
Journal of Systems Architecture 61 (2015) 112–126
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Minimizing write operation for multi-dimensional DSP applications via a
two-level partition technique with complete memory latency hiding
http://dx.doi.org/10.1016/j.sysarc.2015.02.001
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: bessie11@yeah.net (Y. Wang), lkl@hnu.edu.cn (K. Li),

lik@newpaltz.edu (K. Li).
Yan Wang a, Kenli Li a,⇑, Keqin Li a,b

a College of Information Science and Engineering, Hunan University, Changsha 410082, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o
Article history:
Received 29 May 2014
Received in revised form 22 January 2015
Accepted 6 February 2015
Available online 16 February 2015

Keywords:
Chip multiprocessor (CMP)
Memory latency
Multi-dimensional DSP application
Partition technique
Schedule length
Scratchpad memory (SPM)
Write operation
a b s t r a c t

Most scientific and digital signal processing (DSP) applications are recursive or iterative. The execution of
these applications on a chip multiprocessor (CMP) encounters two challenges. First, as most of the digital
signal processing applications are both computation intensive and data intensive, an inefficient schedul-
ing scheme may generate huge amount of write operation, cost a lot of time, and consume significant
amount of energy. Second, because CPU speed has been increased dramatically compared with memory
speed, the slowness of memory hinders the overall system performance. In this paper, we develop a Two-
Level Partition (TLP) algorithm that can minimize write operation while achieving full parallelism for
multi-dimensional DSP applications running on CMPs which employ scratchpad memory (SPM) as on-
chip memory (e.g., the IBM Cell processor). Experiments on DSP benchmarks demonstrate the effective-
ness and efficiency of the TLP algorithm, namely, the TLP algorithm can completely hide memory laten-
cies to achieve full parallelism and generate the least amount of write operation to main memory
compared with previous approaches. Experimental results show that our proposed algorithm is superior
to all known methods, including the list scheduling, rotation scheduling, Partition Scheduling with
Prefetching (PSP), and Iterational Retiming with Partitioning (IRP) algorithms. Furthermore, the TLP
scheduling algorithm can reduce write operation to main memory by 45.35% and reduce the schedule
length by 23.7% on average compared with the IRP scheduling algorithm, the best known algorithm.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The scaling limitations of uniprocessors [2] have led to an
industry-wide turn towards chip multiprocessor (CMP) systems.
CMPs are becoming ubiquitous in most computing domains. A
scratchpad memory (SPM) is a small on-chip memory component
managed by software, so that application programs can gain auto-
mated compiler support. Nowadays, SPM is widely employed in
new embedded architectures, including some CMPs, rather than
cache as on-chip memory. The SPM is shown to be both perfor-
mance optimized and power efficient compared to the cache coun-
terpart managed by hardware [8]. One real-world example of CMP
employing SPM is IBM’s Cell processor [3]. The processor has nine
processing cores, and each core embeds a SPM, which is managed
by software and applications. A core can prefetch data from the
main memory or other cores’ SPM. However, because many
large-scale applications executed on the architectures which
employ SPM as on-chip memory generate numerous write opera-
tion, the size of a SPM has become a constraint. The motivation
of this paper is to propose a partition technique for multi-dimen-
sional (MD) loops to reduce write operation while achieving full
parallelism.

The major contributions of this paper are summarized as
follows.

1. We target CMPs embedded with SPMs as on-chip memory
(local memory) as our computing platform. We assume that a
core contains multiple ALUs, which perform computations.

2. We propose a Two-Level Partition (TLP) algorithm that can (1)
improve the loop parallelism to decrease the schedule length;
(2) completely hide memory latency to achieve full parallelism;
(3) reduce write operation to main memory.

3. In the TLP algorithm, a multi-level partition technique is pro-
posed. Each level partition aims at different goal. The first level
partition aims to minimize write operation, and the second
level partition based on the first level partition can hide
memory latency completely.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.02.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.02.001
mailto:bessie11@yeah.net
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.sysarc.2015.02.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126 113
The paper has made significant contributions to performance
enhancement of MD loops on modern processors with state-of-
the-art memory technology. Experimental results show that our
proposed algorithm is superior to all known methods, including
the list scheduling, rotation scheduling, PSP, and IRP algorithms.
Furthermore, the TLP scheduling algorithm can reduce write opera-
tion to main memory by 45.35% and reduce the schedule length by
23.7% on average compared with the IRP scheduling algorithm, the
best known algorithm.

The rest of the paper is organized as follows. Section 2 reviews
related work. A motivating example is demonstrated in Section 3.
Section 4 introduces basic concepts and definitions. The TLP
scheduling algorithm is presented in Section 5, together with sev-
eral theorems which discuss how to obtain the partition size.
Experimental results are provided in Section 6. Section 7 concludes
the paper.
2. Related work

Increasing latency gap between CPU operations and memory
accesses makes it increasingly important to develop strategies for
cutting the frequency and volume of data transfers between cache
and main memory. Since recent research shows that caches result
in suboptimal behavior for digital signal processing (DSP) applica-
tions with regular data access patterns, many designer adopt soft-
ware managed on-chip memories for embedded computing system
[1,30]. SPM, managed by software and hardware, is similar to con-
ventional on-chip caches in that it resides on-chip and has low
access latency and low power consumption. There are a lot of
researches to manage data allocation in SPM so that the latency
gap between CPU operations and memory accesses can be hidden
[7,9–11]. In [7], the authors minimized the total execution time of
embedded applications through partitioning the application’s sca-
lar and array variables into off-chip memory and SPM. Bai et al.
proposed CMSM for software managed multicores by efficient
and effective code management [9]. In [8], the authors proposed
a highly predictable, low overhead, and yet, dynamic memory allo-
cation strategy for embedded systems with scratchpad memory for
reducing energy consumption.

More and more DSP applications involve multi-dimensional
loop processing. A MD loop not only takes most computation time
and consumes significant energy, but also generates huge amount
of write operation. Furthermore, due to the slower increasing of
memory speed than that of CPU speed, the slowness of memory
hinders the overall system performance. MD problems are of par-
ticular interest. These problems (e.g., a large number of DSP appli-
cations) are characterized by nested loops with uniform data
dependencies. Loop pipelining techniques [4–6] and partition tech-
niques [12,13] are widely used to explore the instruction level par-
allelism, so that a good schedule with high performance can be
obtained,

The partition (tiling) technique divides the entire iteration
space into partitions, so that the partitions can be executed one
at a time. Agarwal et al. proposed a partition technique to mini-
mize communications in multiprocessors [14]. Wolf and Lam pre-
sented a partitioning method to increase data locality [15]. Xue
et al. introduced an iterational retiming into partition technique
and obtained a new algorithm called Iterational Retiming with Par-
titioning (IRP) [16,17]. The multi-level partition technique is wide-
ly investigated. Wang et al. proposed a two-level partition
technique to hide memory latency for DSP applications [18]. Wang
et al. presented a multi-level partitioning and scheduling tech-
nique to minimize memory access overhead [19]. In this paper,
we propose a new partition technique, i.e., the TLP technique. It
can minimize write operation while achieving full parallelism.
Most MD loop scheduling methods take the scheduling length
into account, since a computation-intensive application usually
depends on time-critical sections consisting of loops of instruc-
tions. To optimize the execution rate of such an application,
designers need to explore the embedded parallelism in repetitive
patterns of a nested loop. Chao and Sha proposed a MD retiming
method, which does not guarantee to achieve full parallelism and
is only applicable to a specific class of multi-dimensional data flow
graphs (MDFGs) [21]. Passos and Sha first used a legal MD retiming
to successively restructure the loop body represented by an MDFG
[20]. However, these retiming techniques cannot break the perfor-
mance bottleneck caused by the memory speed slower than CPU
speed, which has been increased dramatically. Partition scheduling
with MD retiming technique is widely used to hide memory laten-
cy. The IRP algorithm with iterational retiming technique obtains a
schedule with complete memory latency hiding to achieve full par-
allelism [16]. However, to achieve full parallelism may require
increased need of write operation. Therefore, we must obtain bet-
ter partition size to reduce the number of data needed to be writ-
ten to main memory while achieving full parallelism.

Many researchers have been addressing the problem of data
intensity in MD loop scheduling to reduce write operation. Some
techniques optimize the accessing time from hardware perspec-
tive. Zhou et al. proposed a durable phase change memory which
is applied to main memory [22]. Qureshi et al. proposed a PCM-
DRAM hybrid main memory system, in which DRAM is used to
absorb the write activities to the PCM [23]. These techniques focus
on hardware optimization and can be combined with the software
technique proposed in this paper. Passos and Sha proposed a multi-
level partition technique to reduce SPM data lost, so that it can
minimize memory access overhead for multi-dimensional DSP
applications [20]. Chen et al. presented a novel partition technique
to reduce memory access overhead [4]. However, these two parti-
tion techniques cannot achieve full parallelism. The scheduling
length of a memory part may be longer than that of a processor
part because of large memory latency. In this paper, we propose
a partition scheduling algorithm for MD loops. The algorithm
developed in this paper can minimize write operation while com-
pletely hiding memory latency to achieve full parallelism.

The widening gap between performance of processors and that
of memories is the main bottleneck for modern computer systems
to achieve high processor utilization. To hide memory latency, a
variety of techniques have been developed. Dahlgren and Dubois
proposed a prefetching scheme based on hardware [24], and Tche-
un et al. presented a prefetching scheme based on software [25].
Various techniques have been proposed to consider both schedul-
ing and memory latency hiding at the same time. Philbin et al.
improved the inter-thread cache locality of sequential programs,
which contain fine-grained threads, by using the idea of partition-
ing for scheduling threads [26]. Wang et al. proposed the first
available technique that combines loop pipelining, prefetching,
and partitioning to optimize the overall loop schedule [27,28,30].
However, their techniques are not able to take advantage of all
the hardware resources available in CMPs. In this paper, we pre-
sent the TLP algorithm that considers scheduling and memory
latency hiding simultaneously. It generates two-part schedules
that can completely hide memory latency and minimize write
operation.
3. A motivational example

In this section, we provide a motivational example that shows
the effectiveness of the TLP technique. In the example, we compare
the schedules generated by a classical scheduling technique, i.e.,
the Partition Scheduling with Prefetching (PSP) scheduling

Fig. 1. (a) The example loop program. (b) The MDFG representation of the loop.

Fig. 2. Comparison between PSP scheduling and TLP scheduling. (a) PSP scheduling: the a
(b) TLP scheduling: the average schedule length is 1 clock cycle and the average write o

114 Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126
algorithm [4], and the TLP scheduling algorithm, respectively. For
simplicity, we only illustrate the results of these two techniques
without going into the details of how each result is generated.
The MD loop shown in Fig. 1(a) is used in this section. There are
two dimensions indexed by i and j in this loop. The multi-dimen-
sional data flow graph (MDFG) representation of this two-dimen-
sional loop is shown in Fig. 1(b). A node in an MDFG represents a
task (computation), and an edge in an MDFG represents depen-
dence relation between two nodes. Each edge is associated with
a delay that helps to identify which two nodes are linked by this
edge. In this example, there are four tasks, namely, A;B;C, and D.
Hence, there are four nodes in the MDFG, each representing the
corresponding computation. The edge from C to A represents the
fact that the computation of A½i; j� depends on the value of
C½i� 1; j�. A detailed and formal definition of an MDFG is presented
in Section 4.

In this example, we assume that in our system, there are two
processing cores in the processor, and there are 2 ALUs inside each
core. Each core is equipped with an SPM, and each SPM has two
data blocks. We also assume that it takes 1 clock cycle to finish
each computation node, 1 clock cycle to fetch a datum in another
core’s SPM, 2 clock cycles to finish a main memory datum fetch,
and 4 clock cycles to write a datum back to the main memory.

In order to hide memory latency, Sha et al. proposed the PSP
algorithm, which takes into account the balance between compu-
tation and memory access time. Based on the dependency con-
straints in the MDFG shown in Fig. 1(b), the PSP scheduling
algorithm generates a schedule shown in Fig. 2(a). For conve-
nience, only one iteration of the loop is shown in representing a
schedule. The notation Að1Þ in the figure represents the computa-
tion of node A in iteration 1. fAðkÞ represents fetching a datum from
the main memory for node A in iteration k. wCðkÞ represents writ-
ing the datum CðkÞ to the main memory, and wDðkÞ represents
writing the datum DðkÞ to the main memory. In this schedule, there
are 4 fetch operations and 4 write operation in the memory part.
There are 4 iterations which are scheduled at a time as a partition
in processor part, and it takes 12 clock cycles to finish all 4 itera-
tions because of the overlap between processor execution and
memory access. As a result, the average time to complete an itera-
tion is 3 clock cycles. However, we cannot take full advantage of all
verage schedule length is 3 clock cycle and the average write operation number is 1.
peration number is 1/4.

Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126 115
the hardware resources available, because of the dependency con-
straints presented both inside each partition and between parti-
tions. In PSP scheduling, only one core in the processor is used.
Due to the memory size constraint and the significant amount of
time of write/fetch operations in the main memory, we should
explore a new technique to obtain a better schedule.

To minimize the write and fetch activities in the main memory
and achieve full parallelism, we develop a schedule using our pro-
posed TLP algorithm. The result is shown in Fig. 2(b). It takes 8
clock cycles to complete 8 iterations. In other words, the average
time to complete 1 iteration is 1 clock cycle. The schedule length
is equal to that of the IRP schedule. In the memory part, the 8 itera-
tions only need two write operations. Hence, the average write
operation to complete 1 iteration is 1

4. Such noticeable performance
improvement is obtained by considering the memory size while
exploring iteration level parallelism, so that write operation is
reduced, and high parallelism for cores in the processor can be
utilized. As we can see, it is clear that TLP outperforms the PSP
scheduling on multicore platforms.
4. Basic concepts and definitions

In this section, we introduce basic concepts which are used in
this paper. First, we discuss the hardware model. Second, we intro-
duce the models and notions that we use to analyze nested loops.
Third, we introduce the loop partitioning technique and the itera-
tional retiming technique. Fourth, we present the techniques of
partitioning the partition space. Finally, we outline the TLP algo-
rithm. In this paper, for clarity, our technique is presented using
two dimensional notations.

4.1. Hardware model

In this paper, we target a multicore system with multiple ALUs
and scratchpad memory (SPM) as its on-chip memory shown in
Fig. 3 as our computing platform. In this architecture, each core
has its own private on-chip SPM. All cores share a main memory
with large capacity. Each core can access its own SPM and other
cores’ SPMs. Accessing data in other cores’ SPM costs more time
and energy than accessing data in its own SPM, but costs less than
accessing data in an off-chip main memory. The goal of our tech-
nique is to fetch the operands of all computations into SPM before
actual computations start. There are three types of memory
Fig. 3. A hardware model.
operations in SPM, i.e., a read instruction which prefetches the
computation data from the main memory, a write instruction
which writes computation data back to the main memory, and a
migration instruction which migrates computation data to another
core’s SPM. The three instructions are issued to ensure that compu-
tation data which will be employed soon will appear in the SPM.

It is important to note that the lower level memories in the
architecture model are SPM. There are two reasons for this. First,
the local memory cannot be a pure cache, because we do not con-
sider cache consistency and cache conflict in our paper. Second,
SPM is a small on-chip memory component that is managed by
software, and is more efficient in performance and power com-
pared with the hardware-managed cache. Nowadays, many archi-
tectures are employing SPM rather than cache as their on-chip
memories. SPM is shown to be both performance and power effi-
cient as compared to the hardware-managed cache counterpart
[4]. Our architecture is a general model. A real implementation is
done in NVIDIA 8800 processor. Inside the processor, there are
12 processing cores. There are 12 ALUs and 64 K SPM in each pro-
cessing core.
4.2. Modeling nested loops

The MDFG is used to model nested loops and is defined as fol-
lows. An MDFG G ¼ ðV ; E; d; tÞ is a node weighted and edge weight-
ed directed graph, whose components are explained as follows. V is
a set of computation nodes. E # V � V is a set of dependence edges,
where ðl; mÞ 2 E means that l must be scheduled before m. d is a
function and dðeÞ is the MD delays for each edge e 2 E, which is also
known as a dependence vector. We use dðeÞ ¼ ðdi; djÞ as a general
formulation of any delay shown in a two-dimensional DFG
(2DFG). For example, in Fig. 1(a), there is a two-dimensional loop
program. Fig. 1(b) shows the corresponding MDFG, and these
nodes represent the corresponding computations in the original
loop program.

An iteration is one execution of all nodes in an MDFG. We regard
an iteration as an iteration space node, which is represented by a
vector ði; jÞ. In Fig. 4(b), each node represents one iteration space
node. The horizontal axis corresponds to the j index which is the
inner-loop, and the vertical axis corresponds to the i index which
is the outer-loop. Fig. 4(a) shows the detailed iteration space node
graph. The solid vectors represent the inter-iteration data depen-
dency. If a node in iteration ði; jÞ depends on a node in iteration
ðx; yÞ, the dependence vector is dðeÞ ¼ ði� x; j� yÞ. An edge with
delay (0,0) represents data dependency within the same iteration.
For example, the vector from node C in iteration (0,0) to node D in
iteration (0,1) means that the computation of node D in iteration
(0,1) depends on the computation of node C in iteration (0,0).
The delay vector between nodes C and D is ð0; 1Þ � ð0; 0Þ ¼ ð0; 1Þ.

A schedule vectors s defines a sequence of an iteration space for
a set of parallel equitemporal hyperplane. By default, a given nest-
ed loop is executed in a row-wise fashion, where the schedule vec-
tor is s ¼ ð1; 0Þ.

Rotation scheduling proposed by Chao and Sha [21] is a loop
scheduling technique that optimizes loop scheduling under
resource constraints. It transforms a schedule to a more compact
schedule iteratively. In most cases, the node level minimum sched-
ule length can be obtained in polynomial time by rotation schedul-
ing. In each step of rotation, nodes in the first row of the schedule
are rotated down. By doing so, the nodes in the first row are
rescheduled to the earliest possible available locations. From
retiming point of view, each node gets retimed once by drawing
one delay from each of the incoming edges of the node and adding
one delay to each of its outgoing edges in the DFG. The details of
rotation scheduling can be found in [21].

Fig. 4. An iteration space node graph.

Fig. 5. An example of MDFG for partition.

116 Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126
4.3. Partition the iteration space and iterational retiming

Typically, execution of an iteration space is performed in the
order of row-column or column-row. However, it takes lot of time
and needs to store a lot of data in the main memory. In this paper,
for overcoming these disadvantages, we can first partition an itera-
tion space and then execute the partitions one by one. The two first
level partition vectors are denoted by P1i and P1j. We can get a par-
tition dependency graph (PDG) according the first level partition. It
is determined whether a partition is legal or not. A legal partition
requires that there is no cycle in a PDG. As shown in Fig. 6(b),
which is the PDG for the partition shown in Fig. 6(a), the partition
is illegal because there are cycles in Fig. 6(b). Therefore, we cannot
arbitrarily choose the partition vectors because of the dependen-
cies in an MDFG. For example, let us consider the iteration space
of the MDFG shown in Fig. 5, and the partitioning of the iteration
space into rectangles, with P1j ¼ ð0;1Þ and P1i ¼ ð2;0Þ, shown in
Fig. 6(a), with the corresponding PDG shown in Fig. 6(b). As we
see, it is illegal because of the forward dependency from partition
(0,0) to partition (0,1) and the backward dependency from parti-
tion (0,1) to partition (0,0). Due to these two-way dependency
between partitions, we cannot execute either one of them first
and cannot execute the two partitions in different processors at
the same time. Therefore, this partition is not implementable and
is illegal. In contrast, let us partition the iteration space with parti-
tion vectors P1j ¼ ð0;1Þ and P1i ¼ ð2;�2Þ as shown in Fig. 6(c), and
the corresponding PDG shown in Fig. 6(d). Since there is no two-
way dependency, a feasible partition execution sequence exists.
Thus, partition (0,0) can be executed first, then partition (0,1),
and so on. Therefore, it is a legal partition.

Two extreme vectors, as shown in Fig. 7, i.e., the clockwise (CW)
vector and the counterclockwise (CCW) vector are important to
find the basic first level partition. They decide the directions of
the legal first level partition vectors. They are defined as follows.

Definition 4.1. A delay vectors set D ¼ fd1; d2; . . . ; dkg contains all
delay vectors in an MDFG. The extreme clockwise vector CW must
satisfy the following two conditions: (1) CW 2 D; (2) all the vectors in
the set of D� fCWg are in the counterclockwise region of CW.

The definition of the CCW vector is similar.
A legal basic first level partition must satisfy the following con-

dition, namely, the first level partition vectors P1i and P1j cannot
lie between CW and CCW. In other words, they can only be outside
of CW and CCW or be aligned with CW and CCW.

After a basic partition is identified via P1i and P1j, an iteration
space graph (IFG) can be constructed. An iterational retiming r is
a function from Vi to Zn that redistributes the iterations in parti-
tions. A new IFG Gi;r is created, such that the number of iterations
included in the partition is still the same. The retiming vector rðuÞ
of an iteration u 2 Gi represents the offset between the original
partition containing u, and the one after iterational retiming. When
all the edges e 2 Ei have nonzero delays, all the nodes v 2 Vi can be
executed in parallel, which means that all the iterations in a parti-
tion can be executed in parallel. We call such a partition a retimed
partition.

After the iterational retiming transformation, the new program
can still keep row-wise execution, which is an advantage over the
loop transformation techniques that need to do wavefront execu-
tion and need to have extra instructions to calculate loop bounds
and loop indexes. Algorithms and theorems for iterational retiming
is presented in detail in [13].

4.4. Partition the first partition space

We regard a first level partition as a partition space, which is
defined by a vector ðpartitionl; partitionmÞ. In Fig. 8(b), for sim-
plicity, each node in the graph represents one partition space node.
Instead of executing the entire partition space in order of rows and
columns, we again partition the first level partition space and exe-
cute the second level partitions one by one. If we treat one second
level partition as a cluster, then all first level partitions in the clus-
ter can be executed at the same time. Similar to the first level par-
tition, the second level partition vectors, denoted by P2i and P2j,
also cannot be arbitrary, due to the dependencies between

Fig. 6. (a) An illegal partition of the iteration space. (b) The partition dependency graph of (a). (c) A legal partition of the iteration space. (d) The partition dependency graph of
(c).

Fig. 7. (a) The CW and CCW regions relative to vector P. (b) The extreme CW and CCW vectors of vectors d1; d2; . . . ; dk and the partition vectors Pi and Pj.

Fig. 8. (a) The second level partition will be executed from left to right in the P2j direction and proceed the next hyperplane along the direction perpendicular to P2i . (b) The
first level partition space. (c) A second level partition.

Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126 117
partition spaces. In this paper, we choose the second level partition
vectors as P2i ¼ N � ð1;�1Þ and P2j ¼ ð0;1Þ. N is related to the
number of cores. In the next section, we will describe in detail
how to determine the value of N.

Fig. 8 shows the second level partitions and first level partitions
scheduled in order. We execute the second level partition from left
to right in the P2j direction, as illustrated in Fig. 8(a), and the next
hyperplane along the direction of vector perpendicular to P2j. We
execute the first level partitions following this way, i.e., all itera-
tions in the same first level partition must be scheduled in the
same core; and all first level partitions in the same second level
partition must be scheduled at the same time, as illustrated in
Fig. 8(c). Then, we proceed the next second level partition.
Fig. 8(b) shows an example of the first level partition order in a
second level partition. The black dots represent the first level par-
tition in the second level partition. After second level partition, the
order of first level partitions scheduling must satisfy the following
condition, i.e., if there are two first level partitions, partition ðu;vÞ
and partition ðk;vÞ, in the same hyperplane, and u < k, the parti-
tion ðu;vÞ must be executed no earlier than partition ðk;vÞ.

4.5. TLP algorithm framework

TLP generates a schedule consisting of two parts, i.e., the
processor part and the memory part. The original MDFG usually
contains inter-iteration/partition dependencies and intra-it-
eration/partition dependencies. This causes that different first level
partitions need different write/prefetch activities. In our algorithm,

118 Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126
the first level partitions executed on different cores have different
write/prefetch activities, and the first level partitions executed on
the same core have identical write/prefetch activities. The reason
for this phenomenon is the first level partition size f j.

We call the first level partition which is currently being execut-
ed in a core the current first level partition, the first level partition
that will be executed next in the same core the next first level par-
tition, and the first level partition in the i-axis aligned with the cur-
rent first level partition the top first level partition. Any other first
level partition which has not been executed is called other first level
partition (see Fig. 9(a)). For the current first level partition, the
number of computation data which will be stored for the next first
level partition is denoted by NUMnext . The number of computation
data which will be stored for the top first level partition is denoted
by NUMtop. The number of computation data which will be stored
for the other first level partition is denoted by NUMother .

Fig. 9(b) gives an example of our overall schedule. There are 12
iterations in our second level partition. In the processor part, the
TLP scheduling algorithm generates a schedule for one iteration
with four control-steps. Four iterations can be executed at the same
time by four different cores. This schedule is then duplicated 3
times for all iterations inside the second level partition. In a second
level partition, all iterations, which are executed in the same core,
belong to the same first level partition. There are four cores in the
processor, which means that four first level partitions can be
executed in different cores at the same time. In the memory part,
all the write operation for the previous and current second level
partitions are scheduled, and all the prefetch operations for the next
second level partition are scheduled. A rectangle represents a write
operation or prefetch operation. A white rectangle represents that
write operation or prefetch operation does not exist; in other
words, the memory does not execute any operation in the rectangle
time. As we can see, in the overall schedule, 12 iterations are fin-
ished in 12 control steps, that is, on average, there is ave len(over-
all) = 12/12 = 1 control step per iteration. There are 7 write activities
and 7 prefetch operations, that is, on average, ave write(overall) =
7/12 ¼: 0.58 write operation and ave prefetch(overall) = 7/12 ¼:

0.58 prefetch operations per iteration.
5. TLP scheduling

In this section, we will first explain our TLP scheduling algo-
rithm in detail. Then, we will show some theorems to determine
the partition size, so that complete memory latency hiding can
always be achieved, while reducing write operation.
5.1. Algorithm

A TLP schedule consists of two parts, i.e., the processor part and
the memory part. The processor part of a schedule for one iteration
is generated by using the rotation scheduling algorithm. Rotation
scheduling is described in detail in [21], for scheduling cyclic DFGs
using loop pipelining. The rotation technique repeatedly trans-
forms a schedule into a more compact schedule. MD rotation,
which is described in [20], implicitly changes the schedule vector
and the execution sequence of the iterations to obtain a new com-
pact scheduling. Since we wish to maintain row-wise execution in
TLP scheduling, we schedule one iteration by using the one-dimen-
sional rotation technique instead of the MD rotation technique.

Scheduling of the memory part consists of several steps. First,
we need to decide a legal basic first level partition. Second, the
basic first level partition size is calculated to ensure an optimal
schedule. Third, iteration retiming is applied to transform the basic
first level partition into a retimed first level partition, so that all the
iterations can be scheduled in parallel. Fourth, we decide a legal
second level partition. Fifth, the second level partition size is calcu-
lated to ensure an optimal schedule. Last, both the processor part
and the memory part of a schedule are generated. We will elabo-
rate these steps.

A first level partition is identified by two first level partition
vectors, i.e., p1i and p1j, where p1i ¼ f i � p1i0 and p1j ¼ f j � p1j0.
While p1i0 and p1j0 determine the direction and shape of a first
level partition, f i and f j determine the size of a first level partition.
How to choose the vectors p1i0 and p1j0 to identify the shape of a
legal basic first level partition is discussed in detail in Section 4.
How to choose f i is shown in algorithm TLP. We will pay more
attention on how f j is chosen to achieve the goal of complete mem-
ory latency hiding, which means that the schedule length of the
memory part will always be less than or equal to the scheduling
length of the processor part.

After obtaining the direction and size of a basic first level parti-
tion, we apply Step 2 of the iteration retiming algorithm [16] to
transform the basic first level partition into a retimed first level
partition, so that all the iterations inside a retimed first level par-
tition can be executed in parallel. After a retimed first level parti-
tion is identified, we can partition the first level partition space
to obtain a second level partition.

Algorithm 1. Two-Level Partition (TLP) algorithm.

Input: An MDFG G ¼ ðV ; E; d; tÞ, the capacity of each SPM, and
the number of cores.

Output: A two level partition schedule that reduces the
number of write back operations and increases parallelism.

1: s rotation scheduling (G)
2: Ls the schedule length of s
3: /* find first level partition size and shape */
4: p1j0 ð0;1Þ
5: p1i0 CCW vector of all delays
6: obtain f i1 based on Theorem 5.1 where f j1=1
7: obtain f i2 based on Theorem 5.2 where f j1=1
8: if f i1 > f i2 then
9: f i0 f i2

10: obtain f j0 based on Theorems 5.1 and 5.2
11: if f j0 > 1 then
12: f j f j0; f i f i0

13: end if
14: if f j0 ¼ 1 then
15: f j 1; f i f i1

16: end if
17: end if
18: if f i1 6 f i2 then
19: f j 1; f i f i1

20: end if
21: P1i f i � p1i0

22: P1j f j � p1j0

23: obtain basic first level partition with P1i and P1j

24: call the iteration retiming algorithm to transform the
basic first level partition into a retimed first level partition

25: /* find second level partition size and shape*/
26: N number the cores
27: p2i ðN;�NÞ
28: p2i ð0;1Þ
29: do processor part scheduling
30: do memory part scheduling

Fig. 9. (a) The different first level partitions. (b) The memory part and processor part of a TLP schedule.

Fig. 10. (a) The MDFG of a Floyd filter. (b) The iteration space after first level partition. (c) The first level partition space after second level partition.

Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126 119
A second level partition is identified by two second level parti-
tion vectors, p2i and p2j, which determine the direction, size, and
shape of a second level partition. In this paper, p2i ¼ N � ð1; �1Þ
and p2j ¼ ð0; 1Þ. The second level partition vectors are legal,
because the first level partition ði; jÞ is independent of any another
first level partition ði; jþ kÞ; k P 1. For the scheduling order of the
first level partitions, we put the number of cores as the value of
N. For example, assuming that the input MDFG is to be run in
the hardware model shown in Fig. 3, which has 3 cores, we have
N ¼ 3. In other words, the second level partition vectors is
p2i ¼ ð3; �3Þ and p2j ¼ ð0; 1Þ. After a second level partition is iden-
tified, we can start to construct both the processor and memory
parts of a schedule. We construct these two parts of a schedule
by using write-back-data-pipelining (the scheme was described
in detail by Xue et al. [16]) and the Automatic Data Movement
scheme, which was explained by Baskaran et al. [29].
5.2. Schedule generation scheme

In this subsection, we will use an example to illustrate our
schedule generation scheme. We consider the Floyd filter executed
on a three-core processor. Fig. 10(a) shows the MDFG representa-
tion of the Floyd filter. The shape and size of the iteration space
of the Floyd filter after the first level partition is shown in
Fig. 10(b). Fig. 10(c) shows the second level partition. As seen from
the figure, we can obtain the first level partition vector ðPi1; Pj1Þ as
(4,1). There is no dependency between the first level partitions
within each partition.

With all the pieces now in place, we perform the TLP scheduling
algorithm by considering both levels separately. The first level par-
tition schedule of the Floyd filter, as shown in Fig. 11, consists of a
memory part and a processor part. For each first level partition, the
processor part of the schedule is generated in the default order. The

Fig. 11. (a) Iteration space. (b) First level partition schedule scheme.

120 Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126
memory part of the schedule is made up of write operation, pre-
fetch operation, and migration operation. Here, we only consider
the prefect operation and write operation. The memory executes
the write operation for the current first level partition and the pre-
fetch operations for the next first level partition. In the example,
we first perform the prefetch operations to prefetch the data need-
ed for iterations 8 and 9 in the next partition. Then, we schedule
the write operations to write back the data generated by iterations
6 and 7. However, the migration operation should be considered in
the multi-core processor. The memory part of different first level
partitions scheduled on second level partitions are different. The
difference depend on how many migration operations change into
memory part.

In the second level partition schedule, different first level parti-
tions are scheduled on different processing cores. The TLP algo-
rithm will take into account the latency for memory units to
finish the migration operations. As most of the data transferred
via migration operation will be used in the top first level partition.
Fig. 12 shows the second level partition schedule of the Floyd filter
shown in Fig. 10. Each second level partition is scheduled by three
multi-core processors, i.e., Core1, Core2, and Core3. Each first level
partition is executed the same core. In the memory part, different
SPM perform different memory schedules. Core1 will schedule the
prefetch operations and write operations. Core2 and Core3 will
schedule the prefetch operations, write operations, and migration
operations. Once we ensure that memory operations will be com-
pleted before the processor schedule is completed for the currently
partition, we can ensure that the updated data is in the right place
before the execution of the next second level partition. As a result,
data coherence among multiple cores processors is guaranteed
under TLP scheduling.
5.3. Partition size

To determine the partition size, we will first define the number
of data stored for top, next, and other first level partitions given a
first level partition size of f i and f j. The number of data stored
for top, next, and other first level partitions can be estimated by cal-
culating these shared areas, as shown Fig. 13, with respect to every
inter-iteration delay vector dk 2 D. Consider a delay vector
dk ¼ ðdki; dkjÞ in Fig. 13, all duplicate vectors originating in the
region PQVU will enter top first level partition, which is where data
are needed to store for executing the top first level partition. All
duplicate vectors originating in the region UVRS will enter other
first level partition, which is where write and prefetch operations
are needed. All duplicate vectors originating in the region VSWX
will enter next first level partition, which is where data are needed
to store for the next first level partition can be executed. We denote
the area of PQVU as Agoto top, UVRS as Agoto others, and VSWX as
Agoto next .

Lemma 5.1. Given a delay vector ðdki; dkjÞ, we have Agoto topðdkÞ ¼ dki

ðf j � dkjÞ, Agoto nextðdkÞ ¼ dkjðf i � dkiÞ, and Agoto othersðdkÞ ¼ dkidkj.
Proof. As shown by the shared areas in Fig. 13, we have

Agoto topðdkÞ ¼ areaðPQVUÞ ¼ dkiðf j � dkjÞ ð1Þ

Agoto nextðdkÞ ¼ areaðVSWXÞ ¼ dkjðf i � dkiÞ ð2Þ

Agoto othersðdkÞ ¼ areaðUVRSÞ ¼ dkidkj ð3Þ

The lemma is proven.

Summing up all of these areas for every distinct delay vector dk

2 D, we obtain the values of NUMnext;NUMtop, and NUMother as
follows:

NUMother ¼
X

dk

Agoto othersðdkÞ ¼
X

dk

ðdkiÞðdkjÞ 8dk ð4Þ

NUMtop ¼
X

dk

Agoto topðdkÞ ¼
X

dk

dkiðf j � dkjÞ 8dk ð5Þ

NUMnext ¼
X

dk

Agoto nextðdkÞ ¼
X

dk

dkjðf i � dkiÞ 8dk ð6Þ

From these definitions of the numbers of write/prefetch activities,
we know that they all are proportional to the size of f j and do not
change with f i. The number of data, which are needed to be stored
in SPM, is proportional to the size of f i and does not change with f j.
However, the size of SPM is a constraint, and therefore the data kept
in the SPM is limited. In order to hide the memory latency while
reducing write operation, we will try to have the optimal number

Fig. 12. TLP scheduling scheme.

Fig. 13. Calculating the number of delay edges crossing the boundary of the current partition.

Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126 121
of data stored into SPM for a first level partition executed. So we
will keep f i fixed and find the right f j to achieve an optimal sched-
ule, where the write operation is the least and memory latencies are
hidden completely. In this paper, the number of write operations for
a first level partition is NUMother and equals to the area of UVRS in
Fig. 13. The number of prefetch operations is equal to that of write
operations, because we only write back those data that we will ever
need to fetch from main memory. The number of migration opera-
tions for a first level partition is NUMtop and equals to the area of
PQVU in Fig. 13. However, the first core (core 1 in Fig. 12) does
not have migration operations, because all data generated by the
first core must be written into main memory to be used in the other
second level partition.

Theorem 5.1. Assume that the size of SPM is Ms, which has been
known. The following inequality is satisfied:

2NUMother þ NUMtop þ NUMnext 6 Ms:
Proof. The TLP algorithm requires that the SPM should be large
enough to hold all the data that are needed during the execution
of the first level partitions. The SPM requirement consists of two

122 Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126
categories, i.e., storing all data generated by the current first level
partition in the SPM, and prefetching all data required to execute
the next first level partition into the SPM. The former includes those
data stored for the next first level partition, stored for the top first
level partition, and stored for the other first level partitions. There-
fore, the SPM needed for the former is NUMother þ NUMtopþ
NUMnext . The latter includes all data generate by previous first par-
titions that have been executed and needed to execute the next first
level partition. Since the data which are generate by the current first
level partition and needed to execute the next first level partition are
already kept in SPM, prefetching of these data is not required. Thus,
the SPM needed for the later is NUMother . Finally, the SPM needed to
execute this first level partition is 2NUMother þ NUMtop þ NUMnext .
Since the size of SPM is Ms and the SPM should be large enough
to hold all the data that are needed during the execution of the first
level partitions, the equality in Theorem 5.1 is satisfied. The
theorem is proven.

From Theorem 5.1, we can obtain the set of first level partition
sizes ðf i; f jÞ which meets the requirement that the SPM should be
large enough to hold all the data that are needed during the execu-
tion of the first level partitions. However, the TLP scheduling algo-
rithm requires that memory latencies are hidden completely while
reducing write operation. Therefore, the product of f i and f j must
be less than certain numeric value, because the schedule length
of the memory part must be not longer than that of the processor
part at any time. The following theorem shows how we can use the
above lemma and theorem to find the partition factors of f i and f j.

Theorem 5.2. To achieve full parallelism, the following inequality
must be satisfied:

ðNUMtop þ NUMotherÞTwþ NUMother � Tpre 6 Ls � f i � f j;

where Tw represents the time required for a write operation, Tpre rep-
resents the time required for a prefetch operation, and Ls represents the
schedule length of one iteration.
Proof. In our algorithm, all first level partitions, which are located
in the same second level partition, are executed in parallel. This
causes different first level partitions having different prefetch/write
operation. Therefore, the schedule lengths of different cores’ mem-
ory part show different values. For memory latencies to be hidden
completely, the maximum of all schedule lengths of the memory
part must be no longer than any schedule length of the processor
part. In the memory part of a TLP schedule, the maximum length
is that of top first level partition in a second level partition, because
it must write the number (NUMtop+NUMother) of data to the main
memory and prefetch the number NUMother of data to SPM. In the
memory part of a schedule, the maximum schedule length consists
of a prefetch part and a write-back part. The length of a prefetch
part is NUMother � Tpre and the length of a write-back part is
ðNUMtop þ NUMotherÞTw. Therefore, the left-hand side of the above
inequality is the maximum schedule length of a memory part. In
the right-hand side of the above inequality, Ls represents the sched-
ule length of one iteration, and f i � f j represents the number of itera-
tions to be executed by each core. Hence the right-hand side
represents the length of the processor part of a schedule. To achieve
full parallelism, it is required that the maximum schedule length of
the memory part must be less than that of the processor part. This
way, we can guarantee that the memory part of the schedule is not
longer than the processor part at any time. Therefore, the inequality
in Theorem 5.2 must be satisfied. The theorem is thus proved.

We have finished our discussion on the size of the first level
partition. However, it is not enough for designing a real system.
When designing a real system, a designer must use the SPM whose
size is fit to implement the proposed TLP schedule. Therefore, we
propose Theorem 5.3 and 5.4 to further restrict the partition fac-
tors f i and f j.

For ease of presentation, let us turn the inequality in Theo-
rem 5.1 to an equality and call it Eq. 5.1. Similarly, we turn the
inequality in Theorem 5.2 to an equality and call it Eq. 5.2.

Theorem 5.3. We obtain f i1 based on Theorem 5.1 and f i2 based on
Theorem 5.2, with f j1 ¼ f j2 ¼ 1. If f i1 > f i2, there exists a pair ðf i; f jÞ
which satisfies both Theorem 5.1 and Theorem 5.2. In other words, we
can minimize the write operation while achieving full parallelism.
Proof. The basic idea of the proof is to show that Eq. 5.1 and Eq.
5.2 have at least two common points, and therefore, there is a
nonempty common region of points which satisfy the inequalities
of both Theorem 5.1 and Theorem 5.2. From the above lemmas and
theorems, we know that f i linearly depends on f j. Furthermore, the
inequality of Theorem 5.1 implies that the greater f j is, the smaller
f i is. The inequality of Theorem 5.2 implies that f i is inversely pro-
portional to f j. Since the left-hand side of the inequality in Theo-
rem 5.1 is less than the right-hand side, a pair ðf i1; f j1Þ that
satisfies the inequality of Theorem 5.1 must be under the curve
of Eq. 5.1. Furthermore, there must be a pair ð0; kÞ which satisfies
Theorem 5.1, where k is a constant value. A pair ðf j2; f i2Þ which sat-
isfies the inequality of Theorem 5.2 must be located in the first
quartile of the plane of f j and f i, and are located above the curve
of Eq. 5.2. Therefore, f j1 ¼ f j2 ¼ 1 and f i1 > f i2 imply that there
exists a shared pair ðf i; f jÞ satisfying both Theorem 5.1 and Theo-
rem 5.2. This is because there exists a shared point ðu1;v1Þ located
on the curve of Eq. 5.1 as well as located on the curve of Eq. 5.2.
Since f j approaches 0 when f i is infinitely large in Eq. 5.2, there
must exist anothershared point ðu2;v2Þ satisfying Eq. 5.1 and Eq.
5.2. Therefore, there must exist a pair ðf i; f jÞ which satisfies Theo-
rem 5.1 and Theorem 5.2. In other words, if f i1 > f i2 and
f j1 ¼ f j2 ¼ 1, we must be able to find a pair ðf i; f jÞ that can minimize
write operation while achieving full parallelism. This proves the
theorem.

From Theorem 5.3, we can easily reach Theorem 5.4.

Theorem 5.4. If f i1 < f i2, we cannot find a pair which satisfies
Theorem 5.1 as well Theorem 5.2. In other words, we cannot obtain a
schedule that can minimize write operation while achieving full
parallelism.

By presenting the above theorems, we have finished our discus-
sion on the first level partition size. In general, we use Theorem 5.1
and Theorem 5.2 to obtain the partition size. However, if there are
large SPM accessing number, we obtain the partition size only by
Theorem 5.1. Theorem 5.4 illustrates that when the situation of
large SPM accessing number occurs, we cannot obtain a schedule
that can completely hide memory latency. Therefore, the schedule
length is decided by the schedule length of memory part, and the
performance should be decreased when there are large SPM
accessing number. In a TLP schedule, the second level partition
vectors are fixed, and the second level partition size is only related
to the number of cores.

6. Experiments

In this section, we present our experimental results. The effec-
tiveness of the TLP algorithm is evaluated by running the DSPStone
benchmarks which are found in [13]. The following DSP bench-
marks with two-dimensional loops are used in our experimental:

Table 1
Benchmarks information.

Benchmark Nodes Edges Benchmark Nodes Edges

IIR 16 23 WDF(1) 12 16
FLOYD(1) 16 20 WDF(2) 48 72
FLOYD(2) 64 80 DPCM(1) 16 23
FLOYD(3) 144 180 DPCM(2) 64 92
2D 34 49 DPCM(3) 144 207

Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126 123
WDF (Wave Digital Filter), IIR (Infinite Impulse Response filter), 2D
(Two Dimensional filter), Floyd (Floyd–Steinberg algorithm), and
DPCM (Differential Pulse-Code Modulation device). Table 1 shows
the number of nodes and the number of edges of each benchmark.
The DFGs are all extracted from the gcc compiler and then fed into
a custom simulator framework which is similar to CELL Processor.

In the proposed simulator framework, there are 3 cores and
each core has 3 ALUs and a SPM with capacity of 32 KB, and the
main memory size is 32 MB. In the proposed simulator framework,
we use a circular data bus similar to the Cell processor’s Element
Interconnect Bus (EIB). Each processor takes 1 time unit for a com-
putation operation. Reading a datum from other cores’ SPM takes 1
time unit. Reading a datum from the main memory takes 2 time
units. Writing a datum to the main memory takes 4 time units.
All the experiments are conducted by a simulator framework,
which is similar to Cell processor, on an Intel core 2 Duo Processor
E7500 2.93 GHz processor and 1 GB memory running ubuntu-
12.10.

We performed experiments on four algorithms to show the
effectiveness of TLP. They are list scheduling, rotation scheduling
[6], PSP scheduling [4], IRP scheduling [13]. List scheduling is the
most traditional algorithm. It is a greedy algorithm that seeks to
schedule a MDFG node as early as possible while satisfying the
data dependence and resource constraints. Rotation scheduling
attempts to get a more compact scheduling with resource con-
straints. In our experiment, we use list scheduling to schedule
the ALU operations, but the memory is not partitioned. PSP
scheduling attempts to balance the computation and communica-
tion for MDFG. IRP algorithm attempts to completely hide memory
latencies for applications with MD loops on architectures like CELL
processor. However, the PSP and IRP scheduling algorithms do not
account the capacity of local memory. In this paper, the memory
operations include write operations, prefetch operations, and
migration operations. The cost of migration operations is far less
than that of prefetch and write operations. And the number of
Fig. 14. (a) The time. (b)
prefetch operations is equal to that of write operations. Therefore,
although both prefetch and write operations are important for
schedule length, we only choose the write operations as the
objective.

Figs. 14(a) and 15(a) show the results of the TLP scheduling
algorithm compared with the List, Rotation, PSP, and IRP schedul-
ing algorithms in the schedule length of each iteration for DPCM
and Floyd. From the two figures, we see that TLP and IRP are better
than the other three algorithms in schedule length. If the number
of nodes in each iteration is small and a SPM has enough capacity,
a TLP schedule has the same schedule length as an IRP schedule.
However, if the number of nodes in each iteration is large and a
SPM does not have enough capacity, a TLP schedule is superior to
an IRP schedule. Figs. 14(b) and 15(b) show the results of the TLP
scheduling algorithm compared with the List, Rotation, PSP, and
IRP algorithms in the number of write operation of each iteration.
From the two figures, we see that TLP is better than all other four
algorithms.

The TLP scheduling algorithm is further compared with the List
scheduling algorithm (the weakest of the known algorithms), and
the IRP scheduling algorithm (the strongest of the known algo-
rithms), which is widely applied to MD loop partition schedule to
achieve full parallelism with consideration of write operation.
Table 2 and Fig. 16 show the comparison results. The schedule
length per iteration comparison results are shown in Fig. 16(a).
In our experiment, we assume that

LB ¼ Ls
Ncore

� Talu

� �
ð7Þ

indicates the average schedule length per iteration of the TLP algo-
rithm, and len represents the average schedule length per iteration
of the List scheduling or the IRP scheduling algorithm. As we can
see, it is clear that the TLP scheduling algorithm is superior to the
List scheduling and IRP scheduling algorithms. We compare TLP
scheduling with List scheduling and IRP scheduling via computing
the

ratio ¼ LB
len

ð8Þ

respectively. We can observe that the average ratios of the length of
a TLP schedule to those of a List schedule and an IRP schedule are
17.75% and 76.30%, respectively.

Fig. 16(b) shows the write operation comparison results
between the three scheduling algorithms. We assume that Nwrite
The write operation.

Fig. 15. (a) The time. (b) The write operation.

Table 2
Experimental results of DSP filter benchmarks (Talu ¼ 1; Tpre ¼ 2; Tw ¼ 4, and Nalu ¼ 3).

Benchmark TLP List IRP

Ls LB Navg Len Ratio (%) Nw Ratio (%) Len Ratio (%) Nw Ratio (%)

IIR 6 2 0.52 36 5.6 6 9.3 2.00 100.0 0.82 63.4
2D 12 6 0.92 24 25.0 4 23.0 8.42 71.3 1.57 58.6
WDF(1) 4 2 0.27 24 8.3 4 6.8 2.00 100.0 0.50 54.0
WDF(2) 16 6 0.89 30 20.0 5 17.8 11.40 52.6 2.00 44.5
DPCM(1) 6 2 0.52 24 8.3 4 13.0 2.00 100.0 0.82 63.4
DPCM(2) 22 8 1.50 24 33.3 4 30.5 15.00 53.3 3.00 50.0
DPCM(3) 48 16 3.22 48 33.3 6 50.0 26.80 59.7 5.80 55.5
FLOYD(1) 6 2 0.52 24 8.3 4 13.0 2.50 80.0 0.83 62.7
FLOYD(2) 22 8 1.22 54 14.8 9 16.7 13.00 61.5 2.75 44.4
FLOYD(3) 46 16 2.50 78 20.5 13 14.8 19.00 84.2 5.00 50.0

Average ratio – 17.75 – 19.50 – 76.30 – 54.65

Fig. 16. Experimental results. (a) Schedule length comparison between the three schedules. (b) Write operation comparison between the three schedules.

Table 3
NVIDIA GeForce 8800 GPU GTS system specification.

Component Description

GPU core Number of ALU: 12; Frequency: 1.5 GHz
SRAM SPM Size: 64 K; Migration latency: 100 ns; Migration energy:

1.72 nJ
Main

memory
Size: 782 M; Access latency: 300 ns; Access energy: 9.41 nJ

124 Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126
indicates the number of write operation in a second level partition,
and

Navg ¼
Nwrite

NiterNcore

� �
ð9Þ

is the average number of write operation per iteration, and Nw is the
number of write operation per iteration of the List scheduling or the
IRP scheduling algorithm. The following ratio compares the write

Table 4
Experimental results of DSP filter benchmarks on NVIDIA GeForce 8800 GTS GPU.

Bench. TLP List IRP

f i � f j Ls LB Navg Len Ratio (%) Nw Ratio (%) Len Ratio (%) Nw Ratio (%)

IIR 14� 2 40 5 0.13 305 1.64 6 2.17 6.02 83.05 0.28 46.43
2D 6� 2 60 8 0.34 324 2.47 4 8.50 11.03 72.53 1.83 18.58
WDF(1) 10� 4 20 3 0.05 310 0.97 4 1.25 4.06 73.89 0.17 29.41
WDF(2) 6� 2 80 10 0.21 330 3.03 5 4.20 12.40 80.64 0.60 35.00
DPCM(1) 18� 1 40 5 0.18 310 1.94 4 4.50 6.12 81.69 0.31 58.06
DPCM(2) 9� 3 120 15 0.62 340 4.41 4 15.50 22.61 66.34 1.18 52.54
DPCM(3) 6� 3 240 30 2.82 440 6.82 6 47.00 56.80 52.81 4.89 57.67
FLOYD(1) 11� 2 40 5 0.18 310 1.94 4 4.50 6.12 81.69 0.31 58.06
FLOYD(2) 6� 2 120 15 0.72 350 4.28 9 8.00 26.02 57.50 1.75 41.14
FLOYD(3) 3� 3 240 30 2.05 480 6.25 13 15.76 59.00 50.85 4.62 44.37

Average ratio – 3.38 – 11.14 – 70.10 – 44.13

Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126 125
operation in a TLP schedule with that in a List schedule and an IRP
schedule, that is,

ratio ¼ Navg

Nw
: ð10Þ

As we can see, it is clear that the number of write operation in a TLP
schedule is less than that in a List schedule and an IRP schedule. The
average ratios of the write operation of a TLP schedule to those of a
List schedule and an IRP schedule are 19.50% and 54.65%,
respectively.

To see the effects of different execution time and memory laten-
cy, we conducted a set of experiments, assuming that the processor
is similar to NVIDIA GeForce 8800 GPU GTS. In NVIDIA GeForce
8800 GPU GTS, there are 12 cores. A set of parameters collected
from NVIDIA GeForce 8800 GPU GTS by CACTI tools are shown in
Table 3.

The experimental results are shown in Table 4. We can see that
the TLP algorithm still outperforms the List scheduling and the IRP
scheduling algorithms. The average ratios of the length of a TLP
schedule to those of a List schedule and an IRP schedule are
3.38% and 70.10%, respectively. The average ratios of the write
operation of a TLP schedule to those of a List schedule and an IRP
schedule are 11.14% and 44.13%, respectively. Comparing Table 2
and Table 4, we can see that the TLP algorithm tends to create a
large first level partition in order to compensate the long latency
when the memory latency is increased, and improvement over
the List scheduling and the IRP scheduling algorithms becomes
more obvious.
7. Conclusion

In this paper, we propose a new MD loop scheduling algorithm
called TLP. The algorithm employs a two level partition technique.
TLP can reduce write operation and completely hide memory
latency for multicore architectures. The experimental results show
that our proposed algorithm is superior to the existing List, Rota-
tion, PSP, and IRP algorithms. The TLP scheduling algorithm can
reduce write operation to the main memory by
ð100� 54:65Þ% ¼ 45:35% and reduce the schedule length by
ð100� 76:3Þ% ¼ 23:7% compared with the IRP scheduling algo-
rithm, the best known algorithm.

For further research, we plan to extend the TLP algorithm by
investigating two intriguing issues. First, we will upgrade TLP to
schedule tasks in MD DSP applications which finds an optimal
solution. Second, we will apply the dynamic programming and
the branch-and-bound approaches to scheduling MD DSP applica-
tions in heterogeneous computing systems. Furthermore, we will
take account of the impact of register allocation on the schedule
length of a benchmark in the future work. Registers have a number
of advantages such as reducing scheduling length, saving storage,
and improving the instruction-level parallelism. However, during
compilation, the compiler must decide how to allocate variables
to a small set of registers. Excessive parallelism will lead to a lot
of spill code as variables cannot be stored simultaneously in the
registers. It will affect the schedule length of a benchmark. There
are two reasons: First, two variables/codes in use at the same time
cannot be assigned to the same register without corrupting its val-
ue. Parallelism will increase the number of variables/codes in use.
Second, the capacity of registers is limited. The variables and codes
which can be stored in registers are limited. Excessive parallelism
will increase the number of codes, which will result in a lot of spill
codes and variables. It will increase the schedule length of memory
part and slows down the execution speed of the compiled program.
Therefore, we will exploit a high-performance partition scheme to
avoid the impact of registers on the schedule length of a
benchmark.

Acknowledgments

The authors would like to thank the two anonymous reviewers
for their comments which have helped to improve the manuscript.
The research was partially funded by the Key Program of National
Natural Science Foundation of China (Grant Nos. 61133005,
61432005), and the National Natural Science Foundation of China
(Grant Nos. 61370095, 61472124, 61402400).

References

[1] Andrea Marongiu, Paolo Burgio, Luca Benini: Fast and Lightweight Support for
Nested Parallelism on Cluster-based Embedded Many-cores. DATE 2012: 105–
110.

[2] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, D. Burger, Clock rate versus IPC: the
end of the road for conventional microarchitectures, in: Proceedings of the
27th Intl. Symp. on Computer Architecture, June 2000.

[3] J.A. Kahle, M.N. Day, H.P. Hopstee, C.R. Johns, T.R. Maeurer, D. Shippy,
Introduction to the cell multiprocessor, IBM J. Res. Dev. 49 (2005).

[4] Fei Chen, Timothy W. O’Neil, Edwin H.-M. Sha, Optimizing overall loop
schedules using prefetching and partitioning, IEEE Trans. Parallel Distrib. Syst.
11 (6) (2000) 604–614.

[5] C. Xue, Z. Shao, M. Liu, M. Qiu, Edwin H.-M. Sha, Optimizing nested loops with
iterational and instructional retiming, J. Embedded Comput. (JEC) (2006).

[6] S. Tongsima, C. Chantrapornchai, N. Passos, Edwin H.-M. Sha, Efficient loop
scheduling and pipelining for applications with non-uniform loops, IASTED Int.
J. Parallel Distrib. Syst. Networks 1 (4) (1998) 204–211.

[7] Preeti Ranjan Panda, Nikil D. Dutt, A. Nicolau. Efficient utilization of scratch-
pad memory in embedded processor applications, in: Proceedings of the 1997
European Design and Test Conference (EDTC ’97), pp. 1066–1409.

[8] Udayakumaran, Sumesh, Dominguez, Angel, Barua, Rajeev. Dynamic allocation
for scratch-pad memory using compile-time decisions. ACM Transactions on
Embedded Computing Systems (TECS), pages. 472–511. 2006.

[9] Ke Bai, Jing Lu, Aviral Shrivastava, Bryce Holton, CMSM: an efficient and
effective code management for software managed multicores, in: CODES+ISSS
2013.

[10] Jing Lu, Ke Bai, Aviral Shrivastava, SSDM: Smart Stack Data Management for
Software Managed Multicores (SMMs), in: DAC 2013.

http://refhub.elsevier.com/S1383-7621(15)00004-1/h0030
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0030
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0035
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0035
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0035
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0040
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0040
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0045
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0045
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0045

126 Y. Wang et al. / Journal of Systems Architecture 61 (2015) 112–126
[11] Ke Bai, Aviral Shrivastava, Automatic and efficient heap data management for
limited local memory multicore architectures, in: DATE 2013.

[12] Q. Wang, N. Passos, Edwin H.-M. Sha, Minimization of memory access
overhead for multi-dimensional DSP applications via multi-level partitioning
and scheduling, IEEE Trans. Circuits Syst. II 44 (9) (1997) 741–753.

[13] C. Xue, Z. Shao, M. Liu, M. Qiu, E.H.-M. Sha. Loop scheduling with complete
memory latency hiding on multi-core architecture, in: Proc. The 12th IEEE
International Conference on Parallel and Distributed Systems (ICPADS 2006),
Minneapolis, MN, July 2006, pp. 375–382.

[14] A. Agarwal, D.A. Kranz, V. Natarajan, Automatic partitioning of parallel loops
and data arrays for distributed shared-memory multiprocessors, IEEE Trans.
Parallel Distrib. Syst. 6 (1995) 943–962.

[15] M.E. Wolf, M.S.A. Lam, Data locality optimizing algorithm, in: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2, 1991, pp. 30–44.

[16] C. Xue, J. Hu, Z. Shao, E.H.-M. Sha, Iterational Retiming with Partitioning: Loop
Scheduling with Complete Memory Latency Hiding in ACM Transaction on
Embedded Computing System (TECS), 9(3), Feb. 2010, pp. 1–26.

[17] C. Xue, Z. Shao, M. Liu, E.H.-M. Sha, Iterational retiming: Maximize iteration-
level parallelism for nested loops, Accepted, in: Proc. The 2005 ACM/IEEE/IFIP
International Conference on Hardware – Software Codesign and System
Synthesis (ISSS-CODES’05), New York, New York, Sept. 2005.

[18] Z. Wang, M. Kirkpatrick, E.H.-M. Sha, Optimal two level partitioning and loop
scheduling for hiding memory latency for DSP applications, in: Proc. ACM 37th
Design Automation Conference, Los Angeles, California, June 2000.

[19] Jenny Qingyan Wang, Edwin Hsing-Mean Sha Nelson Luiz Passos,
Minimization of Memory Access Overhead for Multi-Dimensional DSP
Applications via Multi-Level Partitioning and Scheduling. IEEE Transactions
on Circuits and Systems II, 44(9), September 1997, pp. 741–753.

[20] N. Passos, Edwin Hsing-Mean Sha, Achieving full parallelism using multi-
dimensional retiming, IEEE Trans. Parallel Distrib. Syst. 7 (11) (1996) 1150–
1163.

[21] L.F. Chao, Edwin Hsing-Mean Sha, Retiming and Unfolding Data-Flow Graphs.
International Conference on Parallel Processing, St. Charles, Illinois, August
1992, pp. II 33–40.

[22] P. Zhou, B. Zhao, J. Yang, Y. Zhang, A durable and energy efficient main memory
using phase change memory technology, in: ISCA 09, Austin, Texas, USA, 2009.

[23] M.K. Qureshi, V. Srinivasan, J.A. Rivers, Scalable High Performance Main
Memory System Using Phase-Change Memory Technology, ISCA09, June 20–
24, 2009, Austin, Texas, USA.

[24] F. Dahlgren, M. Dubois, Sequential hardware prefetching in shared-memory
multi-processors, IEEE Trans. Parallel Distrib. Syst. (1995) 733–746.

[25] M.K. Tcheun, H. Yoon, S.R. Maeng, An adaptive sequential prefetching scheme
in shared-memory multiprocessors, in: Proceedings of the International
Conference on Parallel Processing, 1997, pp. 306–313.

[26] J. Philbin, J. Edler, O. Anshus, C. Douglas, K. Li, Thread scheduling for cache
locality, Comput. Architect. News 24 (1996) 60–71.

[27] Z. Wang, E.M. Sha, Y. Wang, Partitioning and scheduling DSP applications with
maximal memory access hiding, Eurasip J. Appl. Signal Process. 9 (2002) 926–
935.

[28] Z. Wang, Q. Zhuge, E.-M. Sha, Scheduling and partitioning for multiple loop
nests, in: Proceedings of the International Symposium on System Synthesis,
2001, pp. 183–188.

[29] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, P.
Sadayappan, Automatic Data Movement and Computation Mapping for Multi-
level Parallel Architectures with Explicitly Managed Memories, ACM SIGPLAN
PPoPP 2008.

[30] M. Qiu, J. Wu, Loop Scheduling and assignment with prefetching to minimize
energy while hiding memory latencies, in: ACM GLSVLSI, Orlando, Florida, May
2008.

Yan Wang received her BSc in Information management
and Information techniques from Shenyang Aerospace
University in 2010. She is currently a PhD candidate in
Hunan University, China. Her research interest includes
modeling and scheduling for parallel and distributed
computing systems, high performance computing.
Kenli Li received the PhD in computer science from
Huazhong University of Science and Technology, China,
in 2003, and the MSc in mathematics from Central
South University, China, in 2000. He was a visiting
scholar at University of Illinois at Champaign and
Urbana from 2004 to 2005. Now, he is a professor of
Computer science and Technology at Hunan University,
a senior member of CCF. His major research includes
parallel computing, Grid and Cloud computing, and DNA
computer.
Keqin Li received B.S. degree in computer science from
Tsinghua University, Beijing, China, in 1985, and Ph.D.
degree in computer science from the University of
Houston, Houston, Texas, USA, in 1990. He was an
assistant professor (1990–1996), an associate professor
(1996–1999), a full professor (1999–2009), and has
been a SUNY distinguished professor of computer sci-
ence since 2009 in State University of New York at New
Paltz. He was the acting chair of Department of Com-
puter Science during Spring 2004. He is also an Intel-
lectual Ventures endowed visiting chair professor at the
National Laboratory for Information Science and Tech-

nology, Tsinghua University, Beijing, China.

http://refhub.elsevier.com/S1383-7621(15)00004-1/h0080
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0080
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0080
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0090
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0090
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0090
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0120
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0120
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0120
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0140
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0140
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0150
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0150
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0155
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0155
http://refhub.elsevier.com/S1383-7621(15)00004-1/h0155

	Minimizing write operation for multi-dimensional DSP applications via a two-level partition technique with complete memory latency hiding
	1 Introduction
	2 Related work
	3 A motivational example
	4 Basic concepts and definitions
	4.1 Hardware model
	4.2 Modeling nested loops
	4.3 Partition the iteration space and iterational retiming
	4.4 Partition the first partition space
	4.5 TLP algorithm framework

	5 TLP scheduling
	5.1 Algorithm
	5.2 Schedule generation scheme
	5.3 Partition size

	6 Experiments
	7 Conclusion
	Acknowledgments
	References

