
111

Modeling Temporal Patterns with Dilated Convolutions for
Time Series Forecasting

YANGFAN LI∗, College of Information Science and Engineering, Hunan University
KENLI LI†, College of Information Science and Engineering, Hunan University
CEN CHEN∗, Institute for Infocomm Research, Singapore
XU ZHOU, College of Information Science and Engineering, Hunan University
ZENG ZENG, Institute for Infocomm Research, Singapore
KEQIN LI, Hunan University State University of New York

Time series forecasting is an important problem across a wide range of domains. Designing accurate and
prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often
involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential
and periodic patterns, such as daily, weekly repetitions, etc. At this point, however, most recent deep models
often use RNNs to capture these temporal patterns, which is hard to parallelize and not fast enough for
real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have
demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing
high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel
hybrid framework based on fully Dilated CNN for time series forecasting tasks. The core component in
HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to
capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential
linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in
the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and
periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic
patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better
compared with state-of-the-art baselines and is at least 200% than RNN baselines. The datasets and source
code will be published in Github to facilitate more future work.

CCS Concepts: • Information systems→ Data mining; Information retrieval; • Computing methodolo-
gies → Machine learning.

Additional Key Words and Phrases: Convolutional neural networks, dilated convolutions, time-series forecast-
ing
∗Both authors contributed equally to this research.
†Corresponding author

Authors’ addresses: Yangfan Li, yangfanli@hnu.edu.cn, College of Information Science and Engineering, Hunan University,
Lushan Road (S), Yuelu District, Changsha, Hunan, 410082; Kenli Li, lkl@hnu.edu.cn, College of Information Science
and Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan, 410082; Cen Chen, chenc@i2r.a-
star.edu.sg, Institute for Infocomm Research, Singapore, 1 Fusionopolis Way, 20-10, Connexis North Tower, Singapore; Xu
Zhou, zhouxu@hnu.edu.cn, College of Information Science and Engineering, Hunan University, Lushan Road (S), Yuelu
District, Changsha, Hunan, 410082; Zeng Zeng, zengz@i2r.a-star.edu.sg, Institute for Infocomm Research, Singapore, 1
Fusionopolis Way, 20-10, Connexis North Tower, Singapore; Keqin Li, likq@hnu.edu.cn, Hunan University, Lushan Road
(S), Yuelu District, Changsha, Hunan, 410082, State University of New York, 353 Broadway, Albany, New York.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1556-4681/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456

111:2 Li and Chen, et al.

ACM Reference Format:
Yangfan Li, Kenli Li, Cen Chen, Xu Zhou, Zeng Zeng, and Keqin Li. 2018. Modeling Temporal Patterns
with Dilated Convolutions for Time Series Forecasting. ACM Trans. Knowl. Discov. Data. 37, 4, Article 111
(August 2018), 22 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Time series data such as traffic flows on highways, outputs of solar power plants, and temperatures
of multiple regions are very important to both industry and academia. In these applications, users
will benefit from accurate time series forecasting. For example, the energy industry requires
accurate forecasting of energy demand, supply and price in their decision-making processes [22],
and accurate traffic prediction is critical for many transportation services, such as vehicle flow
control, road trip planning and navigation [10]. Moreover, response time is also important in the
era of big data [8, 9], e.g., a mobility service provider, such as Uber, has to make tremendous amount
of traveling time predictions simultaneously when huge number of user requests are coming. On
this occasion, longer waiting time always leads to poorer user experience.

Fig. 1. Illustrations of sequential and periodic patterns.

Real-world time series applications often entail somemixtures of sequential and periodic temporal
patterns as well as the linear dependencies and non-linear dynamics. In time series with multi-
variables, each variable not only depends on the historical values but also on other variables. Fig.
1(a) presents sequential temporal patterns where the value of interval is affected by the previous
ones. For example, traffic jam around 9:00 am will affect the following traffic situation. Fig. 1(b)
illustrates several kinds of periodic temporal patterns, such as morning and evening peaks, workday
and weekend patterns, etc. Time series data also involve mixtures of linear dependencies and
non-linear dynamics [25, 28, 48]. Fig. 2(a) and (b) present hourly road usages and electricity loads
in 3500 hours, respectively, both of which have some sudden changes. These changes are often
caused by random events, such as traffic jam, holidays, etc. In [49], it has been demonstrated that
linear models can capture such situations better than non-linear models. Moreover, there are also
rich spatial dependencies among variables. For example, in a road network, each variable signifies
the traffic of a road, and the traffic of the road can affect its nearby traffic. Moreover, there are
also rich spatial dependencies among time series with multiple variables. For example, in a road
network, each variable signifies the traffic of a road, and the traffic of the road can affect its nearby
traffic.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:3

(a) (b)

Fig. 2. Sudden changes in scale in time series data.

Previous work [25, 41, 48, 49] combined linear model, such as ARIMA [6], and Multilayer Percep-
tions (MLP) together for time series prediction, where ARIMA and MLP were utilized for modeling
the linear dependencies and non-linear dynamics, respectively. These methods outperformed the
models that captured either linear dependencies or non-linear dynamics. However, MLP may fail
to extract the complex patterns in sequences, especially comparing to the sequencing models based
on deep learning, e.g., RNN or its variants.

Long and Short-term Time-series Network (LSTNet) [28] is considered as a reliable method for
time series prediction, which combines a traditional autoregressive linear model with the non-
linear recurrent neural network (RNN), to improve the robustness [28]. Results on some real-world
datasets show that LSTNet outperforms other methods, such as RNN based and traditional statistics
based approaches, etc. Nevertheless, LSTNet still relies on RNN to model long-term temporal
patterns. Moreover, it only captures the sequential linear dependencies, while leaves the linear
dependencies of temporal periodic patterns untouched.
RNNs have to wait for the predecessors completed before next procedures [38], while convo-

lutions can be done in parallel since the same filters are used in each layers [18]. Therefore, long
sequential inputs can be processed together and paralleled in CNN-based methods, instead of
sequentially repeated in RNNs, to obtain higher processing speed. Recent research indicates that
CNN-based architecture can achieve comparable accuracy in some sequence modeling tasks, such as
audio synthesis, word-level language modeling, and machine translation [2, 4, 15, 18, 26]. However,
modeling the temporal patterns for time series prediction is still a non-trivial task. We summarize
4 main challenges as follows:

• Capturing the long-term and periodic patterns is infeasible for canonical CNN as the convo-
lution operations are performed within sequential elements in time series data.

• Canonical CNN lacks the ability to learn the temporal positional information because all the
records are treated the same by a same set of convolution kernels.

• How to capture the spatial dependencies among variables in multivariate time series data
using CNN?

• Although CNNs are quite powerful in capturing non-linear and regular patterns, there are
also some random and sudden scale changes shown in Fig. 2 which we experimentally find
CNNs are insensitive to.

To solve the first three challenges, we propose the position-aware dilated CNN. 1) The periodical
information in time series data are modeled with dilated convolution. This idea is based on a

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 Li and Chen, et al.

intuition that the dilated convolution operation is performed on the skipped elements rather than
consecutive elements. Therefore, a convolution kernel can capture the patterns within the periodic
historical records. By changing the dilated factor, different periodical patterns (e.g., daily, weekly)
can be captured. 2) To endow the CNNs with the positional sense, we propose the multi-span
temporal feature aggregation scheme to enable the convolutional component aware of the temporal
features of different time span, and the position embedding scheme to give the model a sense of
which part of the entire input series it is dealing with. 3) We let each variable corresponds to one
element in the input channel. We then apply 1D CNN to extract the channel-wise correlations
along with the temporal correlations so that the spatial dependencies among variables can be
captured, which is a simple yet effective method. For the 4-th challenge, we analyze that the scale
change can be modeled by the sequential and periodic linear dependencies, i.e., the future value is
assumed to be a linear combination of some past sequential and periodic values with random errors.
Incorporating linear models such as AR is a robust solution in modeling linear dependencies.
In order to exploit both non-linear dynamics and linear dependencies for capturing sequential

and periodic patterns, we propose the hybrid framework HyDCNN which contains multiple hybrid
modules with a novel hop scheme. The tasks of capturing sequential and periodic patterns are
decoupled inter-module, while the objectives of modeling non-linear dynamics and the linear
dependencies are achieved by the intra-module position-aware dilated CNN and AR components
respectively. Each hybrid module targets on either the sequential pattern or one kind of periodic
patterns base on it hop factor. HyDCNN is an end-to-end trainable framework and can fuse multiple
hybrid modules adaptively. Extensive experiments on five real-world datasets have shown that the
proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% than
RNN baselines.
The remaining of the work is organized as follows. In the next section, the related work is

discussed. Section 3 describes our problem definition and the overview of HyDCNN. Section 4
presents the details of HyDCNN. Section 5 presents the experimental results, while the work is
concluded in Section 6.

2 RELATEDWORK
Approaches for the prediction of time series data can be mainly classified into three categories:
traditional statistics based, artificial neural networks based, and hybrid approaches, as discussed in
the following.

2.1 Traditional Statistics based Approaches
Traditional statistics based approaches for time series forecasting can be further categorized into
two sub-classes: linear and non-linear based models. Auto-Regression (AR), Vector Auto-Regression
(VAR) [6, 34], Moving Average (MA), Auto-Regressive Moving Average (ARMA), Auto-Regressive
Integrated Moving Average (ARIMA) model [6], and regression based methods such as linear
Support Vector Regression (SVR) [7, 27] are linear models where prediction of time series values
is constrained to be linear functions of past values. To account for certain non-linear patterns
observed in real problems, several classes of non-linear models have been proposed, such as
the bilinear model [19], and Auto-Regressive Conditional Heteroscedastic (ARCH) model [17].
Although some improvement has been achieved by these non-linear models, the gain of using
them to general forecasting problems is still limited. Because these models are designed for some
particular non-linear patterns, they fail to model general ones in time series data [16].

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:5

2.2 Artificial Neural Networks based Approaches
Artificial Neural Networks (ANNs), especially Deep Neural Networks, have been proposed for time
series forecasting recently due to their powerful ability of feature learning and unprecedented
successes in other domains. DeepAR [39] proposed an autoregressive recurrent neural network
model on a large number of related time series. Romeu et al. [37] present an approach to probabilistic
time series forecasting that combines state space models with deep learning. N-beats [36] present
an approach to probabilistic time series forecasting that combines state space models with deep
learning. Another application in [35] adopted Stacked Autoencoders to predict the future traffic
flow based on historical traffic flow values. However, sequential and periodic patterns of time series
data were not taken into account in the work.

Similarity based methods are powerful in time series analysis [1]. Wu et al. [44] proposed a family
of alignment-aware positive definite kernels, with its feature embedding given by a distribution of
Random Warping Series. Lei et al. [29] proposed an efficient representation learning framework
that is able to convert a set of time series with various lengths to an instance-feature matrix. Cuturi
[13] proposed novel approaches to cast the widely-used family of Dynamic Time Warping (DTW)
distances and similarities as positive definite kernels for time series. However, sequential and
periodic patterns of time series data were not taken into account in the work.
Recently, Recurrent Neural Networks (RNNs) [38, 43] and its variants, e.g., Long Short-Term

Memory (LSTM) [21], Gated Recurrent Unit (GRU) [12] have achieved great success in sequential
tasks, such as Natural Language Processing (NLP). Models based on RNNs for time series prediction
have also been proposed. TreNet [31] combined CNNs and LSTM to predict the trend in time series.
But RNNs may failed on tasks that require long-term information, mainly due to the notorious
gradient vanishing problem [12] and are hard to parrallelize.

Researchers have also investigated how to use deep learning to capture the spatial dependencies
among variables in time series with multi-variables. DCRNN [30] and [45] use graph to model the
relation between variables. The nodes in the graph represent the variables and the edges describe
the relations of variables. DSANet [24] first extracts the features from each unvariate time series
and then apply a self-attention module to learn the dependencies among variables. Comparing with
them, our HyDCNN mainly focus on capturing the temporal patterns. Actually, we can also capture
the spatial dependencies among vectors. We use a simple yet also effective scheme to model these
spatial dependencies. In the first layer of CNN, we assign each variable to one input channel. The
convolution operation will capture the channel-wise correlations therefore the spatial dependencies
are also captured.

Recent works also use CNNs for time series prediction. SOCNN [3] involved an autoregressive-
like weighting system in CNNs to deal with the noise in time series data. G-CNN [46] used group
convolutions for high-dimensional multivariate regression tasks. TCN [2] and [5] apply dilated
convolution for time series forcasting. But None of them considers the problem of how to use
CNN to capture the long-term periodic patterns in time series data and how to capture the linear
dependencies.

2.3 Hybrid Approaches
Some research work has explored hybrid methods for time-series prediction. ARIMA and MLP
were combined together for time series prediction in [25, 48, 49]. They achieved some advantages
compared with the methods which utilized either ARIMA or MLP only. These work utilized ARIMA
to capture the linear dependencies and MLP to model the non-linear dynamics. However, it is hard
for the work to model sequential dependencies.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 Li and Chen, et al.

A recent work was proposed by Dasgupta et al. [14] that combined vanilla RNN and Dynamic
Boltzmann Machines together. Though this work can utilized RNN to model the sequential depen-
dencies, the long-term periodic temporal patterns cannot be exploited. To tackle this, LSTNet was
proposed in [28] for time series prediction and outperformed other hybrid and non-hybrid methods.
In LSTNet, a novel recurrent structure, namely Recurrent-skip, was designed based on RNN for
capturing long-term imformation. However, it only captured the sequential linear dependencies,
while left the linear dependencies of periodic temporal patterns unexploited.

Compared with the discussed methods, our proposed method has the following advantages: (1)
HyDCNN is based on CNNs to capture both the sequential and periodic dependencies, thus owning
the advantages of computations due to the inherent parallelism of CNNs. (2) HyDCNN can capture
both the linear dependencies and non-linear dynamics for both sequential and periodic patterns.

3 PROBLEM DEFINITION AND FRAMEWORK OVERVIEW
In the section, we present the definition of time series forecasting and overview of the proposed
framework as follows.

3.1 Problem Definition
In this work, we focus on the problem of time series forecasting. Similar with [28], given a series
of historical values XT = {x1,x2, ...,x i , ...,xT }, where x i ∈ Rn , n is the number of multiple
variables, andT is the length of the entire series. Obviously, when n = 1, the problem is a univariate
forecasting problem or multivariate forecasting problem otherwise. Letw be the length of the input
window wherew is integer and 1 < w ⩽ T holds. Then the input matrix for sequential time series
values at time t can be formulated asX t = {x t−w+1,x t−w+2, ...,x t } andX t ∈ R

n×w . The time series
forecasting problem is to predict a series of values x t+h ∈ Rn , where h is the desirable horizon
ahead of t . In most cases, the horizon h and the input windoww are set according to the demands
of real scenarios, e.g., for the traffic usage, the horizon of interest ranges from hours to a day and
the window ranges from days to weeks.

3.2 Framework Overview
Sequential and periodic patterns are both crucial for accurate prediction. Exploiting both the non-
linear dynamics and linear dependencies is an effective way to capture these patterns. To achieve
this goal, we propose the HyDCNN shown in Fig. 3, where the inputs of HyDCNN are the historical
time series values, while the outputs are the predictions of future time signals. HyDCNN contains
multiple hybrid modules, and the tasks of capturing sequential and periodic patterns are decoupled
inter-module, while the objectives of modeling non-linear dynamics and linear parts are achieved
by the intra-module CNN and AR components respectively.
HyDCNN consists of a hybrid module, which targets on the sequential temporal patterns, and

multiple hop hybrid modules, each of which captures one kind of periodic temporal pattern, e.g.,
daily, weekly, etc. In each module, there is a position-aware dilated CNN component to model the
non-linear dynamics, and a hop or non-hop AR component to model the linear parts. These two
components are combined by a residual learning method. The features extracted by the hybrid
module and hop hybrid modules are finally fused together by our proposed weighted fusion scheme
to represent the sequential and multiple periodic temporal patterns jointly. For the sake of simplicity,
there is only one hop hybrid module in Fig. 3, and more hop hybrid modules can be combined into
the framework in the same way to capture multiple temporal patterns.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:7

.

t t+ht-l

Dilated CNN

.

.CNN Kernels VAR

Hop VAR

Residual

Learning

.

.CNN Kernels

Dilated CNN

Dilated CNN

Residual

Learning
Wighted

Fusion

Hop hybrid

module

Hybrid

module

Loss

.

Time Series

Fig. 3. Architecture of our proposed HyDCNN

4 THE PROPOSED FRAMEWORK: HYDCNN
In this section, we present the details of HyDCNN. First, we describe the original hybrid module for
sequential temporal patterns. Second, we introduce how to adopt the hop scheme in the original
hybrid module to capture periodic temporal patterns. Finally, we introduce how to fuse multiple
hybrid modules, the objective function and the optimization strategy together.

4.1 Hybrid module for Sequential Temporal Patterns
In HyDCNN, a hybrid module consists of a position-aware dilated CNN stack for sequential non-
linearity, and an AR model for the sequential linear dependencies. These two parts are combined
by using residual learning, where the CNN based stack is fitting the residual errors of the out-
puts of both the hybrid model and the AR model. The input of the original hybrid module is
historical time series values. Take time t as an example, the input matrix can be formulated as
X t = {x t−w+1,x t−w+2, ...,x t } and X t ∈ R

n×w .

4.1.1 Position-Aware Dilated CNN. Unlike RNNs which have the intrinsic temporal sense by
learning the position information through recurrent hidden state computation (the more previous
cell has lower gradient) , CNN based models lack this temporal sense because all the records in
the time series are treated the same by a same set of convolution kernels [18, 42]. To tackle this
problem, we propose the position embedding scheme to give the model a sense of which part of
the entire input series it is dealing with and the multi-span temporal feature aggregation scheme to
enable the convolutional component aware of the temporal features of different time span. Our
proposed position-aware dilated CNN is based on the dilated 1D CNN network [33] shown in Fig.
4 with details as follows.

Position Embedding. CNN based models lack the ability to learn position information, while
RNNs can learn the position information through recurrent hidden state computation thus know

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Li and Chen, et al.

where they are [18, 42]. To tackle this problem, position embedding is employed to give the model
a sense of which part of the entire input series it is dealing with.

Formally, given an input time seriesX t = {x t−w+1,x t−w+2, ...,x t }, we first use one-hot encoding
to represent each position. For example, if the length of a series is 3, the one-hot vectors of the
positions are denoted [1, 0, 0], [0, 1, 0], and [0, 0, 1] respectively. After one-hot encoding, we have
E = {e1,e2, ...,ew } where ei ∈ Rw denotes the one-hot representation of position i . But these
one-hot vectors are high-dimensional sparse vectors are less representative for neural networks to
process. To tackle this, we introduce an embedding layer to transform them into low dimensional
dense vectors. Formally, the embedding operation ψ : Rw → Rm is a linear transformation that
transforms the sparse vector ei ∈ Rw into a dense vector pi ∈ Rm . The embedding transformation
is formulated as follows:

pi = ψ (ei) = eT
iWp , (1)

whereWp ∈ Rw×m is a learnable parameter matrix and i denotes the i-th position. Then we have
position matrix P t = {p1,p2, ...,pw }, where pi ∈ Rm denotes the embedding vector of the i-th
(1 ⩽ i ⩽ w) absolute position andm is dimension of the embedding vector. For instance, the first
absolute position is embedded into p1 and the u-th absolute position is embedded into pu .
Some previous studies have employed position embedding for NLP [15, 18]. The word vectors

and the position vectors are added together to form a new representation of words. However, for
time series problem, adding up the two embedding matrix is not applicable because each dimension
of the time series X t is a meaningful unvariate time series. If we add the time series values with
position vectors together, the actual time series values will be changed.

To address this problem, we concatenate the input matrix with the embedded position matrix as
the input of the dilated CNNs, defined in the following.

Conv Conv

Conv Conv

Conv Conv . . .

Conv Conv

Conv Conv

Input （Multivariate

time series with

position embedding）

Conv Block 1

.

.

Conv . . .

R2=3

R4=7

R6=13

Multi-span Temporal

Feature Aggregation

O1
TT

O1
T

O2
TT

O2
T

O3
TT

O3
T

YC

Feature Map

Feature Map

Feature Map

Conv Block 2

Conv Block 3

Short-Term Features

Long-Term Features

. . .

Dilated Conv

Dilated Conv

Dropout

Dropout

+

1*1 Conv

(b)(a)

Fig. 4. Position-aware Dilated CNN. (a) An example of position-aware dilated convolutional operation. (b)
Block structure and residual connection.

Definition 1 (Position Embedding): Formally, given an input sequence of time series values,
X t = {x t−w+1,x t−w+2, ...,x t }, after position embedding, the absolute position of each value is
embedded into a sequence of position values, P = {p1,p2, ...,pw }. The input matrix to the dilated
CNNs isCt = {ct−w+1, ...,ct } = {x t−w+1 ◦ p1, ...,x t ◦ pw }, where ◦ is the concatenation operation.

Fully Convolutional Architecture. The fully convolutional architecture is shown in Fig. 4(a).
The input of the position-aware dilated CNN is the sequence of time series values together with
the position values.
Formally, given a sequence input Ct = {ct−w+1, ...,ct } where ci ∈ Rn+m and a kernel with

weight f ∈ Rk×(m+n), the position-aware dilated convolution operation F on the element with the

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:9

index s in the sequence is defined as follows:

F (C, s,d) =
k−1∑
i=0

f i
Tcs−d ·i , (2)

where d is the dilation factor, k is the kernel size, s − d · i accounts for the direction of the past.
When d = 1, F becomes a regular convolution. Then, we perform the convolution F on the input
sequenceCt to generate one feature map denoted asC ′

t ∈ R
w as follows:

C ′
t = {c ′t−w+1, c

′
t−w+2, ..., ct } = {F (C, t −w + 1,d), F (C, t −w + 2,d), ..., F (C, t,d)}. (3)

Finally, we apply multiple kernels formulated by Equ. 2 and Equ. 3 to extract different information.
A position-aware dilated residual CNN is then re-constructed by stacking multiple position-

aware dilated convolutional layers. The output of the r -th layer is the intput of the (r + 1)-th layer.
Two layers with the same dilation size form a block is shown in Fig. 4(b). Several these CNN-based
blocks are stacked to form the hierarchical architecture. The final output is denoted as Y c ∈ Rn .

It is worth noting that in an original hybrid module, the dilation factor d of the first CNN layer
is set to 1 in order to capture the sequential temporal patterns. The dilation factor d in other higher
CNN layers is set to 2 or greater to extend the receptive field. The detailed formulation of the
receptive field is presented as follows.

Capturing Spatial Dependencies Among Variables and Position Information. A convolu-
tion kernel can extract informative features by fusing both the local (local here refers to the
size of the kernel) and the channel-wise features together. With a sets of kernels, the local and
cross-channel correlations are mapped as new combination of features. This idea has been widely
accepted by the literature [11, 23].

In our formulation, we apply kernel with weight f ∈ Rk×(m+n) on the time series with position
information. There arem + n channels in kernels which correspond to the number of variables
and the position embedding. The kernels move 1-dimensionly over the time dimension by Equ.
3. The cross-channel correlations here, representation the dependencies among variable and the
position information, can be extracted and represented as new feature maps denoted as C ′

t by
the convolution. The prediction for each variable is made upon the new features after several
convolution layers which contain rich spatial dependencies among variables as well as the position
information.

Residual Connection. If we want to extend the receptive field to leverage more long-term tem-
poral information, more convolutional blocks are required and the network will become deeper.
Residual neural network is used with a reference to the direct hidden state, instead of an unref-
erenced function. The residual learning and linear shortcut connections can help to solve the
gradient exploding and vanishing problems in the long-term back-propagation [20], especially in
the networks with deeper structures.

With the benefits of residual neural networks [20], we introduce the residual error into our pro-
posed fully convolutional architecture as shown in Fig. 4(b). The residual connection is formulated
as follows:

x i+1 = ReLU (x i + ϕ(x i)), (4)

where ϕ denotes the function of the i-th block, x i denotes the input of the i-th block and x i+1
denotes the output of the i-th block and the input of the (i + 1)-th block. The rectified linear unit
(ReLU) is utilized as the activation function. An additional 1 × 1 convolution is utilized to ensure
that element-wise addition receives tensors of the same shape.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Li and Chen, et al.

Multi-span Temporal Feature Aggregation. The multi-span temporal feature aggregation
scheme further lets the convolutional component aware of the position information by mod-
eling the temporal feature of multiple time span. Motivated by FPN [32], which suggest that all
the feature maps of different convolutional layers are semantically strong, we further generate an
insight that the feature map of each layer can intrinsically represent temporal patterns during the
time interval within the receptive field of this layer. The feature maps at different convolution layer
can represent the patterns of different time span. More specifically, the receptive time span R j of
the j-th layer is

R = 1 + 2
N∑
i=0

Di · (Ki − 1), (5)

For example, shown in Fig. 4 illustrates a CNN structure with 6 layers (3 residual blocks), where
kernel sizes Ki = 2 for all the 6 layers, and dilation factor D = {1, 1, 2, 2, 3, 3} for the 6 layers
respectively. Each triangle represents a residual convolutional block with 2 convolutional layers.
One block can access 3 elements. According to Equation (5), the receptive field {R2,R4,R6} turns
out to be {3, 7, 13}. Then, part of the feature maps of the 3 layers, i.e., xT1 , xT2 , and xT3 , can represent
the most recent 3, 7, 13 records respectively. In real world settings, the receptive time span of the
button layer is often small, signifying the short-term features while the receptive time span of the
top layer is large, representing the long-term features. Fusing the 3 latent vectors can represent the
multi-span temporal feature at time T , formulated as follows:

Y c =W1 · x
T
1 ◦W2 · x

T
2 ◦ ... ◦WN · xTN , (6)

whereWi ∈ R is a trainable weight and ◦ is the concatenation operator. We introduce the
weight parameter because in real-world scenarios, the degree of influence of different layers may
be different.

4.1.2 Autoregressive Model. One major limitation of utilizing CNN for time series forecasting is
that, although CNN is quite effective for capturing non-linear dynamics especially regular patterns,
CNN is not sensitive to the random and sudden changes in time series due to the non-linear nature
of CNN. We analyze that the scale change can be modeled by the sequential and periodic linear
dependencies, i.e., the future value is assumed to be a linear combination of some past sequential
and periodic values with random errors. For example, to predict the burst traffic jam at 9 o’clock
today in the traffic dataset, the scale change of road occupancy at the sequential 6, 7, and 8 o’clock
today and at the periodic 9 o’clock in the previous day can be inherited for prediction through linear
combination. Therefore, to overcome this drawback of CNN, we employ an autoregression model
(AR) in our hybrid module to make our HyDCNN more sensitive and robust to sudden and random
changes in time series data. The AR module in the origin hybrid only captures the sequential linear
dependencies while the periodic linear dependencies are decoupled to other modules which will be
discussed later. The AR model is formulated as follows:

Y ar ,t =

qar−1∑
k=0

W ar
k ⊗ x t−k + b

ar , (7)

where qar ∈ R is the length of the input window of AR,W ar ∈ Rq
ar×n and bar ∈ Rn are the

coefficients of AR model, x i ∈ Rn is the i-th element of the input time series with n variables,
Y ar ,t ∈ Rn is the output of AR model at time t , and ⊗ is the Hadamard product. This equation
means that we apply the AR model to each variable in the time series.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:11

4.1.3 Combining with Residual Learning. The final output of the hybrid module is the combination
of the outputs of the position-aware dilated CNN part and the AR component. Formally, the final
output is given as follows:

Y s = Y c +Y ar , (8)

where Y s is the output of a hybrid module, Y c and Y ar are the outputs of the dilated CNN and AR
model respectively. This indicate that the CNNs try to fit the residual errors of the true value and
the output of the AR model. The residual errors contain only non-linear dynamics and is learnt by
our proposed position-aware dilated CNN.

4.2 Hop Hybrid Module for Periodic Temporal Patterns
The original hybrid module can be utilized to capture the sequential patterns with linear depen-
dencies and non-linear dynamics. As discussed in Section 1, many real-world time series datasets
present clear periodic patterns. For instance, both the electricity consumption and traffic usage
exhibit periodic patterns on a daily basis. If we aim to predict the traffic usage at t o’clock, a classical
strategy for periodic forecasting is to utilize the records at t o’clock of historical days. This type of
dependencies also requires an extremely large receptive field.

To tackle this, we introduce a novel hop mechanism into our proposed hybrid module to leverage
the periodic patterns and long-term information in real-world scenarios. There are two components
in the proposed hybrid module: AR module and position-aware dilated CNNs. The details of how
to apply the hop scheme in both components are described separately in the following.

Hop Scheme in the Position-aware Dilated CNNs. Canonical CNN performs the convolution
operations within sequential elements in time series data, making capturing the long-term and
periodic patterns infeasible. Designing a convolutional component that can effectively dealing with
periodical information in time series data is our first objective.

We address this problem by modeling the periodical information in time series data with dilated
convolution. This idea is based on a intuition that the dilated convolution operation is performed
on the skipped elements rather than consecutive elements. Therefore, a convolution kernel can
capture the patterns within the periodic historical records. By changing the dilated factor, different
periodical patterns (e.g., daily, weekly) can be captured. In our proposed hop hybrid module, the
dilation factor of the first CNN block is set to the hop factor. Take Fig. 5 as an example, suppose
the hop factor is set to 3, then the dilation factor of the first CNN block is also 3. The dilation
factor of other higher blocks can be set to that in the original hybrid module. Similarly, we can set
the dilation factor of the first CNN block to 24 hour to capture the non-linear dynamics of daily
patterns. Accordingly, the position embedding with the hop scheme is formulated in the following.

Definition 2 (Hop Position Embedding): Formally, given an input sequence of time series
values with the hop factor hp,X t = {x t−(w−1)×hp,x t−(w−2)×hp, ...,x t }, after position embedding, the
absolute position of each value is embedded into a sequence of position values, P = {p1,p2, ...,pw }.
The input matrix to the first CNN block is Ct = {ct−w+1, ...,ct } = {x t−(w−1)×hp ◦ p1, ...,x t ◦ pw },
where ◦ is the concatenate operation.

Hop ARModel for Periodic Linear dependencies.We design a novel hop AR model to capture
the periodic linear dependencies. The hop AR model is formulated as follows:

Y har ,t =

qhar−1∑
k=0

W har
k ⊗ x t−hp×(k+1)+h + b

har , (9)

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Li and Chen, et al.

.

t t+ht-l

Dilated CNN

.

.CNN Kernels VAR

Fully Connected Layer

Hop VAR

Fully Connected Layer

Add

.

.CNN Kernels

Dilated CNN

Dilated CNN

Add
Wighted

Fusion

Hop hybrid

module

Hybrid

module

Loss

.

Conv Block

Conv Conv

.

Conv

Conv Conv

. . .

Output

Conv Block

Conv Conv

.

Conv

Conv Conv

. . .

Output

Origin Dilated CNN

with 2 Blocks

Hop Block

Multivatiate

time series values

Position

embedding values

Dilated Conv

Dilated Conv

Dropout

Dropout

+

1*1 ConvConv Conv

Conv

Conv

Conv

Conv

Output

(a) (b)

Conv Block

Layer 1

Layer 2

Layer 3

Time Series

Multivatiate

time series values

Hop position

embedding values

. . .

Hop position

embedding

Hop scheme
.

.

Fig. 5. Hop scheme in position-aware dilated CNN.

where hp is the hop factor, qhar ∈ R is the length of the input window of hop AR,W har ∈ Rq
har×n

and bhar ∈ Rn are the coefficients of AR model, x i ∈ Rn is the i-th element of the input series, h is
the horizon, and Y har is the output of hop AR model.

Take a daily periodic hybrid module as an example: Given time series values before 8, if we want
to predict the time series values at 11 o’clock, we have the horizon is 3. It is reasonable for the
hop AR Model to take the values of yesterday 11 o’clock, the values of 11 o’clock the day before
yesterday and so on as inputs to capture the linear dependencies of daily patterns.

4.3 Fusion Methods for Multiple Hybrid Modules
As discussed in Section 1, many real-world time series datasets present multiple temporal patterns,
and the degrees of influence may be different. Inspired by this observations, we propose a novel
parametric-tensor-based fusion method that can fuse the outputs of multiple hybrid modules. The
equation of fusion method is defined as follows:

Y f = Y s +

γ∑
i=1

Wi ⊗ Y i
p, (10)

where Y f denote the fused features, ⊗ is Hadamard product (i.e., element-wise multiplication for
tensors), Y s are the output features of the hybrid module for sequential patterns, γ denotes the
number of hop hybrid modules, Y i

p means the output features of the hop hybrid module with the
index i , andW1, ...,Wγ are the trainable parameters that can adjust the impacts of different hop
modules.

We adopt this formulation because sequential patterns are crucial and the periodic patterns are
auxiliary in real-world scenarios. The weights of the periodic patterns vary a lot in different time
series tasks. Therefore, we set the impacts of different periodic patterns as trainable weights.

4.4 Loss Function
In the training process, we adopt mean squared error (L2-loss) as the objective function, the
corresponding optimization objective is formulated as follows:

min
Θ

M∑
j=0

G∑
i=0

(x j
t+h,i − x̂ j

t+h,i)
2, (11)

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:13

Table 1. Dataset details, where LE is the number of time series values, NU is the dimension of the variables,
SR is the sample rate.

Datasets LE NU SR
SML2010 4111 1 15 minutes
GEFCom2014 Electricity Load 21552 1 1 hour
Traffic 17544 862 1 hour
Solar-Energy 52560 137 10 minutes
Electricity 26304 321 1 hour

where Θ denotes the parameter set of our model, and h is the user defined horizon, and n is the
dimension of data, and G is the number of training samples.

5 EXPERIMENTS
5.1 Experimental Settings
We conducted extensive experiments with seven methods (including HyDCNN) on five real-world
datasets for both multivariate and univariate time series forecasting tasks.

5.1.1 Dataset Description. We use five real-world benchmark datasets, including three typical
mutivariate datasets [28]: Traffic, Solar Energy, Electricity and two univariate datasets: SML2010
and GEFCom(2014) Electricity Load [22]. Table 1 illustrates the corpus statistics. All the datasets
are publicly available.

Multivariate.
• Traffic: A collection of 48 month (2015-2016) hourly data from California Department of
Transportation. The data describe the road occupancy rates (between 0 and 1).

• Electricity: The hourly electricity consumption in kWh from 2012 to 2014, for n = 321 clients.
• Solar-Energy: The solar power production records in the year 2006, which is sampled every

10 minutes from 137 PV plants in Alabama State.

Unvariate.
• SML2010: The dataset is a uci open dataset [47] used for temperature prediction. This dataset is
collected from amonitor systemmounted in a domotic house. It corresponds to approximately
40 days of monitoring data.

• GEFCom2014 Electricity Load (GEFCom): The dataset was published in GEFCom2014 fore-
casting competition and describes the total electricity load of an entire zone.

In our experiments, all datasets have been split into training set (60%), validation set (20%) and
test set (20%) in chronological order.

5.1.2 Methods for Comparison. We compare HyDCNN model with the following methods.
• AR stands for the autoregressive model, which is equivalent to 1D VAR model.
• VAR-MLP is the model proposed in [49] that combines Multilayer Perception (MLP) and
autoregressive model.

• GRU is a simple, yet powerful variant of RNNs with gating mechanism for time series
prediction [12].

• TCN is a general powerful pure CNN-based model for sequence modeling [2].
• LSTNet is a method proposed by [28] that can capture long-term and short-term temporal
patterns.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 Li and Chen, et al.

• TPA-LSTM [40] proposes an attention-based model for time series forecasting.
• MTGNN [45] designs a graph neural network framework for time series forecasting.
• HyDCNN is our proposed hybrid model. The input is multivariate time series.

AR is are classical baselines, while GRU is a variant of RNN-basedmethods. To our best knowledge,
MTGNN is state-of-the-art method based on deep neural networks for mutivariate time series
forecasting.

5.1.3 Evaluation Metrics. Following LSTNet [28], we use conventional evaluation metrics. All the
metrics are commonly used in the corresponding tasks as defined in the following.

• Root Relative Squared Error (RRSE):

RRSE =

√∑
(i ,t)∈ΩT est (Yit − Ŷit)2√∑
(i ,t)∈ΩT est (Yit − Ȳ)2

, (12)

• Relative Absolute Error (RAE):

RAE =

∑
(i ,t)∈ΩT est

��Yit − Ŷit
��∑

(i ,t)∈ΩT est

��Yit − Ȳ
�� , (13)

• Empirical Correlation Coefficient (CORR):

CORR =
1
n

n∑
i=1

∑
t (Yit − Ȳi)(Ŷit −

ˆ̄Yi)√∑
t (Yit − Ȳi)2(Ŷit −

ˆ̄Yi))2
, (14)

where Y is the ground truth, Ȳ is the mean, and Ŷ is the estimation.

5.2 Implementation Details
PyTorch 1.0.1 is used to build our models 1. We train and evaluate all the methods on a server with
4 Tesla P100 GPU and 8 E5-2620V4 CPU.

In our implementation, two hybrid modules are combined together in HyDCNN. One original
hybrid module is utilized to capture the sequential temporal patterns and one hop hybrid module
is utilized to capture the periodic patterns. In the hybrid module, we stack 3 blocks. The dilation
factor is set as D = {D1,D2,D3} = {1, 2, 3}, where Di denotes the dilation factor of the i-th block.
In the hop hybrid module, two blocks are stacked. The hop hybrid module is utilized to capture the
daily temporal patterns. The hop factor of hop hybrid module is selected based on the sampling
frequency of data series, i.e., hp = 24 × r where 24 means 24 hours for daily periodic patterns and r
denotes the hourly sampling rate. For example, for the hourly sampled datasets (GEFCom, Trafc,
and Electricity), the hop factor is set to 24. For SML2010 dataset, the sampling rate is 4 per hour
and the hop factor is set to 96, while for Solar-Energy dataset, the sampling rate is 6 per hour and
that is set to 144.
For other hyper-parameters in HyDCNN, we conduct the grid search scheme. Specifically, the

number of kernels is chosen from {40, 50, ..., 100} for multivariate datasets and {10, 12, ..., 20} for
univariate datasets. The kernel size of each block is chosen from {3, 4, ..., 10}. The dropout rate is
set to 0.1 or 0.2. The learning rate is set to 0.001 or 0.01.

For GRU, the number of layers is set to 4, and the hidden state size is chosen from {32, 50, 100}
via grid search. For LSTNet, we employ the open-source implementation that also adopts the

1The source code of HyDCNN can be provided upon request and will be released after review together with the dataset.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:15

Table 2. Experimental results summary of all methods on multivariate datasets (in RSE, RAE and CORR
metrics). Best results are displayed in boldface.

dataset Traffic Solar-Energy Electricity
horizon horizon horizon

methods metrics 3 6 12 24 3 6 12 24 3 6 12 24

AR
RRSE 0.5991 0.6218 0.6252 0.6293 0.2435 0.3790 0.5911 0.8699 0.0995 0.1035 0.1050 0.1054
RAE 0.4491 0.4610 0.4700 0.4696 0.1846 0.3242 0.5637 0.9221 0.0579 0.0598 0.0603 0.0611
CORR 0.7752 0.7568 0.7544 0.7519 0.9710 0.9263 0.8107 0.5314 0.8845 0.8632 0.8591 0.8595

VARMLP
RRSE 0.5582 0.6579 0.6023 0.6146 0.1922 0.2679 0.4244 0.6841 0.1393 0.1620 0.1557 0.1274
RAE 0.4510 0.5434 0.4947 0.5474 0.1051 0.1635 0.3102 0.6084 0.0970 0.1171 0.1261 0.0883
CORR 0.8245 0.7695 0.7929 0.7891 0.9829 0.9655 0.9058 0.7149 0.8708 0.8389 0.8192 0.8679

GRU
RRSE 0.5396 0.5568 0.5618 0.5720 0.2101 0.2818 0.4390 0.4951 0.1150 0.1201 0.1275 0.1380
RAE 0.3921 0.4142 0.4276 0.4384 0.1168 0.1667 0.2765 0.3043 0.0623 0.0701 0.0789 0.0883
CORR 0.8461 0.8496 0.8302 0.8241 0.9746 0.9625 0.9119 0.8768 0.8523 0.8361 0.8310 0.8255

TCN
RRSE 0.4852 0.4963 0.5234 0.5287 0.1990 0.2856 0.4138 0.4861 0.1053 0.1123 0.1155 0.1201
RAE 0.3549 0.3798 0.3838 0.3912 0.1065 0.1544 0.2401 0.2954 0.0589 0.0662 0.0695 0.0752
CORR 0.8701 0.8578 0.8523 0.8511 0.9788 0.9610 0.9276 0.8721 0.8813 0.8842 0.8752 0.8698

LSTNet
RRSE 0.4777 0.4893 0.4950 0.4973 0.1944 0.2601 0.3408 0.4631 0.0906 0.0974 0.1007 0.1007
RAE 0.3509 0.3745 0.3749 0.3887 0.0981 0.1491 0.2159 0.2861 0.0519 0.0542 0.0567 0.0549
CORR 0.8715 0.8627 0.8614 0.8588 0.9823 0.9676 0.9397 0.8794 0.9195 0.9077 0.9045 0.9041

TPA-LSTM
RRSE 0.4487 0.4658 0.4641 0.4765 0.1803 0.2347 0.3234 0.4389 0.0823 0.0916 0.0964 0.1006
RAE 0.2901 0.2999 0.3112 0.3118 0.0918 0.1296 0.1902 0.2727 0.0463 0.0491 0.0541 0.0544
CORR 0.8812 0.8717 0.8717 0.8629 0.9850 0.9742 0.9487 0.9081 0.9429 0.9337 0.9250 0.9133

MTGNN
RRSE 0.4162 0.4435 0.4461 0.4535 0.1778 0.2348 0.3109 0.4270 0.0745 0.0862 0.0916 0.0953
RAE 0.3065 0.3124 0.3218 0.3345 0.0908 0.1321 0.1895 0.2787 0.0446 0.0473 0.0511 0.0538
CORR 0.8963 0.8815 0.8794 0.8810 0.9852 0.9726 0.9509 0.9031 0.9474 0.9354 0.9278 0.9234

HyDCNN
(Our model)

RRSE 0.4198 0.4290 0.4352 0.4423 0.1806 0.2335 0.3094 0.4225 0.0832 0.0898 0.0921 0.0940
RAE 0.2969 0.2989 0.3040 0.3094 0.0912 0.1215 0.1786 0.2653 0.0487 0.0479 0.0505 0.0510
CORR 0.8915 0.8855 0.8858 0.8819 0.9865 0.9747 0.9515 0.9096 0.9354 0.9329 0.9285 0.9264

（a） （b）
Fig. 6. Visualization of Forecasting results for HyDCNN and LSTNet on different datasets. (a) Traffic dataset
with horizon = 24. HyDCNN is much more effective capturing the workday peak hours than LSTNet. (b)
Electricity dataset horizon = 12. HyDCNN learns the daily patterns more effectively than LSTNet.

grid search scheme.2 For AR, VARMLP we adopt the results provided by [28]. For MTGNN and
TPA-LSTM. We adopt their origin results in the papers.

5.3 Experimental Results and Discussions
5.3.1 Results Overview. Table 2 and Table 3 summarize the experimental results of multivariate and
univariate datasets in the RRSE, RAE and CORRmetrics, respectively. We set horizon = {3, 6, 12, 24}
for all the datasets. Both tables clearly illustrate that our proposed HyDCNN outperforms other
competitors in most tasks. Although our HyDCNN does not achieve an overwhelming superiority
2https://github.com/laiguokun/LSTNet

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 Li and Chen, et al.

Table 3. Experimental results summary of all methods on unitivariate datasets (in RSE, RAE and CORR
metrics). Best results are displayed in boldface.

dataset GEFCom(2014) SML2010
horizon horizon

methods metrics 3 6 12 24 3 6 12 24

GRU
RRSE 0.2201 0.3412 0.4102 0.4507 0.1860 0.3181 0.5037 0.6722
RAE 0.1775 0.2552 0.3486 0.3219 0.1598 0.2581 0.4329 0.6073
CORR 0.9564 0.9259 0.9126 0.9088 0.9687 0.9432 0.8882 0.7843

LSTNet
RRSE 0.1931 0.2908 0.3609 0.3534 0.1590 0.2779 0.4317 0.5908
RAE 0.1495 0.2285 0.3085 0.2906 0.1390 0.2333 0.3757 0.5251
CORR 0.9812 0.9572 0.9333 0.9364 0.9897 0.9661 0.9107 0.8294

HyDCNN-un
(Our model)

RRSE 0.1715 0.2323 0.2692 0.3006 0.1667 0.2426 0.3451 0.5193
RAE 0.1533 0.2035 0.2295 0.2518 0.1384 0.2115 0.3095 0.4965
CORR 0.9866 0.9756 0.9638 0.9542 0.9877 0.9705 0.9457 0.8625

(a) (b) (c)

Fig. 7. Results of different variants of HyDCNN on different datasets. (a) Traffic dataset. (b) Electricity dataset.
(c) Solar-Energy dataset.

in terms of accuracy comparing with the TPA-LSTM and MTGNN, we still have a great advantage
in computational efficiency. TPA-LSTM introduce the attention mechanism, which is quite compu-
tation intensive to calculate the variable-wise attention score, with the LSTM. The MTGNN has the
time complexity of O(n2), where n denotes the number of variables, in its graph learning layer. The
complexity of our HyDCNN is linear to the number of variables and the computation of CNN is
much easier to parallel than RNN.
The visualized results of HyDCNN and LSTNet on the Traffic and the GEFCom datasets are

shown in Fig. 6. The results demonstrate that HyDCNN is superior to LSTNet in capturing multiple
patterns. For examples, HyDCNN managed to capture the surge from Monday to Sunday on the
Traffic dataset as shown in Fig. 6(a) and HyDCNN have learnt the workday and weekend electricity
load patterns much more precisely than LSTNet as shown in Fig. 6(b).

Besides, there is onemore thing wewant to clarify that HyDCNN has demonstrated its superiority
on conventional real-world multivariate datasets in Table 2, whereas Table 3 is only a supplement
on univariate tasks. Therefore, we compare the challenging methods for univariate datasets only.

5.3.2 Ablation studies. To examine the effectiveness of all the proposing schemes, we conduct a
set of ablation studies on the Traffic, Solar Energy, and Electricity datasets. The following notations
denote different variants of HyDCNN.

• HyDCNN/No_Hop: HyDCNN variant without the hop hybrid module.
• HyDCNN/No_VAR: HyDCNN variant without VAR components.
• HyDCNN/No_Position: HyDCNN variant without multi-span temporal feature aggregation
scheme and position embedding.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:17

(a) (b)
Fig. 8. (a) There is a sudden change in the Traffic dataset from 1600-th hour to 3200-th hour. (b) There is no
sudden change in the Solar Energy dataset.

(a) (b)

(a) (b) (c)

Fig. 9. Effectiveness of AR module on the Traffic dataset with horizon = 3. (a) Forecasting results of HyD-
CNN/No_AR. (b) Forecasting results of AR. (c) Forecasting results of HyDCNN. HyDCNN can capture the
sudden changes in time series with the help of the AR module.

Fig. 10. Effectiveness of the Hop Scheme. Forecasting of HyDCNN (red) and HyDCNN/No_Hop (blue) on the
Traffic dataset with horizon = 24 vs. the true data (green). HyDCNN can better learn the periodic patterns of
daily rush hours with the proposed hop scheme.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 Li and Chen, et al.

The experimental results are presented in Fig. 7. The effectiveness of each proposed scheme in
HyDCNN is analyzed as follows.

Effectiveness of Hybrid Mechanism for Linearity and Non-linearity. As shown in Fig. 7,
combining with the AR model can improve the forecasting accuracy on all the datasets. It demon-
strates the effectiveness of hybrid mechanism. We also can observe that AR components are
improves a lot for Traffic and Electricity datasets but improve little on the Solar Energy dataset.

To explain this, we visualize Traffic and Solar Energy datasets in Fig. 8. There are some sudden
scale changes in Traffic dataset, but little scale changes in Solar Energy dataset. So we suggest
that the AR component may brings the improvement by modeling these scale change with linear
combination.
To further study this problem, we extract the records from 2500 to 3000 hours in Fig. 8(a) to

represent a time span with scale increase (most spikes in the training set are blow 0.15). We then
visualize the output of CNN-only, AR-only, and our hybrid HyDCNN in 9. In Fig. 9(a), the CNN-only
model try to fit the ground truth with a regular pattern but failed because of these random changes,
mainly because there are very few spikes larger that 0.15 in the training set. In Fig. 9(b), the AR-only
model can better capture these random spikes but fail to learn some internal temporal patterns.
The hybrid module with AR component nicely makes up for this flaw and achieves significant
improvement in Fig. 9(c).

Fig. 11. Performance of different input window size of AR on the traffic dataset. A small window size can
bring significant improvement. The best result is achieved when window size is around 10. Moreover, the
performance is not sensitive to window size.

To further study how the input window size of ARmodel influences the performance of HyDCNN.
We change the the input window size and evaluate on the traffic dataset. The result is shown in Fig.
11. We notice that even a small window size can bring significant improvement. The best result is
achieved when window size is around 10. Moreover, the performance is not sensitive to window
size. This result indicates that, the linear dependencies mainly exist within the most recent values

The visualized prediction results of HyDCNN/No_VAR and HyDCNN are shown in Fig. 9, where
we can clearly observe that HyDCNN with VAR model shows a great ability for sudden changes.

Effectiveness of Hop Scheme. From Fig. 7, we can observe that adopting the hop hybrid module
can improve forecasting performance. We visualize the forecasting of HyDCNN (red) and HyD-
CNN/No_Hop (blue) in Fig. 10, to demonstrate the ability of HyDCNN to capture the mixtures

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:19

Table 4. Running time of calculating a batch of data.

Inference time (ms) GEFCom Traffic
GRU 48.37 55.48

LSTNet 8.913 12.51
HyDCNN
(Our model) 4.322 5.861

of sequential and periodic patterns. The visualized prediction results which are presented in Fig.

Fig. 12. Performance of different hop factor on the traffic dataset. The best performance is achieved when
the hop factor is 24. Traffic dataset is hourly sampled and the result indicates that the improvement is mainly
brought by capturing the daily periodic patterns using the hop hybrid module.

10 present that morning and evening rush hours in workdays, free hours in weekend are better
captured with the help of hop hybrid module. Obviously, that demonstrates HyDCNN’s ability to
capture the periodic patterns.
To further study how the hop factor influences the performance of HyDCNN. We change the

hop factor and evaluate on the traffic dataset. The result is shown in Fig. 12. The best performance
is achieved when the hop factor is 24. Traffic dataset is hourly sampled and the result indicates that
the improvement is mainly brought by capturing the daily periodic patterns using the hop hybrid
module.

Effectiveness of Capturing Position Information. From Fig. 7, we can observe that position
embedding introduces general improvement on all the datasets. The proposed position-aware
scheme and the multi-span temporal feature aggregation scheme can be utilized as general strategies
on CNN based methods for the problem of time series prediction.

5.4 Inference Time
Table 4 summarizes the inference time of HyDCNN and two other RNN-based methods, GRU
and LSTnet, on Traffic and GEFCom datasets. In real-world situations, inference time is more
important than training time, and hence, we report the inference time only. For a fair comparison,

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 Li and Chen, et al.

the parameters are set to the same with the experiments of comparing the prediction accuracy, and
the input length for all the methods is set to 336 that means 2 weeks for both datasets. We can
observe that HyDCNN is at least 200% faster than the baselines with regard to inference time.

6 CONCLUSIONS
Time series data are ubiquitous and very important in our daily life across various domains.
However, how to design accurate and prompt forecasting algorithms is a challenging task, because
real-world temporal data often involve both non-linear dynamics and linear dependencies, and
always have some mixtures of sequential and periodic patterns. In this work, we propose a novel
hybrid framework, termed as HyDCNN, based on position-aware fully Dilated CNN and auto-
regressivemodel, for time series forecasting. HyDCNN is end-to-end trainable and can capture linear
dependencies and non-linear dynamics for both the sequential and periodic patterns. Extensive
experiments on five real-world datasets have shown that the proposed HyDCNN is better compared
with state-of-the-art baselines and is at least 200% than RNN baselines. In the future, we will study
how to further capture the spatial dependencies more effectively with CNNs especially on the
high-dimensional multivariate time series.

ACKNOWLEDGMENTS
The research was partially funded by National Key Research and Development Program of China
(Grant No. 2018YFB0203800), the National Key R&D Program of China (Grant No.2018YFB1003401,
2018YFB0204302), the National Outstanding Youth Science Program of National Natural Science
Foundation of China (Grant No.61625202), the International (Regional) Cooperation, National
Key Research and Development Program of China (2018YFB0204302), NSFC (Grant No. 61772182),
Science and Technology on Information Systems Engineering Laboratory and Exchange Program
of National Natural Science Foundation of China (Grant No. 61661146006, 61860206011).

REFERENCES
[1] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. 2017. The great time series classifi-

cation bake off: a review and experimental evaluation of recent algorithmic advances. Data mining and knowledge
discovery 31, 3 (2017), 606–660.

[2] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).

[3] Mikołaj Bińkowski, Gautier Marti, and Philippe Donnat. 2017. Autoregressive convolutional neural networks for
asynchronous time series. arXiv preprint arXiv:1703.04122 (2017).

[4] Phil Blunsom, Edward Grefenstette, and Nal Kalchbrenner. 2014. A Convolutional Neural Network for Modelling
Sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Proceedings of
the 52nd Annual Meeting of the Association for Computational

[5] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. 2018. Dilated convolutional neural networks for time
series forecasting. Journal of Computational Finance, Forthcoming (2018).

[6] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015. Time series analysis: forecasting and
control. John Wiley & Sons.

[7] Li-Juan Cao and Francis Eng Hock Tay. 2003. Support vector machine with adaptive parameters in financial time
series forecasting. IEEE Transactions on neural networks 14, 6 (2003), 1506–1518.

[8] Cen Chen, Kenli Li, Aijia Ouyang, and Keqin Li. 2018. Flinkcl: An opencl-based in-memory computing architecture on
heterogeneous cpu-gpu clusters for big data. IEEE Trans. Comput. 67, 12 (2018), 1765–1779.

[9] Cen Chen, Kenli Li, Aijia Ouyang, Zeng Zeng, and Keqin Li. 2018. GFlink: An in-memory computing architecture
on heterogeneous CPU-GPU clusters for big data. IEEE Transactions on Parallel and Distributed Systems 29, 6 (2018),
1275–1288.

[10] Cen Chen, Kenli Li, Sin G Teo, Xiaofeng Zou, Kang Wang, Jie Wang, and Zeng Zeng. 2019. Gated Residual Recurrent
Graph Neural Networks for Traffic Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
485–492.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Modeling Temporal Patterns with Dilated Convolutions for Time Series Forecasting 111:21

[11] François Chollet. 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1251–1258.

[12] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

[13] Marco Cuturi. 2011. Fast global alignment kernels. In Proceedings of the 28th international conference on machine
learning (ICML-11). 929–936.

[14] Sakyasingha Dasgupta and Takayuki Osogami. 2017. Nonlinear dynamic Boltzmannmachines for time-series prediction.
In Thirty-First AAAI Conference on Artificial Intelligence.

[15] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language modeling with gated convolutional
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 933–941.

[16] Jan G De Gooijer and Kuldeep Kumar. 1992. Some recent developments in non-linear time series modelling, testing,
and forecasting. International Journal of Forecasting 8, 2 (1992), 135–156.

[17] Robert F Engle. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom
inflation. Econometrica: Journal of the Econometric Society (1982), 987–1007.

[18] Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin. 2017. A Convolutional Encoder Model for Neural
Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 123–135.

[19] Clive William John Granger and Allan Paul Andersen. 1978. An introduction to bilinear time series models. Vandenhoeck
& Ruprecht.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.
[22] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J Hyndman. 2016. Probabilistic

energy forecasting: Global energy forecasting competition 2014 and beyond.
[23] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 7132–7141.
[24] Siteng Huang, Donglin Wang, Xuehan Wu, and Ao Tang. 2019. DSANet: Dual Self-Attention Network for Multivariate

Time Series Forecasting. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management. 2129–2132.

[25] Ashu Jain and Avadhnam Madhav Kumar. 2007. Hybrid neural network models for hydrologic time series forecasting.
Applied Soft Computing 7, 2 (2007), 585–592.

[26] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray Kavukcuoglu. 2016.
Neural machine translation in linear time. arXiv preprint arXiv:1610.10099 (2016).

[27] Kyoung-jae Kim. 2003. Financial time series forecasting using support vector machines. Neurocomputing 55, 1-2 (2003),
307–319.

[28] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling long-and short-term temporal patterns
with deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval. ACM, 95–104.

[29] Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, and Inderjit S Dhillon. 2019. Similarity Preserving Representation
Learning for Time Series Clustering.. In IJCAI, Vol. 19. 2845–2851.

[30] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion convolutional recurrent neural network: Data-driven
traffic forecasting. arXiv preprint arXiv:1707.01926 (2017).

[31] Tao Lin, Tian Guo, and Karl Aberer. 2017. Hybrid neural networks for learning the trend in time series. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence. 2273–2279.

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature pyramid
networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2117–
2125.

[33] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition. 3431–3440.

[34] Helmut Lütkepohl. 2005. New introduction to multiple time series analysis. Springer Science & Business Media.
[35] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. 2014. Traffic flow prediction with big data: a

deep learning approach. IEEE Transactions on Intelligent Transportation Systems 16, 2 (2014), 865–873.
[36] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2019. N-BEATS: Neural basis expansion

analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 (2019).
[37] Syama Sundar Rangapuram, Matthias Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim Januschowski.

2018. Deep state space models for time series forecasting. In Proceedings of the 32nd international conference on neural
information processing systems. 7796–7805.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 Li and Chen, et al.

[38] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. 1988. Learning representations by back-propagating
errors. Cognitive modeling 5, 3 (1988), 1.

[39] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020. DeepAR: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting 36, 3 (2020), 1181–1191.

[40] Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. 2019. Temporal pattern attention for multivariate time series
forecasting. Machine Learning 108, 8-9 (2019), 1421–1441.

[41] Osamah Basheer Shukur and Muhammad Hisyam Lee. 2015. Daily wind speed forecasting through hybrid KF-ANN
model based on ARIMA. Renewable Energy 76 (2015), 637–647.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention Is All You Need. (2017).

[43] Paul J Werbos et al. 1990. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 10 (1990),
1550–1560.

[44] Lingfei Wu, Ian En-Hsu Yen, Jinfeng Yi, Fangli Xu, Qi Lei, and Michael Witbrock. 2018. Random warping series: A
random features method for time-series embedding. In International Conference on Artificial Intelligence and Statistics.
PMLR, 793–802.

[45] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. 2020. Connecting the Dots:
Multivariate Time Series Forecasting with Graph Neural Networks. arXiv preprint arXiv:2005.11650 (2020).

[46] Subin Yi, Janghoon Ju, Man-Ki Yoon, and Jaesik Choi. 2017. Grouped convolutional neural networks for multivariate
time series. arXiv preprint arXiv:1703.09938 (2017).

[47] Fransisco Zamora-Martinez, Pablo Romeu, Pablo Botella-Rocamora, and Juan Pardo. 2014. On-line learning of indoor
temperature forecasting models towards energy efficiency. Energy and Buildings 83 (2014), 162–172.

[48] Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. 1998. Forecasting with artificial neural networks:: The state of
the art. International journal of forecasting 14, 1 (1998), 35–62.

[49] G Peter Zhang. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50
(2003), 159–175.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Statistics based Approaches
	2.2 Artificial Neural Networks based Approaches
	2.3 Hybrid Approaches

	3 Problem Definition and Framework Overview
	3.1 Problem Definition
	3.2 Framework Overview

	4 The Proposed Framework: HyDCNN
	4.1 Hybrid module for Sequential Temporal Patterns
	4.2 Hop Hybrid Module for Periodic Temporal Patterns
	4.3 Fusion Methods for Multiple Hybrid Modules
	4.4 Loss Function

	5 Experiments
	5.1 Experimental Settings
	5.2 Implementation Details
	5.3 Experimental Results and Discussions
	5.4 Inference Time

	6 Conclusions
	Acknowledgments
	References

