Q-network parameters; ix) θ′, parameters of target
Q-network;

Output: Q-network model θopt;
1: for k = 1, . . .,K do
2: wk ← RandomWeight(Ω);
3: E ← (wk, k);
4: for t = 1, . . ., N do
5: st ← Observation();
6: Q← Q-network(st,wk);
7: at ← ε-greedy();
8: (st+1, rt)← EnvNextStep(at);
9: B ← (st,wk, at, rt, st+1);

10: Transitions← NERsample(st,wk, λ);
11: wh ← EFscheme(E);
12: for each sampled transition (si, ai, ri, s

′
i) do

13: Qk
θ,i ← Q-network(si,wk);

14: Qh
θ,i ← Q-network(si,wh);

15: Qk
θ′,i ← target Q-network(s′i,wk);

16: Qh
θ′,i ← target Q-network(s′i,wh);

17: yki ← ri + γQk
θ′,i;

18: yhi ← ri + γQh
θ′,i;

19: lossi ← 1
2 [mse(y

k
i , Q

k
i) +mse(yhi , Q

h
i)];

20: end
21: Update Q-network parameters θopt ;
22: Synchronize target Q-network each N− step with

θopt;
23: end
24: end
25: return θopt ;

for current preferences, it can potentially result in overfitting,
causing the model to deviate from previously learned policies
for other preferences. This deviation triggers a catastrophic
policy forgetting issues. For all the preferences stored in the
encountered preference set, the policies belonging to preferences
learned earlier tend to be forgotten to a greater extent as training
progresses. Consequently, the model is more likely to produce
larger adaptation errors on these preferences.

To address this issue, we propose an EF scheme, which
chooses the earliest history-trained preference vector (i.e., the
preference vector with the smallest episode number in the en-
countered preference set) to participate in the training of current
preferences. By adopting the EF scheme, our method effectively
prevents the model from overfitting on the current preference and
ensures that no optimal policy is forgotten excessively. Con-
sequently, MOSEC effectively maintains the learned optimal
policies and reduces adaptation errors.

Algorithm 2 describes the learning process of MOSEC in
detail. During each episode, the agent randomly selects a pref-
erence vector wk from the set Ω and updates E with the pair

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING FOR FUNCTION OFFLOADING IN SERVERLESS EDGE COMPUTING 295

(wk, k) (lines 2-3). Each episode consists of N steps repre-
senting the number of application functions. In each step, the
agent performs a function offloading. At every step, the agent
first retrieves the state st from the environment, combining it
with wk, and feeds them as inputs to the Q-network to calculate
the Q-values Q(st, at) (lines 5-6). It then selects an action at
with a ε-greedy strategy (line 7). The agent takes at to interact
with the environment and receives a reward vector rt and a
next state s′t (line 8). Afterwards, the experience replay buffer
B records the tuple (st,wk, at, rt, s

′
t) (line 9). After sampling a

set of transitions fromB with the NER strategy, the agent selects
a history-trained preference wh from E using the EF scheme
(lines 10-11). For each sampled transition, the Q-network takes
(si,wk) and (si,wh) as inputs, and outputs the action value
function Qk

θ,i and Qh
θ,i, respectively (lines 13-14). On the other

hand, the target Q-network takes (s′i,wk) and (s′i,wh) as inputs
and estimates the value function yki and yhi , respectively (lines
17-18). Finally, it calculates the loss function using the mean
square error function (line 19). With the loss function, the agent
updates the parameters θopt of the Q-network through gradient
descent and synchronizes to the target Q-network every N−

episode (lines 21-22). After the training is finished, the optimal
parameters of the networks are returned (line 25).

D. Computation Complexity

The Q-network consists of an input layer, J fully connected
layers, and an output layer. We use hj to represent the number of
neurons in the j-th layer, where j ∈ [0, J + 1]. Note that h0 and
hJ+1 represent the number of neurons in the input and output
layers, respectively. Assume that Emax is the maximum number
of episodes, and N is the number of time steps per episode.
Additionally, It is worth noting that N is equal to the number
of functions within an application. We denote b as the batch
size. The computation complexity of MOSEC for the training
model isO(EmaxNb(

∑J
j=0 hjhj+1)). Once the training process

is finished, the trained Q-network is used to make the function
offloading decisions. In each time step, the execution location
of each function in an application can be generated through the
Q-network. Therefore, the computation complexity of MOSEC
for testing is O(N(

∑J
j=0 hjhj+1)) .

V. EXPERIMENTAL RESULTS

This section presents the results of our experiments and
evaluates the performance of MOSEC. First, we describe the
experimental setup, including environmental settings and pa-
rameter configurations. second, the details of the performance
metrics are provided. Finally, we present the experimental re-
sults, encompassing parameter studies, ablation experiments,
and comparative experiments, along with the analyses of the
results.

A. Experimental Setup

1) Platform and Environment Settings: We conducted our
experiments on a generic Ubuntu server, which was equipped
with a 3.7 GHz Intel CPU, 32 GB of RAM, and an NVIDIA

RTX 3080 GPU. The SEC network comprises a cloud center
server and 6 edge servers. The cloud center server is equipped
with a multi-core CPU and has unrestricted memory capacity.
The CPU of the cloud server operates at a clock frequency of 3
GHz. Similarly, the edge servers are also multi-core machines
with CPU clock frequencies ranging from 1 GHz to 3 GHz. The
cold start time for containers on the edge servers is consistently
set to 1s. Wireless communication between UD and the edge
domain utilizes 1MHz bandwidth links, with SNRs ranging from
1.5 to 5. The UD has a transmission power of 1.5 watts and an
idle power of 0.5 watts. The system is capable of processing
5,000 requests per second. In accordance with the pricing models
of AWS Lambda and Lambda@edge [36], we set the request
cost coefficient at 0.2 $, and the computing cost coefficient at
0.00001667 $ for the cloud center. Conversely, the request cost
coefficient for the edge servers was set at 0.6 $, with a computing
cost coefficient of 0.00005001 $.

2) DDQN Agent Settings: We employed a DDQN agent to
implement MOSEC, which integrates two networks with iden-
tical structures. Except for the input layer and the output layer,
each network contains two hidden layers, each with 64 neurons.
The hidden layers utilize the Tanh as an activation function. To
enhance the performance of MOSEC, we employed the Adam
optimizer with a learning rate of 0.001. We set the discount factor
to 0.99. The size of the experience replay buffer was limited to
5000, and the sample batch size was set at 64.

3) Test Applications Settings: Similar to [28], we generated
6 distinct DAGs to simulate the applications, labeled as App-1
to App-6. The input data size of the functions ranges from 500
KB to 600 KB, while the output data size varies between 50 KB
and 100 KB. The number of CPU cycles required for function
execution ranges from 1G to 5G. The memory size required for
functions ranges from 64 MB to 512 MB. Both App-1 and App-
2 consist of 10 distinct functions, each with varying levels of
dependency complexity, as do App-3 and App-4, which feature
20 separate functions. Similarly, App-5 and App-6 each include
30 unique functions with diverse functional dependencies.

4) Compared Algorithms: Due to no research based on
MORL for function offloading optimization problems in
SEC, we select three state-of-the-art MORL-based algorithms
(Naive [37], CN-DWS [19] and ODT [28]) to evaluate our
method. These methods have been applied to address multi-
objective optimization problems in other scenarios. All four
methods obtain state information from the same environment
to ensure fairness. The details of the compared algorithms are
described as follows.
� Naive [37]: This approach solves the MORL problem

by designing a synthetic objective function, which can
represent the overall preferences. Hence, this method does
not select any historically encountered preferences to par-
ticipate in the training.

� CN-DWS [19]: This method employs conditional networks
(CNs) to acquire multi-objective optimization policies in
dynamic preference vector settings. To improve the dy-
namic adaptability of the model, CN-DWS randomly se-
lects a previously trained preference vector and integrates
it into the current training process.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

296 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Fig. 3. Comparison of cumulative regret for different parameters of MOSEC.

� ODT [28]: This is an improved CN-DWS method used to
optimize three objectives for the task offloading problem
in multi-access edge computing. Compared to CN-DWS,
ODT uses a Tournament Selection scheme to choose a
history-trained preference vector to participate in the cur-
rent training process.

� MOSEC: Our proposed method for the function offloading
problem in SEC uses a NER strategy to sample the more
similar experience data to train the model. Furthermore, it
adopts an EF scheme to select a history-learned preference
vector to participate in current training.

B. Performance Metrics

Cumulative regret: Cumulative regret represents the sum of
the differences between the actual cumulative rewards in each
episode and the optimal cumulative reward during the training
process. As training progresses, the model should decrease the
regret, indicating improved performance across multiple objec-
tives and the ability to balance relationships between different
objectives. Cumulative regret is typically employed in MORL
algorithms to represent the convergence performance of the
model.

Adaptation error: For a specific preference vector, the adap-
tation error is defined as the relative error between the actual
cumulative reward in the test phase and the optimal cumulative
reward in the training phase. A smaller adaptation error indicates
that the model is more adaptive to the dynamic preferences, and
no optimal policy is forgotten excessively.

C. Results and Analysis

Based on the experimental setup mentioned above, we first
conducted a parameter study to investigate the influence of
the learning rate, experience replay buffer size, batch size, and
sample coefficient on the performance of MOSEC. Furthermore,
we conducted ablation experiments on MOSEC to validate the
effectiveness of the NER strategy and the EF scheme. After
that, we evaluated and compared the overall performance of our
MOSEC approach with state-of-the-art dynamic multi-objective
optimization methods. Finally, we analyzed the sensitivity and
scalability of MOSEC.

1) Parameters Study on MOSEC: This study aimed to an-
alyze the impact of various parameters on the performance of
MOSEC. As the scale of App-4 is mid-size compared to other
tested applications, we have chosen it as a case to assess the

impact of the learning rate, experience buffer size, batch size, and
sample coefficient on the performance of MOSEC. The results
for the cumulative regret are shown in Fig. 3.

Fig. 3(a) demonstrates the impact of various learning rates on
the performance of MOSEC. It is evident that both larger and
smaller learning rates result in poorer cumulative regret curves.
For the experiment, we set the learning rate to 0.001 since it
produces the best performance.

As shown in Fig. 3(b), a smaller batch size implies select-
ing fewer transitions for training the model, which limits the
diversity of training data and slows down the convergence of the
model. On the other hand, a larger batch size means sampling
more low-similarity transitions, increasing extrapolation errors,
and decreasing the quality of cumulative regret. Therefore, we
set the batch size to 64.

In Fig. 3(c), a smaller experience replay buffer size leads
to an increase in cumulative regret. This phenomenon can be
attributed to the nature of the experience replay buffer, which
operates as a first-in-first-out queue. A smaller buffer size re-
stricts the storage capacity for the experiences, causing valuable
transition data to be prematurely discarded. Conversely, when
the buffer size is increased, the impact of buffer size on perfor-
mance becomes insignificant. Based on these findings, we set
the buffer size to 5000 for our experimental setup.

Fig. 3(d) illustrates the impact of the sample coefficient λ

on the performance of MOSEC. The value of λ affects the
size of the sampled data, and as the λ increases, the size of
the sampled data also grows, resulting in a large amount of
data with similar experiences being sampled. When the sam-
pled data is processed by the NER strategy, a large number
of transitions with similar similarity scores may be selected
for training, which reduces the training efficiency. A smaller
λ value corresponds to smaller sampled data sizes, negatively
affecting the diversity of data involved in training and slowing
the convergence, consequently resulting in an increase in cu-
mulative regret. Therefore, we set the NER sample coefficient
to 3.

2) Ablation Experiment: During the model training phase,
MOSEC utilizes the NER strategy to mitigate extrapolation
error, thereby reducing cumulative regret. Meanwhile, it incor-
porates the EF scheme to select a historically trained prefer-
ence vector for participation in current training, ensuring the
adaptability of the network to dynamic preference vectors. We
conducted a series of ablation experiments on 6 test applications
to validate the effectiveness of the NER strategy and EF scheme.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING FOR FUNCTION OFFLOADING IN SERVERLESS EDGE COMPUTING 297

Fig. 4. Comparison of cumulative regret for different MOSEC variants.

Fig. 5. Comparison of adaptation error for different MOSEC variants.

In these experiments, the number of training steps in each
episode is equal to the number of functions in the application.
We compared the cumulative regrets and average adaptation
errors across three variants, i.e., the standard MOSEC (with
both NER and EF), MOSEC without NER (utilizing a stan-
dard sample strategy instead of NER), and MOSEC without
EF (employing a random preference vector selection scheme
instead of EF). The experimental results are presented in Figs. 4
and 5.

Fig. 4 compares the cumulative regret of different MOSEC
variants. For applications with fewer functions, as shown in
Fig. 4(a) and (b), the limited number of steps per training episode
results in minimal distribution shift and relatively smaller ex-
trapolation errors. The NER strategy is unable to demonstrate
its advantages. Consequently, the performance of MOSEC is
comparable to MOSEC without NER. Meanwhile, MOSEC
without EF exhibits the least favorable cumulative regret curves.
This is attributed to the fewer steps per episode leading to
lower policy update frequency, exacerbating the tendency to
forget the policies of preferences that had been trained, thereby
increasing cumulative regret. In contrast, for applications with
more functions, such as in Fig. 4(c) and (f), more steps per
episode bring a greater accumulation of extrapolation errors,

leading to the worst cumulative regret curve for MOSEC without
NER. The other two variants with the NER strategy produce
better cumulative regret curves, demonstrating the advantage
of the NER method on applications with more functions. The
performance of MOSEC without EF is comparable to MOSEC.
This is because more training steps help the model maintain
a better balance among different trained preferences, reducing
long-term forgetting and thus decreasing long-term cumulative
regret.

Fig. 5 compares average adaptation errors and Standard Devi-
ation (SD) for different MOSEC variants. In most applications,
MOSEC without EF exhibits the highest adaptability error, while
standard MOSEC demonstrates the best performance in terms
of adaptability error. This indicates that standard MOSEC gains
greater benefits from the EF scheme in reducing adaptability
errors. The EF scheme addresses the issue of overfitting the
current preference vector while preventing the optimal policy
for a specific preference vector from being forgotten, thereby
significantly enhancing the model to adapt to different prefer-
ence vectors.

3) Overall Performance Evaluation: First, we assessed the
performance of MOSEC in optimizing three objectives, i.e.,
completion time, UD energy consumption, and user cost. Sec-
ond, we conducted a series of experiments on 6 test applications
to compare MOSEC with three state-of-the-art multi-objective
optimization algorithms regarding cumulative regrets, adapta-
tion errors, and the average optimization performance for three
objectives.

Optimization performance for multi-objectives: We took
App-4 as an instance to evaluate the optimization performance
for three objectives with various preference vectors. As shown
in Fig. 6, when MOSEC optimizes only one objective and
forsakes the other two, the optimized objectives all reach their
respective minimum values. Furthermore, when MOSEC em-
phasizes optimizing UD energy consumption (reducing energy

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

298 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Fig. 6. Performance for three objectives with different preferences.

consumption), it consistently maintains or worsens completion
time and user cost. When MOSEC prioritizes the optimization
of completion time (reducing completion time), it invariably
leads to an improvement or stability in UD energy consumption,
but the trend in user cost follows the completion time (with
different slopes). This arises from the fact that both completion
time and user cost are associated with the computing time of
functions. Similarly, when MOSEC emphasizes optimizing user
cost (reducing user cost), it consistently results in degradation
or stability of UD energy consumption, while the change in
completion time follows the trend in user cost.

Cumulative regrets: Fig. 7 compares cumulative regret among
various methods. In all the test applications, MOSEC consis-
tently outperforms other comparative methods, showing the
smallest cumulative regret in each episode. The advantage con-
tributing to this superior performance is that MOSEC utilizes
the NER method to sample the more similar transitions from the
experience replay buffer, effectively mitigating the impact of
extrapolation errors on its performance. In contrast, the Naive
method exhibits the highest cumulative regret. CN-DWS and
ODT demonstrate similar cumulative regrets across all the test
applications since they randomly retrieve data from the experi-
ence replay buffer, leading to increased extrapolation errors and
higher cumulative regret. The statistical results of cumulative
regret are shown in Fig. 8.

Fig. 8 presents the average episodic regrets and SDs for
four MORL algorithms across 5 experimental rounds. For ap-
plications with a limited number of functions, such as APP-1
and APP-2, Naive exhibits the highest average episodic regret
and SD, and the performance of the other three methods is
relatively comparable. However, as the number of functions
increases, such as APP-4 to APP-6, the complexity of functional
dependencies within the applications also increases. Under these
conditions, MOSEC consistently demonstrates the lowest aver-
age episodic regret and SD. This observation underscores the
superior performance of MOSEC compared to the other three
algorithms.

Average adaptation errors: Fig. 9 displays the average adap-
tation errors and SDs obtained by four methods in 5 rounds
of experiment, in which MOSEC consistently demonstrates the
lowest average adaptation errors and SDs across all the test
applications. These results indicate that MOSEC effectively
enables the model to adapt to dynamic preferences stably. The
superiority of MOSEC can be attributed to the EF scheme,

TABLE I
RESULT OF AVERAGE COMPLETION TIME (SEC.)

TABLE II
RESULT OF AVERAGE UD ENERGY CONSUMPTION (J)

TABLE III
RESULT OF AVERAGE USER COST ($)

which selects the earliest history-trained preference vectors from
the encountered preference set to participate in training for the
current preference vector. The EF scheme prevents the model
from overfitting during training for the current preference, which
results in the forgetting of previously learned optimal policies.
This ensures that the model can adapt to various multi-objective
preferences.

Average optimization performance for multiple objectives:
We conducted a series of additional experiments to validate the
performance of MOSEC in optimizing three objectives, includ-
ing average completion time, UD energy consumption, and user
cost across all preference vectors. The results are presented in
Tables I, II, and III, with the best results highlighted in bold. In
Table I, MOSEC consistently demonstrates shorter completion
times compared to other algorithms in the majority of tested
applications, except for App-2. Regarding average UD energy
consumption in Table II, MOSEC performs the best in App-1,
App-4, and App-5, while CN-DWS achieves the best results
in App-3 and App-6. However, CN-DWS exhibits poor perfor-
mance in terms of completion time and user cost. Concerning
the average user cost, MOSEC outperforms other algorithms in
all applications except for App-2. In summary, Naive performs
the worst across all tested applications, while CN-DWS and
ODT show good optimization performance only in specific
cases. MOSEC emerges as the best-performing algorithm in
most tested applications, surpassing other algorithms in various
aspects.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING FOR FUNCTION OFFLOADING IN SERVERLESS EDGE COMPUTING 299

Fig. 7. Comparison of cumulative regret for different methods.

Fig. 8. Comparison of average episodic regret for different methods.

Fig. 9. Comparison of adaptation error for different methods.

4) Sensitivity Analysis: In the first part of this subsection
(i.e., the parameter study on MOSEC), we discussed MOSEC’s
sensitivity to the training parameters. Here, we will explore
MOSEC’s sensitivity to server processing capacity.

Taking App-4 as an example, we conducted experiments by
scaling the processing capacity of servers to 0.6, 0.8, 1.2, and
1.4 times their default values to investigate the impact of server
processing capability on performance. The average performance
of MOSEC with different processing capacities is summarized
in Table IV. The results show that increasing the processing
capabilities of servers leads to an improvement in average per-
formance. This improvement can be attributed to the enhanced

TABLE IV
THE PERFORMANCE ON DIFFERENT PROCESSING CAPACITIES OF SERVERS

server processing capacity, which reduces the execution time of
each function and leads to reduced application completion times,
lower UD energy consumption, and decreased application user
costs.

5) Scalability Analysis: In Section VI-C, we generated 6 test
applications with varying numbers of functions and different
levels of complexity. We applied our algorithm for function
offloading, and the results illustrate its capability to offload
applications with diverse specifications. As depicted in Figs. 7, 8,
and 9, while our approach outperforms other algorithms in
achieving function offloading, increasing the number of func-
tions within applications leads to higher cumulative regrets
and adaptation errors. Consequently, this results in decreased
performance.

VI. DISCUSSION

The advantages of this work can be summarized in two
main aspects. First, it is the first attempt to redefine the function
offloading problem in SEC as a multi-objective optimization
problem, in which the optimization objectives are completion
time, UD energy consumption, and user cost. Even more, the
preference vector of the three objectives changes over time.
Second, since the dynamic nature of preferences introduces
complexity, this work proposed a MORL-based method that
incorporates the NER sample strategy and EF scheme for the
first time to enhance the performance.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

300 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

In practice, service providers can deploy the MOSEC algo-
rithm on edge servers. When a serverless application is deployed
on a cloud-edge collaborative platform, UDs can request the
application from the servers and operate in energy-saving mode,
real-time mode, or economic mode. By assigning different pref-
erences to these three objectives, UDs can also operate in a
hybrid mode. Our algorithm selects the most suitable execution
location for each application function based on the operating
mode and preference vector of the UDs, thereby meeting their
performance requirements. Furthermore, our approach can be
employed to intelligently schedule dependent workflows in
factory green workshops with the requirement of optimizing
multiple objectives.

However, our experimental results imply that MOSEC shows
growth in both cumulative regret and adaptation error as the scale
and complexity of applications increase. In our experiments, we
tested MOSEC with applications containing up to 30 functions.
It is worth noting that as the number of functions in applications
continues to grow, the increasing cumulative regret and adapta-
tion errors may lead to MOSEC not performing optimally.

In future work, we plan to explore more effective methods
to reduce adaptation errors and improve the algorithm’s perfor-
mance. Furthermore, we intend to establish a cloud server to
create a cloud-center serverless platform and acquire Raspberry
Pi devices to establish edge serverless platforms. With these
setups, we will evaluate the performance of our approach by
offloading real-world applications.

VII. CONCLUSION

Function offloading problem in Serverless Edge Computing
(SEC) plays a crucial role in enhancing application performance.
Current research has extensively explored offloading strategies
primarily focused on optimizing a single performance objective.
However, a significant challenge arises when applications need
to optimize multiple objectives, especially when the relative
importance of these objectives dynamically changes. To address
this challenge, this paper proposed a novel approach for function
offloading based on Multi-objective Reinforcement Learning
(MORL), named MOSEC, which aims to optimize application
completion time, User Device (UD) energy consumption, and
user cost according to the relative importance of three objectives.
To reduce extrapolation errors, MOSEC incorporates a Near-on
Experience Replay (NER) strategy in model training. Further-
more, we introduced the Earliest First (EF) scheme to effi-
ciently maintain previously learned policies, thereby mitigating
the adaptation errors. Comprehensive experiments conducted
across various generated applications confirmed the effective-
ness of MOSEC. It consistently outperforms state-of-the-art
multi-objective optimization algorithms, demonstrating its abil-
ity to effectively address the function offloading problem in SEC.

REFERENCES

[1] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless
computing survey: A technical primer for design architecture,” ACM
Comput. Surv., vol. 54, no. 10s, pp. 1–34, 2022.

[2] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A sur-
vey of opportunities, challenges, and applications,” ACM Comput. Surv.,
vol. 54, no. 11s, pp. 1–32, 2022.

[3] H. Ko, S. Pack, and V. C. Leung, “Performance optimization of serverless
computing for latency-guaranteed and energy-efficient task offloading in
energy harvesting industrial IoT,” IEEE Internet Things J., vol. 10, no. 3,
pp. 1897–1907, Feb. 2023.

[4] 2024. [Online]. Available: https://aws.amazon.com/cn/campaigns/
lambda/

[5] 2024. [Online]. Available: https://cloud.google.com/functions/docs/
concepts/overview?hl=zh-cn

[6] 2024. [Online]. Available: https://azure.microsoft.com/en-us/products/
functions/

[7] M. S. Aslanpour et al., “Serverless edge computing: Vision and chal-
lenges,” in Proc. Australas. Comput. Sci. Week Multiconference, 2021,
pp. 1–10.

[8] P. Mendki, “Evaluating web assembly enabled serverless approach for
edge computing,” in Proc. Cloud Summit, 2020, pp. 161–166.

[9] 2024. [Online]. Available: https://aws.amazon.com/cn/lambda/edge/
[10] Q. L. Trieu, B. Javadi, J. Basilakis, and A. N. Toosi, “Performance eval-

uation of serverless edge computing for machine learning applications,”
2022, arXiv:2210.10331.

[11] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R. Yu, and T. Huang, “When serverless
computing meets edge computing: Architecture, challenges, and open
issues,” IEEE Wireless Commun., vol. 28, no. 5, pp. 126–133, Oct. 2021.

[12] Y. Li, D. Zeng, L. Gu, K. Wang, and S. Guo, “On the joint optimization of
function assignment and communication scheduling toward performance
efficient serverless edge computing,” in Proc. Int. Symp. Qual. Serv., 2022,
pp. 1–9.

[13] M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and R. Gaire, “Energy-aware
resource scheduling for serverless edge computing,” in Proc. Int. Symp.
Cluster Cloud Internet Comput., 2022, pp. 190–199.

[14] R. Xie, D. Gu, Q. Tang, T. Huang, and F. R. Yu, “Workflow scheduling
using hybrid PSO-GA algorithm in serverless edge computing for the
Internet of Things,” in Proc. Veh. Technol. Conf., 2022, pp. 1–7.

[15] A. Das, S. Imai, S. Patterson, and M. P. Wittie, “Performance optimization
for edge-cloud serverless platforms via dynamic task placement,” in Proc.
Int. Symp. Cluster Cloud Internet Comput., 2020, pp. 41–50.

[16] R. Xie, D. Gu, Q. Tang, T. Huang, and F. R. Yu, “Workflow scheduling in
serverless edge computing for the industrial Internet of Things: A learning
approach,” IEEE Trans. Ind. Inform., vol. 19, no. 7, pp. 8242–8252,
Jul. 2023.

[17] I. Rahimi, A. H. Gandomi, F. Chen, and E. Mezura-Montes,
“A review on constraint handling techniques for population-based
algorithms: From single-objective to multi-objective optimization,”
Arch. Comput. Methods Eng., vol. 30, no. 3, pp. 2181–2209,
2023.

[18] W. Gao, Y. Wang, L. Liu, and L. Huang, ” A gradient-based search
method for multi-objective optimization problems,” Inf. Sci., vol. 578,
pp. 129–146, 2021.

[19] A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher, “Dy-
namic weights in multi-objective deep reinforcement learning,” in Proc.
Int. Conf. Mach. Learn., 2019, pp. 11–20.

[20] X. Nian, A. A. Irissappane, and D. Roijers, “DCRAC: Deep conditioned re-
current actor-critic for multi-objective partially observable environments,”
in Proc. Int. Conf. Auton. Agents Multiagent Syst., 2020, pp. 931–938.

[21] T. Basaklar, S. Gumussoy, and U. Y. Ogras, “PD-MORL:
Preference-driven multi-objective reinforcement learning algorithm,”
2022, arXiv:2208.07914.

[22] H. Lu, D. Herman, and Y. Yu, “Multi-objective reinforcement learning:
Convexity, stationarity and pareto optimality,” in Proc. Int. Conf. Learn.
Representations, 2023, pp. 1–27.

[23] J. Skalse, L. Hammond, C. Griffin, and A. Abate, “Lexicographic multi-
objective reinforcement learning,” 2022, arXiv:2212.13769.

[24] Y. Ma et al., “Multi-objective congestion control,” in Proc. Eur. Conf.
Comput. Syst., 2022, pp. 218–235.

[25] L. Liu, H. Chen, and Z. Xu, “SPMOO: A multi-objective offloading
algorithm for dependent tasks in IoT cloud-edge-end collaboration,” In-
formation, vol. 13, no. 2, 2022, Art. no. 75.

[26] S. Almasri, M. Jarrah, and B. Al-Duwairi, “Multi-objective opti-
mization of task assignment in distributed mobile edge comput-
ing,” J. Reliable Intell. Environments, vol. 8, no. 1, pp. 21–33,
2022.

[27] S. Wang, M. Reymond, A. A. Irissappane, and D. M. Roijers, “Near on-
policy experience sampling in multi-objective reinforcement learning,” in
Proc. Int. Conf. Auton. Agents Multiagent Syst., 2022, pp. 1756–1758.

[28] F. Song, H. Xing, X. Wang, S. Luo, P. Dai, and K. Li, “Offloading
dependent tasks in multi-access edge computing: A multi-objective re-
inforcement learning approach,” Future Gener. Comput. Syst., vol. 128,
pp. 333–348, 2022.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/cn/campaigns/lambda/
https://aws.amazon.com/cn/campaigns/lambda/
https://cloud.google.com/functions/docs/concepts/overview{?}hl$=$zh-cn
https://cloud.google.com/functions/docs/concepts/overview{?}hl$=$zh-cn
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://aws.amazon.com/cn/lambda/edge/

YANG et al.: MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING FOR FUNCTION OFFLOADING IN SERVERLESS EDGE COMPUTING 301

[29] Q. Tang et al., “Distributed task scheduling in serverless edge computing
networks for the Internet of Things: A learning approach,” IEEE Internet
Things J., vol. 9, no. 20, pp. 19634–19648, Oct. 2022.

[30] L. Liu, H. Tan, S. H. C. Jiang, Z. Han, X. Y. Li, and H. Huang, “Depen-
dent task placement and scheduling with function configuration in edge
computing,” in Proc. Int. Symp. Qual. Serv., 2019, pp. 1–10.

[31] S. Deng et al., “Dependent function embedding for distributed serverless
edge computing,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 10,
pp. 2346–2357, Oct. 2022.

[32] S. Zheng, B. Liu, W. Lin, X. Ye, and K. Li, “A package-aware scheduling
strategy for edge serverless functions based on multi-stage optimization,”
IEEE Trans. Ind. Inform., vol. 13, no. 2, pp. 1–9, Mar. 2021.

[33] X. Yao, N. Chen, X. Yuan, and P. Ou, “Performance optimization of server-
less edge computing function offloading based on deep reinforcement
learning,” Future Gener. Comput. Syst., vol. 139, no. 2, pp. 74–86, 2023.

[34] L. Pan, X. Liu, Z. Jia, J. Xu, and X. Li, “A multi-objective clustering
evolutionary algorithm for multi-workflow computation offloading in
mobile edge computing,” IEEE Trans. Cloud Comput., vol. 11, no. 2,
pp. 1334–1351, Second Quarter 2023.

[35] T. Elgamal, “Costless: Optimizing cost of serverless computing through
function fusion and placement,” in Proc. ACM/IEEE Symp. Edge Comput.,
2018, pp. 300–312.

[36] 2024. [Online]. Available: https://aws.amazon.com/cn/lambda/pricing/
[37] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: A

comprehensive overview,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 45,
no. 3, pp. 385–398, Mar. 2015.

[38] R. Islam, K. K. Teru, D. Sharma, and J. Pineau, “Off-policy policy
gradient algorithms by constraining the state distribution shift,” 2019,
arXiv: 1911.06970.

[39] X. Liu, Z. Y. Chai, Y. L. Li, Y. Y. Cheng, and Y. Zeng, “Multi-objective
deep reinforcement learning for computation offloading in UAV-assisted
multi-access edge computing,” Inf. Sci., vol. 642, 2023, Art. no. 119154.

[40] N. Yang, J. Wen, M. Zhang, and M. Tang, “Multi-objective deep rein-
forcement learning for mobile edge computing,” in Proc. IEEE Int. Symp.
Model. Optim. Mobile Ad Hoc Wireless Netw., 2023, pp. 1–8.

Yaning Yang (Student Member, IEEE) is an associate
professor with the School of Physics and Electronic
Information Engineering, Ningxia Normal Univer-
sity, Guyuan, China. She is currently working to-
ward the PhD degree with the Software Engineering
Institute, East China Normal University, Shanghai,
China. Her research interests include reinforcement
learning, embedded systems, cloud/edge computing,
and serverless computing.

Xiao Du (Student Member, IEEE) received the BS
degree in electronic information engineering from
Leshan Normal University, China, in 2015. Currently,
he is currently working toward the PhD degree with
Software Engineering Institute, East China Normal
University, China. His research interests include
multi-agent reinforcement learning and resource
management in massive random access.

Yutong Ye (Student Member, IEEE) received the BS
degree from the School of Computer Science and
Information Engineering, Guangxi Normal Univer-
sity, Guilin, China, in 2020. He is currently working
toward the PhD degree with the Software Engineering
Institute, East China Normal University, Shanghai,
China. His research interests include reinforcement
learning, embedded systems and Internet of Things.

Jiepin Ding received the MS degrees from the De-
partment of Information Management and Artifi-
cial Intelligence, Zhejiang University of Finance and
Economics, Hangzhou, China, in 2016 and 2020,
respectively. She is currently working toward the
PhD degree with the Software Engineering Insti-
tute, East China Normal University, Shanghai, China.
Her research interests include production scheduling,
heuristic algorithm, and reinforcement learning.

Ting Wang (Senior Member, IEEE) received the PhD
degree in computer science and engineering from
the Hong Kong University of Science and Technol-
ogy, Hong Kong, China, in 2015. He is currently an
associate professor with the Software Engineering
Institute, East China Normal University, Shanghai,
China. Before joining ECNU in 2020, he worked with
the Bell Labs as a research scientist from 2015 to
2016, and with Huawei as a senior engineer from 2016
to 2020. His research interests include cloud/edge
computing, serverless computing, federated learning,
data center networks

Mingsong Chen (Senior Member, IEEE) received
the PhD degree in computer engineering from the
University of Florida, Gainesville, in 2010. He is
currently a professor with the Software Engineering
Institute, East China Normal University. His research
interests are in the area of design automation of cyber-
physical systems, EDA, embedded systems, and for-
mal verification techniques. Currently he serves as
the director of Engineering Research Center of Soft-
ware/Hardware Co-design Technology and Applica-
tion affiliated to the Ministry of Education, China,

and the vice director of technical committee of embedded systems of China
Computer Federation (CCF). He is an associate editor of IET Computers &
Digital Techniques, and Journal of Circuits, Systems and Computers.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Univer-
sity of New York. He is also a distinguished professor
with Hunan University, China. His current research
interests include cloud computing, fog/edge com-
puting and serverless computing, energy-efficient
computing and communication, embedded systems
and cyber-physical systems, heterogeneous comput-
ing systems, Big Data computing, high-performance
computing, CPU-GPU hybrid and cooperative com-
puting, computer architectures and systems, com-

puter networking, machine learning, intelligent and soft computing.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/cn/lambda/pricing/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

