
Taheri CH003.tex January 8, 2018 12: 19 Page 49

Chapter 3

SDN components and OpenFlow
Yanbiao Li∗, Dafang Zhang∗, Javid Taheri∗∗, and

Keqin Li∗∗∗

Today’s Internet suffers from ever-increasing challenges in scalability, mobility,
and security, which calls for deep innovations on network protocols and infras-
tructures. However, the distributed controlling mechanism, especially the bundle of
control plane and the data plane within network devices, sharply restricts such evolu-
tions. In response, the software-defined networking (SDN), an emerging networking
paradigm, proposes to decouple the control and data planes, producing logically
centralized controllers, simple yet efficient forwarding devices, and potential abili-
ties in functionalities programming. This chapter presents a short yet comprehensive
overview of SDN components and the OpenFlow protocol on basis of both classic
and latest literatures. The topics range from fundamental building blocks, layered
architectures, novel controlling mechanisms, and design principles and efforts of
OpenFlow switches.

3.1 Overview of SDN’s architecture and main components

In Internet Protocol (IP) networks, implementing transport and control protocols
within networking devices indeed contributes to its great success in early days. How-
ever, its flexibility in management and scalability to emerging applications suffer
from more and more challenges nowadays. What makes the situation worse is that
the vertically integration becomes one of the biggest obstacles to fast evolutions and
incessant innovations on both protocols and infrastructures. To this point, SDN [1]
has been proposed, with a new architecture that decouples the control plane and the
data plane of the network. Ideally, the underlying infrastructure could work as simple
as an automate that processes received packets with pre-defined actions, according to
polices installed by the logically centralized controller. Such a separation of control
protocols from forwarding devices not only enable technologies in both sides evolve

∗Computer Science and Electrical Engineering, Hunan University, China
∗∗Department of Mathematics and Computer Science, Karlstads University, Sweden
∗∗∗Department of Computer Science, State University of New York, USA

Taheri CH003.tex January 8, 2018 12: 19 Page 50

50 Big Data and software defined networks

Application layer

Control plane

Data plane

Application layer

Control plane

Data plane

Transitional IP SDN

Infrastructure

Figure 3.1 Comparison of layered architectures between IP and SDN

independently and much faster, but also simplifies the management and configuration
of the whole network.

3.1.1 Comparison of IP and SDN in architectures

From the view of infrastructures, the network can be logically divided into three
layers: (1) the data plane that processes network packets directly, (2) the control plane
that controls the behaviour of the data plane and expresses the upper layer’s requests
of installing polices and applying resources, and (3) the application layer, which is
composed of all applications that manages the infrastructure and that provides special
network services on basis of the infrastructure. In traditional IP networks, the control
plane and the data plane are tightly coupled within the same infrastructure, working
as a whole middle box. Besides, some network applications, such as the Firewall, the
Load Balancer, the Network Intrusion Detection System, etc., reside in the box as well.

While, as shown in Figure 3.1, SDN introduces a very different architecture.
First of all, the control and data planes are completely decoupled, leaving the data
plane in the network infrastructure only. By this means, networking devices are only
required to play a very simple and pure role: the packet forwarding element. This
will sharply simplify the design and implementation of devices, boosting technology
evolution and product iteration as a result. Second, being outside the box, the control
plane gains more power and flexibility. As a smart ‘brain’, the logically centralized
controller manages all networking devices at the same time in a global view, which
could balance network traffics in a fine-grained manner, improve resource utilizations
globally, and provide more efficient management with desired intelligences. Last
but not the least, decoupling control logics from the infrastructure also opens up
the chance of implementing all network applications in software, producing more
flexibility and scalability. Furthermore, with the help of potentially enabled high-
level virtualization, the network becomes highly programmable. It’s even possible
to produce a network service by packaging a series of basic functionality elements,
as simple as programming a software from modules. This is one of the simplest
perspectives to understand essential differences between traditional IP and SDN.

Taheri CH003.tex January 8, 2018 12: 19 Page 51

SDN components and OpenFlow 51

Application layer

Northbound interfaces

Control plane

Southbound interfaces

Data plane

Figure 3.2 Overview of SDN’s functionality layers and system architecture

3.1.2 SDN’s main components

As for SDN, Figure 3.2 demonstrates its architecture more specifically. In addition to
three functionality layers, there are two bridge layers, the southbound interface and
the northbound interface respectively, connecting them one by one. The southbound
interface layer defines the protocol associated with a series of programming interfaces
for the communication between the data and the control planes. For instance, it should
define the manner by which the data plane could be configured and re-configured by
the control plane, the number and format of mandatory and optional arguments used
in installing high level policies into the data plane, the right way and time of data
plane’s requesting higher level assistances, only to name a few.

Unlike the southbound interface that has clear basic responsibilities and many
widely accepted proposals, the northbound interface is relatively unclear. It’s still
an open issue to clarify some common interfaces and standards. Learning from the
development of the southbound interface, it must arise as the SDN evolves that being
expected to describe some issues and solutions, manners and arguments for the com-
munication between network applications and the controller. In the literature, there
are already many discussions about northbound interfaces. Obviously, an initial and
minimal standard is important for the development of SDN, a common consensus has
been made out that it’s too early to confine the specifications of the controller with
a single abstraction right now. Although there are different application programing
interfaces (APIs) provided by different implementations of the controller [2–9], we
can summarize and conceive some key points here. First, it should be implemented
within a software system to keep desirable flexibility. Besides, to explore all poten-
tial benefits from SDN, it should be abstracted to break the network applications’
dependency to specific implementations. Last but not the least, it should support
virtualization naturally, which reflects the basic motivation of SDN.

Taheri CH003.tex January 8, 2018 12: 19 Page 52

52 Big Data and software defined networks

From the perspective of system design, the SDN’s data plane is implemented
as a series of software or hardware switches, which take the only responsibility of
forwarding packets according to pre-installed polices. On the other hand, the network
operating system (NOS) running on one or more commodity devices plays the role
as the logically centralized controller. Through southbound interfaces, the controller
initializes all switches at the beginning with some pre-defined rules, collects their
statuses, controls their behaviours by updating rules, and handlers their requests when
undefined events happen. While northbound interfaces can be treated as system APIs
of the NOS, which is used by network applications to apply for resources, to define
and enforce polices and to provide services. As those APIs may partially vary in
different SDN controllers, the implementation of SDN applications still rely on the
specification of the SDN controller.

Accordingly, in an classic SDN architecture, there are three main components: the
controllers, the forwarding devices and the communication protocols between them.
In next sections, they are discussed in detail. First, Section 3.2 introduces OpenFlow,
the most popular and the most widely deployed southbound standard for SDN as of
this writing. Then, Sections 3.3 and 3.4 review and analysis research topics as well as
industrial attractions towards SDN controllers and forwarding devices respectively.
At last, Section 3.5 concludes the whole chapter and discusses a series of open issues
and future directions towards SDN’s main components.

3.2 OpenFlow

As SDN’s southbound interface proposals, there are already a number of protocols
proposed towards different use cases [1,10–12]. ForCES [10] proposes an approach to
flexible network management without changing the network architecture. OpFlex [11]
distributes part of management elements to forwarding devices to add a little bit
intelligence to the data plane. Protocol oblivious forwarding (POF) [12] aims at
enabling the SDN forwarding plane be protocol-oblivious by a generic flow instruction
set. Among them, OpenFlow, short for OpenFlow switch protocol, is no doubt the
most widely accepted and deployed open southbound standard for SDN.

3.2.1 Fundamental abstraction and basic concepts

The fundamental abstraction of OpenFlow is to define the general packet forwarding
process, how to install forwarding polices, how to track the forwarding process timely
and how to dynamically control the process. Before stepping into details, a series of
basic concepts are introduced below in groups according to the latest (as of this
writing) OpenFlow specification [13].

3.2.1.1 Packet, flow and matching
A Packet is a series of consequent bytes comprising a header, a payload and optionally
a trailer, in that order, which are treated as a basic unit to forward. Inside a packet, all
control information is embedded as the Packet Header, which is used by forwarding

Taheri CH003.tex January 8, 2018 12: 19 Page 53

SDN components and OpenFlow 53

devices to identify this packet and to make decisions on how to process it. Usually,
parsing the packet header into fields, each of which is composed of one or more
consequent bytes and expresses a piece of special information, is the first step of
processing an incoming packet.

And Flow is a series of packets that follow the same pattern. A Flow Table
contains a list of flow entries, where a Flow Entry is a rule that defines which pattern
of packets applies to this rule and how to process those packets. Besides, each flow
entry has a priority for the matching precedence and some counters for tracking
packets. On this basis, Matching is defined as the process of checking whether an
incoming packet follows the pattern defined in some flow entry. All parts of a flow
entry that could be used to determines whether a packet matches it are called Match
Fields.

3.2.1.2 Action and forwarding
An Action is an operation that acts on a packet. An action may forward the packet
to a port, modify the packet (such as decrementing the time-to-live (TTL) field) or
change its state (such as associating it with a queue). Both List of Actions and Set of
Actions present a number of actions that must be executed in order. There is a minor
difference. Actions in a set can occur only once, while that in a list can be duplicated
whose effects could be cumulated. An instruction may contain a set of actions to add
to the action set towards the processing packet, or contains a list of actions to apply
immediately to this packet. Each entry in a flow table may be associated with a set of
instructions that describe the detail OpenFlow processing in response to a matching
of packet. Besides, an Action Bucket denotes a set of actions that will be selected
as a bundle for the processing packet. While a Group is a list of action buckets and
some means of selecting one or more from them to apply on a per-packet basis.

Forwarding is the process of deciding the output port(s) of an incoming packet
and transferring it accordingly. Such a process could be divided into consequent steps,
each of which includes matching the packet against a specified flow table, finding out
the most matching entry and then applying associated instructions. The set of linked
flow tables that may be used in forwarding make up the Forwarding Pipeline. While
Pipeline Fields denote a set of values attached to the processing packet along the
pipeline. The aggregation of all components involved in packet processing is called
Datapath. It always includes the pipeline of flow tables, the group table and the ports.

3.2.1.3 Communication
A network connection carrying OpenFlow messages between a switch and a controller
is called OpenFlow Connection. It may be implemented using various network trans-
port protocols. Then, the basic unit sent over OpenFlow connection is defined as an
Message. A message may be a request, a reply, a control command or a status event.
An OpenFlow Channel, namely the interface used by the controller to manage a
switch, always have a main connection and optionally a number of auxiliary con-
nections. If an OpenFlow switch is managed by many controllers, each of them will
setup an OpenFlow channel. The aggregation of those channels (one per controller)
is called Control Channel.

Taheri CH003.tex January 8, 2018 12: 19 Page 54

54 Big Data and software defined networks

Packet
in

Ingress
port

Ingress processing

Egress processing

Set
output

Port

Action
set =

{output}

Action
set

Flow
table

e

e = first egress table-id

FLOW
table
e + m

Execute
action

set

Output
port

Packet
out

Flow
table
e + 1

Packet +
pipeline field
(output port,
metadata...)

Flow
table

0Action
set = {}

Flow
table

Packet +
pipeline fields
(ingress port,
metadata...) Flow

table
n

Execute
action

set

Group
table

Action
set

Set
ingress

port

1

Figure 3.3 A simplified view of forwarding pipeline in OpenFlow (directly
borrowed from the OpenFlow specification [13])

3.2.2 OpenFlow tables and the forwarding pipeline

This subsection describes the components of flow tables and group tables, along with
the mechanics of matching and action handling.

As introduced above, an OpenFlow table contains one or more flow entries, which
tells what packets could be matched and how to process them when matched. More
specifically, an OpenFlow flow entry has three main components: (1) match fields
that consists of ingress port, parts of packet headers and even metadata retrieved
from previous steps, (2) priority that presents the matching precedence of this entry,
and (3) instructions that may modify the action set associated with the processing
packet or the forwarding process. Besides, a flow entry also has other fields for
management, such as timeouts that denotes the time before it is being expired, flags
that could be used to alter the way it is managed, and cookie that may be used by the
controller to filter flow entries affected by flow statistics, flow modification and flow
deletion requests. An OpenFlow table entry is uniquely identified by its match fields
and priority. The flow entry wildcarding all fields (all fields omitted) and having a
priority equal to 0 is called the table-miss entry, which will take effect when no other
entries can match the processing packet.

During the forwarding process, all flow tables are traversed by the packet fol-
lowing a pipeline manner. Accordingly, they are numbered by the order they can be
traversed, starting from 0. While, as Figure 3.3 depicts, pipeline processing happens
in two stages, ingress processing and egress processing, respectively, which are sep-
arated by the first egress table. In another word, all tables with a lower number than
that of the first egress table must be ingress tables and others works as egress tables.

Taheri CH003.tex January 8, 2018 12: 19 Page 55

SDN components and OpenFlow 55

Pipeline processing will start at the first ingress table (i.e. the table 0), other ingress
tables may or may not be traversed depending on the outcome of the match in it. If
the outcome of ingress processing is to forward the packet to some port, the corre-
sponding egress processing under the context of that port will be performed then. It’s
noteworthy that egress tables are not mandatory. However, once a valid egress table
is configured as the first egress table, packets must be performed on it, while other
egress tables may be traversed according to the result of matching in it.

For the matching in one flow table, some header fields extracted from the process-
ing packet, as well as some metadata transferred from previous steps, are compared to
match fields of each table entry, to find out a matched entry with the highest priority.
Then, the instructions associated with it are executed. The goto-table instruction is
usually configured to direct packets from one flow table to another one whose table
number is larger (i.e. the pipeline processing can only go forward). The pipeline pro-
cessing will stop whenever the matched entry has not a goto-table instruction. Then,
all actions associated with the processing packet will be applied one by one. While
how to process a packet without any matching? The table-miss entry is configured for
this purpose that defines whether miss-matched packets should be dropped, passed
to other tables or sent to connected controllers.

3.2.3 OpenFlow channels and the communication mechanism

This subsection introduces types and components of OpenFlow channels, as well as
underlying communication mechanisms.

As introduced earlier, an OpenFlow channel is defined, from the view of switches,
as the interface connecting a switch to a controller that configures and manages it.
Meanwhile, it’s possible that multiple controllers mange the same switch at the same
time. In this case, all channels, each of which connects the switch to one of those
controllers, make up a Control Channel.

3.2.3.1 Control messages
OpenFlow protocol defines three types of messages exchanged between the switch
and the controller: controller-to-switch, asynchronous, and symmetric. The essential
difference among them is who is responsible to initiating and sending out the message.

As the name suggests, a controller-to-switch message is initiated and sent out by
the controller. Those messages could be divided into two sub-groups further. One is to
query status data from the switch, which therefore expects a response. For example, the
controller may query the identity and basic capabilities or some running information of
a switch via the Features requests and Read-State requests respectively. The other is
to express control commands to the switch, which may or may not require a response.
The most two popular messages in this group are Modify-State and Packet-out.
Modify-State messages are primarily used to modify flow/group tables and to set
switch port properties. While Packet-out messages indicate the switch to forward the
specified packet along the pipeline, or to send it out on specified port(s). This type
of messages must contain a full packet or the identity that could be used to locate a
packet stored locally. Besides, a list of actions to be applied are mandatory as well.

Taheri CH003.tex January 8, 2018 12: 19 Page 56

56 Big Data and software defined networks

An empty list means ‘to drop this packet’. Besides, there is an interesting message of
this type named Barrier that does nothing on the switch, but ensuring the execution
order of other messages.

On the contrary, asynchronous messages are initiated on and sent out from the
switch. The most important message of this type is Packet-in. It is usually sent to
all connected controllers along with a miss-matched packet, when a table-miss entry
towards the CONTROLLER reserved port is configured. Besides, the switch will
also initiatively report local status changes to controllers. For example, Port-status
messages inform the controller of any changes on the specified port, such as being
brought down by users. Role-status messages inform the controller of the change
of its role, while Controller-status messages are triggered when the status of the
channel itself has been changed.

Being much simpler than above two types of messages, most Symmetric mes-
sages could be sent without solicitation in either direction and are usually used to
exchange lightweight information for special purposes. For instance, Hello messages
are triggered when connection are established, Error messages are used to report con-
nection problems to the other side, while Echo messages that require responses are
very useful in verifying the connection and sometimes measuring its latency or band-
width. Note that there is a special symmetric message named Experimenter, which
provides a standard way of exchanging information between switches and controllers.
This would be very useful in extending the OpenFlow protocol.

3.2.3.2 Communication mechanisms
An OpenFlow controller always manages multiple switches, via OpenFlow chan-
nels connecting it from each of them. Meanwhile, an OpenFlow switch could also
establish multiple OpenFlow channels towards different controllers that shares the
management on it, for reliability purpose. Note that the controller and the switch con-
nected by an OpenFlow channel may or may not reside in the same network. While
OpenFlow protocol itself provides neither error detection and recovery mechanisms
nor fragmentation and flow control mechanisms to ensure reliable delivery. There-
fore, an OpenFlow channel is always established over transport layer security (TLS) or
plain transmission control protocol (TCP) and is identified in the switch by an unique
Connection uniform resource identifier (URI) in the format of protocol:name-or-
address or protocol:name-or-address:port. If there is no port specified, port 6653 is
taken as the default.

The connection is always set up by the switch through a pre-configured URI. But
it’s also allowed to set up the connection from the controller. In this case, the switch
must be able to and be ready to accept TLS or TCP connections. Once a connection is
established, it works in the same manner no matter where it’s initiated. To ensure both
sides work under the same version of OpenFlow protocol, they must negotiate on the
version number when the connection is firstly established, by exchanging the highest
version they can support through hello messages. Then, the negotiated version number
is set as the smaller of the one was sent and the one is received. A more complicated
case is when bitmap is enabled in the negotiation, where the negotiated version number
should be set as the one indicated by the highest bit of the interaction of the bitmap was

Taheri CH003.tex January 8, 2018 12: 19 Page 57

SDN components and OpenFlow 57

sent and the bitmap is received. When the negotiated version of OpenFlow protocol
is not supported in either side, the connection will be terminated immediately.

Once a connection is successfully established the version of OpenFlow protocol
is negotiated, the employed transport protocol will take over on its maintenance. And
all connections of a switch are maintained separately, protecting each of them being
affected by the failures or interruptions on other connections. On receiving error
messages, a controller or a switch can terminate the connection. Besides, whenever
a connection is terminated unexpectedly, its originator is responsible to re-create it.
But, in some cases such as the negotiated version of protocol is not supported, there
should be no attempt to automatically reconnect.

SDN’s core idea is decoupling the control and data planes, letting the logically
centralised controller mange distributed switches to forward packets. But how will an
OpenFlow switch work if all its connections to controllers are lost? The OpenFlow
protocol also provides the answer. There are two modes of operations in that case.
In the fail secure mode, the switch will work normally expect dropping mis-matched
packets instead of forwarding them to controllers. While in the fail standalone mode,
the switch, usually a hybrid switch, will work as a legacy Ethernet switch or router.
Which one will take effect depends on the configuration.

3.3 SDN controllers

In SDN, the controller is the key component to enable highly elastic network man-
agement over networking infrastructures. It provides abstractions for connecting and
communicating with forwarding devices, accessing underlying resources, generating
and maintaining device configurations, and forwarding polices, to name only a few.

3.3.1 System architectural overview

From the perspective of the system architecture, SDN controllers can be divided into
two main groups: centralized controller and distributed controllers.

As shown in Figure 3.4(a), a centralized controller is a single entity that manages
all forwarding devices of the network. NOX [2] is the firstly proposed SDN con-
troller that supports the OpenFlow protocol. It, especially its Python version (POX),
plays an important role for prototyping SDN applications. Besides, it’s the tech-
nical and architectural basis of many emerging controllers, such as NOX-MT [3]
that improves NOX’s performance by utilising the computing power of multi-core
systems. To satisfy the ever-increasing requirements of throughput, especially for
enterprise class networks and data centres, most centralized controllers [3,4] are pro-
posed as highly concurrent systems, exploring the parallelism of multi-core platforms
to boost the performance. As a popular instance, Beacon [4] has been widely adopted
in both research experiments and industrial deployment (like Amazon), for its high
performance, scalability, and stability. Its success owns to its modular and cross-
platform architecture, as well as its easy-to-use programming model and stable user
interfaces.

Taheri CH003.tex January 8, 2018 12: 19 Page 58

58 Big Data and software defined networks

(a) (b)

Master Equal/Slave

Figure 3.4 System architectures of SDN controllers: (a) centralized architecture
and (b) distributed architecture

Centralized controllers do contributed to SDN’s deployment, development and
application innovations in early days. However, they may have scaling limitations,
which prevents them being adopted to manage a large number of data plane elements.
First, the resources in one single entity is limited. Second, in a large-scale network,
no matter where to deploy the controller there must be some forwarding devices
suffering from long latencies, for configuration and real-time management. Last but
not the least, the centralized controller also represents a single point of failure and
the bottleneck of the security protection.

In contrast, distributed controllers could be more scalable to meet potential
requirements of both small and large-scale networks. As shown in Figure 3.4(b),
a distributed controller consists of a set of physically distributed elements, which
therefore could be more resilient to different kinds of logical and physical failures.
However, since any controller node within a distributed controller must maintain at
least one connection to a forwarding device, to balance the load among all controller
nodes is important. In view of this, some proposals [8,9] focus on balancing the
load among distributed controllers. As an example, ElastiCon [8] proposes a series
of novel mechanisms to monitor the load on each controller node, to optimize the
load distribution according to the analysis of global status, and to migrate forwarding
devices from highly loaded controller nodes to lightly loaded ones. But its distri-
bution decisions are always made upon a pre-specified threshold, which cannot be
guaranteed optimal as the network grows.

Another issue of distributed controllers is the consistency semantics. Most exist-
ing controllers, such as DIStributed SDN COntroller (DISCO) [5], all have low
consistency. More specifically, within those controllers, different nodes may learn
different values of the same property sometime, because data updates cannot spread
to all nodes immediately. Currently, only a few proposals such as Onix [6], and SMaRt-
Light [7] provide relatively strong consistency, which at least ensures all nodes read the
latest value of some property after a write operation. But the cost is the performance.

Taheri CH003.tex January 8, 2018 12: 19 Page 59

SDN components and OpenFlow 59

Control plane

Northbound interfaces

Southbound interfaces

East/westbound interfaces

Figure 3.5 Overview of SDN controllers’ components

3.3.2 System implementation overview

No matter what architecture the controller follows, there are some common com-
ponents to implement. As shown in Figure 3.5, all controller systems consist of
three mandatory components: northbound interfaces, the core control platform, and
southbound interfaces. While for distributed controllers, there is another important
component called east/westbound interfaces, which is used to exchange management
information among all controller nodes within the same distributed controller system.

The core control system is made up by a series of service functions shared by
network applications in building their systems, such as the topology discovery mech-
anism, notification streams, device management strategies, trust models and security
mechanisms, and so on. Take security mechanisms as an example, they are critical
components to provide basic isolation and security protection. For instance, rules
generated by high priority services should not be overwritten with rules created by
applications with a lower priority.

As mentioned above, there is no common standard for SDN’s northbound APIs.
In another word, how to implement the controller’s northbound interfaces can vary
completely. As a matter of fact, existing controllers implement a broad variety of
northbound APIs according to application requirements and environment features,
such as ad-hoc APIs, multi-level programming interfaces, file systems, among other
more specialized APIs such as network virtualization platform (NVP) northbound
API (NBAPI) [6]. Besides, there is another emerging type of northbound interfaces
that focuses on building network applications from a series of basic functionality
units, through specialized programming languages, such as Frenetic [14].

SouthboundAPIs of SDN controllers are implemented as a layer of device drivers,
which provides unified interfaces to the upper layers, for deploying network appli-
cations onto existing or new devices (physical or virtual). By this means, a mix
of physical devices, virtual devices (e.g. Open vSwitch (OVS) [15]) and a variety
of device interfaces (e.g. OpenFlow, Open vSwitch database (OVSDB), NetConf,
and simple network management protocol (SNMP)) can co-exist on the data pane.
Although most controllers adopt OpenFlow as the southbound protocol, a few of
them, such as OpenDaylight [16] and Onix [6], provide a range of southbound APIs
and/or protocol plugins.

In a SDN controller, northbound and southbound interfaces are primarily used to
communicate with network applications and forwarding devices, respectively. They
work as bridges to entities in other layers. From this view, east/westbound interfaces

Taheri CH003.tex January 8, 2018 12: 19 Page 60

60 Big Data and software defined networks

are very different. They work between controller nodes within the same distributed
controller system. General components of east/westbound interfaces may include, but
not limited to, mechanisms of exchanging data between nodes, monitoring their status,
and algorithms for ensuring data consistency. It’s important to have some standards in
constructing east/westbound interfaces. There are many research efforts contributing
to this objective, such as Onix data import/export functions [6]. What are the differ-
ences between eastbound and westbound interfaces? The ‘SDN compass’ [17] makes
a clear distinction, where westbound interfaces are treated as SDN-to-SDN protocols
and controller APIs, while eastbound interfaces are used to communicate with legacy
control planes.

3.3.3 Rule placement and optimization

From the perspective of the forwarding devices, the most frequent and important
task of the controller is to install and update forwarding rules. Since a controller (or
a controller node of a distributed controller) may manage two or more forwarding
devices, how to distribute rules generated by high-level applications over the network
becomes an issue. Improper solutions may not only raise traffic between the controller
and the device, but also lead to highly frequent table-miss operations in the OpenFlow
switch.

To split the set of all generated rules and to distribute them over the network
efficiently, many approaches have been proposed with different optimization mod-
els, such as minimizing the total number of rules needed throughout the network
[18,19]. For instances, the One Big Switch [19] abstracts all managed switches as a
single one and proposes a flexible mechanism to split and place rules. Besides, an
emerging proposal [18] presents a novel dependency graph to analysis the relation-
ship between rules, where the node indicate a rule, while the edge connecting two
nodes represents the dependency between corresponding rules. Then, the rule place-
ment problem can be transformed into classic graph problems, which could then be
solved via corresponding algorithms. On the other hand, the more rules the device
can hold, the more packets will get matched within the device, and the less traffic
will be produced between the device and controllers.

3.4 OpenFlow switches

Like all other Internet architectures, SDN’s forwarding devices are the fundamental
networking infrastructures. As OpenFlow is the first and the most popular southbound
standard of SDN, this section only discusses OpenFlow switches, which communicate
with SDN controllers following the OpenFlow protocol.

3.4.1 The detailed working flow

Figure 3.6 demonstrates the complete flowchart of a packet going through the Open-
Flow switch. As depicted, when receiving a packet, an OpenFlow switch may perform

Taheri CH003.tex January 8, 2018 12: 19 Page 61

SDN components and OpenFlow 61

Packet in
• clear action set
• initialize pipeline fields

• update action set
• update packet headers
• update match set fields

• update packet headers
• update action set

• action set = {output port}
• start at first egress table

• update packet headers
• update match set fields
• update pipeline fields
• as needed, clone packet
 to egress

• update match set fields
• update pipeline fields

• update pipeline fields

Group
action?

Yes

No

Output
action?

Ingress
Egress

Drop packet
No

Switch
has egress

tables?

Execute action set:

Output
action?Drop packet

Packet out

Yes

Yes

Yes

Yes

No

No

No

Match in
table n?

No

Yes

Yes

No

Goto-
table n?

Goto-
table n?

Update counters

Start egress processing

Execute instruction set:

Execute action set:

Yes

No

• update packet headers
• update match set fields
• update pipeline fields
• as needed, clone packet
 to egress

• start at table 0

Update counters
Execute instruction set:Match in

able n?
Yes

No

Table-
miss flow

entry
exists?

Table-
miss flow

entry
exists?

Drop packet

Drop packet

No

Yes

Figure 3.6 Detailed working flow of the OpenFlow switch (directly borrowed from
the OpenFlow specification [13])

a series of functions in two similar pipelines: the ingress and egress pipelines, of which
the latter is optional. Within each pipeline, a sequence of table lookups on different
flow tables will be performed. To match a packet against a flow table, its header fields
are extracted, as well as some pipeline fields. Which header fields should be used

Taheri CH003.tex January 8, 2018 12: 19 Page 62

62 Big Data and software defined networks

in the matching depend on the packet type and the version of OpenFlow protocols.
Generally, the fields extracted for matching include various protocol header fields,
such as Ethernet source address or IPv4 destination address. Besides, the ingress port,
the metadata carrying some information between two sequential tables, and some
other pipeline fields that represent the status of the pipeline, may also be involved in
the matching process.

A packet matches a flow entry means all match fields of this entry are carefully
checked and tell matchings at last. For any match field, there are three possible cases
where the processing packet can be determined to match the flow entry being com-
pared. The first and the simplest case is when this field of the entry being compared
is an omitted field that can match any value of the processing packet at this field. The
second and the most common case is when this field of the entry being compared is
present without any mask and its value is just equal to that of the processing packet
at this field. The last but the most complicated case is when this field of the entry
being compared is present with a bitmask and values of all active bits, determined by
the bitmask, are equal to that of the processing packet at this field correspondingly.

It’s noteworthy that a packet can match two or more entries in one flow table. In
this case, the entry with the highest priority will be selected as the matched entry,
the instructions and the counters associated with which will be executed and updated
respectively. When a packet cannot match any regular entries, this is a table-miss. As
a rule recommended by the OpenFlow protocol, every flow table must configure a
table-miss entry that omits all fields so that it can match any incoming packet and
has lowest priority (i.e. 0). Accordingly, the table-miss is only used to define how to
process mis-matched packets. As a matter of fact, there possible instructions could
be configured with the table-miss entry according current versions of the OpenFlow
protocol: dropping the processing packet, forwarding it to a subsequent table, or
sending it to controllers.

3.4.2 Design and optimization of table lookups

In the working flow of the OpenFlow switch, table lookup is the basic and most impor-
tant operation. The design and implementation of table lookup could be divided into
two related parts: the structure design of flow tables and the design and optimization
of lookup algorithms.

According to the OpenFlow protocol, the essential problem under table lookup is
multi-filed rule matching, which shares the model with that of packet classification.
But the number of fields and the scale of tables are much larger. If every match filed
of a flow entry can be transformed into a prefix (namely the mask has consequent 1s),
a hierarchical tree, based on the backtrack detecting theory, could be used to store all
flow entries, enabling efficient lookups to find out the most matching entry. Deploy-
ing multiple copies of some rules onto some nodes can sharply reduce the time of
backtracks, boosting the matching speed as a result [20]. Besides, multi-dimensional
leaf-pushing technologies [21] can lead to further improvements on performance. On
the other hand, as multi-field rules and the bundle of extracted packet header fields
can be seen as super-rectangles and points in a multi-dimensional space, multi-filed

Taheri CH003.tex January 8, 2018 12: 19 Page 63

SDN components and OpenFlow 63

rule matching can be transformed into a point locating problem. An efficient solution
is to divide the space into lower dimensional spaces and then to solve simpler and sim-
ilar problems recursively. For example, HiCuts [22] proposes to construct a decision
tree to split the rule space, while HyperCuts [23] optimizes spatial and temporal effi-
ciency by the multi-dimensional splitting mechanism and smart algorithms to migrate
common rules. EffiCuts [24] presents a series of heuristic algorithms to achieve fur-
ther memory compression. From the perspective of set processing, multi-filed rule
matching can be solved by calculating the cross-products on the results of match-
ing on rules with less fields [25]. The speed is fast, but memory consumptions will
increase sharply as the number of fields increases, while HyperSplit [26] optimizes
the splitting of rule projections to reduce memory consumption and utilizes the binary
search to ensure processing speed.

Most existing approaches for TCP/IP packet classification suffer from the scal-
ability issue that their comprehensive performance decreases as the number of fields
increases, impeding their use in OpenFlow switches. One exception is the tuple-
space-search (TSS) algorithm [27] that divides all flow entries into several groups
according to the mask, ensuring that all entries in the same group share the same
mask. Accordingly, the matching against any group is exact matching, which can be
efficiently solved by hashing. Therefore, TSS has been adopted in the industrial level
OpenFlow switches [15].

3.4.3 Switch designs and implementations

There are many types of OpenFlow switches available in the market or open source
project communities. Typically, they vary in aspects, such as flow table size, perfor-
mance, interpretation and adherence to the protocol specification, and architecture
(e.g. hardware, software, or even heterogeneous implementations). This subsection
will introduces some classic and main-stream switches grouped by the architecture.

3.4.3.1 Hardware switches
Thanks to its simple yet efficient processing logic, ternary content-addressable mem-
ory (TCAM) becomes a common choice of storing flow entries for fast lookup at
early days. However, the TCAM is usually very small (can store 4k to 32k entries),
costly and energy inefficient. All these drawbacks restrict its use in today’s situation.
That’s why the open network foundation (ONF) forwarding abstraction working group
works on table type patterns. In this area, most efforts focus on reducing the number
of flow entries deployed onto TCAMs by novel compression techniques. Such as the
Espresso heuristic algorithm [28] that can save up to 4k flow table entries by com-
pressing wildcards of OpenFlow-based inter-domain routing tables. To keep updates
consistent and rule tables away from space exhaustion, Shadow MACs [29] is pro-
posed to employ opaque values to encode fine-grained paths as labels, which can be
easily and cost-effectively implemented by simple hardware tables instead of expen-
sive TCAM tables. Another trend of solutions is to combine many other hardware
platforms with TCAMs, such as field-programmable gate array (FPGA), graphics
processing units (GPUs), etc., in some specialized network processors.

Taheri CH003.tex January 8, 2018 12: 19 Page 64

64 Big Data and software defined networks

3.4.3.2 Software switches
A software switch is a software programme that runs on the operating system to pull
packets from the network interface cards, determine how to process them or where to
forward them, and then send them out as expected. Though being a little bit slower
than hardware implementations, software switches play an increasingly important
role in SDN due to their scalability and flexibility, which are key factors to spread
SDN’s use in large, real-world networks. Open vSwitch [15] is such an software
implementation of a multi-layer, open source virtual switch for all major hypervisor
platforms. It is designed to enable massive network automation through programmatic
extension, while still supporting standard management interfaces and protocols. Apart
from operating as a software-based network switch running within the virtual machine
hypervisors, it can work as the control stack for dedicated switching hardware; as a
result, it has been ported to multiple virtualization platforms, switching chipsets, and
networking hardware accelerators. Switch Light is a thin switching software platform
for merchant silicon-based physical switches and virtual switches within hypervi-
sors. It provides consistent data plane programming abstractions across merchant
silicon-based physical switches and hypervisor vSwitches. Switch Light OS is devel-
oped by the Big Switch company to closely integrate with whitebox hardware, where
OpenFlow-like functions work well on the current generation of switching silicon for
data centres.

3.4.3.3 Industrial efforts
Microchip companies like Intel are already shipping processors with flexible SDN
capabilities to the market such as the proposed data plane development kit (DPDK)
that allows high-level programming of how data packets shall be processed directly
within network interface cards (NICs). It has been shown of value in supporting high-
performance SDN software switches. On the other hand, hardware-programmable
technologies such as FPGA are widely used to reduce time and costs of hardware-
based feature implementations. For example, NetFPGA has been a pioneering
technology used to implement OpenFlow 1.0 switches [1]. Recent developments
have shown that state-of-the-art System-on-chip platforms, such as the Xilinx Zynq
ZC706 board, can also be used to implement OpenFlow devices yielding 88 Gbps
throughput for 1k flow entries, supporting dynamic updates as well [30].

Besides, in order to improve the performance of software switches, off-loading
some parts of the switch components onto specified hardwares become a trend accord-
ing to recent industrial efforts. There are two representatives made contributions to
this area. Netronome’s Agilio software is dedicated to off-loading and accelerating
server-based networking. Agilio software and the Agilio family of intelligent server
adapters (ISAs) aim at optimizing Open vSwitch as a drop-in accelerator. Its use
cases include computing nodes for IaaS or SaaS, network functions virtualization,
and non-virtualized service nodes, among others. Netronome Agilio ISAs provide a
framework to transparent off-load of OVS. With this solution, the OVS software still
runs on the server, but the OVS datapath are synchronized down to the Agilio ISA
via hooks in the Linux kernel. The Agilio software is derived from the OVS codebase

Taheri CH003.tex January 8, 2018 12: 19 Page 65

SDN components and OpenFlow 65

and preserves all compatible interfaces. More specifically, it includes an exact match
flow tracker that tracks each flow (or microflow) passing through the system. Such a
system can achieve five to ten times improvement in performance. Another solution
is provided by Mellanox. Mellanox’s Accelerated Switching and Packet Processing
(ASAP2) solution combines the performance and efficiency of server/storage net-
working hardware along with the flexibility of virtual switching software. There are
two mainASAP2 deployment models: ASAP2 Direct andASAP2 Flex. ASAP2 Direct
enables off-loading packet processing operations of OVS to the ConnectX-4 eSwitch
forwarding plane, while keeping intact the SDN control plane. While in ASAP2
Flex, some of the CPU intensive packet processing operations are off-loaded to the
Mellanox ConnectX-4 NIC hardware, including virtual extensible local area network
(VXLAN) encapsulation/decapsulation and packet flow classification. Evaluations
demonstrates that the performance of ASAP2 Direct is three to ten times higher than
DPDK-accelerated OVS.

3.5 Open issues in SDN

3.5.1 Resilient communication

For any Internet architecture, enabling resilient communication is a fundamental
requirement. Accordingly, SDN is expected to achieve at least the same level of
resilience as the legacy TCP/IP or other emerging architectures. However, its archi-
tecture with a logically centralized brain (i.e. the controller) is always questioned.
Once such a brain is affected by kinds of faults or does not work due to some attacks,
the data plane (i.e. switches) may step into a ‘miss-control’state, where rules could not
be updated and issues that need assistance could not be resolved timely. In this case,
the whole system may become ‘brainless’. Therefore, in addition to fault-tolerance
in the data plane, the high availability and robustness of the (logically) centralized
control plane should be carefully considered for resilient communication in SDN. In
another word, there are more parts to deal with in SDN to achieve resilience, mak-
ing this objective more challenging. Therefore, this topic calls for more and further
research efforts in the near future to move SDN forward.

3.5.2 Scalability

For SDN, decoupling of the control and data planes contributes to its success, but
also brings in more scalability concerns. Under some situations, i.e. processing a
large number of tiny flows, many packets will be directed to the controller in short
time periods, sharply increasing network load and make the controller a potential
bottleneck. On the other hand, flow tables of switches are always configured by an
outside entity, resulting extra latencies. These two issues could be ignored in small-
scale networks. However, as the scale of the network becomes larger, the controller is
expected to process millions of flows per second without compromising the quality of
its service. Thus, in more real cases, above issues must be main obstacles to achieving
the scalability purpose. Thus, improving the scalability is another hot topic now and
in the future.

Taheri CH003.tex January 8, 2018 12: 19 Page 66

66 Big Data and software defined networks

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, et al. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):69–74, 2008.

[2] N. Gude, T. Koponen, J. Pettit, et al. NOX: towards an operating system
for networks. ACM SIGCOMM Computer Communication Review, 38(3):
105–110, 2008.

[3] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. On
controller performance in software-defined networks. Hot-ICE, 12:1–6, 2012.

[4] D. Erickson. The beacon OpenFlow controller. In ACM SIGCOMM Workshop
on Hot Topics in Software Defined NETWORKING, pages 13–18, 2013.

[5] K. Phemius, M. Bouet, and J. Leguay. Disco: Distributed multi-domain SDN
controllers. In Network Operations and Management Symposium (NOMS),
2014 IEEE, pages 1–4. IEEE, 2014.

[6] T. Koponen, M. Casado, N. Gude, et al. Onix: A distributed control platform
for large-scale production networks. In OSDI, volume 10, pages 1–6, 2010.

[7] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira. On the design of practical
fault-tolerant SDN controllers. In Software Defined Networks (EWSDN), 2014
Third European Workshop on, pages 73–78. IEEE, 2014.

[8] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards an
elastic distributed SDN controller. In ACM SIGCOMM Computer Communi-
cation Review, volume 43, pages 7–12. ACM, 2013.

[9] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng. Balanceflow: Controller
load balancing for OpenFlow networks. In IEEE International Conference on
Cloud Computing and Intelligent Systems, pages 780–785, 2012.

[10] A. Doria, J. H. Salim, R. Haas, et al. Forwarding and control element separation
(forces) protocol specification. Technical report, 2010.

[11] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N. Weidenbacher.
Opflex control protocol. IETF, 2014.

[12] H. Song. Protocol-oblivious forwarding: Unleash the power of SDN through a
future-proof forwarding plane. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, pages 127–132.
ACM, 2013.

[13] OpenFlow specification. Version 1.5.1 (Wire Protocol 0x06). Open Network-
ing Foundation. 2015.

[14] N. Foster, R. Harrison, M. J. Freedman, et al. Frenetic: A network programming
language. In ACM Sigplan Notices, volume 46, pages 279–291. ACM, 2011.

[15] B. Pfaff, J. Pettit, T. Koponen, et al. The design and implementation of Open
vSwitch. In NSDI, pages 117–130, 2015.

[16] J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards a
model-driven SDN controller architecture. In A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2014 IEEE 15th International Symposium
on, pages 1–6. IEEE, 2014.

Taheri CH003.tex January 8, 2018 12: 19 Page 67

SDN components and OpenFlow 67

[17] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer. Inter-
faces, attributes, and use cases: A compass for SDN. IEEE Communications
Magazine, 52(6):210–217, 2014.

[18] S. Zhang, F. Ivancic, A. G. C. Lumezanu, Y. Yuan, and S. Malik. An adaptable
rule placement for software-defined networks. In Proceedings of 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
pages 88–99, Jun 2014.

[19] J. R. N. Kang, Z. Liu and D. Walker. Optimizing the one big switch “abstraction
in software-defined networks, one big switch” abstraction in software-defined
networks. Proceedings of 9th ACM Conference on Emerging Networking
Experiments and Technologies, pages 13–24, 2013.

[20] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A soft-
ware architecture for next generation routers. In ACM SIGCOMM Computer
Communication Review, volume 28, pages 229–240. ACM, 1998.

[21] J. Lee, H. Byun, J. H. Mun, and H. Lim. Utilizing 2-d leaf-pushing for packet
classification. Computer Communications, volume 103, pages 116–129.
Elsevier, 2017.

[22] P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent
cuttings. IEEE Micro, 20(1):34–41, 2000.

[23] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proceedings of the 2003 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 213–224. ACM, 2003.

[24] B. Vamanan, G. Voskuilen, and T. Vijaykumar. Efficuts: Optimizing packet
classification for memory and throughput. In ACM SIGCOMM Computer
Communication Review, volume 40, pages 207–218. ACM, 2010.

[25] V. Srinivasan, G.Varghese, S. Suri, and M. Waldvogel. Fast and Scalable Layer
Four Switching, volume 28. ACM, 1998.

[26] Y. Qi, L. Xu, B.Yang, Y. Xue, and J. Li. Packet classification algorithms: From
theory to practice. In INFOCOM 2009, IEEE, pages 648–656. IEEE, 2009.

[27] F. Baboescu and G. Varghese. Scalable packet classification. ACM SIGCOMM
Computer Communication Review, 31(4):199–210, 2001.

[28] R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization
for PLA optimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 6(5):727–750, 1987.

[29] K. Agarwal, C. Dixon, E. Rozner, and J. Carter. Shadow MACs: Scalable
label-switching for commodity ethernet. In Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, pages 157–162. ACM, 2014.

[30] S. Zhou, W. Jiang, and V. Prasanna. A programmable and scalable Open-
Flow switch using heterogeneous SOC platforms. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, pages 239–240.
ACM, 2014.

Taheri CH003.tex January 8, 2018 12: 19 Page 68

