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Abstract
With the increasing popularity of wearable, implantable, and Internet of Things 
devices, energy-harvesting nonvolatile processors (NVPs) have become promising 
alternative platforms due to their durability when running on an intermittent power 
supply. To address the problem of an intermittent power supply, backing up of vola-
tile data into a nonvolatile cache has been proposed to avoid the frequent need to 
restart the program from the beginning. However, the penalties incurred by frequent 
backup and recovery operations significantly degrade the system performance and 
waste considerable energy resources. Moreover, the increasing amounts of data to 
be processed pose critical challenges in energy-harvesting NVP platforms with tight 
energy and latency budgets. To further improve the performance of NVPs, this arti-
cle adopts a retention state that can enable a system to retain data in a volatile cache 
to wait for power recovery instead of backing up data immediately. Based on the 
retention time, we propose a performance-aware cache management scheme and a 
pre-backup method to improve the system performance and energy utilization while 
guaranteeing successful backup. The pre-backup method is also optimized by retain-
ing data in a volatile cache when receiving a high voltage warning. In particular, the 
nonvolatile memory (NVM) compression technique is introduced to achieve the goal 
of minimizing power failures and maximizing system performance. Moreover, the 
security problems in the sleep state are discussed with regard to the NVM compres-
sion technique to guarantee the NVP’s security. We evaluate the performance and 
energy consumption of our proposed algorithms in comparison with the dual-thresh-
old scheme. The experimental results show that compared with the dual-threshold 
scheme, the proposed algorithms together can achieve a 52.6% energy reduction and 
a 13.72% performance improvement on average.
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1 Introduction

With the advent of the internet of things (IoT), implantable and wearable medi-
cal devices have been developed to maintain close contact with users to facilitate 
responsiveness to their needs. These small wearable devices are no longer suita-
ble for running on battery power [26] because of various disadvantages presented 
by batteries, such as their large size and weight and their need for frequent charg-
ing. As alternatives, energy-harvesting techniques are promising means to power 
IoT devices in place of batteries, since energy-harvesting devices can harvest 
energy to continue working properly without frequent maintenance [18]. Energy-
harvesting systems harness energy from ambient energy sources such as wind, 
solar, and electromagnetic radiation and from thermal and vibration energy [8].

However, energy harvesting is susceptible to the problem of power source instabil-
ity. The system will often be interrupted and rolled back in the event of power failure 
and recovery. Frequent and unpredictable power interruptions cause traditional proces-
sors to suffer from either many operating rollbacks or large backup overheads, hinder-
ing the completion of large tasks and incurring a substantial energy cost. Fortunately, 
nonvolatile processors (NVPs) have been proposed to solve this problem. When a power 
outage occurs, NVPs can use the energy stored in the capacitor to back up volatile data 
to a nonvolatile cache, then take a snapshot of the programs being executed. When the 
power resumes, the processor recalls the pre-stored data so that the program execution 
can be continued [20]. To guarantee the performance of the system, all applications that 
are executed on an NVP must be correctly recovered as fast as possible. Together with 
the increased demand for low-energy consumption, the high-performance cache man-
agement and backup problems in energy-harvesting NVP platforms have also become 
increasingly critical. Backup techniques on energy-harvesting NVP platforms have con-
siderably improved system performance and reduced energy consumption, provide more 
opportunities for finer tuning of shorter execution times and energy utilization for pro-
grams, and pose new challenges to the research community [4]. Therefore, in this article, 
we consider an effective backup strategy for the target energy-harvesting NVP platform.

When NVPs are not stable, a poor backup strategy may lead to data consistency 
problems, and frequent data backup and recovery waste considerable energy and 
system resources and slow program execution [19]. Moreover, when an NVP takes 
a snapshot, a smart attacker could trigger instability, and it is possible that other, 
unknown security issues may yet emerge [6]. In addition, the backup caches for NVPs 
use nonvolatile memory (NVM), which suffers from high energy consumption and a 
high write latency; these drawbacks have impeded their widespread adoption. There-
fore, when a backup strategy is executed on an energy-harvesting NVP platform, the 
following requirements must be satisfied. First, to guarantee the performance of the 
system, it must be possible to reduce unnecessary backup and recovery operations 
while guaranteeing that programs can be rapidly and correctly recovered. Second, to 
improve energy efficiency and utilization, the switching overhead, recovery overhead, 
and access overhead should be reduced as much as possible. Third, to minimize the 
execution time, memory latency should be avoided as much as possible, which implies 
that cache hit/miss and reads/writes should be carefully considered in cache manage-
ment. Fourth, to enhance security, errors that occur during data saving or transmission 
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due to external factors should be reduced, and the challenges of the nonvolatility, the 
lack of time keeping, and potential power attacks should be addressed.

Considering the requirements of a backup strategy for energy-harvesting NVPs, 
this paper will explore a performance-aware cache management and pre-backup 
strategy with the objective of minimizing unnecessary frequent data backups and 
recoveries, which directly waste considerable energy and system resources, slow-
ing the program execution. In addition, considering the nature of NVPs, traditional 
encryption algorithms are not suitable for NVP systems because these algorithms 
can lead to high encryption and decryption overheads, which can reduce system per-
formance [9]. Therefore, this paper will adopt an NVM compression technique for 
the nonvolatile part of the cache based on selective encryption [9] to improve NVP 
security and reduce the number of unnecessary read and write operations. The con-
tributions of this work are summarized as follows.

– To minimize data access and migration, we introduce a data state mechanism 
based on retention time and present a performance-aware cache management, 
which considers the cache reads/writes, hit/miss, and data state.

– To address the drawback of the waste caused by frequent data backups and 
recoveries, combined with various voltage levels, we propose a two-step backup 
strategy: a pre-backup strategy triggered by a high voltage warning and a backup 
strategy triggered by a low voltage warning.

– The encryption/decryption methods will lead to performance degradation. To 
address the security-related problems, the corresponding solution of an NVM 
compression algorithm based on selective encryption is presented.

The remainder of this paper is organized as follows. Section  2 reviews the back-
ground of the study and summarizes the motivation for our proposed algorithms. 
Section 3 presents our target architecture model. Section 4 introduces the proposed 
performance-aware cache management scheme and an NVM compression technique 
in detail. In Sect.  5, we evaluate and analyze the proposed algorithms. Section  6 
concludes the paper and discusses future work.

2  Related work and motivation

2.1  Backup for NVPs

Because NVPs behave differently from traditional processors, the backup strategy 
needs to cover the entire cache hierarchy and should be combined with effective 
policies for adaptive cache management. The main categories of backup strate-
gies are (1) backup logic design [7, 13], (2) optimization of the backup proce-
dure [16, 23], (3) backup-aware system management [17, 20], and (4) residual 
energy detection [6, 11]. Comprehensive studies have been conducted on NVP 
backup strategies. By incorporating access latency and recovery overhead into an 
energy-harvesting NVP, the energy consumption-driven backup problem has been 
studied in [21] and [22]. Zhou et  al. [25] explored backup strategies and cache 
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management policies in relation to the cache architecture for NVPs. The authors 
analyzed hybrid cache structures and power traces, then proposed energy-aware 
morphable cache management policies that could improve system performance 
and energy utilization while guaranteeing successful backup. Li et  al. [12] pro-
posed stack allocation and management policies to minimize backup in the stack 
while guaranteeing successful backup with limited available energy.

Although the above backup techniques have considerably improved system 
performance and reduced energy consumption, they are direct backup strategies. 
When a power shutoff occurs, the conventional direct backup strategies backup 
data in nonvolatile memory immediately. This will lead to a serious drawback in 
which the frequent unnecessary data backups and recoveries waste considerable 
energy and system resources, resulting in performance degradation. To overcome 
the serious drawback of frequent data backup and recovery operations, Zhou et al. 
[24] proposed a dual-threshold scheme that allows the system to be put into a 
sleep state to wait for power resumption when the voltage falls below a certain 
retention threshold instead of backing up data directly upon a power interruption.

Table  1 shows a high-level comparison among existing backup schemes and 
the pre-backup scheme in terms of frequent backup, unnecessary backup and 
energy utilization. In summary, the direct backup strategies incur frequent and 
unnecessary backups, which are not supportive of the NVP performance and 
energy utilization. While it does not cause frequent and unnecessary backups and 
has low energy utilization, the dual-threshold scheme has low cache utilization. 
The cache utilization is a very important parameter, especially in the context of 
space-limited NVM caches. Hence, it is important to design a performance-aware 
cache management scheme to minimize the NVM writes while ensuring high per-
formance in terms of cache utilization and request latency. In this paper, based on 
the performance-aware cache management, we discuss a two-step backup strat-
egy: a pre-backup algorithm and the backup strategy. We set two voltage warn-
ing thresholds. In response to a high voltage warning, the pre-backup algorithm 
is performed, and the backup strategy is performed in response to a low voltage 
warning.

2.2  Impact of retention time

In further optimization, we introduce retention state [10]. In accordance with the 
concept of a retention state, a retention threshold and a backup threshold can be 
established to allow a system to maintain volatile blocks for a certain period of time 

Table 1  Comparisons of different backup strategies

Backup strategy Frequent backup Energy utilization Cache utilization

Direct backup High Low Low
Dual-threshold Low High Low
Pre-backup Low High High
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to wait for power to be restored instead of performing immediate backup. When the 
voltage drops, capacitors are used as an energy source in the system [15]. If the volt-
age drops to the retention (high) threshold, the system will prepare for backup but 
maintain volatile blocks to wait for power restoration. If the system recovers in the 
retention state, no backup operation is necessary for the system to continue to run. 
However, if the voltage drops to the low threshold, the system will perform backup 
operations. In this way, a large number of backup operations can be avoided if the 
power supply to the energy-harvesting processors is quickly restored. In [10, 14], the 
authors analyzed the inter-write times (refresh times) of the level 1 (L1) and level 2 
(L2) cache blocks by conducting an application-driven study and determined a suit-
able data retention time accordingly. Their application-driven analysis showed that 
the ideal retention time should be in the range of ms. This paper introduces a data 
state mechanism to facilitate effective cache management and data migration based 
on the retention time concept for NVPs.

2.3  NVM and NVP security

IoT technology trends and wearable devices innovations continue to exacerbate the 
performance gap between processors and memory. Cache memories have long been 
used to reduce average memory latency and bandwidth. Current energy-harvesting 
NVP systems provide two levels of static random-access memory (SRAM) caches 
and backup NVM caches. The field of NVM security is closely linked to that of 
NVM endurance. If a single NVM cell becomes unreliable in the case of a non-
volatile cache, the entire nonvolatile cache becomes useless. Another limitation 
is that programming an NVM cell consumes a large amount of power. Thus, the 
limited cache resources can be effectively organized to improve cache performance 
and NVP security for many memory-intensive commercial workloads. Cache com-
pression is one way to improve the effectiveness of cache memories. Therefore, this 
paper proposes an NVM compression algorithm for the NVM part of the L2 cache 
to improve system performance.

The adoption of NVPs presents new security issues. Because an NVP can sleep 
indefinitely while the power is off and then continue its work as soon as the voltage 
is restored, a lack of power is harmless, and the entire memory content is persistent; 
however, this opens a door for an attacker to access the stored data [6]. Moreover, 
traditional encryption algorithms are not suitable for NVPs. This is because encryp-
tion in the cache would cause a large number of bit flips and cost considerable time 
and energy, resulting in degraded system performance and lifetime. One way to 
improve security and ensure performance is to use compression, as this reduces the 
size of each data block [9]. Consequently, attackers cannot obtain the original data, 
and the nonvolatile cache can simultaneously back up more data, thereby improv-
ing system performance. Therefore, an NVM compression algorithm for the NVM 
part of the L2 cache is proposed to improve system performance while guaranteeing 
system security.
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2.4  Motivation

Motivated by the retention state concept and the need to resolve the security prob-
lems posed by NVPs, this paper considers an NVM compression technique com-
bined with a four-stage performance-aware cache management scheme based on the 
traditional structure of NVPs. In this paper, we will clarify the problem by answer-
ing the following questions: (1) why do NVPs need to be backed up? (2) why do 
NVPs need to be secured? (3) why do backup operations and efforts to secure NVPs 
degrade system performance?

Thus, this paper addresses the following considerations for performance-aware 
cache management:

– Performance: because the access cost of static random-access memory (SRAM) 
is lower than that of NVM, SRAM is better suited for data caching and for writ-
ing sensitive data, whereas NVM is more suitable for reading sensitive data.

– Backup: because dirty volatile blocks need to be backed up to the NVM cache 
when a power outage occurs, to reduce the backup overhead, a large amount of 
data is expected to reside in the NVM part of the cache. It is necessary to ensure 
that there is sufficient space in the NVM part of the L2 cache for the data from 
the L1 cache and the SRAM part of the L2 cache to be successfully backed up.

– Security: backing up data when a power shutoff occurs can give rise to security 
threats. Thus, changing the original form of the data by, for example, compress-
ing the backed-up data can improve security.

– Memory efficiency: the access latency between the memory and the CPU is very 
high. Thus, when a power shutoff occurs, a large amount of data is expected 
to remain in the NVM cache. Compression techniques can be used to increase 
effective L2 cache capacity in order to reduce L2 misses.

All of the above considerations directly impact the performance, security, and 
energy consumption of an NVP system; thus, these considerations need to be simul-
taneously addressed to achieve the goals of performance-aware cache management. 
In this article, we propose a four-stage performance-aware cache management 
scheme to address the problem at hand.

3  Architecture and model

3.1  Energy‑harvesting NVP

Figure  1 illustrates the target architecture model, which shows the relationship 
among the three different levels of the memory hierarchy: (a) the L1 cache; (b) the 
hybrid L2 cache, including an NVM part and a SRAM part; and (c) the nonvolatile 
main memory (NVMM). In this architecture, data can be transferred between adja-
cent layers of memory. For example, data can be transferred from the L1 cache to 
the NVM part or the SRAM part of the L2 cache but not directly to the NVMM. 
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The NVM part of the hybrid L2 cache is a cached backup component; when a power 
shutoff occurs, the data located in the L1 cache and the SRAM part of the L2 cache 
can be backed up to the NVM part of the L2 cache. When power returns, the data 
are restored from the NVM part of the L2 cache to the SRAM part of the L2 cache 
and the L1 cache. As shown in Fig. 1, the controller in the NVP controls and man-
ages the data transfer between the L1 and L2 caches. This controller is connected 
to the power management unit (PMU) and can be used to control the backup and 
recovery of the data depending on the voltage.

3.2  Data state of a volatile cache

To manage and identify the cache blocks effectively, we establish a counter for each 
cache block to track its state. In the data state mechanism, each cache block has 
an n-bit counter; thus, each cache block has 2n possible states, as shown in Fig. 2. 
After a time T, the state of the cache block transitions from one state to the next. We 
assume that the transition time T is equal to the retention time divided by the number 
of states, i.e., T =

(retention time)

2n
 , where retention time is the time interval between two 

successive refreshes to the same cache block. Increasing the size of the counter will 
decrease the transition time at the expense of checking the blocks at a finer granular-
ity cost. A cache block starts in state S0 when it is accessed to the L1 cache. After 
every time interval T, the state of each valid cache block is incremented. However, 
any time a cache block is updated, the state of the cache block transitions from the 
current state back to the starting state S0 . When a cache block reaches the state Sn−1 , 

Fig. 1  Architecture model of the memory hierarchy
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then it will expire after another transition time T elapses. We define a cache block in 
state Sn−1 as a diminishing block and a cache block in state Sn as an expired block. An 
expired block will be written to the L2 cache and marked invalid, and it can then be 
replaced by a new cache block in state S0 . For example, for a 2-bit counter, a valid 
cache block can be in one of four states, from state S0 to S3 . The cache block transi-
tions from state Sk to state Sk+1 after 2.5 ms, and when the block is updated, it returns 
to the initial state S0.

This cache block state mechanism is also suitable for the SRAM part of the 
L2 cache. When a cache block is updated, it returns to the initial state S0 . When a 
block reaches state Sn−1 , it will be backed up into the NVM part of the L2 cache and 
marked invalid.

4  Methodology

The performance-aware cache management scheme consists of four stages with dif-
ferent actions, which are taken depending on the remaining energy of the power 
pulses. When power is restored, the goal is to resume execution (Stage 1). In Stage 
2, the main goal of cache management is to achieve better performance because suf-
ficient energy is available; thus, performance-aware data migration is performed. If 
the voltage drops to a predefined retention threshold, space is cleared in the NVM 
part of the L2 cache to prepare for backup, and the cache is then put into a sleep 
state (Stage 3). Stage 4 corresponds to the case in which the voltage drops further 
down to the backup threshold, meaning that backup operations should be performed.

4.1  Performance‑aware data migration

In Stage 2, the NVP has sufficient energy, so efficient cache management is prior-
itized, taking advantage of both the NVM and SRAM parts of the L2 cache as well 
as the L1 cache. Cache management in this stage mainly focuses on the following 
three considerations. First, the impact of the retention time, i.e., when a cache block 
reaches state Sn−1 , on the system performance should be optimized to present the 
data that have expired. Second, blocks with write-sensitive data should reside in 
the SRAM part of the L2 cache. Third, blocks with read-sensitive data should be 

Fig. 2  The states of a cache block
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located in the NVM part of the L2 cache. To identify the cache behaviors, a counter 
is set for each cache block to track the block’s state. These considerations are used to 
guide the performance-aware data migration algorithm (Algorithm 1).

As shown in Algorithm 1, if the state bit of an L1 cache block becomes Sn , which 
means that it will disappear from the L1 cache, the dirty bit and the index bit are 
checked, where a dirty bit denotes whether the cache block has been updated and the 
index denotes whether the block has been used recently. If the block is dirty, it needs 
to be written to the SRAM and marked as invalid (lines 2–4). If it is not a dirty block 
but the index bit is 1, which means that the block is frequently used, the block will 
be returned to its starting state (lines 6–7). Otherwise, this block is directly marked as 
invalid (line 9). For the L2 cache, to ensure write-sensitive data can reside in the SRAM 



3434 Y. Wang et al.

1 3

part and read-sensitive data can reside in the NVM part, we set a write threshold wt for 
the NVM part and a read threshold wt for the SRAM part. The corresponding variables 
wr and nr are set to record the write numbers and read number for each NVM block 
and SRAM block, respectively (lines 14–16, 26–28). For a block in the SRAM part of 
the L2 cache, if the read number nr is greater than the read threshold rt, it needs to be 
migrated to the NVM part (lines 17-19). To reduce the elimination of SRAM blocks, 
if the state is Sn−1 , we will reset it as S0 (lines 21–23). For a block in the NVM part 
of the L2 cache, if the write record wr is larger than write threshold wt, it needs to be 
migrated to the volatile part of the L2 cache. If the SRAM part has invalid blocks, the 
block is migrated into the SRAM part. Otherwise, the block with largest read number 
nr is found, and its contents are swapped with the contents of this block (lines 29–31).

4.2  Pre‑backup techniques

In this article, to minimize unnecessary backups, we adopt an improved version of 
the dual-threshold scheme [24], and based on the improved version, we propose a 
pre-backup method. Specifically, we set two voltage thresholds, namely, a low volt-
age threshold VLow and a high voltage threshold VHigh . When the voltage falls below 
the high voltage threshold VHigh , we will perform pre-backup operations, and when the 
voltage drops below the low voltage threshold, the data in the L1 cache and the SRAM 
part of the L2 cache will be backed up to the NVM part of the L2 cache. The threshold 
VHigh is set as follows.

High voltage threshold VHigh : This threshold is a retention threshold at which the 
system enters the sleep state to wait for power recovery instead of backing up imme-
diately. On the basis of this retention threshold, volatile cache data will remain in the 
cache for a certain period of time during an outage. Thus, the high voltage threshold 
VHigh determines how long the system can remain in the sleep state before backing up. 
However, there is no guaranteed sufficient time to wait for energy resumption. There-
fore, to ensure that the data can be successfully backed up, when the voltage drops 
below the high voltage threshold, the system should write some NVM blocks to pre-
pare for backup. Therefore, the required energy consumption is as follows:

where NNVM denotes the number of NVM blocks in the L2 cache, Ewrite denotes the 
energy consumption for writing an NVM block to the main memory, Ecomp denotes 
the energy consumption for the compression of an NVM block, Esleep is the energy 
consumed in the hibernation state, and Elow is the required energy for the low volt-
age threshold. Thus, the high voltage threshold VHigh is as follows:

The amount of energy stored in a capacitor has nothing to do with the length of time 
but rather with its own capacity and the actual voltage between its two pins. The for-
mula is E =

1

2
∗ C ∗ V2 [24].

(1)EHigh = NNVM × Ewrite + NNVM × Ecomp + Esleep + Elow,

(2)VHigh =

√

2 × EHigh

C
.
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The pre-backup operations are described in Algorithm 2. When the energy drops to 
the high voltage threshold VHigh , the system should prepare for a power failure, and the 
pre-backup operation should be performed. At this time, the processor does not imme-
diately stop running programs; instead, nonvolatile blocks are cleared, and the system 
goes into sleep mode, ensuring that there is sufficient space for backup and properly 
backing up some appropriate data. For safety, it is assumed that in the worst case, all 
SRAM blocks are dirty and that the NVM part of the L2 cache can hold all of them. 
Thus, the number of NVM blocks in the L2 cache that need to be reserved for backup 
is equal to the number of SRAM blocks (line 2). We first calculate the free size of the 
NVM after compression; if the free space is not sufficient for backup, the system will 
sort the NVM blocks by LRU status. Then, the most recently unused NVM blocks 
should be cleared by writing them to the main memory (lines 3–13). To ensure the vol-
atile blocks cannot be eliminated during the retention state, the volatile blocks of the L2 
cache with state Sn−1 will be migrated into the NVM part (lines 14–19). In addition, the 
dirty L1 cache block with state Sn−1 will be written into the NVM part (lines 20–25).
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4.3  Backup

When a power warning is received, the remaining available energy in the capaci-
tor is compared with the required low energy consumption. If the available energy 
exceeds the energy required, the program can perform pre-backup operations and 
continue until the next energy warning is received. If the available voltage drops to 
the required low voltage threshold VLow , the backup warning is triggered. The dirty 
blocks in the L1 cache and the SRAM part of the L2 cache are backed up to the 
NVM part of the L2 cache. The low voltage threshold VLow is set as follows:

Low voltage threshold VLow : to ensure adequate energy for backup, the worst-case 
scenario is considered, in which all SRAM blocks need to be backed up; thus, the 
required energy consumption is as follows:

where NSRAM denotes the number of SRAM blocks in the L2 cache and Ewrite_to_NVM 
denotes the energy consumption for backing up an SRAM block. Thus, the low volt-
age threshold VLow is as follows:

where C is the capacitance of the capacitor.
The performance-aware cache management scheme dynamically performs a 

backup on the basis of the data state, voltage, and cache behaviors to utilize reten-
tion time appropriately in a manner that improves performance while guaranteeing 
successful backups. The backup operations are as follows: when the low voltage 
warning is received, we first backup all valid blocks in the SRAM part to the NVM 
part; then, the dirty L1 cache blocks are written to the NVM part.

4.4  NVM cache compression

For enhanced backup requirement and performance, we propose a compression 
technique used in the NVM part of the L2 cache. Compression increases the effec-
tive NVM capacity of the L2 cache in order to reduce L2 misses, effectively increas-
ing the performance of the NVM part of the L2 cache. However, while compres-
sion helps protect the NVP and eliminate long-latency L2 misses, it also increases 
the latency overhead of decompression. Thus, we propose an adaptive compression 
technique, shown in Algorithm 3, to compress cache blocks effectively on the basis 
of the voltage and the historical use of the cache. In the algorithm, we use a constant 
segment_com to indicate the number of data blocks that can be held in a compres-
sion NVM block, and we use a binary variable comflag to represent the compression 
state in an NVM block, where comflag = 1 means that the NVM block is a compres-
sion block and can hold segment_com = N data block. 

(3)Elow = NSRAM × Ewrite_to_NVM ,

(4)VLow =

√

2 × Elow

C
,
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To enhance security, when the power is off, the data in the NVM part of the L2 
cache need to be compressed. Regarding performance, when the power is sufficient, 
some blocks (or benchmarks) will benefit from compression, but others will suf-
fer. Thus, when loading data from main memory to NVM, we have to determine 
whether the data need to be compressed. For simplicity, we count the numbers of 
hits and misses and consider the decompression time for each NVM block, yielding 
(lines 5–10) the following:

where Nmiss is the number of misses in an NVM block, Nhit is the number of hits in 
an NVM block, Tdecom is the time required for the decompression of an NVM block, 

Nhit

Nmiss

≥
Tmiss

Tdecom
,
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and Tmiss is the time required to access data from the main memory. If the above 
equation is satisfied, the compression block should be decompressed. Then, we set 
comflag = 0 and access the new data block into the NVM block (the NVM block 
only holds the new data block). For a 6-cycle decompression penalty and 120-cycle 
NVM miss penalty, compression wins if it eliminates at least one NVM miss for 
every 120∕6 = 20 penalized NVM hits. Otherwise, we access and compress the new 
data into the NVM block.

For decompression blocks, block compression will be advantageous if (lines 
14–18)

If compression is advantageous, both the old data block in the NVM block and new 
data accessed from main memory are compressed in the NVM block. The compres-
sion state comflag will be set as 1. If the voltage is less than the retention threshold, 
all blocks in the NVM are compressed, as are the blocks that are newly migrated 
into the NVM.

To improve the security level of the nonvolatile main memory, the idea is to use 
an encryption algorithm to encrypt the compressed data. In addition, the system per-
formance and lifetime of the nonvolatile main memory can be improved by the use 
of selective encryption [9], which can be introduced to solve the security problem of 
nonvolatile main memory.

5  Experiment

In this section, we will present the experimental setup and evaluate the proposed 
algorithms.

5.1  Experimental setup

In this experiment, the target architecture is an energy-harvesting NVP. The 
detailed system configuration is shown in Table 2. In each hybrid L2 cache set, 
there are three FREM blocks and four SRAM blocks. The detailed cache char-
acteristics are shown in Table 3. In the experiment, these system parameters are 
fed into the gem5 simulator [5] to build an energy-harvesting NVP platform. The 
benchmarks are obtained from MiBench [2] and Embench [1], whose program 
sizes are suitable for representative application-specific IoT/embedded systems. 
Table 4 lists the detailed information of each benchmark. The energy harvesting 
and consumption can be accurately simulated and monitored. A portion of the 
power pulses that we used were extracted from a real solar database, namely, the 
Measurement and Instrumentation Data Center [3]. To devise a working environ-
ment for our simulator that was comprehensively similar to the real world, we 
used two energy traces, as shown in Fig. 3. The first trace is radio frequency (RF) 
energy, and the second is solar energy. To ensure the capacitor can hold enough 

Nmiss

Nhit

≥
Tdecom

Tmiss
.
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energy to back up all of the volatile data upon receipt of a low voltage warning, 
we set the capacitor size to 50 ÌF.

We compare the proposed algorithm with the dual-threshold scheme (abbrevi-
ated as dual-th) [24], which is a recently published algorithm for minimizing backup 
operations by considering a retention state. We evaluate the energy consumption and 
performance (run time) of both strategies. The energy consumption comprises both 
static and dynamic energy consumption. In this paper, the dual-threshold scheme 
has been developed such that it is comparable to our model. We implement both 
strategies in the same scheduling framework to ensure that differences in implemen-
tation do not incur performance losses of the dual-threshold scheme.

5.2  Results and analysis

This section presents the experimental results to illustrate the effectiveness of our 
proposed algorithms. In the experiment, the dual-threshold scheme was taken as 
the baseline algorithm; the performance-aware cache management scheme, which 
included performance-aware data allocation (Algorithm  1) and pre-backup opera-
tions (Algorithm 2), was applied alone (denoted by PACM), and the full set of pro-
posed algorithms was applied by combining the performance-aware cache manage-
ment scheme with the NVM compression algorithm. The three strategies adopted 
the same backup method. When a backup warning is received, the L1 cache blocks 
with a dirty state are written to FREM, and all valid SRAM blocks are backed up to 
FREM.

5.2.1  Performance results

Table 5 shows the performance results for the three strategies under the RF energy 
traces. From the table, we can see that the PACM scheme exhibits slightly bet-
ter performance than the dual-threshold scheme, while the proposed algorithms 
together exhibit an obvious performance enhancement. For example, for the JPEG 
benchmark performance of the NVP with a high voltage threshold 1.28 V, the 
execution time of the dual-threshold algorithm, 3.12 × 1011 , is larger than that of 
the PAMC scheme, at 3.08 × 1011 , and the execution time of our proposed algo-
rithm is 2.98 × 1011 , which is superior to those of the dual-threshold and PAMC 

Table 2  System configuration

Component Description

Processor 1.0 GHZ Fetch/Exec/Commit, 1 core
L1 cache (SRAM) 4 kB per core (private) I/D cache, 64 B block size, write-back, 

10 MSHRs, 2-cycle latency
L2 cache (hybrid SRAM and FREM) 16 kB SRAM, 16 kB FREM, 64 B block size, LRU; write-back
Main memory 120-cycle access time
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schemes. This is because the performance-aware cache management scheme can 
reduce the miss rate and allow the data in the cache to be optimally located by 
means of the data state and migration mechanism. Thus, even though the PACM 
scheme incurs larger access costs between the main memory and the NVM part 
of the L2 cache in the pre-backup stage, the overall performance is not degraded. 
In addition, the proposed algorithms together allow the communication overhead 
between memory and the NVM part of the L2 cache by virtue of the compression 
technique. Thus, the overall performance is the best among the three strategies. 
However, as the high voltage threshold increases, the overall performance advan-
tage of the performance-aware cache management scheme decreases. For exam-
ple, for JPEG, the performance gap between the dual-threshold approach and our 
proposed algorithm with a high voltage threshold of 1.14 V is 0.75 × 1011 cycle, 
but that with a high voltage threshold 1.35 V is only 0.15 × 1011 cycle. This is 
because the system can have more opportunities to wake from hibernation and 
thus avoid real power failures.

Table  5 shows that the execution time of the three strategies can be greatly 
reduced with thane increase in the high voltage threshold. For example, for JPEG, 
the execution time of our proposed algorithm with a high voltage threshold of 

Table 3  Cache characteristics Cost L1 cache L2 cache

SRAM FREM

Read latency (cycle) 2.89 7.12 9.08
Write latency (cycle) 2.34 6.89 20.12
Read energy (nJ) 0.118 0.161 0.216
Write energy (nJ) 0.112 0.156 0.839

Table 4  Benchmarks

Benchmark Instructions Mem reads Mem writes Code size (Kb) Data size (Kb)

jpeg 43,487,772 10,231,760 4,401,994 8036 1196
susan 30,198,836 16,983,309 3,040,300 6048 1058
qsort 469,467,608 71,431,808 57,562,752 4214 1084
FFT 140,521,122 23,813,697 17,374,787 3692 800
dijkstra 224,233,658 61,088,835 20,470,395 10,042 1068
patricia 609,908,006 115,437,095 86,679,508 15,042 1146
CRC32 61,659,073 6,965,007 12,292,816 230 1024
edn 79,170,256 15,731,129 13,997,301 1452 1600
nettle-aes 990,869,745 159,633,108 90,709,367 2880 10,566
lame 544,057,733 89,225,468 83,240,833 6074 8400
cholesky 12,506,634,754 1,813,527,857 760,514,353 18,078 30,800
lu 14,315,516,042 2,067,861,457 876,371,466 23,592 31,984
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1.14 V is 3.14 × 1011 cycles, and that with high voltage threshold of 1.35 V is 
2.98 × 1011 cycles. However, for most benchmarks, when the high voltage thresh-
old is increased to 1.35 V, the proposed algorithms require more run time com-
pared with the high voltage threshold of 1.28 V. This occurs because the perfor-
mance improvement decreases as the high voltage threshold increases, and the 
sleep time exceeds the maximum hibernation time when the high voltage thresh-
old is 1.35 V. Since a sufficient time to wait for energy resumption cannot be 
guaranteed, we choose 1.28 V as the high threshold. According to the statisti-
cal comparison of a high voltage threshold of 1.28 V, the proposed algorithm 
and PACM can reduce the execution time by 17.5% and 3.8%, respectively, on 
average.

Since the RF traces do not harvest enough energy for most benchmarks, we 
also use solar traces to report the performance achieved. Figure 4 shows the per-
formance comparison, in which the high voltage threshold is 1.28 V under solar 
energy traces. From the figure, it can be observed that the proposed algorithm and 
PACM outperform the dual-th algorithm for all benchmarks. On average, the pro-
posed algorithm and PACM outperform dual-th by 13.5 and 4.9%, respectively.

(a)

(b)

Fig. 3  The power pulse
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5.2.2  Normalized energy consumption results

Figures 5 and  6 show the normalized energy consumption results obtained by run-
ning a set of simulations for all benchmarks based on the architectural model. The 
energy consumption consists of the scheduling energy consumption, the communi-
cation overhead, the switching overhead, and the resumption overhead. From the two 
figures, we know that the energy consumption of the proposed algorithms and that of 
the PACM algorithm are less than that of the dual-threshold scheme. Compared with 
the dual-threshold scheme, the PACM scheme achieves a 23.7% energy reduction on 
average. However, susan and patricia are different from other benchmarks, and the 
energy consumption of the PACM scheme is higher than that of the dual-threshold 
algorithm. This may be because the system reserves more energy for backup but has 
sufficient sleep time to wait for the system to recover. The dual-threshold scheme can 
reduce backup operations by more than 80% to avoid unnecessarily wasting energy, 
while the PACM scheme requires clearing the NVM part of the L2 cache, resulting 
in energy waste. In fact, there is no guaranteed sufficient time and energy to wait for 
the system to recover; inevitably, some backup operations cannot be avoided. As a 
result, the PACM scheme is superior to the dual-threshold scheme. Compared with 

Fig. 4  Performance evaluation with a high voltage threshold of 1.28 V for solar energy traces

Fig. 5  Energy consumption normalized to that of the dual-threshold scheme with a high voltage thresh-
old of 1.28 V for RF traces
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the dual-threshold scheme, the proposed algorithms together can achieve a 52.6% 
energy reduction on average. For each benchmark, the proposed algorithms achieve 
an obvious energy reduction. This is because the use of compression technology can 
significantly reduce the communication overhead between the main memory and the 
processor.

5.3  Overhead

The overhead of the proposed algorithms includes two SRAM state bits and two 
L1 cache state bits for each block, the compression and decompression over-
heads for the NVM part of the L2 cache, and the data migration between vola-
tile and nonvolatile blocks. With the system configuration shown in Table  2, the 
4 kB L1 cache contains 64 blocks, and the 16 kB SRAM part of the L2 cache 
contains 256 blocks. Since there are two bits for each block, the overhead for 
the L1 cache and the SRAM part of the L2 cache is (256 + 64) × 2 = 640 bits. 
The storage overhead is 64 × 2∕(4 × 1024 × 8) = 0.38% for the L1 cache and 
256 × 2∕(16 × 1024 × 8) = 0.39% for the SRAM part of the L2 cache. The compres-
sion and decompression overheads depend on the benchmark size. Each NVM block 

Fig. 6  Energy consumption normalized with a high voltage threshold of 1.28 V for solar traces

Fig. 7  Compression and decompression overhead for solar energy traces
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needs to be compressed and decompressed at least once. Figure 7 shows the com-
pression and decompression overhead. A comparison of Figures 4 and  4 shows that 
the performance overheads of compression and decompression are less than 1% of 
the total execution time. This is because the compression and decompression over-
heads are negligible compared to the reduction in the access cost between the NVM 
part of the L2 cache and the main memory. The results confirm the overall perfor-
mance improvement even with these extra operations in the proposed algorithms.

6  Conclusion

Because frequent data backup and recovery operations significantly affect the per-
formance and energy efficiency of NVPs, in this paper, we propose a performance-
aware cache management scheme to improve performance and energy efficiency 
while guaranteeing successful backup. This scheme leverages data states and volt-
age thresholds for efficient cache management and data migration and prepares the 
system for backup when the voltage drops below the high voltage threshold, thus 
simultaneously maximizing execution progress and energy efficiency. To address 
the security and memory challenges presented by NVPs, this article also introduces 
an NVM compression technique based on the proposed performance-aware cache 
management scheme. The data in the NVM part of the L2 cache are compressed/
decompressed depending on the benefits and penalties associated with cache hits 
and misses. The experimental results show that the proposed algorithms enable sig-
nificant improvements in performance and energy efficiency.

Although our proposed algorithm can improve performance and reduce energy 
consumption, the need for nonvolatile processors and energy harvesters may be 
reduced as battery and power systems improve. Thus, we will study backup optimi-
zation and cache management issues in conventional systems in future work.
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