
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Adaptive-oriented mutation snake optimizer for scheduling

budget-constrained workflows in heterogeneous cloud environments

Yanfen Zhang a, Longxin Zhang a,1,∗, Buqing Cao a,b, Jing Liu c, Wenyu Zhao a, Jianguo Chend,
Keqin Li e

a School of Computer Science, Hunan University of Technology, 412007, Zhuzhou, China
bKey Laboratory of Intelligent Sensing System and Security (Hubei University), Ministry of Education, 430062, Wuhan, China
cDepartment of Computer Science and Technology, Wuhan University of Science and Technology, 430081, Wuhan, China
d School of Software Engineering, Sun Yat-Sen University, 519082, Zhuhai, China
eDepartment of Computer Science, State University of New York, 12561, New Paltz, NY, USA

a r t i c l e i n f o

Keywords:
Budget
Heterogeneous cloud computing
Makespan
Snake optimizer
Workflow scheduling

 a b s t r a c t

Cloud computing, recognized as an advanced computing paradigm, facilitates flexible and efficient resource
management and service delivery through virtualization and resource sharing. However, the computational ca-
pabilities of resources in heterogeneous cloud environments are often correlated with their costs; thus, budget
constraints are imposed on users who require rapid response times. We introduce a novel metaheuristic optimiza-
tion algorithm called the snake optimizer (SO), which is aimed at workflow scheduling in cloud environments,
to tackle the challenge mentioned. We also integrate random mutation to enhance the algorithm’s global search
capability to overcome the limitation of SO’s being prone to local optima. Additionally, we aim to increase the
success rate of finding feasible solutions within budget constraints; thus, we implement a directional strategy
to guide the evolutionary paths of the snake individuals. In this context, excessive randomness and overly rigid
directionality can adversely affect the algorithm’s search performance. We propose an adaptive-oriented mu-
tation (AOM) mechanism to balance the two aspects mentioned. This AOM mechanism is integrated with SO
to create AOM-SO, which effectively addresses the makespan minimization problem for workflow scheduling
under budget constraints in heterogeneous cloud environments. Comparative experiments using real-world sci-
entific workflows show that AOM-SO achieves a 100% success rate in identifying feasible solutions. Moreover,
compared with the state-of-the-art algorithms, it reduces makespan by an average of 43.03%.

1. Introduction

The rapid advancement of Internet technologies has resulted in the
emergence of cloud computing as a novel paradigm for delivering dy-
namic, reliable, and elastic computing services [1]. This innovative tech-
nology transforms how global users share computing resources over
the Internet and serves as a significant catalyst for the advancement
of cutting-edge technologies, such as 5G, the Internet of Things, and the
industrial Internet. Thus, cloud computing has become an indispensable
support system [2]. As a fundamental component of cloud computing,
virtualization technology enables dynamic resource scheduling and scal-
ing. Numerous computing nodes with varying capabilities and charac-
teristics are effectively integrated through virtualization to create a vast
heterogeneous cloud resource pool. This setup enables users to access

∗ Corresponding author.
 E-mail addresses: yanfen.z@stu.hut.edu.cn (Y. Zhang), longxinzhang@hut.edu.cn (L. Zhang), buqingcao@hut.edu.cn (B. Cao), luijing_cs@wust.edu.cn (J. Liu),
zhaowenyu@hut.edu.cn (W. Zhao), chenjg33@mail.sysu.edu.cn (J. Chen), lik@newpaltz.edu (K. Li).
1 Tel.: +86-731-22183345.

and utilize computing resources flexibly from the pool through a pay-
per-use payment model over the Internet [3]. Cloud computing is partic-
ularly well-suited for addressing compute-intensive scientific workflows
[4]. It has been extensively applied to address the challenges posed by
large-scale data and complex workflows across various domains, includ-
ing biology, physics, and astronomy [5].

The workflow scheduling problem is particularly critical in cloud
computing environments. Workflow scheduling algorithms in cloud cen-
ters should focus on determining the optimal mapping between a set of
interdependent tasks and heterogeneous virtual resources to achieve the
users’ specified objectives, whether they involve minimization or max-
imization. However, workflow scheduling is classified as an NP-hard
problem [6]. Thus, achieving optimal scheduling becomes challeng-
ing. Researchers typically investigate the workflow scheduling problem

https://doi.org/10.1016/j.future.2025.108118
Received 26 January 2025; Received in revised form 25 August 2025; Accepted 1 September 2025

Future Generation Computer Systems 175 (2026) 108118

Available online 5 September 2025
0167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs

$V = \{ {I_1},\ldots ,\mathit {I_k},\ldots ,\mathit {I_{|V|}}\}$

$|V|$

\begin {align}\label {eq01-Ik} \mathit {I_k} = \mathit { \big \{{ID_k},{Type_k},{p_k},{\eta _k}\big \}},\end {align}

ID_k

k

$Type_k$

I_k

p_k

I_k

$\eta _k$

I_k

$G = \{ T,E,U,W\}$

$T = \{ {t_1},\ldots ,\mathit {t_i},\ldots ,\mathit {t_{|T|}}\}$

$|T|$

$E = \{ {e_{i,j}}|\mathit {t_i},\mathit {t_j} \in T\}$

t_i

t_j

${c_{i,j}} \in U$

t_i

t_j

\begin {align}\label {eq02-cij} {c_{i,j}} = {\mathit {TD}}_{i,j}/\mathit {bw},\end {align}

${TD}_{i,j}$

t_i

t_j

bw

t_i

t_j

${c_{i,j}} = 0$

${w_{i,k}} \in W$

t_i

I_k

\begin {align}\label {eq03-wik} \mathit {w_{i,k}} = \mathit {TS_i/{\eta _k}},\end {align}

TS_i

t_i

$pred({t_i})$

$succ({t_i})$

t_i

\begin {align}\label {eq04-pred} \mathit {pred({t_i})} = \mathit {\{ {t_\zeta }|{e_{\zeta ,i}} \in E,{\rm { }}{t_\zeta } \in T\}} ,\end {align}

t_{entry}

t_{exit}

t_i

I_k

s_i

f_i

\begin {align}\label {eq06-si} \mathit {{s_i}} = \mathit {\max \left \{ {{a_k},\mathop {\max }\limits _{{t_\zeta } \in pred({t_i})} \left \{ {{f_\zeta } + {c_{\zeta ,i}}} \right \}} \right \}},\end {align}

\begin {align}\label {eq07-fi} \mathit {f_i} = \mathit {{s_i} + {w_{i,k}}},\end {align}

a_k

I_k

${s_{entry}} = \mathit {a_k}$

t_{entry}

M

G

\begin {align}\label {eq08-MG} \mathit {M(G)} = \mathit {\mathop {\max }\limits _{{t_i} \in T} \Big \{ {{f_i}} \Big \}}.\end {align}

t_i

I_k

\begin {align}\label {eq09-Cexe} \mathit {{{{C}}_{exe}}({t_i},{I_k})} = \mathit {{w_{i,k}} \times {p_k}}.\end {align}

$C(G)$

G

\begin {align}\label {eq10-CG} \mathit {C(G)} = \sum \limits _{i = 1}^{|T|} \mathit {{{C_{exe}}} \big ({t_i},{I_k}\big)}.\end {align}

$B(G)$

\begin {align}\label {eq11-Minimize} {Minimize:M(G)},\end {align}

${\Delta _Q} = 0.25$

${\Delta _T} = 0.6$

$\mathbb {S}^{\prime \!\prime \!\prime }$

$\mathbb {S}^{l + 1}$

$\mathbb {S}^{\prime }$

$\mathit {\mathbb {S}^{\prime }} = \{ {X^{\prime }_1},\ldots ,\mathit {X^{\prime }_y},\ldots ,\mathit {X^{\prime }_\delta }\}$

$\delta $

${X^{\prime }_y} = \{ {x_1},\ldots ,\mathit {x_i},\ldots ,\mathit {x_{|T|}}\}$

Dim

$|T|$

G

x_i

t_i

${x_3} = 2.7$

t_3

I_3

$|V|$

\begin {align}\label {eq13-xi} \mathit {x_i} = \mathit {LB + \tau \times (UB - LB)},\end {align}

$\tau $

LB

UB

$\mathbb {S}^{\prime }$

$\delta _m$

$\delta _f$

\begin {align}\label {eq14-male-num} {{\delta _m}} \approx \frac {1}{2}\delta ,\end {align}

Q

$Temp$

\begin {align}\label {eq16-Q} Q = {c_1} \times \mathit {\exp \left ({\frac {{l - L}}{L}} \right)},\end {align}

\begin {align}\label {eq17-Temp} \mathit {Temp} = \mathit {\exp \left ({\frac {{ - l}}{L}} \right)},\end {align}

l

L

c_1

$\exp (\cdot)$

Q

$Temp$

l

X_1

X_2

X_1

X_2

\begin {align}\label {eq18-Rules} \mathit {\left \{ \begin {array}{l} M({X_1}) < M({X_2}),\\ C({X_1}) < C({X_2}),\\ C({X_1}) < B(G), \end {array} \right .\begin {array}{*{20}{l}} {{\rm {if}\ }C({X_1}),C({X_2}) \le B(G);}\\ {{\rm {if}\ }C({X_1}),C({X_2}) > B(G);}\\ {\rm {otherwise}{,}} \end {array}}\end {align}

$M(\cdot)$

$C(\cdot)$

$\mathbb {S}^{\prime }$

Q

$Temp$

$\mathbb {S}^{\prime \!\prime }$

$Q < {\Delta _Q}$

\begin {align}\label {eq19-E-Xmy} \mathit {X^{\prime \!\prime }_{m,y}}(l + 1) = \mathit {{X^{\prime }_{m,rand}}(l)} \pm {c_2} \times \mathit {E_m} \times \big (\mathit {X_{LB}} + \tau \times (\mathit {X_{UB}} - \mathit {X_{LB}})\big),\end {align}

$X^{\prime \!\prime }_{m,y}$

$X^{\prime \!\prime }_{f,y}$

y

$X^{\prime }_{m,y}$

y

$X^{\prime }_{f,y}$

$X^{\prime }_{m,rand}$

$X^{\prime }_{f,rand}$

c_2

X_{UB}

X_{LB}

E_m

E_f

$X^{\prime }_{m,y}$

$X^{\prime }_{f,y}$

\begin {align}\label {eq21-Em} \mathit {E_m} = \mathit {\exp \big (- M({X^{\prime }_{m,rand}})/M({X^{\prime }_{m,y}})\big)},\end {align}

$Q > {\Delta _Q},\mathit {Temp} > {\Delta _T}$

\begin {align}\label {eq23-Ex-Xmy} \mathit {X^{\prime \!\prime }_{m,y}}(l + 1) = \mathit {X^*} \pm {c_3} \times \mathit {Temp} \times \tau \times \big (\mathit {X^*} - \mathit {{X^{\prime }_{m,y}}(l)}\big),\end {align}

X^*

$\mathbb {S}^{\prime }$

c_3

$Q > {\Delta _Q},\mathit {Temp} < {\Delta _T},\tau > 0.6$

$X^{\prime }_{m,y}$

$X^{\prime }_{f,y}$

\begin {align}\label {eq25-F-Xmy} \mathit {X^{\prime \!\prime }_{m,y}}(l + 1) = \mathit {{X^{\prime }_{m,y}}(l)} + {c_3} \times \mathit {F_m} \times \tau \times \big (Q \times \mathit {X_f^*} - \mathit {{X^{\prime }_{m,y}}(l)}\big),\end {align}

X_m^*

X_f^*

$\mathbb {S}^{\prime }$

F_m

F_f

$X^{\prime }_{m,y}$

$X^{\prime }_{f,y}$

\begin {align}\label {eq27-Fm} \mathit {F_m} = \mathit {\exp \big (- M(X_f^*)/M({X^{\prime }_{m,y}})\big)},\end {align}

\begin {align}\label {eq28-Ff} \mathit {F_f} = \mathit {\exp \big (- M(X_m^*)/M({X^{\prime }_{f,y}})\big)}.\end {align}

$Q > {\Delta _Q},\mathit {Temp} < {\Delta _T},\tau < 0.6$

\begin {align}\label {eq29-M-Xmy} \mathit {X^{\prime \!\prime }_{m,y}}(l + 1) = \mathit {{X^{\prime }_{m,y}}(l)} + {c_3} \times \mathit {M_m} \times \tau \times \big (Q \times \mathit {{X^{\prime }_{f,y}}(l)} - \mathit {{X^{\prime }_{m,y}}(l)}\big),\end {align}

\begin {align}\label {eq30-M-Xfy} \mathit {X^{\prime \!\prime }_{f,y}}(l + 1) = \mathit {{X^{\prime }_{f,y}}(l)} + {c_3} \times \mathit {M_f} \times \tau \times \big (Q \times \mathit {{X^{\prime }_{m,y}}(l)} - \mathit {{X^{\prime }_{f,y}}(l)}\big),\end {align}

M_m

M_f

$X^{\prime }_{m,y}$

$X^{\prime }_{f,y}$

\begin {align}\label {eq31-Mm} \mathit {M_m} = \mathit {\exp \big (- M({X^{\prime }_{f,y}})/M({X^{\prime }_{m,y}})\big)},\end {align}

\begin {align}\label {eq32-Mf} \mathit {M_f} = \mathit {\exp \big (- M({X^{\prime }_{m,y}})/M({X^{\prime }_{f,y}})\big)}.\end {align}

$X_m^ \circ $

$X_f^ \circ $

\begin {align}\label {eq33-worst-male} \mathit {X_m^ \circ } = \mathit {X_{LB}} + \tau \times (\mathit {X_{UB}} - \mathit {X_{LB}}),\end {align}

\begin {align}\label {eq34-worst-female} \mathit {X_f^ \circ } = \mathit {X_{LB}} + \tau \times (\mathit {X_{UB}} - \mathit {X_{LB}}).\end {align}

x_i

t_i

$1 \le \mathit {x_i} \le \mathit {|V|}$

${x_i} < 1$

${x_i} > \mathit {|V|}$

$|V|$

$\mathbb {S}^{\prime \!\prime }$

$X^{\prime }_y$

$\mathbb {S}^{\prime }$

$X^{\prime \!\prime }_y$

$\mathbb {S}^{\prime \!\prime }$

$X^{\prime \!\prime \!\prime }_y$

$\mathbb {S}^{\prime \!\prime \!\prime }$

$\mathbb {S}^{\prime \!\prime \!\prime }$

$\delta _{m,rand}$

$X^{\prime \!\prime \!\prime }_{m,rand}$

R_m

$\delta _{f,rand}$

$X^{\prime \!\prime \!\prime }_{f,rand}$

R_f

$\delta _{m,rand}$

$\delta _{f,rand}$

\begin {align}\label {eq35-male-rand-num} \mathit {\delta _{m,rand}} = \mathit {\mu \times {\delta _m}},\end {align}

\begin {align}\label {eq36-female-rand-num} \mathit {\delta _{f,rand}} = \mathit {\mu \times {\delta _f}},\end {align}

$\mu $

$\mu = 10\,\%$

$\tilde B$

$X^{\prime \!\prime \!\prime }_y$

$B(G)$

$C({X^{\prime \!\prime \!\prime }_y})$

$\tilde B({X^{\prime \!\prime \!\prime }_y})$

$X^{\prime \!\prime \!\prime }_y$

\begin {align}\label {eq37-negative-budget} \mathit {\tilde B({X^{\prime \!\prime \!\prime }_y})} = \mathit {- \big ({B(G) - C({X^{\prime \!\prime \!\prime }_y})} \big)}.\end {align}

$X^{\prime \!\prime \!\prime }_y$

t_i

${C_{\min }}({t_i})$

t_i

${C_{\min }}({t_i})$

${\Upsilon }$

$\Upsilon _i$

t_i

t_i

I_k

k

x_i

${C_{\min }}({t_i})$

\begin {align}\label {eq38-adaptiveness} \mathit {\Upsilon _i} = \mathit {{C_{exe}}({t_i},{I_k}) - {C_{\min }}({t_i})}.\end {align}

$subB$

$subB({t_i})$

t_i

$\Upsilon _i$

$\tilde B({X^{\prime \!\prime \!\prime }_y})$

$subB({t_i})$

\begin {align}\label {eq39-sub-budget} \mathit {subB({t_i})} = \mathit {{C_{exe}}({t_i},{I_k})} - \mathit {\tilde B({X^{\prime \!\prime \!\prime }_y})} \times \frac {{\mathit {\Upsilon _i}}}{{\sum \limits _{j = 1}^{|T|} {\mathit {\Upsilon _j}} }}.\end {align}

$|T|$

$|D|$

$X^{\prime \!\prime \!\prime }_y$

$\mu $

$D = \{ {d_1},\ldots ,\mathit {d_r},\ldots ,\mathit {d_{|D|}}\}$

$|D|$

\begin {align}\label {eq40-D} |D| = \mathit {\mu \times Dim},\end {align}

Dim

$X^{\prime \!\prime \!\prime }_y$

$|T|$

$|D|$

D

${|T|} = 10$

${|D|} = 1$

$D = \{ {d_1}\}$

$D = \{ 3\}$

t_3

${|T|} = 50$

${|D|} = 5$

$D = \{ {d_1},{d_2},{d_3},{d_4},{d_5}\}$

$D = \{ 9,15,18,35,47\}$

t_9

t_{15}

t_{18}

t_{35}

t_{47}

${\Omega }$

D

$t_{{d_r}}$

$t_{{d_r}}$

k

$q({d_r})$

d_r

\begin {align}\label {eq41-qdr-1} \mathit {q({d_r})} = \Big \{ k|\exists \mathit {I_k},\mathit {{C_{exe}}({t_{{d_r}}},{I_k})} \le \mathit {subB({t_{{d_r}}})}\Big \}.\end {align}

I_k

d_r

\begin {align}\label {eq42-qdr-2} \mathit {q({d_r})} = \mathit {\Big \{ k|\exists {I_k},{C_{exe}}({t_{{d_r}}},{I_k}) = {C_{\min }}({t_{{d_r}}})\Big \}} .\end {align}

${\Omega }$

$X^{\prime \!\prime \!\prime }_y$

\begin {align}\label {eq43-set} \mathit {\Omega } = \Big \{ q({d_1}),\ldots ,\mathit {q({d_r})},\ldots ,\mathit {q({d_{|D|}})}\Big \} .\end {align}

R_m

R_f

${X^{\prime \!\prime \!\prime }_{m,rand}} \in \mathit {R_m}$

${X^{\prime \!\prime \!\prime }_{f,rand}} \in \mathit {R_f}$

D

${\Omega }$

d_r

D

$x_{{d_r}}$

k

$q({d_r})$

${\Omega }$

$x_{{d_r}}$

R_m

R_f

$\mu $

R_m

R_f

$\mu $

$\mu $

$\mu $

I_1

I_2

I_3

L

$\delta $

$|T|$

$\delta $

$|T|$

$O(\delta \times |T|)$

$O(\delta \times |T|)$

$\mu $

$\mu $

$O({\mu ^2} \times \delta \times |T|)$

L

$O(L \times \delta \times |T|)$

$O(L \times {\mu ^2} \times \delta \times |T|)$

$O(L \times \delta \times |T| + L \times \delta)$

$O(\delta \times |T| + L \times \delta \times |T| + L \times \delta)$

$\eta _k$

p_k

$\mathit {bw}$

S_R

\begin {align}\label {eq44-SR} \mathit {S_R} = \mathit {\frac {n}{N}},\end {align}

n

N

N

N

$\beta $

$B(G)$

\begin {align}\label {eq45-BG} \mathit {B(G)} = \mathit {\beta \times {C_{\min }}(G)},\end {align}

$1.0 \le \beta \le 1.4$

${C_{\min }}(G)$

G

$\beta = 1.4$

$|V| = 12$

$\beta = 1.4$

\begin {align}\label {eq46-RDI} \mathit {\rm {RDI}} = \mathit {\frac {{M - {M^*}}}{{{M^*}}}},\end {align}

M

M^*

R_{ratio}

\begin {align}\label {eq47-Runtime-ratio} \mathit {R_{ratio}} = \frac {{\mathit {R_{algorithm}}}}{{\mathit {R_{AOM-SO}}}},\end {align}

$R_{algorithm}$

$R_{AOM - SO}$

$\delta = 50$

$L = 1000$

$\mu $

$\mu $

$\mu $

$\mu $

$\mu $

$\mu $

$\mu $

$\mu $

$\mu $

$\mu = 0\,\%$

$\mu = 10\,\%$

$\mu = 10\,\%$

$\mu $

$\mu = 0\,\%$

$\mu = 10\,\%$

$\mu = 10\,\%$

$\beta = 1.4$

$\beta = 1.4$

$\beta = 1.4$

$\beta = 1.1$

$\beta = 1.0$

$\beta = 1.0$

$\beta = 1.0$

$\beta = 1.0$

$\beta = 1.4$

$\beta = 1.4$

$\beta = 1.4$

$\beta = 1.4$

$\mu $

$\mu $

https://orcid.org/0000-0002-4413-9974
https://orcid.org/0000-0001-5224-4048
mailto:yanfen.z@stu.hut.edu.cn
mailto:longxinzhang@hut.edu.cn
mailto:buqingcao@hut.edu.cn
mailto:luijing_cs@wust.edu.cn
mailto:zhaowenyu@hut.edu.cn
mailto:chenjg33@mail.sysu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.future.2025.108118
https://doi.org/10.1016/j.future.2025.108118
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.108118&domain=pdf

Y. Zhang et al.

under user-defined quality of service (QoS) constraints [7]. Existing
studies primarily focus on optimizing objectives, such as completion
time (makespan), cost, and reliability, to satisfy QoS constraints related
to deadlines, energy consumption, and budget. As a result, efficient and
approximately optimal scheduling solutions can be thereby proposed.

In recent years, due to the data-intensive or compute-intensive char-
acteristics of most workflow applications [8], the makespan of work-
flows has become an important metric of great concern, and users ex-
pect workflows to complete execution as soon as possible. However,
the computing resources in cloud computing centers are usually pro-
vided to users in the form of virtual machines (VMs), and the comput-
ing speed of VMs is positively correlated with their prices, and high-
performance VMs often imply higher expenses. Excessive expenses will
undoubtedly have a negative impact on user satisfaction, making users
face the dilemma of cost-performance trade-off when making resource
choices. Compared to pursuing the minimization of execution cost, this
study tends to set budget limits for the entire workflow. Related studies
[9,10] have also explicitly proposed limiting the cost of renting com-
puting resources to ensure efficient execution within a cost-controlled
framework. The budget-constrained workflow scheduling problem is
formulated in the context of a user submitting a workflow to a cloud
scheduling platform with a predefined budget. In this context, the core
challenge of the cloud scheduling platform is to provide a feasible and ef-
ficient scheduling solution. The solution must not only adhere to budget
constraints but also minimize the makespan of the workflow to optimize
both resource utilization and execution efficiency. Effectively solving
this problem can effectively improve the operational efficiency of the
cloud scheduling platform and meet the needs of users, thus enhancing
user satisfaction.

Currently, the dominant solutions for minimizing workflow
makespan under budget constraints include heuristic, metaheuristic,
and deep reinforcement learning (DRL)-based [11] scheduling algo-
rithms. Heuristic algorithms can quickly generate workflow scheduling
strategies based on expert knowledge; however, their effectiveness is
primarily limited to small-scale workflows, and they often depend on
relatively simple rules, thereby making them vulnerable to local optima.
Furthermore, their ability to find optimal solutions in dynamic cloud en-
vironments is limited [12]. DRL-based approaches are still in their early
stages of development, and various challenges are encountered when
scheduling problems for large-scale complex applications, such as the
intricate design of reward functions, difficulties in hyperparameter tun-
ing, and inadequate exploration efficiency, are tackled [13]. By contrast,
metaheuristic algorithms have been extensively employed in large-scale
workflows to find approximately optimal scheduling solutions.

Existing metaheuristic scheduling algorithms typically employ ran-
dom mutations to enhance population diversity, thereby reducing the
risk of becoming trapped in local optima. Li et al. [14] conducted opti-
mization research by employing the owl search algorithm (OSA). They
also modified the population update mechanism of this algorithm to
explore an enhanced variant known as the OSA with a newly designed
mutation strategy (OSAM), specifically tailored for workflow scheduling
to minimize makespan under budget constraints. OSAM incorporates a
mutation operator into OSA to enhance its global search capabilities and
reduce the chances of being trapped in local optima. Additionally, Li
et al. [8] proposed the mutation-driven and population grouping poor
and rich optimization algorithm (MG-PRO) for scheduling workflows
with budget constraints in the cloud to minimize the makespan. MG-
PRO features an evolution-aware mutation strategy that intervenes in
the evolutionary process to enhance population diversity. However, ran-
dom mutations can lead to a directionless random walk behavior in the
position update process of individuals within the population, thereby
complicating the search path and increasing the computational chal-
lenges associated with reaching the global optimum. In particular, the
aimless exploration caused by random mutations may reduce the algo-
rithm’s efficiency in effectively identifying feasible solutions within a
constrained search budget when resources (such as computational time

and the number of iterations) are limited. Moreover, the reliance on ran-
dom mutations can impair the algorithm’s performance in minimizing
makespan because these aimless attempts often fail to target effectively
the areas of the solution space that can significantly enhance makespan
optimization. In summary, random mutations play a vital role in improv-
ing the exploratory capabilities of metaheuristic algorithms; however,
the challenges they introduce cannot be overlooked. The balance be-
tween randomness and directionality must be explored to achieve dual
optimization of search efficiency and solution quality, particularly when
seeking efficient solutions to complex optimization problems.

The snake optimizer (SO) [15] is an innovative metaheuristic opti-
mization algorithm that greatly surpasses existing approaches in work-
flow scheduling. Given that it has demonstrated performance advan-
tages, this study asserts that SO has significant potential for tackling
complex workflow scheduling challenges. Therefore, we apply SO to
workflow scheduling problems in heterogeneous cloud computing while
investigating a population update mechanism that combines random-
ness with orientation. The study concentrates on two main areas: (1)
The incorporation of random mutations aims to overcome the original
SO algorithm’s limitation of often converging on local optima. However,
excessive randomness can lead to the inefficient use of computational re-
sources, increase computational complexity, and hinder the algorithm’s
ability to reach the global optimum effectively. (2) The development
of an oriented strategy aims to mitigate the drawbacks of random mu-
tations while enhancing the algorithm’s success rate in finding feasible
solutions within budget constraints. Nevertheless, excessive orientation
may also result in the algorithm becoming trapped in local optima.

This study investigates an adaptive-oriented mutation (AOM) mech-
anism that balances randomness and orientation. Then, it is integrated
with SO to develop a scheduling algorithm referred to as the AOM-SO.
The AOM-SO addresses workflow scheduling challenges under budget
constraints in heterogeneous cloud computing environments by thor-
oughly evaluating the heterogeneity among different VMs, the depen-
dencies of workflow tasks, and budget limitations. This approach aims
to identify optimal or near-optimal scheduling solutions that minimize
the makespan of the workflow. The contributions of this study are as
follows:

• The integration of SO into the workflow scheduling problem under
budget constraints simulates the evolutionary stages of snakes to ap-
proximate a globally optimal scheduling solution.

• The proposed AOM mechanism balances randomness and orienta-
tion to address SO’s tendency to converge on local optima. This
mechanism enhances the evolutionary trajectory of snake individ-
uals through AOMs across multiple dimensions, thereby improving
the success rate in identifying feasible solutions that meet budget
constraints.

• The AOM-SO approach is introduced with a series of comparative
experimental results, demonstrating that this approach achieves a
high success rate in finding feasible solutions and significantly out-
performs similar algorithms in reducing makespan.

A shorter version of this work was accepted at the IEEE ISPA con-
ference in 2024 [16]. However, that version focused solely on the po-
sitional offset strategy of snake individuals in a single dimension, ne-
glecting the challenge of the algorithm’s high-dimensional complexity
in large-scale workflows with numerous tasks. This extended version ad-
dresses this issue by integrating the total number of tasks in a workflow
into the algorithm’s execution logic and introducing the AOM mecha-
nism to enhance its capability in managing high-dimensional problems.
Additionally, this study offers a more comprehensive discussion in the
introduction and related work review. It enhances the algorithm sec-
tion with intuitive diagrams of the algorithmic structure and includes a
deeper analysis of the algorithm’s time complexity. It also references ad-
ditional comparative algorithms and performance metrics and incorpo-
rates two types of real-world scientific workflow datasets beyond those

Future Generation Computer Systems 175 (2026) 108118

2

Y. Zhang et al.

Table 1
A comparison of various related scheduling methods.
 Ref Constraints Objectives Characteristics Challenges and limitations
 [17] Budget Makespan Remaining cheapest budget It is sensitive to task prioritization, which may adversely

affect the scheduling of low-priority tasks.
 [18] Budget Makespan Normalization It needs further enhancement for constraint satisfaction.
 [10] Budget Makespan Budget reallocation It does not consider the heterogeneity of VMs.
 [19] Budget, Deadline Makespan, Cost Improved Archimedes optimization algorithm It is strongly influenced by the parameter settings of the ini-

tial population.
 [20] Budget, Deadline Cost Improved ant colony optimization algorithm It is not suitable for scheduling under relaxed constraints.
 [21] – Makespan Heterogeneous earliest-finish-time It aims to balance the average makespan with the number

of available processors.
 [22] – Makespan Improved predict priority Its effectiveness is limited on Epigenomic and comparable

graphs.
 [23] Budget Makespan Adaptive iterated local search It has restricted QoS metrics.
 [24] Budget Makespan Greedy resource provisioning It does not ensure adherence to strict constraints.
 [25] – Makespan Improved optimistic cost matrix It does not consider budget constraints.
 [26] – Makespan Prediction of makespan matrix It does not consider budget constraints.
 [27] – Makespan Improved genetic algorithm It does not consider budget constraints.
 [28] – Makespan, Cost Improved poor and rich optimization algorithm It has a high dependence on population parameters.
 [29] – Makespan, Cost Improved ant colony optimization algorithm It needs to improve runtime performance.
 Our work Budget Makespan Adaptive-oriented mutation snake optimizer It does not take dynamic workflows into consideration.

used in the conference version, enabling a more comprehensive experi-
mental evaluation.

This study is organized as follows. Section 2 reviews recent ad-
vancements in research concerning workflow scheduling problems.
Section 3 offers a comprehensive description of the workflow schedul-
ing model by highlighting the constraints and optimization objectives of
the study. Section 4 introduces the workflow scheduling algorithm pro-
posed herein. Section 5 outlines the experimental setup and analyzes the
results. Finally, Section 6 summarizes the contributions of this study and
discusses potential directions for future research.

2. Related work

Workflow scheduling has been thoroughly explored within the field
of cloud computing. This section offers a comprehensive review of the
pertinent literature, categorizing the research into three main types: (1)
budget-constrained workflow scheduling, (2) time-optimized workflow
scheduling, and (3) multiobjective workflow scheduling. Table 1 pro-
vides a summary and comparison of the relevant literature.

2.1. Budget-constrained workflow scheduling

In recent years, numerous researchers have extensively studied
budget-constrained workflow scheduling issues. Arabnejad and Barbosa
[17] developed a heterogeneous budget-constrained scheduling algo-
rithm that utilizes the remaining budget to ensure that workflow exe-
cution costs stay within the allocated budget. This approach effectively
addresses the challenges associated with budget-constrained workflow
scheduling. However, the rules governing the variation of the remain-
ing budget affect task execution based on priority levels, thereby re-
sulting in fairness issues for low-priority tasks. These issues negatively
impact the overall workflow scheduling performance. Chen et al. [30]
proposed an efficient task budgeting algorithm based on budget-level
allocation to tackle the challenges mentioned. Their main idea is to
shift budget constraints from the workflow level to individual tasks,
thereby reducing the impact of task priority on task budgets. Kalyan
et al. [18] investigated a workflow scheduling algorithm that operates
under normalized budget constraints. They mapped workflow tasks to
VMs by calculating the expected fair budget to achieve the earliest com-
pletion times while adhering to fair budget limits. This approach avoids
the selection of VMs with excessively high costs that can negatively af-
fect the budgets of unscheduled tasks. While existing heuristics address
the budget-constrained workflow scheduling problem effectively, they
typically lack a deterministic fine-tuning mechanism and subsequent
optimization techniques after generating the initial scheduling plan.

Recent research has introduced improvements in this area. Fan et al. [9]
introduced a priority adjuster and a critical task optimizer, enabling dy-
namic priority adjustment and resource allocation optimization through
in-depth task characteristic analysis. Zhang et al. [10] reduced the crit-
ical path length by iteratively adjusting task-resource mappings under
limited budgets, leading to significant decreases in makespan, although
at the cost of lower computational efficiency in a heterogeneous VM
environment. Wu et al. [31] employed a dynamic remaining budget re-
allocation strategy to enable flexible resource combinations by priori-
tizing budget allocation to tasks with the highest utility. In the field of
metaheuristic algorithms, Kushwaha and Singh [19] enhanced a meta-
heuristic scheduling algorithm based on the Archimedean optimization
method by incorporating both budget and deadline constraints. While
this approach has lower computational complexity, its performance sen-
sitivity to initial population settings and parameter configurations is no-
table. Tao et al. [20] proposed a hybrid optimization framework that
combines ant colony optimization and heuristic rules to achieve flex-
ible resource combinations in heterogeneous VM environments. This
method performs well under strict constraints but demonstrates limited
optimization effects in scenarios with looser constraints.

Although the aforementioned scheduling algorithms have achieved
some success in addressing workflow scheduling issues under budget
constraints, they struggle to adapt to varying budget limitations be-
cause of the absence of a dynamic budget-aware mechanism to inform
resource allocation. As a result, their performance may diminish as the
scale of workflow tasks increases.

2.2. Time-optimized workflow scheduling

Topcuoglu et al. [21] introduced the well-known heterogeneous
earliest finish time (HEFT) algorithm for heterogeneous processors,
which has significantly contributed to research in makespan optimiza-
tion methods for workflow scheduling. Inspired by this work, numerous
researchers have explored various effective strategies aimed at mini-
mizing makespan. Djigal et al. [22] devised an innovative lookahead
mechanism during the task priority sorting phase. This mechanism is
designed to schedule tasks on heterogeneous processors efficiently and
reduce task execution time. Qin et al. [23] designed a novel adaptive
iterative local search framework that combines a greedy resource al-
location scheme with the HEFT algorithm to generate an initial solu-
tion. This framework incorporates a novel reinforcement strategy and
an adaptive penalty function aimed at directing the search process to-
ward the edges of the feasible solution space. As a result, the makespan
can be optimized. Faragardi et al. [24] made targeted modifications and
enhancements to the traditional HEFT algorithm by proposing a new

Future Generation Computer Systems 175 (2026) 108118

3

Y. Zhang et al.

greedy scheduling algorithm focused on minimizing the makespan of a
given workflow. Wang et al. [25] proposed a list scheduling algorithm
known as the average earliest finish time (AEFT), which utilizes an en-
hanced optimistic cost matrix. The AEFT algorithm takes into account
the out-degree property of the task and integrates it with the workflow
topology to minimize overall scheduling time. By employing an inser-
tion policy to leverage idle time slots in the processor, the algorithm
aims to optimize resource utilization. Zhang et al. [26] proposed a pri-
ority calculation algorithm based on a predicted makespan matrix that
maximizes the reduction of execution time for workflow applications
while satisfying priority constraints. The proposed algorithm is suitable
for efficient workflow scheduling in heterogeneous cloud environments.
Jiang et al. [27] introduced a novel coding method using real numbers
to signify the relative positions of tasks within the set of schedulable
tasks. This innovation led to the development of a real-relative coded
genetic algorithm (GA), which effectively resolves issues encountered in
traditional and existing real-coded GAs. Specifically, this new algorithm
addresses challenges related to violations of task priority constraints and
the constrained range of gene values.

However, the greedy decisions made by heuristic methods in the
early stages of scheduling can significantly impact subsequent resource
allocation, potentially resulting in locally optimal scheduling strategies,
particularly with large-scale workflows. Although metaheuristic meth-
ods are commonly used for large-scale workflow scheduling, they too
can become stuck in local optimum solutions. Consequently, further ex-
ploration and breakthroughs are urgently needed to address the global
complexities of workflow scheduling problems and minimize scheduling
lengths.

2.3. Multiobjective workflow scheduling

Given the complexity of workflow scheduling problems and their
diverse requirements, some researchers have started to investigate mul-
tiobjective optimization algorithms [32] to find additional comprehen-
sive and effective solutions for the increasingly intricate and dynamic
challenges of workflow scheduling. The robust search capabilities and
flexibility of metaheuristics offer a promising approach for tackling mul-
tiobjective workflow scheduling issues. Li et al. [28] introduced a bi-
objective optimization algorithm that incorporates coevolution and elite
learning to minimize makespan and workflow costs. Rathi et al. [33] for-
malized the workflow scheduling problem as a multiobjective optimiza-
tion challenge within a GA framework by considering execution time
and communication costs. They also implemented a fitness-dependent
optimizer inspired by the reproductive behavior of bees to enhance the
optimization process. Chen et al. [29] modeled the workflow schedul-
ing challenge as a multiobjective optimization problem by focusing on
the simultaneous optimization of execution time and cost. They pro-
posed a novel multiobjective ant colony system based on a multipopu-
lation coevolution framework, where time ants and cost ants indepen-
dently manage the optimization processes for their respective objectives.
Guo et al. [34] proposed a dynamic neighborhood grouping strategy
based on data dependencies between workflow tasks. They designed
new crossover and mutation operators to explore feasible solutions and
thus improve search efficiency, aiming to simultaneously optimize the
makespan, cost, and energy consumption of workflow execution. Reddy
and Reddy [35] developed a multi-objective task scheduling algorithm
within a reinforcement learning framework. This algorithm efficiently
selects VMs using a fuzzy self-defense algorithm to map workflows to
suitable VMs. The primary objectives are to optimize makespan, cost,
and energy consumption while also balancing user and provider require-
ments. Recognizing the varied needs of users, the authors in [36–38] ex-
plored multiobjective optimization algorithms under QoS constraints,
such as deadlines and budgets. Furthermore, the integration of meta-
heuristic algorithms with DRL has provided new insights into the field
of workflow scheduling. Zhang et al. [12] investigated a real-time work-

flow scheduling method that combines GA with DRL to reduce execution
costs and response times.

In general, optimizing for makespan often requires increasing costs,
whereas reducing costs can result in long scheduling times. Thus, multi-
objective workflow scheduling must reasonably balance the potentially
conflicting optimization objectives, such as time and cost. In contrast
to studies concentrating on multiobjective workflow scheduling prob-
lems, this study concentrates on single-objective optimization, which
aims to minimize the scheduling length of workflows. In this context,
cost is treated as a significant constraint. This study aims to minimize
scheduling length while adhering to budget constraints.

3. Models and problem formulation

This section presents the models related to cloud resources, work-
flows, and costs. Then, the optimization problem is described. Addition-
ally, Table 2 offers a summary of the key notations used in this study.

3.1. Cloud resource model

The computational resources of a cloud computing center can be rep-
resented as a set of VM instances, denoted as 𝑉 = {𝐼1,… , 𝐼𝑘,… , 𝐼

|𝑉 |

},
where |𝑉 | represents the total number of VM instances. In a heteroge-
neous cloud environment, VM instances are available in various types
and configurations of resources (such as CPU, memory, and network)
[5], thereby allowing users to rent any quantity at any time via the In-
ternet according to their needs. All VMs are assumed to be provisioned
by the same data center and share a common average bandwidth [13].

A VM instance possesses the following characteristics [5,39]:
𝐼𝑘 =

{

𝐼𝐷𝑘, 𝑇 𝑦𝑝𝑒𝑘, 𝑝𝑘, 𝜂𝑘
}

, (1)

where 𝐼𝐷𝑘 denotes the 𝑘-th VM instance, 𝑇 𝑦𝑝𝑒𝑘 indicates the type of VM
𝐼𝑘, 𝑝𝑘 represents the unit price of VM 𝐼𝑘, and 𝜂𝑘 indicates the processing
speed of VM 𝐼𝑘.

3.2. Workflow application model

In cloud computing systems, a workflow application is represented
as a directed acyclic graph (DAG) [40], where tasks with data depen-
dencies are depicted as nodes, and the dependencies between tasks are
illustrated by edges. In this study, 𝐺 = {𝑇 ,𝐸, 𝑈,𝑊 } is used to signify a
workflow application.

(1) 𝑇 = {𝑡1,… , 𝑡𝑖,… , 𝑡
|𝑇 |} denotes a set of tasks within a workflow,

and |𝑇 | represents the total number of tasks in the workflow.
(2) 𝐸 = {𝑒𝑖,𝑗 |𝑡𝑖, 𝑡𝑗 ∈ 𝑇 } refers to the collection of communication

edges in DAG, which illustrate data dependencies. Each edge signifies a
constraint on task execution, indicating that task 𝑡𝑖 must be completed
before task 𝑡𝑗 can begin.

(3) 𝑐𝑖,𝑗 ∈ 𝑈 represents the communication time required to transfer
relevant data from task 𝑡𝑖 to task 𝑡𝑗 [41]. It can be described as follows:
𝑐𝑖,𝑗 = 𝑇𝐷𝑖,𝑗∕𝑏𝑤, (2)

where 𝑇𝐷𝑖,𝑗 indicates the data transmitted from task 𝑡𝑖 to task 𝑡𝑗 , and
𝑏𝑤 signifies the average transmission bandwidth. If task 𝑡𝑖 and task 𝑡𝑗
are assigned to the same VM for execution, then 𝑐𝑖,𝑗 = 0.

(4) 𝑤𝑖,𝑘 ∈ 𝑊 represents the time required for task 𝑡𝑖 to execute on
VM 𝐼𝑘 [41]. It can be calculated by the following expression:
𝑤𝑖,𝑘 = 𝑇𝑆𝑖∕𝜂𝑘, (3)

where 𝑇𝑆𝑖 indicates the size for task 𝑡𝑖.
(5) The set of direct predecessor tasks, 𝑝𝑟𝑒𝑑(𝑡𝑖), and the set of direct

successor tasks, 𝑠𝑢𝑐𝑐(𝑡𝑖), for task 𝑡𝑖 are defined as follows:
𝑝𝑟𝑒𝑑(𝑡𝑖) = {𝑡𝜁 |𝑒𝜁,𝑖 ∈ 𝐸, 𝑡𝜁 ∈ 𝑇 }, (4)

𝑠𝑢𝑐𝑐(𝑡𝑖) = {𝑡𝜗|𝑒𝑖,𝜗 ∈ 𝐸, 𝑡𝜗 ∈ 𝑇 }. (5)

Future Generation Computer Systems 175 (2026) 108118

4

Y. Zhang et al.

Table 2
Notations and definitions.
 Notation Definition
𝑉 A set of VMs
|𝑉 | The number of VMs
𝐼𝑘 𝑘-th VM
𝑝𝑘 Price of VM 𝐼𝑘
𝜂𝑘 Process speed of VM 𝐼𝑘
𝑇 (𝐸) A set of workflow tasks (edges)
𝑡𝑖 𝑖-th task
|𝑇 | The number of workflow tasks
𝑐𝑖,𝑗 (𝑇𝐷𝑖,𝑗) Transfer time (data) between task 𝑡𝑖 and task 𝑡𝑗
𝑏𝑤 Transfer bandwidth between VMs
𝑤𝑖,𝑘 Execution time of task 𝑡𝑖 on VM 𝐼𝑘
𝑠𝑖(𝑓𝑖) Start (finish) time of task 𝑡𝑖
𝑀(𝐶) Makespan (total execution cost) of a workflow
𝐵 Budget constraint for a given workflow
𝕊′ Current population
𝕊′′ Updated population from 𝕊′

𝕊′′′ Updated population by comparing 𝕊′ and 𝕊′′

𝕊𝑙+1 Updated population from 𝕊′′′

𝛿, 𝛿𝑚(𝛿𝑓) Population size and the number of males (females)
𝑋′(𝑋′′, 𝑋′′′) An individual in the population 𝕊′(𝕊′′, 𝕊′′′)
𝑦 Index of the individual
𝑥𝑖 Index of the VM in 𝑉 allocated to task 𝑡𝑖
𝑈𝐵(𝐿𝐵) Maximum (minimum) number of the available VMs for workflow tasks
𝑋𝑈𝐵(𝑋𝐿𝐵) Upper (lower) boundary of the solution space
𝑄 Food quantity
𝑇 𝑒𝑚𝑝 Ambient temperature
𝑙(𝐿) Current (maximum) number of iterations
𝑐1, 𝑐2, 𝑐3 Step size at different evolutionary stages in SO
𝑋∗, 𝑋∗

𝑚(𝑋
∗
𝑓) The best individual and the best male (female) individual

𝐸𝑚, 𝐸𝑓 , 𝐹𝑚, 𝐹𝑓 , 𝑀𝑚, 𝑀𝑓 Snake’s update ability at different evolutionary stages
𝜇 Oriented probability of the AOM module
𝐵̃ Negative budget cost for an individual violating budget constraint
Υ𝑖 Adaptiveness of task 𝑡𝑖
𝑠𝑢𝑏𝐵(𝑡𝑖) Dynamic sub-budget for task 𝑡𝑖
𝐷 A set of random dimensions
|𝐷| The number of randomly selected dimensions
𝑞(𝑑𝑟) Mutation queue for 𝑑𝑟-th dimension
Ω A set of mutation queues for multiple dimensions
𝛽 Budget constraint factor

Fig. 1. A sample workflow graph with 10 tasks.

In a DAG, a task that lacks predecessor tasks is referred to as an entry
task (𝑡𝑒𝑛𝑡𝑟𝑦), whereas a task without successor tasks is referred to as an
exit task (𝑡𝑒𝑥𝑖𝑡). Fig. 1(a) displays a typical workflow DAG graph consist-
ing of 10 task nodes, while Fig. 1(b) illustrates the execution times of
these 10 tasks on various VMs.

In this study, the start time and finish time of task 𝑡𝑖 executing on VM
𝐼𝑘 are denoted as 𝑠𝑖 and 𝑓𝑖, respectively. The corresponding expressions
for these calculations are as follows:

𝑠𝑖 = max
{

𝑎𝑘, max
𝑡𝜁∈𝑝𝑟𝑒𝑑(𝑡𝑖)

{

𝑓𝜁 + 𝑐𝜁,𝑖
}

}

, (6)

𝑓𝑖 = 𝑠𝑖 +𝑤𝑖,𝑘, (7)

where 𝑎𝑘 represents the available time of VM 𝐼𝑘. Therefore, 𝑠𝑒𝑛𝑡𝑟𝑦 = 𝑎𝑘
is for an entry task 𝑡𝑒𝑛𝑡𝑟𝑦.

The makespan 𝑀 of the workflow 𝐺 refers to the total time required
from the start of the workflow scheduling to its completion. Its calcula-
tion can be expressed as follows:

𝑀(𝐺) = max
𝑡𝑖∈𝑇

{

𝑓𝑖
}

. (8)

3.3. Cost model

The cost model is founded on a pay-per-use mechanism [41]. Given
that most cloud providers bill exclusively for the resources consumed
and do not charge for internal data transfers, this model posits that the
cost linked to a VM is based solely on the execution time while the VM
is operational. As a result, this study does not consider costs associated
with internal data transfers, meaning users are only required to pay for
the time they actually use the VM [42]. Given the heterogeneity of VMs,
we define the execution cost associated with running task 𝑡𝑖 on VM 𝐼𝑘
as follows:

𝐶𝑒𝑥𝑒(𝑡𝑖, 𝐼𝑘) = 𝑤𝑖,𝑘 × 𝑝𝑘. (9)

Therefore, the total cost 𝐶(𝐺) of workflow 𝐺 can be estimated by

𝐶(𝐺) =
|𝑇 |
∑

𝑖=1
𝐶𝑒𝑥𝑒

(

𝑡𝑖, 𝐼𝑘
)

. (10)

Future Generation Computer Systems 175 (2026) 108118

5

Y. Zhang et al.

Fig. 2. Workflow scheduling process by AOM-SO in clouds.

3.4. Problem formulation

The scheduling problem explored in this study focuses on scheduling
workflows with budget constraints within heterogeneous cloud comput-
ing systems to minimize the makespan of the workflows. In particular,
let 𝐵(𝐺) represent the budget constraint defined by the user. The pro-
posed algorithm seeks to determine the optimal mapping of a set of
interdependent tasks to a collection of heterogeneous VMs while ensur-
ing compliance with the budget constraint. In this way, the workflow’s
makespan is minimized.

The optimization problem is formulated as follows:
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝑀(𝐺), (11)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝐶(𝐺) ≤ 𝐵(𝐺). (12)

4. AOM-SO algorithm

This section delivers a comprehensive overview of the AOM-SO al-
gorithm presented in this study. Fig. 2 depicts the workflow scheduling
process employed by the AOM-SO algorithm. The AOM-SO algorithm
consists of three distinct modules: the initialization module, the solu-
tion update module, and the AOM module. Furthermore, the specific
details of the AOM-SO algorithm are provided in Algorithms 1–3. This
section defines essential concepts, clarifies the operational mechanisms
of each module through mathematical expressions, illustrates the princi-
ples of their collaborative operation, and analyzes the algorithm’s time
complexity to improve the understanding of the AOM-SO algorithm.

4.1. Initialization module

Similar to original SO algorithm [15], the AOM-SO algorithm initi-
ates its optimization process by generating a randomly distributed ini-

tial population within the solution space. This population serves as the
foundational starting point for the search.

Step 1: Generate the initial population 𝕊′ = {𝑋′
1,… , 𝑋′

𝑦,… , 𝑋′
𝛿},

where 𝛿 is the population size.
The individual 𝑋′

𝑦 = {𝑥1,… , 𝑥𝑖,… , 𝑥
|𝑇 |} in the population signifies

a potentially viable solution to the optimization problem (i.e., a work-
flow scheduling scheme). It captures the mapping relationship between
workflow tasks and heterogeneous VMs. As shown in the initialization
module of Fig. 2, the encoding and decoding processes indicate that the
dimension of the individual, denoted as 𝐷𝑖𝑚, is equal to the number
of tasks |𝑇 | in workflow 𝐺. Each dimension value 𝑥𝑖 is a floating-point
number that corresponds to the index of the VM assigned to task 𝑡𝑖 after
a rounding function is applied. For instance, 𝑥3 = 2.7 signifies that task
𝑡3 is allocated to VM 𝐼3 for execution. The available values for each di-
mension depend on the number of VMs |𝑉 |. The calculation expression
is as follows:
𝑥𝑖 = 𝐿𝐵 + 𝜏 × (𝑈𝐵 − 𝐿𝐵), (13)

where 𝜏 represents a random number between 0 and 1, and 𝐿𝐵 and
𝑈𝐵 indicate the minimum and maximum indexes of the available VMs,
respectively.

The original SO algorithm is inspired by the behavior of snakes. It
considers the unique traits of male and female snakes and highlights
the differences in gender during the simulation of the evolutionary op-
timization process.

Step 2: Partition the initial population 𝕊′ into two distinct groups:
males and females.

The number of individuals in the male group is 𝛿𝑚, and the number of
individuals in the female group is 𝛿𝑓 . Their expression can be computed
by Eqs. (14) and (15) [15].

𝛿𝑚 ≈ 1
2
𝛿, (14)

Future Generation Computer Systems 175 (2026) 108118

6

Y. Zhang et al.

𝛿𝑓 = 𝛿 − 𝛿𝑚. (15)

The behavioral activities of male and female snakes are influenced
by temperature and significantly by the availability of food. In particu-
lar, mating activities occur only when food resources are plentiful and
environmental temperatures are relatively low.

Step 3: Define the parameters 𝑄 and 𝑇 𝑒𝑚𝑝 to model the fluctuations
in food availability and temperature within the environment.

As the algorithm advances through its iterations, the amount of food
steadily rises while the temperature gradually falls, as outlined in the
following:

𝑄 = 𝑐1 × exp
(𝑙 − 𝐿

𝐿

)

, (16)

𝑇 𝑒𝑚𝑝 = exp
(−𝑙
𝐿

)

, (17)

where 𝑙 denotes the current iteration number, 𝐿 represents the maxi-
mum iteration number, 𝑐1 is a constant equal to 0.5, and exp(⋅) indicates
the exponential function. Furthermore, 𝑄 and 𝑇 𝑒𝑚𝑝 signify the quantity
of food and the temperature in the environment at the 𝑙-th iteration of
the algorithm, respectively.

The boundary parameters for the quantity of food and temperature
are set as Δ𝑄 = 0.25 and Δ𝑇 = 0.6, respectively. These parameters are
designed to characterize the state of the algorithm’s optimization pro-
cess and support the population update mechanism in its pursuit of a
globally optimal solution.

Algorithm 1 AOM-SO.
Input: 𝛿, 𝐿, 𝐷𝑖𝑚, 𝑋𝐿𝐵 , 𝑋𝑈𝐵 , 𝐺, 𝐵(𝐺), and 𝑉 .
Output: 𝑋∗.
1: Initialize a random population 𝕊′ and partitioned it into male and
female groups;

2: for 𝑙 ← 1 to 𝐿 do
3: Locate the best male individual 𝑋∗

𝑚 and the best female individual
𝑋∗

𝑓 ;
4: Calculate the current iteration values of 𝑄 and 𝑇 𝑒𝑚𝑝 by using Eqs.

(16) and (17);
5: 𝕊′′ ← Update 𝕊′ by using Algorithm 2;
6: for each 𝑋′′

𝑦 in 𝕊′′ do
7: for 𝑖 ← 1 to |𝑇 | do
8: Adjust 1 ≤ 𝑥𝑖 ≤ |𝑉 |;
9: end for
10: end for
11: 𝕊′′′ ← Compare 𝕊′ and 𝕊′′ based on the updated rules;
12: 𝕊𝑙+1 ← Renew 𝕊′′′ by using Algorithm 3;
13: end for
14: return 𝑋∗.

4.2. Solution update module

The main challenge in solving optimization problems with meta-
heuristic algorithms lies in effectively updating the population’s posi-
tions to explore and converge on the optimal solution. In the schedul-
ing problem examined in this study, the solution update module em-
ploys the population updating mechanism of the original SO algorithm,
guided by two main goals: first, to identify solutions that adhere to bud-
get constraints, and second, to minimize the makespan based on those
solutions.

Rules. For any two solutions 𝑋1 and 𝑋2, 𝑋1 is considered superior
to 𝑋2 if and only if the following conditions are met:
⎧

⎪

⎨

⎪

⎩

𝑀(𝑋1) < 𝑀(𝑋2),
𝐶(𝑋1) < 𝐶(𝑋2),
𝐶(𝑋1) < 𝐵(𝐺),

if 𝐶(𝑋1), 𝐶(𝑋2) ≤ 𝐵(𝐺);
if 𝐶(𝑋1), 𝐶(𝑋2) > 𝐵(𝐺);
otherwise,

(18)

where 𝑀(⋅) denotes the makespan of the workflow scheduling scheme,
and 𝐶(⋅) represents the total cost of the workflow scheduling scheme.

The solution update comprises four population update modes: explo-
ration mode, exploitation mode, fight mode, and mating mode. In each
iteration, one of these modes is chosen to update the parent population
𝕊′ based on the values of 𝑄 and 𝑇 𝑒𝑚𝑝, leading to the formation of the
offspring population 𝕊′′.

(1) Exploration mode (𝑄 < Δ𝑄). When food is limited in the en-
vironment, individual snakes enter exploration mode and randomly
choose a location to search for food. The update mechanism can be de-
scribed as Eqs. (19) and (20) [15].
𝑋′′

𝑚,𝑦(𝑙 + 1) = 𝑋′
𝑚,𝑟𝑎𝑛𝑑 (𝑙) ± 𝑐2 × 𝐸𝑚 ×

(

𝑋𝐿𝐵 + 𝜏 × (𝑋𝑈𝐵 −𝑋𝐿𝐵)
)

, (19)

𝑋′′
𝑓,𝑦(𝑙 + 1) = 𝑋′

𝑓,𝑟𝑎𝑛𝑑 (𝑙) ± 𝑐2 × 𝐸𝑓 ×
(

𝑋𝐿𝐵 + 𝜏 × (𝑋𝑈𝐵 −𝑋𝐿𝐵)
)

, (20)

where 𝑋′′
𝑚,𝑦 and 𝑋′′

𝑓,𝑦 denote the updated positions of the 𝑦-th male in-
dividual 𝑋′

𝑚,𝑦 and the 𝑦-th female individual 𝑋′
𝑓,𝑦, respectively. 𝑋′

𝑚,𝑟𝑎𝑛𝑑
and 𝑋′

𝑓,𝑟𝑎𝑛𝑑 refer to the positions of randomly selected male and female
individuals, respectively. 𝑐2 is a constant valued at 0.05, whereas 𝑋𝑈𝐵
and 𝑋𝐿𝐵 represent the upper and lower bounds of the solution space,
respectively. 𝐸𝑚 and 𝐸𝑓 signify the exploration abilities of 𝑋′

𝑚,𝑦 and
𝑋′

𝑓,𝑦, respectively, with the corresponding computational expressions
provided as follows:
𝐸𝑚 = exp

(

−𝑀(𝑋′
𝑚,𝑟𝑎𝑛𝑑)∕𝑀(𝑋′

𝑚,𝑦)
)

, (21)

𝐸𝑓 = exp
(

−𝑀(𝑋′
𝑓,𝑟𝑎𝑛𝑑)∕𝑀(𝑋′

𝑓,𝑦)
)

. (22)

(2) Exploitation mode (𝑄 > Δ𝑄, 𝑇 𝑒𝑚𝑝 > Δ𝑇). In scenarios where
food resources are plentiful and environmental temperatures are com-
paratively high, individual snakes enter exploitation mode, and migra-
tion toward the optimal position is favored, as expressed by the follow-
ing computational expressions [15].
𝑋′′

𝑚,𝑦(𝑙 + 1) = 𝑋∗ ± 𝑐3 × 𝑇 𝑒𝑚𝑝 × 𝜏 ×
(

𝑋∗ −𝑋′
𝑚,𝑦(𝑙)

)

, (23)

𝑋′′
𝑓,𝑦(𝑙 + 1) = 𝑋∗ ± 𝑐3 × 𝑇 𝑒𝑚𝑝 × 𝜏 ×

(

𝑋∗ −𝑋′
𝑓,𝑦(𝑙)

)

, (24)

where 𝑋∗ denotes the best individual in the parent population 𝕊′, and
𝑐3 is a constant that is equal to 2.

(3) Fight mode (𝑄 > Δ𝑄, 𝑇 𝑒𝑚𝑝 < Δ𝑇 , 𝜏 > 0.6). When food resources
are plentiful and environmental temperatures are relatively low, indi-
vidual snakes exhibit these two distinct behavioral patterns:

• With a probability of 40%, snakes enter a fight mode, where males
compete for the opportunity to mate with the most desirable female,
whereas females carefully choose the best male.

• With a probability of 60%, snakes enter a mating mode, where males
and females engage in copulatory activities.

Therefore, in the fight mode, the updating mechanisms for the male
individual 𝑋′

𝑚,𝑦 and the female individual 𝑋′
𝑓,𝑦 are defined as Eqs. (25)

and (26) [15].
𝑋′′

𝑚,𝑦(𝑙 + 1) = 𝑋′
𝑚,𝑦(𝑙) + 𝑐3 × 𝐹𝑚 × 𝜏 ×

(

𝑄 ×𝑋∗
𝑓 −𝑋′

𝑚,𝑦(𝑙)
)

, (25)

𝑋′′
𝑓,𝑦(𝑙 + 1) = 𝑋′

𝑓,𝑦(𝑙) + 𝑐3 × 𝐹𝑓 × 𝜏 ×
(

𝑄 ×𝑋∗
𝑚 −𝑋′

𝑓,𝑦(𝑙)
)

, (26)

where 𝑋∗
𝑚 and 𝑋∗

𝑓 represent the best male and the best female, respec-
tively, in the parent population 𝕊′. 𝐹𝑚 and 𝐹𝑓 denote the fighting abili-
ties of 𝑋′

𝑚,𝑦 and 𝑋′
𝑓,𝑦, respectively, with the calculations defined as fol-

lows:
𝐹𝑚 = exp

(

−𝑀(𝑋∗
𝑓)∕𝑀(𝑋′

𝑚,𝑦)
)

, (27)

𝐹𝑓 = exp
(

−𝑀(𝑋∗
𝑚)∕𝑀(𝑋′

𝑓,𝑦)
)

. (28)

(4) Mating mode (𝑄 > Δ𝑄, 𝑇 𝑒𝑚𝑝 < Δ𝑇 , 𝜏 < 0.6). An interdependent
relationship exists between the mating behaviors of each pair of snake

Future Generation Computer Systems 175 (2026) 108118

7

Y. Zhang et al.

individuals and the availability of food resources. The updating mecha-
nism is outlined as Eqs. (29) and (30) [15].
𝑋′′

𝑚,𝑦(𝑙 + 1) = 𝑋′
𝑚,𝑦(𝑙) + 𝑐3 ×𝑀𝑚 × 𝜏 ×

(

𝑄 ×𝑋′
𝑓,𝑦(𝑙) −𝑋′

𝑚,𝑦(𝑙)
)

, (29)

𝑋′′
𝑓,𝑦(𝑙 + 1) = 𝑋′

𝑓,𝑦(𝑙) + 𝑐3 ×𝑀𝑓 × 𝜏 ×
(

𝑄 ×𝑋′
𝑚,𝑦(𝑙) −𝑋′

𝑓,𝑦(𝑙)
)

, (30)

where 𝑀𝑚 and 𝑀𝑓 represent the mating abilities of 𝑋′
𝑚,𝑦 and 𝑋′

𝑓,𝑦, re-
spectively, with the calculations determined by
𝑀𝑚 = exp

(

−𝑀(𝑋′
𝑓,𝑦)∕𝑀(𝑋′

𝑚,𝑦)
)

, (31)

𝑀𝑓 = exp
(

−𝑀(𝑋′
𝑚,𝑦)∕𝑀(𝑋′

𝑓,𝑦)
)

. (32)

In the mating mode, female individuals may lay eggs that develop
into new snake offspring. If the eggs successfully hatch, the worst male
individual, 𝑋◦

𝑚, and the worst female individual, 𝑋◦
𝑓 , are selectively re-

placed, as indicated by Eqs. (33) and (34) [15].
𝑋◦

𝑚 = 𝑋𝐿𝐵 + 𝜏 × (𝑋𝑈𝐵 −𝑋𝐿𝐵), (33)

𝑋◦
𝑓 = 𝑋𝐿𝐵 + 𝜏 × (𝑋𝑈𝐵 −𝑋𝐿𝐵). (34)

The dimension value 𝑥𝑖 of each snake individual represents the index
of the VM assigned to task 𝑡𝑖, which must satisfy the condition 1 ≤ 𝑥𝑖 ≤
|𝑉 |. Therefore, if 𝑥𝑖 < 1, then it is adjusted to 1; and if 𝑥𝑖 > |𝑉 |, then it
is adjusted to |𝑉 |.

After the offspring population 𝕊′′ is obtained, the solution update
rules are applied to compare individuals 𝑋′

𝑦 from the parent population
𝕊′ with their corresponding counterparts 𝑋′′

𝑦 in the offspring population
𝕊′′. Then, the superior individuals 𝑋′′′

𝑦 are chosen to form a new popu-
lation 𝕊′′′.

Algorithm 2 Solution update module of AOM-SO.
Input: 𝕊′, 𝑄, 𝑇 𝑒𝑚𝑝, 𝑋∗

𝑚, and 𝑋∗
𝑓 .

Output: 𝕊′′.
1: for each 𝑋′

𝑦 in 𝕊′ do
2: if 𝑄 < Δ𝑄 then
3: Enter exploration mode and update by using Eqs. (19) and (20);
4: else
5: if 𝑇 𝑒𝑚𝑝 > Δ𝑇 then
6: Enter exploitation mode and update by using Eqs. (23) and

(24);
7: else
8: if 𝜏 > 0.6 then
9: Enter fight mode and update by using Eqs. (25) and (26);
10: else
11: Enter mating mode and update by using Eqs. (29) and (30);
12: end if
13: end if
14: end if
15: end for
16: return 𝕊′′.

4.3. AOM module

The solution update module is derived from the original SO algo-
rithm. It has four distinct update modes, each following specific updat-
ing mechanisms. Consequently, solutions may become trapped in local
optima during the iterative process. Additionally, the positional changes
of the snake individuals within the solution update module arise partly
from random exploratory behaviors, whereas the rest are influenced by
their movement paths and makespan. This process lacks a clear mecha-
nism focused on cost reduction to optimize their movement strategies,
thereby limiting the overall performance and enhancement of the algo-
rithm. An AOM mechanism is proposed to address these shortcomings.

The principles of this mechanism are further elucidated through relevant
definitions and explanations in the following discussion.

For the population 𝕊′′′, a number 𝛿𝑚,𝑟𝑎𝑛𝑑 of male individuals 𝑋′′′
𝑚,𝑟𝑎𝑛𝑑

is randomly chosen from the male group to create the male subgroup
𝑅𝑚. Likewise, a number 𝛿𝑓,𝑟𝑎𝑛𝑑 of female individuals 𝑋′′′

𝑓,𝑟𝑎𝑛𝑑 is randomly
selected from the female group to establish the female subgroup 𝑅𝑓 .
𝛿𝑚,𝑟𝑎𝑛𝑑 and 𝛿𝑓,𝑟𝑎𝑛𝑑 can be calculated as follows:
𝛿𝑚,𝑟𝑎𝑛𝑑 = 𝜇 × 𝛿𝑚, (35)

𝛿𝑓,𝑟𝑎𝑛𝑑 = 𝜇 × 𝛿𝑓 , (36)

where 𝜇 is known as the oriented probability, and 𝜇 = 10% is used in
this study.

Definition 1: Negative Budget Cost (𝐵̃). If the snake individual 𝑋′′′
𝑦

violates the budget constraint, then the difference between the workflow
budget cost 𝐵(𝐺) and the total cost 𝐶(𝑋′′′

𝑦) is negative. In this study, the
opposite value of this difference is defined as the negative budget cost
𝐵̃(𝑋′′′

𝑦) for the snake individual 𝑋′′′
𝑦 , expressed as follows:

𝐵̃(𝑋′′′
𝑦) = −

(

𝐵(𝐺) − 𝐶(𝑋′′′
𝑦)
)

. (37)

The negative budget cost indicates the extent to which the total cost
of the snake individual 𝑋′′′

𝑦 exceeds the budgeted cost. This study al-
locates the negative budget cost across various dimensions to reduce
the total cost and ensure compliance with the budget constraint. Recog-
nizing that a mapping relationship exists between the individual dimen-
sions and the workflow tasks is essential; thus, this can also be described
as distributing the negative budget cost across the relevant tasks.

Each task 𝑡𝑖 has a minimum execution cost 𝐶min(𝑡𝑖) (i.e., the cost re-
quired to execute 𝑡𝑖 on the least expensive VM). Thus, each task adap-
tively lowers its execution cost while maintaining 𝐶min(𝑡𝑖) as a lower
limit. This reduction aims to impact the negative budget cost of the
snake individual locally, ultimately bringing it down to zero to satisfy
the budget constraint.

Definition 2: Adaptiveness (Υ). The adaptiveness Υ𝑖 of task 𝑡𝑖 is
defined as the difference between the cost needed to execute task 𝑡𝑖 on
the assigned VM 𝐼𝑘 (where 𝑘 is the integer value of 𝑥𝑖) in the current
scheduling scheme and 𝐶min(𝑡𝑖). It can be computed by
𝛶𝑖 = 𝐶𝑒𝑥𝑒(𝑡𝑖, 𝐼𝑘) − 𝐶min(𝑡𝑖). (38)

Definition 3: Dynamic Sub-budget (𝑠𝑢𝑏𝐵). The usable sub-budget
cost 𝑠𝑢𝑏𝐵(𝑡𝑖) for task 𝑡𝑖 is determined by its adaptiveness Υ𝑖 and the
negative budget cost 𝐵̃(𝑋′′′

𝑦) of the individual. 𝑠𝑢𝑏𝐵(𝑡𝑖) can be calculated
by

𝑠𝑢𝑏𝐵(𝑡𝑖) = 𝐶𝑒𝑥𝑒(𝑡𝑖, 𝐼𝑘) − 𝐵̃(𝑋′′′
𝑦) ×

𝛶𝑖
|𝑇 |
∑

𝑗=1
𝛶𝑗

. (39)

The sub-budgets linked to tasks are not static; instead, their values
are dynamically modified in real time as the iterative process unfolds,
thereby reflecting changes in the individual’s total cost. This dynamic
sub-budget approach seeks to enhance resource utilization strategies,
thereby ensuring flexibility and responsiveness in the algorithm’s search
process to optimize overall performance. This study incorporates the to-
tal number of tasks |𝑇 | into the algorithm to enable the proposed algo-
rithm to handle workflow scheduling for tasks of varying scales.

Definition 4: Dimensional Random Sampling. |𝐷| dimensions are
randomly selected from 𝑋′′′

𝑦 with an oriented probability 𝜇, denoted as
the set 𝐷 = {𝑑1,… , 𝑑𝑟,… , 𝑑

|𝐷|

}. The computational expression for |𝐷| is
presented as follows:
|𝐷| = 𝜇 ×𝐷𝑖𝑚, (40)

where the dimension 𝐷𝑖𝑚 of 𝑋′′′
𝑦 is equal to the total number of tasks

|𝑇 | (i.e., the task size). Consequently, the number of dimension random
samples |𝐷| changes linearly with the task size, allowing the AOM-SO
algorithm to automatically adjust the number of dimension random sam-
ples based on the task size of the current workflow.

Future Generation Computer Systems 175 (2026) 108118

8

Y. Zhang et al.

The randomly selected dimensions in 𝐷 essentially represent a form
of random sampling for workflow tasks, as illustrated in the following
examples:

• Example 1: Let the total number of tasks be |𝑇 | = 10. On the basis
of Eq. (40), we can derive |𝐷| = 1 and 𝐷 = {𝑑1}. Furthermore, the
randomly selected dimension is assumed to be the third dimension;
in this case, 𝐷 = {3} represents the randomly selected task 𝑡3.

• Example 2: Let the total number of tasks be |𝑇 | = 50. According
to Eq. (40), we can determine |𝐷| = 5 and 𝐷 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5}.
Additionally, if we assume that the randomly chosen dimensions
are the 9th, 15th, 18th, 35th, and 47th dimensions, then 𝐷 =
{9, 15, 18, 35, 47} represents the randomly selected tasks 𝑡9, 𝑡15, 𝑡18,
𝑡35, and 𝑡47.

Definition 5: Oriented Mutation Set (Ω). For the task set repre-
sented by 𝐷, task 𝑡𝑑𝑟 is sequentially selected, and the VM indexes with
execution costs that are less than or equal to the sub-budget of task 𝑡𝑑𝑟
are identified (i.e., an oriented search for the suitable 𝑘 is conducted) to
form the mutation queue 𝑞(𝑑𝑟) for the 𝑑𝑟-th dimension:

𝑞(𝑑𝑟) =
{

𝑘|∃𝐼𝑘, 𝐶𝑒𝑥𝑒(𝑡𝑑𝑟 , 𝐼𝑘) ≤ 𝑠𝑢𝑏𝐵(𝑡𝑑𝑟)
}

. (41)

If no 𝐼𝑘 that satisfies Eq. (41) exists, then the mutation queue for the
𝑑𝑟-th dimension is defined as follows:

𝑞(𝑑𝑟) =
{

𝑘|∃𝐼𝑘, 𝐶𝑒𝑥𝑒(𝑡𝑑𝑟 , 𝐼𝑘) = 𝐶min(𝑡𝑑𝑟)
}

. (42)

The calculated mutation queues collectively constitute the oriented
mutation set Ω for the individual 𝑋′′′

𝑦 across multiple dimensions, repre-
sented as
𝛺 =

{

𝑞(𝑑1),… , 𝑞(𝑑𝑟),… , 𝑞(𝑑
|𝐷|

)
}

. (43)

Definition 6: AOM Mechanism. The male subgroup 𝑅𝑚 and the
female subgroup 𝑅𝑓 are traversed separately to assess whether each
individual 𝑋′′′

𝑚,𝑟𝑎𝑛𝑑 ∈ 𝑅𝑚 or 𝑋′′′
𝑓,𝑟𝑎𝑛𝑑 ∈ 𝑅𝑓 meets the budget constraint. If

an individual violates the budget constraint, then its negative budget
cost is calculated, and random sampling is performed on the dimensions
to obtain the set 𝐷. From this set, the oriented mutation set Ω is derived
for the individual across multiple dimensions. Each random dimension
𝑑𝑟 is traversed in 𝐷, where the dimension value is denoted as 𝑥𝑑𝑟 . A
VM index 𝑘 is randomly selected from the mutation queue 𝑞(𝑑𝑟) of the
oriented mutation set Ω to replace 𝑥𝑑𝑟 and continue this process until
the traversal is finished.

Base on the aforementioned definition, the AOM mechanism incor-
porates three random operations to prevent the algorithm from getting
trapped in local optima:

• Random selection of the male subgroup 𝑅𝑚 and female subgroup 𝑅𝑓 .
At the population level, individuals are divided into two parts using
an oriented probability 𝜇. One group of individuals retains the posi-
tion features from the solution update module without undergoing
oriented mutation to avoid excessive randomness in the population
that might hinder algorithm convergence. The other group of indi-
viduals (from 𝑅𝑚 and 𝑅𝑓) undergoes oriented mutation to enhance
diversity in individual positions and prevent the algorithm from be-
ing stuck in local optima.

• Random sampling of individual dimensions. At the individual level,
certain dimensions are randomly chosen for oriented mutation, with
the randomness level controlled by the oriented probability 𝜇. If too
many dimensions are randomly selected, the algorithm may fall into
new local optima; if too few, it may slow down the search for feasible
solutions that meet budget constraints in the early iterations.

• Random mutation of VM indexes. At the task level, one index is ran-
domly selected from the oriented search VM index set for mutation,
allowing the AOM-SO algorithm to maintain directionality while in-
corporating randomness.

Throughout the AOM mechanism, the oriented probability 𝜇 repre-
sents the collaborative interplay between randomness and directional-
ity. The discussion on the selection of 𝜇 values will be further elaborated
in Section 5.1.3. Overall, the AOM mechanism balances randomness and
orientation. It employs a certain degree of randomness to help escape
local optima in the solution update module, thereby increasing search
diversification. Additionally, it incorporates orientation, which acceler-
ates the search for feasible solutions that meet budget constraints during
the early stages of iteration through multidimensional AOMs. This com-
bination allows for an early transition of the iterative process into the
phase focused on minimizing makespan.

The population 𝕊′′′ is randomly updated using the AOM mechanism
to generate a new parent population 𝕊𝑙+1 (i.e., 𝕊′) for the next itera-
tion. This process continues until the maximum number of iterations is
reached.

Algorithm 3 AOM module of AOM-SO.
Input: 𝕊′′′, 𝜇.
Output: 𝕊𝑙+1.
1: Calculate the number of random male individuals 𝛿𝑚,𝑟𝑎𝑛𝑑 ;
2: Calculate the number of random female individuals 𝛿𝑓,𝑟𝑎𝑛𝑑 ;
3: Randomly select 𝛿𝑚,𝑟𝑎𝑛𝑑 male individuals from 𝕊′′′;
4: Randomly select 𝛿𝑓,𝑟𝑎𝑛𝑑 female individuals from 𝕊′′′;
5: for each 𝑋′′′

𝑚,𝑟𝑎𝑛𝑑 in 𝑅𝑚 do
6: if 𝐶(𝑋′′′

𝑚,𝑟𝑎𝑛𝑑) > 𝐵(𝐺) then
7: Calculate 𝐵̃(𝑋′′′

𝑚,𝑟𝑎𝑛𝑑) by using Eq. (37);
8: for 𝑖 ← 1 to |𝑇 | do
9: Calculate Υ𝑖 by using Eq. (38);
10: Calculate 𝑠𝑢𝑏𝐵(𝑡𝑖) by using Eq. (39);
11: end for
12: Obtain a random set of dimensions 𝐷 for 𝑋′′′

𝑚,𝑟𝑎𝑛𝑑 by using Eq.
(40);

13: for 𝑟 ← 1 to |𝐷| do
14: Find 𝑞(𝑑𝑟) for the 𝑑𝑟-th dimension;
15: Add 𝑞(𝑑𝑟) to Ω;
16: 𝑥𝑑𝑟 ← Randomly select a 𝑘 from 𝑞(𝑑𝑟);
17: end for
18: end if
19: end for
20: Update 𝑅𝑓 , as per lines 5–19;
21: return 𝕊𝑙+1.

4.4. A motivational example

To highlight the effectiveness of the AOM-SO algorithm, this study
utilizes the workflow diagram presented in Fig. 1 to visually compare
the scheduling outcomes of the AOM-SO algorithm with OSAM [14],
MG-PRO [8], and the original SO [15] algorithms. The unit prices for
VMs 𝐼1, 𝐼2, and 𝐼3 are established at 3, 5, and 7, correspondingly, while
the workflow budget is fixed at 650 [42]. The results of the OSAM, MG-
PRO, original SO, and AOM-SO algorithms for scheduling this workflow
are depicted in Fig. 3. The total execution costs are 649, 650, 650, and
649, with makespans of 87, 98, 88, and 84, respectively. This outcome
suggests that the AOM-SO algorithm establishes a more effective task-
VM mapping configuration and achieves a shorter makespan when all
four algorithms comply with the budget constraints, as illustrated in
Fig. 3(d).

4.5. Time complexity analysis

The time complexity of the AOM-SO algorithm is primarily deter-
mined by the maximum number of iterations 𝐿, the population size 𝛿,
and the total number of tasks |𝑇 | within the workflow. The initialization
module primarily involves the random generation of the initial popula-
tion, dependent on the population size 𝛿 and total number of tasks |𝑇 |,

Future Generation Computer Systems 175 (2026) 108118

9

Y. Zhang et al.

Fig. 3. Schedules of the sample DAG depicted in Fig. 1 with (a) OSAM, (b) MG-PRO, (c) SO, (d) AOM-SO.

with a time complexity of 𝑂(𝛿 × |𝑇 |). The solution update module, as
shown in Algorithm 2, operates in each iteration where the population
enters only one update mode for updating individual positions, with a
time complexity of 𝑂(𝛿 × |𝑇 |). The AOM module, illustrated in Algo-
rithm 3, selects a subset of individuals randomly in each iteration based
on the oriented probability 𝜇. For each selected individual, it randomly
picks multiple random dimensions using the oriented probability 𝜇 for
oriented mutation of each selected dimension value. As the total number
of tasks in the workflow increases, reflecting higher individual dimen-
sions, and more random dimensions are chosen for oriented mutation
in selected individuals, the time complexity is 𝑂(𝜇2 × 𝛿 × |𝑇 |). Since the
algorithm undergoes a total of 𝐿 iterations, the time complexity of the
solution update module is 𝑂(𝐿 × 𝛿 × |𝑇 |), and that of the AOM module
is 𝑂(𝐿 × 𝜇2 × 𝛿 × |𝑇 |). Additionally, the time complexity for calculating
the cost and makespan of individuals, along with comparing and updat-
ing the best individual, is 𝑂(𝐿 × 𝛿 × |𝑇 | + 𝐿 × 𝛿). Therefore, the overall
time complexity of AOM-SO is 𝑂(𝛿 × |𝑇 | + 𝐿 × 𝛿 × |𝑇 | + 𝐿 × 𝛿).

5. Experiments and performance evaluation

This study adopts OSAM [14], MG-PRO [8], SO [15], and AEFT [25]
algorithms as benchmarks for comparative assessment. In accordance
with the AOM-SO algorithm proposed in this work, all four compara-
tive algorithms are designed to minimize makespan while adhering to
budget constraints. A comparative analysis is performed by utilizing five
distinct metrics to evaluate the performance of these algorithms compre-
hensively.

5.1. Experimental setup

The experiments conducted in this study are executed on the CentOS
7.3 operating system, with the algorithm developed and implemented
using the Python programming language. Given the challenges associ-
ated with conducting reproducible experiments in real data centers or
cloud platforms, this study employs simulation experiments to evaluate
the performance of the proposed AOM-SO algorithm, as supported by
the literature [5,20]. Consistent with prior work [5], our experiments
refer to Amazon EC2 to establish nine distinct types of VM instances.
Each VM instance type varies in processing speed 𝜂𝑘 (measured in MB/s)
and pricing 𝑝𝑘 (in $/h), with further details provided in Table 3. Addi-
tionally, the average bandwidth 𝑏𝑤 is set at 20MB/s.

Table 3
Parameter configuration of 9 VM instance types
[5].

 Type 𝜂𝑘 𝑝𝑘 Type 𝜂𝑘 𝑝𝑘

 1 1.0 0.12 6 3.5 0.595
 2 1.5 0.195 7 4.0 0.72
 3 2.0 0.28 8 4.5 0.855
 4 2.5 0.375 9 5.0 1.0
 5 3.0 0.48 – – –

Table 4
Experimental scale settings.
 Scale Dataset Number of VMs
 Small EP_19, LIGO_40, GE_27, Montage_18 |𝑉 | = 3
 Medium EP_103, LIGO_274, GE_299, Montage_126 |𝑉 | = 6
 Large EP_523, LIGO_544, GE_495, Montage_606 |𝑉 | = 12

5.1.1. Datasets
This study utilizes five types of typical real-world scientific workflow

applications [26] as test datasets: (1) the epigenomics (EP) workflow ap-
plication in biogenomics domain, depicted in Fig. 4(a), with task quan-
tities of 19, 51, 103, and 523; (2) the LIGO workflow application in the
field of gravitational physics, shown in Fig. 4(b), with task quantities of
40, 94, 274, and 544; (3) the Gaussian elimination (GE) parallel appli-
cation, illustrated in Fig. 4(c), with task quantities of 27, 54, 299, and
495; (4) the Montage workflow application in astronomy, represented
in Fig. 4(d), with task quantities of 18, 66, 126, and 606; and (5) molec-
ular dynamics code [43] possesses a fixed DAG structure, demonstrated
in Fig. 4(e), encompassing a total of 41 tasks.

This study establishes three datasets of different scales [8,14] to sup-
port the experimental validation of the AOM-SO algorithm’s effective-
ness. The specifications are detailed in Table 4.

5.1.2. Performance metrics
This study employs the following five performance metrics to com-

pare and analyze comprehensively the performance of the five algo-
rithms:

(1) Success rate. A critical requirement for minimizing makespan
involves ensuring that the scheduling solution adheres to the budget
constraint set for a workflow (i.e., the solution obtained is a valid

Future Generation Computer Systems 175 (2026) 108118

10

Y. Zhang et al.

Fig. 4. Five typical scientific workflow applications.

feasible solution). Therefore, the success rate (𝑆𝑅) is used to evaluate the
capability of the five algorithms to find feasible solutions, as follows:

𝑆𝑅 = 𝑛
𝑁

, (44)

where 𝑛 indicates the number of times the algorithm identifies a feasible
solution out of 𝑁 experiments, with 𝑁 representing the total number of
experiments conducted. In this study, 𝑁 is set to 15, and the evaluation
is performed using datasets of small, medium, and large scales as well as
molecular dynamics code. A high success rate reflects superior algorithm
performance.

(2) Makespan. This study designs three sets of comparative exper-
iments that focus on the following aspects to evaluate the makespan
performance of the algorithms effectively: different budget constraint
conditions, varying task sizes, and diverse configurations of VM quanti-
ties.

Experiment 1: Comparison of makespan under varying budget con-
straints. In this experiment, a molecular dynamics code and a medium-
scale dataset are used, incorporating a budget factor 𝛽 [18] to create
varying budget constraints for each workflow. The computational ex-
pression for the budget constraint 𝐵(𝐺) is as follows:

𝐵(𝐺) = 𝛽 × 𝐶min(𝐺), (45)

where 1.0 ≤ 𝛽 ≤ 1.4, with a step size of 0.1. 𝐶min(𝐺) denotes the min-
imum cost required to execute workflow 𝐺 and is defined as the total
cost incurred when all tasks of the workflow are assigned to the least ex-
pensive VMs within the resource pool. The budget constraint begins in a
highly constrained state and gradually increases toward a considerably
relaxed condition.

Experiment 2: Comparison of makespan under different task sizes.
The budget factor (𝛽 = 1.4) and the number of VMs (|𝑉 | = 12) are held
constant to assess the makespan performance of the five algorithms
while scheduling four types of workflows (EP, LIGO, GE, and Montage),
each with varying task quantities.

Experiment 3: Comparison of makespan with varying VM numbers.
In this experiment, the budget factor (𝛽 = 1.4) is kept constant while the
makespan of five algorithms is evaluated across five types of workflows.
The assessment is carried out using a molecular dynamics code and a
medium-scale dataset with the number of VMs set to 6, 12, 18, 24, and
30.

(3) Relative deviation index (RDI) [14]. This study introduces the
relative deviation metric to validate the scheduling advantages of the
AOM-SO algorithm, expressed as follows:

RDI = 𝑀 −𝑀∗

𝑀∗ , (46)

where 𝑀 denotes the makespan corresponding to the solution of each al-
gorithm, and 𝑀∗ represents the best makespan among the results of the
five algorithms. The experiments utilize small, medium, and large-scale
datasets for testing. Each algorithm is executed independently 15 times
for each dataset scale to ensure fairness, with the best result selected for
comparison. Then, the corresponding RDI values are calculated, where
a small RDI indicates superior algorithm performance.

(4) Convergence. The scenario where the algorithm achieves a state
of convergence signifies that the iterative evolution process has ceased
and an approximate optimal solution has been found. This study records
the best solution generated by the algorithm at each iteration on the
medium-scale dataset to observe the algorithm’s convergence process.

(5) Runtime. Runtime serves as a crucial metric for evaluating the
efficiency of metaheuristic algorithms in obtaining an approximate op-
timal solution through extensive iterations. A short runtime indicates a
great advantage for the algorithm. In particular, the one with the short
runtime is considered relatively superior when two algorithms yield a
similar makespan. In this study, the average runtime of the five algo-
rithms is recorded in detail over 15 experiments. The ratio 𝑅𝑟𝑎𝑡𝑖𝑜 of the
average runtime of each algorithm to the average runtime of the AOM-
SO algorithm is calculated and recorded. The expression for this ratio is
calculated as follows:

𝑅𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑅𝐴𝑂𝑀−𝑆𝑂
, (47)

where 𝑅𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 represents the average runtime of each algorithm, while
𝑅𝐴𝑂𝑀−𝑆𝑂 represents the average runtime of the AOM-SO algorithm. A
small ratio signifies a short runtime for the algorithm. The ratio for the
AOM-SO algorithm is equal to 1.

5.1.3. Parameter settings
Given that OSAM, MG-PRO, original SO, and AOM-SO algorithms are

population-based metaheuristic algorithms, the experiments maintain a
consistent population size of 𝛿 = 50 and a maximum number of iterations
of 𝐿 = 1000. Additionally, the specific parameters for the OSAM, MG-
PRO, and original SO algorithms are derived from the original works,
as outlined in Table 5.

The AOM-SO algorithm introduces a significant concept known as
oriented probability 𝜇, which plays a vital role in balancing randomness
and orientation within the AOM mechanism. The experiment evaluates
the values of the oriented probability 𝜇 in the range of [0, 100] with
a step size of 10 using large-scale datasets. As shown in Fig. 5(a), the
makespan of the EP, LIGO, GE, and Montage workflows significantly de-
creases when 𝜇 increases from 0% to 10%. However, after 𝜇 exceeds
10%, the makespan only fluctuates slightly. To further analyze the im-
pact of 𝜇, the study tests the values of 𝜇 in the range of [0, 10] with

Future Generation Computer Systems 175 (2026) 108118

11

Y. Zhang et al.

Table 5
Parameter settings of different algorithms.
 Algorithm Parameters and values
 OSAM [14] 𝛽 = 3.0, 𝛾 = 25%
 MG-PRO [8] 𝛾 = 0.08, 𝜑 = 10, 𝜁 = 60
 SO [15] 𝑐1 = 0.5, 𝑐2 = 0.05, 𝑐3 = 2
 AOM-SO 𝑐1 = 0.5, 𝑐2 = 0.05, 𝑐3 = 2, 𝜇 = 10%

Fig. 5. Numerical tests of the oriented probability 𝜇 in the AOM-SO algorithm.

Fig. 6. Utility analysis of the oriented probability 𝜇 in the AOM-SO algorithm.

a step size of 1. Fig. 5(b) demonstrates that the significant reduction
in makespan for the four types of workflows using the AOM-SO algo-
rithm occurs when 𝜇 increases from 2% to 3%, stabilizing gradually
thereafter. This study ultimately sets the oriented probability 𝜇 to 10%
and compares and records the iterative process data of scheduling the
EP, LIGO, GE, and Montage workflows under 𝜇 = 0% and 𝜇 = 10% to
illustrate the role of 𝜇 = 10% in the AOM-SO algorithm, as shown in
Fig. 6.

When 𝜇 = 0%, the AOM mechanism is ineffective and does not im-
pact the population’s update and iteration process. In this scenario, the
AOM-SO algorithm follows the same iterative process as the original
SO algorithm, as demonstrated by the convergence characteristics pre-
sented in Fig. 6(a). The algorithm identifies only feasible solutions that
satisfy the budget constraints after approximately 500 to 600 iterations;
at this point, the makespan minimization phase begins. Additionally,
the search process is susceptible to being trapped in local optima, which
poses certain limitations in optimizing the makespan.

Conversely, when 𝜇 = 10%, the AOM mechanism is proved to be ef-
fective, leading to a significant change in the population update and iter-
ation process. The convergence characteristics are depicted in Fig. 6(b).
After approximately 100 iterations, the algorithm can identify a feasi-
ble solution that meets the budget constraint and swiftly moves into
the optimization phase to minimize the makespan. In particular, during
the iterations from 100 to 500, the algorithm consistently optimizes the
makespan until convergence is reached.

In summary, the AOM mechanism significantly improves the con-
vergence speed of the AOM-SO algorithm when the oriented probability
is set to 𝜇 = 10%; as a result, the issue of the algorithm being trapped
in local optima is effectively alleviated. This outcome results in a dual
optimization of search efficiency and solution quality.

5.2. Results and analysis

This section offers a comparative analysis of the AOM-SO algorithm’s
performance in relation to similar algorithms by using the five perfor-
mance metrics discussed previously.

5.2.1. Budget constraint satisfiability
The comparison results for the success rates of five algorithms across

three different scale datasets are presented in Figs. 7–9. Additionally,
the results of the success rate comparison on the molecular dynamics
code are shown in Fig. 10(a). These figures indicate that the OSAM al-
gorithm performs significantly worse than the four other algorithms. As
demonstrated in Fig. 7 and Fig. 10(a), the OSAM algorithm can only
identify feasible solutions that adhere to the budget constraints under
comparatively lenient budget conditions, even with small-scale datasets
and a molecular dynamics code involving 41 tasks. For example, the
success rate of the OSAM algorithm in the LIGO workflow depicted in
Fig. 7(b) reaches 100% only when the budget factor is 𝛽 = 1.4. Under
strict budget conditions, its success rate drops to 0. This finding indi-
cates OSAM’s difficulty in finding feasible scheduling solutions under
stringent budget constraints. Furthermore, the OSAM algorithm does
not reach a success rate of 100% in medium-scale workflow tests even
when the budget constraint is eased to 𝛽 = 1.4. In particular, the highest
performance is observed in the GE workflow shown in Fig. 8(c), where
the success rate reaches only 66.67%. In the large-scale workflow tests,
the success rate remains 0 when 𝛽 = 1.4. By contrast, during the tests
conducted on the three scale workflows and the molecular dynamics
code, the MG-PRO algorithm and the original SO algorithm achieved a
100% success rate when the budget constraint was relaxed to 𝛽 = 1.1.
However, under the tightest budget condition of 𝛽 = 1.0, the MG-PRO al-
gorithm and the original SO algorithm perform poorly in medium- and
large-scale workflow tests, with success rates falling to 0. As a result,
finding feasible scheduling solutions is nearly impossible. In compari-
son, the AOM-SO algorithm maintains a 100% success rate even under
these tight budget constraints while handling large-scale workflows. It is
important to note that a 100% success rate is achieved by the AEFT al-
gorithm, similar to that of the AOM-SO algorithm, for the following rea-
sons: to ensure that adaptability to the scheduling objectives addressed
in this study is maintained and to uphold fairness in experimental com-
parisons, the core strategy focused on minimizing makespan is retained
within the AEFT algorithm. Furthermore, the methodology from the
work in [17] is adapted to incorporate budget constraint considerations
into the AEFT algorithm. This adaptation allows the AEFT algorithm to
effectively schedule budget-constrained workflows and generate feasi-
ble scheduling solutions.

This study specifically analyzes the success rates of five algorithms
at 𝛽 = 1.0 to highlight the exceptional performance of the AOM-SO al-
gorithm in searching for feasible solutions that comply with budget con-
straints. The relevant data are summarized in Table 6. The average suc-
cess rates indicate that when 𝛽 = 1.0, the OSAM algorithm achieves a
success rate of 0%, the MG-PRO algorithm reaches 10.56%, and the
original SO algorithm attains a success rate of 29.44%. In contrast, both
the AEFT algorithm and the AOM-SO algorithm achieve a 100% success
rate. This stark contrast in results underscores the significant advan-
tages offered by the AOM-SO algorithm. Its outstanding performance
can largely be attributed to the effectiveness of its AOM mechanism.
The multidimensional AOM of random individuals greatly accelerates
the search for feasible solutions that comply with budget constraints,
thereby facilitating efficient iterations during the makespan minimiza-
tion phase. Furthermore, the AOM-SO algorithm fully considers the im-
pact of task quantity; thus, it can adapt flexibly to workflow scheduling
across various scales.

5.2.2. Makespan evaluation
The results of the comparative analysis of the makespan from Exper-

iment 1 are shown in Figs. 10(b) and 11. The makespan for the OSAM,

Future Generation Computer Systems 175 (2026) 108118

12

Y. Zhang et al.

Fig. 7. Success rates of five algorithms on small-scale datasets.

Fig. 8. Success rates of five algorithms on medium-scale datasets.

MG-PRO, original SO, AEFT, and AOM-SO algorithms decreases pro-
gressively as the budget factor increases. This trend suggests that the
algorithms can select appropriate VMs for executing workflow tasks be-
cause budget constraints are relaxed. As illustrated in Fig. 8, the OSAM
algorithm starts to demonstrate a nonzero success rate for medium-scale
dataset tests across the four workflow types of EP, LIGO, GE, and Mon-
tage at budget factors of 1.3, 1.2, 1.2, and 1.2, respectively. This finding
indicates that the OSAM algorithm can identify only feasible solutions
that meet budget constraints and subsequently optimize makespan when
these constraints are sufficiently relaxed. Before these thresholds are
reached, all iterations of the OSAM algorithm prioritize cost reduction
to find feasible solutions that meet budget requirements without focus-
ing on optimizing makespan. Therefore, when analyzing the trends in
the makespan changes for the OSAM algorithm across the EP, LIGO, GE,
and Montage workflows in Fig. 11, recognizing that the makespan data
are valid only when the budget factors reach 1.3, 1.2, 1.2, and 1.2, re-

Fig. 9. Success rates of five algorithms on large-scale datasets.

Table 6
Success rates (%) of the five algorithms when 𝛽 = 1.0.

 Dataset Scale OSAM MG-PRO SO AEFT AOM-SO
 EP Small 0.00 86.67 100.00 100.00 100.00

 Medium 0.00 0.00 0.00 100.00 100.00
 Large 0.00 0.00 0.00 100.00 100.00
 The average 0.00 28.89 33.33 100.00 100.00

 LIGO Small 0.00 0.00 73.33 100.00 100.00
 Medium 0.00 0.00 0.00 100.00 100.00
 Large 0.00 0.00 0.00 100.00 100.00
 The average 0.00 0.00 24.44 100.00 100.00

 GE Small 0.00 20.00 86.67 100.00 100.00
 Medium 0.00 0.00 0.00 100.00 100.00
 Large 0.00 0.00 0.00 100.00 100.00
 The average 0.00 6.67 28.89 100.00 100.00

 Montage Small 0.00 20.00 93.34 100.00 100.00
 Medium 0.00 0.00 0.00 100.00 100.00
 Large 0.00 0.00 0.00 100.00 100.00
 The average 0.00 6.67 31.11 100.00 100.00

 The average 0.00 10.56 29.44 100.00 100.00

spectively, is crucial. The same reasoning applies to the MG-PRO and
original SO algorithms. As shown in Fig. 11, the AOM-SO algorithm ex-
hibits a significant advantage over the four other algorithms in terms of
makespan performance. For instance, Fig. 11(d) depicts that compared
with the OSAM, MG-PRO, original SO, and AEFT algorithms, the AOM-
SO algorithm for the Montage workflow achieves an average reduction
in makespan of 47.33%, 43.66%, 48.45%, and 37.83%, respectively.
However, in the molecular dynamics code shown in Fig. 10(b), with 41
tasks and a simpler search space, the advantage of AOM-SO diminishes
compared to its performance on datasets with a larger number of tasks.
It shows average reductions in makespan of 17.37%, 14.39%, 7.07%,
and 35.31% when compared to the OSAM, MG-PRO, original SO, and
AEFT algorithms, respectively.

The results of the comparative analysis of makespan from Experi-
ment 2 are presented in Fig. 12. As the number of tasks increases, the
search space expands, leading to highly complex search paths. As a re-
sult, reaching the globally optimal solution becomes increasingly diffi-
cult for the algorithms. As illustrated in Fig. 12, the AOM-SO algorithm
consistently demonstrates superior performance in makespan across the

Future Generation Computer Systems 175 (2026) 108118

13

Y. Zhang et al.

Fig. 10. Performance comparison of five algorithms on molecular dynamics code.

Fig. 11. Comparative results of makespan under different budget constraints.

four types of workflow tests, regardless of the number of tasks. The av-
erage values obtained from the four sets of experimental results indi-
cate that compared with the OSAM, MG-PRO, original SO, and AEFT
algorithms, the AOM-SO algorithm achieves an average reduction in
makespan of 46.11%, 39.11%, 38.47%, and 34.46%, respectively.

The results of the comparative analysis of the makespan from Ex-
periment 3 are displayed in Figs. 10(c) and 13. Under varying condi-
tions regarding the number of VMs, the proposed AOM-SO algorithm
demonstrates superior performance in reducing the execution time of
workflows. For instance, compared with the four other algorithms, the
AOM-SO algorithm in the LIGO workflow shown in Fig. 13(b) achieves
an average reduction in makespan of 48.21%, 51.27%, 46.72%, and
43.88%.

The comprehensive evaluation reveals that the AOM mechanism de-
signed in this study optimizes the scheduling strategy. Thus, its adapt-
ability to workflows with varying task quantities is demonstrated, and
highly efficient VM allocation is facilitated. This optimization results
in a reduction in makespan and improves the overall performance of
the algorithm. Compared with the OSAM, MG-PRO, original SO, and
AEFT algorithms, the AOM-SO algorithm achieves average reductions of
47.32%, 44.33%, 44.67%, and 35.83%, respectively, in the makespan
comparison experiments. These findings underscore the significant ad-

Fig. 12. Comparative results of makespan under different task sizes.

Fig. 13. Comparative results of makespan under different VM numbers.

Future Generation Computer Systems 175 (2026) 108118

14

Y. Zhang et al.

Table 7
RDI values (%) of the five algorithms when 𝛽 = 1.4.

 Scale Dataset OSAM MG-PRO SO AEFT AOM-SO
 Small EP_19 16.10 0 5.93 4.24 3.39

 LIGO_40 34.97 7.69 0.70 2.10 0
 GE_27 21.99 7.09 9.22 0 8.51
 Montage_18 22.33 1.94 4.85 0 3.88
 The average 23.85 4.18 5.18 1.58 3.95

 Medium EP_103 65.44 38.97 7.11 28.19 0
 LIGO_274 178.83 78.56 21.30 66.98 0
 GE_299 116.46 84.27 33.95 61.49 0
 Montage_126 171.75 79.10 16.67 107.34 0
 The average 133.12 70.22 19.76 66.00 0

 Large EP_523 NA 49.05 54.85 45.03 0
 LIGO_544 NA 92.03 71.13 73.30 0
 GE_495 NA 92.70 76.48 69.92 0
 Montage_606 NA 114.44 86.89 70.40 0
 The average NA 87.06 72.34 64.66 0

 The average 78.49 53.82 32.43 44.08 1.32

vantages of the AOM-SO algorithm and provide strong validation of its
effectiveness in minimizing workflow makespan.

5.2.3. Relative performance evaluation
The RDI values of the OSAM, MG-PRO, original SO, AEFT, and AOM-

SO algorithms at 𝛽 = 1.4 are shown in Table 7. This table provides a
quantitative analysis of the performance of the five algorithms in min-
imizing workflow makespan. An RDI value of 0 for an algorithm in-
dicates that this algorithm produces the shortest workflow makespan
among the others and performs optimally on this metric. As illustrated
in Fig. 9, the OSAM algorithm shows a success rate of 0 on large-scale
datasets at 𝛽 = 1.4; thus, the RDI values for this dataset are not included
in the table. The average values from Table 7 demonstrate that the AOM-
SO algorithm consistently outperforms the others across small, medium,
and large datasets. In tests with small-scale datasets, it is notable that
AOM-SO does not achieve an RDI value of 0 in the EP, GE, and Montage
workflows. Despite this, it still surpasses the OSAM and original SO al-
gorithms. However, the margin of superiority over the AEFT algorithm
diminishes. This outcome can be attributed to the modest number of
tasks within the small-scale workflow, resulting in a relatively simple
and restricted search space. Consequently, the full potential advantages
of the AOM-SO algorithm are not entirely showcased.

Overall, the average RDI values for the OSAM, MG-PRO, original SO,
AEFT, and AOM-SO algorithms are 78.49%, 53.82%, 32.43%, 44.08%,
and 1.32%, respectively. This comparison underscores the significant
advantage of the AOM-SO algorithm in minimizing makespan. This find-
ing places the AOM-SO algorithm significantly ahead of the four other
algorithms. Furthermore, it validates that the AOM mechanism effec-
tively overcomes the limitations of the original SO algorithm, which
is prone to falling into local optima. The AOM-SO algorithm consis-
tently achieves optimal makespan by efficiently utilizing computational
resources within a constrained search budget.

5.2.4. Convergence evaluation
Fig. 14 depicts the changes in the makespan generated by each al-

gorithm as the number of iterations increases. This study showcases
the convergence processes of the five algorithms across four classes of
medium-scale workflows, particularly under a budget factor of 𝛽 = 1.4.
This choice is made because, under these conditions, all five algo-
rithms can produce feasible solutions, and the moderate number of tasks
demonstrate the algorithms’ evolution and transitions throughout the
iterative process. Given that this study aims to optimize the workflow
makespan under budget constraints, cost and makespan represent con-
flicting objective variables. Consequently, in the early stages of iteration,
the OSAM, MG-PRO, original SO, and AOM-SO algorithms prioritize cost
reduction to find feasible solutions that satisfy the budget constraints

Fig. 14. Comparison of iterative processes for five algorithms.

before they shift their focus to optimizing makespan. As a result, the
makespan of these algorithms may experience significant fluctuations
in the initial iterations and may even increase at times, leading to con-
vergence curves that do not consistently decrease with each iteration.
Additionally, because the AEFT algorithm is a heuristic scheduling al-
gorithm, the scheduling scheme generated by each iteration remains
consistent when the workflow data is fixed. This characteristic results
in the AEFT algorithm producing a straight line over 1000 iterations, as
illustrated in Fig. 14.

The OSAM algorithm exhibits prolonged fluctuations in its conver-
gence curve during the phase of identifying feasible solutions that satisfy
budget constraints, with the GE workflow illustrated in Fig. 14(c) taken
as an example. The overall tendency indicates a susceptibility to being
trapped in local optima, which hinders its effectiveness in minimizing
the makespan. By contrast, the MG-PRO algorithm can rapidly iden-
tify feasible solutions that satisfy budget constraints in the early stages
of iteration. Thus, it can shift focus toward minimizing the makespan.
However, this rapid identification comes with the risk of overlooking
opportunities to achieve a globally optimal solution. A detailed compar-
ison of the convergence characteristics between the AOM-SO algorithm
and the original SO algorithm is presented in Section 5.1.3. The AOM-
SO algorithm effectively balances randomness and directionality. Thus,
the convergence is accelerated, and the likelihood of falling into local
optima is reduced. Once the AOM-SO algorithm successfully identifies
a feasible solution that adheres to budget constraints, it continuously
optimizes the makespan until convergence is achieved. Compared with
the OSAM, MG-PRO, original SO, and AEFT algorithms, the AOM-SO al-
gorithm demonstrates superior performance by finding appropriate so-
lutions and achieving short makespan.

5.2.5. Runtime evaluation
This study assesses the efficiency of the five algorithms by using the

workflow task sets of small, medium, and large scales. The runtime ra-
tio results are presented in Fig. 15. However, the AEFT algorithm is a
heuristic method that efficiently generates scheduling plans by estab-
lishing scheduling rules without the need for multiple iterations of opti-
mization. Compared to meta-heuristic approaches, the AEFT algorithm
offers a significant advantage in terms of runtime. To ensure fairness in
the runtime comparison, this study avoids directly contrasting the run-
time of the AEFT algorithm with that of the other four meta-heuristics
(OSAM, MG-PRO, original SO, and AOM-SO). In the small-scale dataset,
the OSAM algorithm demonstrates a comparatively shorter runtime due
to its relatively straightforward update formula. However, as the task

Future Generation Computer Systems 175 (2026) 108118

15

Y. Zhang et al.

Fig. 15. Comparison of runtimes for four algorithms at different workflow scales.

scale increases and the search space becomes increasingly complex, the
runtime ratio of the OSAM algorithm does not show a significant ad-
vantage over the runtime ratios of the original SO algorithm and the
AOM-SO algorithm, with the runtimes for all three algorithms being
comparable. The MG-PRO algorithm incurs the longest execution time
across all three datasets because of the complexity of the crossover and
mutation operations involved in its evolutionary process. By contrast,
the proposed AOM-SO algorithm consistently maintains a runtime close
to that of the original SO algorithm and slightly outperforms the OSAM
algorithm and the original SO algorithm in the large-scale dataset. This
finding demonstrates its superiority over the MG-PRO algorithm across
all three dataset sizes.

In summary, the MG-PRO algorithm does not exhibit any correspond-
ing improvement in solution quality even though its runtime is approxi-
mately three times that of the AOM-SO algorithm. By contrast, the AOM-
SO algorithm demonstrates significant advantages in solution quality
under similar runtime conditions when compared with the OSAM algo-
rithm and the original SO algorithm. This benefit is strongly supported
by the experimental results of the previously discussed performance
metrics. The outstanding performance of the AOM-SO algorithm can
largely be attributed to the AOM mechanism, which effectively enables
a dual optimization of search efficiency and solution quality, thereby en-
suring effectiveness and competitiveness in addressing scheduling chal-
lenges.

6. Conclusion and future work

This study introduces the AOM-SO algorithm to address the budget-
constrained workflow scheduling problem in heterogeneous cloud envi-
ronments. Its primary goal is to minimize the makespan of workflows.
By incorporating an AOM mechanism that balances randomness and di-
rectionality, the AOM-SO algorithm effectively prevents getting stuck
in local optima and enhances the search for feasible solutions. We con-
duct multiple comparative experiments on scientific workflows to assess
the performance of the AOM-SO algorithm. The results reveal that the
AOM-SO algorithm achieves a 100% success rate in identifying feasi-
ble solutions that meet budget constraints. It outperforms the OSAM,
MG-PRO, original SO, and AEFT algorithms. Additionally, it reduces
makespan by an average of 43.03%, showcasing significant advantages
in scheduling efficiency. However, the oriented probability 𝜇 devised in
the AOM-SO algorithm is currently set to 10% following tests on large-
scale datasets and remains unchanged when scheduling workflows with
varying structures. While this simplifies the algorithm implementation,
it hampers the algorithm’s adaptability to diverse workflow structures,
potentially impacting the scheduling stability of the AOM-SO algorithm
in small-scale workflows.

Future research will explore dynamic 𝜇-tuning and online learning to
address current limitations and focus on developing dynamic workflow
scheduling algorithms that incorporate uncertainty-aware mechanisms

for task execution times. This adaptation is essential for effectively ad-
dressing the complexities inherent in real-world scheduling scenarios.

CRediT authorship contribution statement

Yanfen Zhang: Writing – review & editing, Writing – original draft,
Methodology; Longxin Zhang: Writing – review & editing, Writing
– original draft, Funding acquisition, Formal analysis; Buqing Cao:
Methodology, Data curation; Jing Liu: Software, Methodology; Wenyu
Zhao: Software, Data curation; Jianguo Chen: Validation, Methodol-
ogy; Keqin Li: Supervision, Methodology.

Data availability

The source code that support the findings of this study are available
in/from hyperlink to data source https://github.com/Yanfen-Zhang/
AOM-SO.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors would like to thank two anonymous reviewers for their
suggestions to improve the manuscript. The preliminary version of this
paper has been accepted for presentation at the 2024 IEEE Interna-
tional Symposium on Parallel and Distributed Processing with Appli-
cations (ISPA). This work was partially funded by the Postgraduate
Scientific Research Innovation Project of Hunan Province (Grant No.
CX20240916), the Scientific research and innovation Foundation of Hu-
nan University of Technology (Grant No. LXBZZ2416), the Natural Sci-
ence Foundation of Hunan Province, China (Grant Nos. 2023JJ50204,
2024JJ7154), the Scientific Research Foundation of Hunan Provincial
Education Department, China (Grant Nos. 23B0560, 24C0291), the Na-
tional Key R&D Program of China (Grant No. 2018YFB1003401), the
National Natural Science Foundation of China (Grant Nos. 61702178,
62072172, 62572186, 62002110, 62372486), CCF C Sangfor ‘Yuan-
wang’ Research Fund (Grant No. CCF-SANGFOR OF 2024002), the Open
Project Funding of the Key Laboratory of Intelligent Sensing System
and Security (Hubei University), Ministry of Education, and the State
Key Laboratory Program for Novel Software Technology (Grant No.
KFKT2024B52).

Supplementary material

Supplementary material associated with this article can be found in
the online version at 10.1016/j.future.2025.108118.

Future Generation Computer Systems 175 (2026) 108118

16

https://github.com/Yanfen-Zhang/AOM-SO
https://github.com/Yanfen-Zhang/AOM-SO
https://doi.org/10.13039/100014472
https://doi.org/10.13039/100014472
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100011246
http://dx.doi.org/10.1016/j.future.2025.108118

Y. Zhang et al.

References

[1] G. Zhou, W. Tian, R. Buyya, R. Xue, L. Song, Deep reinforcement learning-based
methods for resource scheduling in cloud computing: a review and future directions,
Artif. Intell. Rev. 57 (124) (2024). https://doi.org/10.1007/s10462-024-10756-9

[2] L. Zhang, R. Tan, B. Cao, L.A.K. Li, K. Li, EP-MUSTO: entropy-enhanced DRL-based
task offloading in secure multi-UAV-assisted collaborative edge computing, IEEE In-
ternet Things J. 12 (16) (2025) 34459–34470. https://doi.org/10.1109/JIOT.2025.
3577487

[3] Z. Tong, X. Deng, H. Chen, J. Mei, DDMTS: a novel dynamic load balancing schedul-
ing scheme under SLA constraints in cloud computing, J Parallel Distrib. Comput.
149 (2021) 138–148. https://doi.org/10.1016/j.jpdc.2020.11.007

[4] L. Zhang, M. Ai, K. Liu, J. Chen, K. Li, Reliability enhancement strategies for
workflow scheduling under energy consumption constraints in clouds, IEEE Trans.
Sustain. Comput. 9 (2) (2024) 155–169. https://doi.org/10.1109/TSUSC.2023.
3314759

[5] L. Ye, L. Yang, Y. Xia, X. Zhao, A cost-driven intelligence scheduling approach
for deadline-constrained IoT workflow applications in cloud computing, IEEE In-
ternet Things J. 11 (9) (2024) 16033–16047. https://doi.org/10.1109/JIOT.2024.
3351630

[6] X. Tang, F. Liu, B. Wang, D. Xu, J. Jiang, Q. Wu, C.L.P. Chen, Workflow schedul-
ing based on asynchronous advantage actor-critic algorithm in multi-cloud environ-
ment, Expert Syst. Appl. 258 (2024) 125245. https://doi.org/10.1016/j.eswa.2024.
125245

[7] S. Abdi, M. Ashjaei, S. Mubeen, Deadline-constrained security-aware workflow
scheduling in hybrid cloud architecture, Future Gener. Comput. Syst. 162 (2025)
107466. https://doi.org/10.1016/j.future.2024.07.044

[8] H. Li, B. Chen, J. Huang, J.R.C. Abreu, S. Chai, Y. Xia, Mutation-driven and
population grouping PRO algorithm for scheduling budget-constrained workflows
in the cloud, Cluster Comput. 27 (2024) 1137–1158. https://doi.org/10.1007/
s10586-023-04006-w

[9] M. Fan, X. Zhao, X. Zuo, L. Ye, A budget-constrained workflow scheduling ap-
proach with priority adjustment and critical task optimizing in clouds, IEEE Trans.
Autom. Sci. Eng. 22 (2025) 6907–6921. https://doi.org/10.1109/TASE.2024.
3456762

[10] J. Zhang, X. Li, L. Chen, R. Ruiz, Scheduling workflows with limited budget to cloud
server and serverless resources, IEEE Trans. Serv. Comput. 17 (4) (2024) 1766–1779.
https://doi.org/10.1109/TSC.2023.3332697

[11] A. Jayanetti, S. Halgamuge, R. Buyya, Deep reinforcement learning for energy and
time optimized scheduling of precedence-constrained tasks in edge-cloud computing
environments, Future Gener. Comput. Syst. 137 (2022) 14–30. https://doi.org/10.
1016/j.future.2022.06.012

[12] J. Zhang, L. Cheng, C. Liu, Z. Zhao, Y. Mao, Cost-aware scheduling systems for
real-time workflows in cloud: an approach based on genetic algorithm and deep
reinforcement learning, Expert Syst. Appl. 234 (2023) 120972. https://doi.org/10.
1016/j.eswa.2023.120972

[13] H. Li, G. Xu, B. Chen, S. Huang, Y. Xia, S. Chai, Dual-mutation mechanism-
driven snake optimizer for scheduling multiple budget constrained workflows in
the cloud, Appl. Soft. Comput. 149 (2023) 110966. https://doi.org/10.1016/j.asoc.
2023.110966

[14] H. Li, D. Wang, G. Xu, Y. Yuan, Y. Xia, Improved swarm search algorithm for schedul-
ing budget-constrained workflows in the cloud, Soft Comput. 26 (2022) 3809–3824.
https://doi.org/10.1007/s00500-022-06782-w

[15] F.A. Hashim, A.G. Hussien, Snake optimizer: a novel meta-heuristic optimization al-
gorithm, Knowl. Based Syst. 242 (2022) 108320. https://doi.org/10.1016/j.knosys.
2022.108320

[16] L. Zhang, Y. Zhang, X. Lu, R. Tan, X. Huang, J. Chen, Budget-aware Scheduling
Algorithm Using Negative Offset Mechanism for Snake Optimization in Heteroge-
neous Cloud, in: 2024 IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA), 2024, pp. 302–309. https://doi.org/10.1109/
ISPA63168.2024.00046

[17] H. Arabnejad, J.G. Barbosa, A budget constrained scheduling algorithm for work-
flow applications, J. Grid Comput. 12 (2014) 665–679. https://doi.org/10.1007/
s10723-014-9294-7

[18] K.K. Chakravarthi, L. Shyamala, V. Vaidehi, Budget aware scheduling algorithm for
workflow applications in IaaS clouds, Cluster Comput. 23 (2020) 3405–3419. https:
//doi.org/10.1007/s10586-020-03095-1

[19] S. Kushwaha, R.S. Singh, Deadline and budget-constrained archimedes optimization
algorithm for workflow scheduling in cloud, Cluster Comput 28 (117) (2025). https:
//doi.org/10.1007/s10586-024-04702-1

[20] S. Tao, Y. Xia, L. Ye, C. Yan, R. Gao, DB-ACO: A deadline-budget constrained ant
colony optimization for workflow scheduling in clouds, IEEE Trans. Autom. Sci. Eng.
21 (2) (2024) 1564–1579. https://doi.org/10.1109/TASE.2023.3247973

[21] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst. 13 (3)
(2002) 260–274. https://doi.org/10.1109/71.993206

[22] H. Djigal, J. Feng, J. Lu, J. Ge, IPPTS: An efficient algorithm for scientific workflow
scheduling in heterogeneous computing systems, IEEE Trans. Parallel Distrib. Syst.
32 (5) (2021) 1057–1071. https://doi.org/10.1109/TPDS.2020.3041829

[23] S. Qin, D. Pi, Z. Shao, AILS: A budget-constrained adaptive iterated local search for
workflow scheduling in cloud environment, Expert Syst. Appl. 198 (2022) 116824.
https://doi.org/10.1016/j.eswa.2022.116824

[24] H.R. Faragardi, M.R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer, N. Ra-
souli, GRP-HEFT: A budget-constrained resource provisioning scheme for work-
flow scheduling in IaaS clouds, IEEE Trans. Parallel Distrib. Syst. 31 (6) (2020)
1239–1254. https://doi.org/10.1109/TPDS.2019.2961098

[25] M. Wang, H. Wang, S. Qiao, J. Chen, Q. Xie, C. Guo, Heterogeneous system list
scheduling algorithm based on improved optimistic cost matrix, Future Gener. Com-
put. Syst. 164 (2025) 107576. https://doi.org/10.1016/j.future.2024.107576

[26] L. Zhang, M. Ai, R. Tan, J. Man, X. Deng, K. Li, Efficient prediction of makespan
matrix workflow scheduling algorithm for heterogeneous cloud environments, J.
Grid Comput. 21 (75) (2023). https://doi.org/10.1007/s10723-023-09711-9

[27] J. Jiang, Z. Sun, R. Lu, L. Pan, Z. Peng, Real relative encoding genetic algorithm
for workflow scheduling in heterogeneous distributed computing systems, IEEE
Trans. Parallel Distrib. Syst. 36 (1) (2025) 1–14. https://doi.org/10.1109/TPDS.
2024.3492210

[28] H. Li, L. Tian, G. Xu, J.R.C. Abreu, S. Huang, S. Chai, Y. Xia, Co-evolutionary and
elite learning-based bi-objective poor and rich optimization algorithm for scheduling
multiple workflows in the cloud, Future Gener. Comput. Syst. 152 (2024) 99–111.
https://doi.org/10.1016/j.future.2023.10.015

[29] Z.-G. Chen, Z.-H. Zhan, Y. Lin, Y.-J. Gong, T.-L. Gu, F. Zhao, H.-Q. Yuan, X. Chen,
Q. Li, J. Zhang, Multiobjective cloud workflow scheduling: a multiple populations
ant colony system approach, IEEE Trans. Cybern. 49 (8) (2019) 2912–2926. https:
//doi.org/10.1109/TCYB.2018.2832640

[30] W. Chen, G. Xie, R. Li, Y. Bai, C. Fan, K. Li, Efficient task scheduling for budget
constrained parallel applications on heterogeneous cloud computing systems, Fu-
ture Gener. Comput. Syst. 74 (2017) 1–11. https://doi.org/10.1016/j.future.2017.
03.008

[31] D. Wu, X. Wang, X. Wang, R. Zeng, M. Huang, Differentially private and truth-
ful auction-based resource procurement for budget-constrained DAG applications
in clouds, Comput. Netw. 251 (2024) 110628. https://doi.org/10.1016/j.comnet.
2024.110628

[32] Y. Hao, C. Zhao, Z. Li, B. Si, H. Unger, A learning and evolution-based intelligence
algorithm for multi-objective heterogeneous cloud scheduling optimization, Knowl.
Based Syst. 286 (2024) 111366. https://doi.org/10.1016/j.knosys.2024.111366

[33] S. Rathi, R. Nagpal, G. Srivastava, D. Mehrotra, A multi-objective fitness dependent
optimizer for workflow scheduling, Appl. Soft Comput. 152 (2024) 111247. https:
//doi.org/10.1016/j.asoc.2024.111247

[34] Y. Guo, B. Liu, W. Lin, L.Y. Pan, J.Z. Wang, Dynamic neighborhood grouping-based
multi-objective scheduling algorithm for workflow in hybrid cloud, Future Gener.
Comput. Syst. 166 (2025) 107633. https://doi.org/10.1016/j.future.2024.107633

[35] P.V. Reddy, K.G. Reddy, An energy efficient RL based workflow scheduling in cloud
computing, Expert Syst. Appl. 234 (2023) 121038. https://doi.org/10.1016/j.eswa.
2023.121038

[36] N. Rizvi, D. Ramesh, L. Wang, A. Basava, A workflow scheduling approach with
modified fuzzy adaptive genetic algorithm in iaas clouds, IEEE Trans. Serv. Comput.
16 (2) (2023) 872–885. https://doi.org/10.1109/TSC.2022.3174112

[37] X. Cai, Y. Zhang, M. Li, L. Wu, W. Zhang, J. Chen, Dynamic deadline constrained
multi-objective workflow scheduling in multi-cloud environments, Expert Syst.
Appl. 258 (2024) 125168. https://doi.org/10.1016/j.eswa.2024.125168

[38] N. Rizvi, R. Dharavath, D.R. Edla, Cost and makespan aware workflow scheduling in
iaas clouds using hybrid spider monkey optimization, Simul. Modell. Pract. Theory
110 (2021) 102328. https://doi.org/10.1016/j.simpat.2021.102328

[39] J. Pan, Y. Wei, A deep reinforcement learning-based scheduling framework for real-
time workflows in the cloud environment, Expert Syst. Appl. 255 (2024) 124845.

[40] B. Sun, M. Theile, Z. Qin, D. Bernardini, D. Roy, A. Bastoni, M. Caccamo, Edge
generation scheduling for DAG tasks using deep reinforcement learning, IEEE Trans.
Comput. 73 (4) (2024) 1034–1047. https://doi.org/10.1109/TC.2024.3350243

[41] M. Fan, L. Ye, X. Zuo, X. Zhao, A bidirectional workflow scheduling approach with
feedback mechanism in clouds, Expert Syst. Appl. 249 (2024) 123494. https://doi.
org/10.1016/j.eswa.2024.123494

[42] N. Rizvi, D. Ramesh, Fair budget constrained workflow scheduling approach for
heterogeneous clouds, Cluster Comput. 23 (2020) 3185–3201. https://doi.org/10.
1007/s10586-020-03079-1

[43] Z. Sun, B. Zhang, C. Gu, R. Xie, B. Qian, H. Huang, ET2Fa: a hybrid heuristic al-
gorithm for deadline-Constrained workflow scheduling in cloud, IEEE Trans. Serv.
Comput. 16 (3) (2023) 1807–1821. https://doi.org/10.1109/TSC.2022.3196620

Future Generation Computer Systems 175 (2026) 108118

17

https://doi.org/10.1007/s10462-024-10756-9
https://doi.org/10.1007/s10462-024-10756-9
https://doi.org/10.1109/JIOT.2025.3577487
https://doi.org/10.1109/JIOT.2025.3577487
https://doi.org/10.1109/JIOT.2025.3577487
https://doi.org/10.1109/JIOT.2025.3577487
https://doi.org/10.1016/j.jpdc.2020.11.007
https://doi.org/10.1016/j.jpdc.2020.11.007
https://doi.org/10.1109/TSUSC.2023.3314759
https://doi.org/10.1109/TSUSC.2023.3314759
https://doi.org/10.1109/TSUSC.2023.3314759
https://doi.org/10.1109/TSUSC.2023.3314759
https://doi.org/10.1109/JIOT.2024.3351630
https://doi.org/10.1109/JIOT.2024.3351630
https://doi.org/10.1109/JIOT.2024.3351630
https://doi.org/10.1109/JIOT.2024.3351630
https://doi.org/10.1016/j.eswa.2024.125245
https://doi.org/10.1016/j.eswa.2024.125245
https://doi.org/10.1016/j.eswa.2024.125245
https://doi.org/10.1016/j.eswa.2024.125245
https://doi.org/10.1016/j.future.2024.07.044
https://doi.org/10.1016/j.future.2024.07.044
https://doi.org/10.1007/s10586-023-04006-w
https://doi.org/10.1007/s10586-023-04006-w
https://doi.org/10.1007/s10586-023-04006-w
https://doi.org/10.1007/s10586-023-04006-w
https://doi.org/10.1109/TASE.2024.3456762
https://doi.org/10.1109/TASE.2024.3456762
https://doi.org/10.1109/TASE.2024.3456762
https://doi.org/10.1109/TASE.2024.3456762
https://doi.org/10.1109/TSC.2023.3332697
https://doi.org/10.1109/TSC.2023.3332697
https://doi.org/10.1016/j.future.2022.06.012
https://doi.org/10.1016/j.future.2022.06.012
https://doi.org/10.1016/j.future.2022.06.012
https://doi.org/10.1016/j.future.2022.06.012
https://doi.org/10.1016/j.eswa.2023.120972
https://doi.org/10.1016/j.eswa.2023.120972
https://doi.org/10.1016/j.eswa.2023.120972
https://doi.org/10.1016/j.eswa.2023.120972
https://doi.org/10.1016/j.asoc.2023.110966
https://doi.org/10.1016/j.asoc.2023.110966
https://doi.org/10.1016/j.asoc.2023.110966
https://doi.org/10.1016/j.asoc.2023.110966
https://doi.org/10.1007/s00500-022-06782-w
https://doi.org/10.1007/s00500-022-06782-w
https://doi.org/10.1016/j.knosys.2022.108320
https://doi.org/10.1016/j.knosys.2022.108320
https://doi.org/10.1016/j.knosys.2022.108320
https://doi.org/10.1016/j.knosys.2022.108320
https://doi.org/10.1109/ISPA63168.2024.00046
https://doi.org/10.1109/ISPA63168.2024.00046
https://doi.org/10.1109/ISPA63168.2024.00046
https://doi.org/10.1109/ISPA63168.2024.00046
https://doi.org/10.1007/s10723-014-9294-7
https://doi.org/10.1007/s10723-014-9294-7
https://doi.org/10.1007/s10723-014-9294-7
https://doi.org/10.1007/s10723-014-9294-7
https://doi.org/10.1007/s10586-020-03095-1
https://doi.org/10.1007/s10586-020-03095-1
https://doi.org/10.1007/s10586-020-03095-1
https://doi.org/10.1007/s10586-020-03095-1
https://doi.org/10.1007/s10586-024-04702-1
https://doi.org/10.1007/s10586-024-04702-1
https://doi.org/10.1007/s10586-024-04702-1
https://doi.org/10.1007/s10586-024-04702-1
https://doi.org/10.1109/TASE.2023.3247973
https://doi.org/10.1109/TASE.2023.3247973
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/TPDS.2020.3041829
https://doi.org/10.1109/TPDS.2020.3041829
https://doi.org/10.1016/j.eswa.2022.116824
https://doi.org/10.1016/j.eswa.2022.116824
https://doi.org/10.1109/TPDS.2019.2961098
https://doi.org/10.1109/TPDS.2019.2961098
https://doi.org/10.1016/j.future.2024.107576
https://doi.org/10.1016/j.future.2024.107576
https://doi.org/10.1007/s10723-023-09711-9
https://doi.org/10.1007/s10723-023-09711-9
https://doi.org/10.1109/TPDS.2024.3492210
https://doi.org/10.1109/TPDS.2024.3492210
https://doi.org/10.1109/TPDS.2024.3492210
https://doi.org/10.1109/TPDS.2024.3492210
https://doi.org/10.1016/j.future.2023.10.015
https://doi.org/10.1016/j.future.2023.10.015
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1016/j.future.2017.03.008
https://doi.org/10.1016/j.future.2017.03.008
https://doi.org/10.1016/j.future.2017.03.008
https://doi.org/10.1016/j.future.2017.03.008
https://doi.org/10.1016/j.comnet.2024.110628
https://doi.org/10.1016/j.comnet.2024.110628
https://doi.org/10.1016/j.comnet.2024.110628
https://doi.org/10.1016/j.comnet.2024.110628
https://doi.org/10.1016/j.knosys.2024.111366
https://doi.org/10.1016/j.knosys.2024.111366
https://doi.org/10.1016/j.asoc.2024.111247
https://doi.org/10.1016/j.asoc.2024.111247
https://doi.org/10.1016/j.asoc.2024.111247
https://doi.org/10.1016/j.asoc.2024.111247
https://doi.org/10.1016/j.future.2024.107633
https://doi.org/10.1016/j.future.2024.107633
https://doi.org/10.1016/j.eswa.2023.121038
https://doi.org/10.1016/j.eswa.2023.121038
https://doi.org/10.1016/j.eswa.2023.121038
https://doi.org/10.1016/j.eswa.2023.121038
https://doi.org/10.1109/TSC.2022.3174112
https://doi.org/10.1109/TSC.2022.3174112
https://doi.org/10.1016/j.eswa.2024.125168
https://doi.org/10.1016/j.eswa.2024.125168
https://doi.org/10.1016/j.simpat.2021.102328
https://doi.org/10.1016/j.simpat.2021.102328
http://refhub.elsevier.com/S0167-739X(25)00412-1/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00412-1/sbref0039
https://doi.org/10.1109/TC.2024.3350243
https://doi.org/10.1109/TC.2024.3350243
https://doi.org/10.1016/j.eswa.2024.123494
https://doi.org/10.1016/j.eswa.2024.123494
https://doi.org/10.1016/j.eswa.2024.123494
https://doi.org/10.1016/j.eswa.2024.123494
https://doi.org/10.1007/s10586-020-03079-1
https://doi.org/10.1007/s10586-020-03079-1
https://doi.org/10.1007/s10586-020-03079-1
https://doi.org/10.1007/s10586-020-03079-1
https://doi.org/10.1109/TSC.2022.3196620
https://doi.org/10.1109/TSC.2022.3196620

	Adaptive-oriented mutation snake optimizer for scheduling budget-constrained workflows in heterogeneous cloud environments
	1 Introduction
	2 Related work
	2.1 Budget-constrained workflow scheduling
	2.2 Time-optimized workflow scheduling
	2.3 Multiobjective workflow scheduling

	3 Models and problem formulation
	3.1 Cloud resource model
	3.2 Workflow application model
	3.3 Cost model
	3.4 Problem formulation

	4 AOM-SO algorithm
	4.1 Initialization module
	4.2 Solution update module
	4.3 AOM module
	4.4 A motivational example
	4.5 Time complexity analysis

	5 Experiments and performance evaluation
	5.1 Experimental setup
	5.1.1 Datasets
	5.1.2 Performance metrics
	5.1.3 Parameter settings

	5.2 Results and analysis
	5.2.1 Budget constraint satisfiability
	5.2.2 Makespan evaluation
	5.2.3 Relative performance evaluation
	5.2.4 Convergence evaluation
	5.2.5 Runtime evaluation

	6 Conclusion and future work

