
1 23

International Journal of Parallel
Programming

ISSN 0885-7458
Volume 45
Number 4

Int J Parallel Prog (2017) 45:827-852
DOI 10.1007/s10766-016-0445-2

Partition Scheduling on Heterogeneous
Multicore Processors for Multi-dimensional
Loops Applications

Yan Wang, Kenli Li & Keqin Li

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Int J Parallel Prog (2017) 45:827–852
DOI 10.1007/s10766-016-0445-2

Partition Scheduling on Heterogeneous Multicore
Processors for Multi-dimensional Loops Applications

Yan Wang1,2 · Kenli Li2 · Keqin Li2

Received: 10 November 2015 / Accepted: 7 July 2016 / Published online: 15 July 2016
© Springer Science+Business Media New York 2016

Abstract This paper addresses the scheduling problem for multi-dimensional loops
applications on heterogeneous multicore processors. In the multi-dimensional loops
scheduling problem, a significant issue is how to hide memory latency to reduce
the schedule length. With the increasing CPU speed, the gap between the processor
and memory performance is an important bottleneck for modern high-performance
computer systems. To solve the bottleneck problem, a variety of techniques have
been studied to hide memory latency from intermediate fast memories (caches) to
various prefetching and memory management techniques. Although there are a lot of
algorithms in the literature to solve the scheduling withmemorymanagement problem
for multiprocessor systems, they may not deliver good quality with high performance
for heterogeneous multicore processors. In this paper, we first propose a scheduling
algorithm Recom_Task_Assign to reduce the write activities to main memory. Then,
in conjunction with the Recom_Task_Assign algorithm, we present a new partition
scheduling algorithm called heterogeneous multiprocessor partition (HMP) based on
the prefetching technique for heterogeneous multicore processors, which can hide
memory latencies for applications with multi-dimensional loops. This technique takes
advantage of memory access pattern information and fully considers the heterogeneity

B Yan Wang
bessie11@yeah.net

Kenli Li
lkl@hnu.edu.cn

Keqin Li
lik@newpaltz.edu

1 School of Computer Science and Educational Software, Guangzhou University, Guangzhou,
China

2 College of Information Science and Engineering, Hunan University, Changsha 410082, China

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0445-2&domain=pdf

828 Int J Parallel Prog (2017) 45:827–852

of processors to achieve high processor utilization. Our HMP algorithm selects the
appropriate partition size and shape according to different processors, which increases
processor utilization and reduces memory latency. Experiments on DSP benchmarks
show that our algorithmcan efficiently reducememory latency and enhance parallelism
compared with existing methods.

Keywords Heterogeneousmulticore processor ·Memory latency ·Multi-dimensional
loops · Scheduling

1 Introduction

1.1 Motivation

Heterogeneous multicore processor systems, which adopt multicore processors and
systems on chip, have gained popularity to meet ever increasing demands of high-
performance computing. One of the increasingly significant performance bottlenecks
of modern high-performance heterogeneous multicore processor system is mem-
ory latency, due to the gap between the processor and memory speeds continues
to grow. Minimizing schedule length and power consumption are also big chal-
lenges to heterogeneous multicore processors. As a result, a variety of software
managed memory techniques [6,24,31] have been studied to find an efficient solu-
tion for obtain a high performance. Data prefetching scheme [8] is an efficient
softwaremanagedmemory technique to reducememory latency via overlappingmem-
ory access operations with processor computations. In this paper, we address the
multi-dimensional scheduling problem based on the software prefetching technique
to hide memory latency. A large number of applications, such as DSP applica-
tion, involve multi-dimensional problems. The multi-dimensional problems involve
more than one dimension and are characterized by nested loops with uniform data
dependencies. These characteristics of multi-dimensional problems make the issue
of loop scheduling essential to improve performance of heterogeneous multicore
processor systems. To find a well planned solutions, we propose a scheme, i.e.,
the heterogeneous multiprocessor partition (HMP) algorithm. The HMP algorithm
generate a multi-dimensional loop scheduling with software prefetching scheme in
such way to achieve full parallelism at iteration level and to hide memory latency
completely.

The HMP algorithm can be applied in heterogeneous multicore processor systems
with three levels of memory. These three levels of memory are abstracted as local
memory, main memory, and remote memory. We assume that each processor consists
of multiple cores and multiple memory units. The processing core works on com-
putations and the memory units perform memory operations such as prefetch data
from various types of memories. All processors are connected by a shared bus or a
high-speed channel. The real-world examples of such systems are blade servers and
Tianhe-1. Given an application, the HMP algorithm generates a two-part schedule,
one for the processing cores and the other for the memory units. In the processing
core part, the HMP algorithm will call Recom_Task_Assign algorithm, is developed

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 829

to reduce the execution cost of each iteration. The memory part of a schedule adopts
the partition techniques based on software prefetching scheme. Memory operations
are arranged by the memory part of a schedule, so that all the data of computational
tasks are prefetched into the main memory in advance. Since both parts of a schedule
are executed simultaneously, the memory latency is hidden by overlapping with the
processing core executions.

1.2 Related Work

There have been a lot of research effort on allocating and scheduling in heterogeneous
multiprocessor systems [2,9,12,13,15,35,36]. The loop scheduling problem driven
by overlapping computation and communication in heterogeneous multiprocessor
systems has been studied in [3,4,34,37,40]. In these work, the authors exploited a
scheduling and workload balancing scheme for execution of loops having dependent
or independent iterations on heterogeneous multiprocessor systems. However, when
performing multi-dimensional loop applications in a heterogeneous multiprocessor
system, the effect of most previous work is not satisfactory. Also, the scheduling
schemes do not make full use of memory requirements and information of a hetero-
geneous multiprocessor system.

In order to better overlap computation and communication for high performance,
many researches have turned to software managed memory techniques for solutions
[5,16,19,23,30,33]. In thesework, prefetching is a significant technique that can toler-
ate the large latency of memory access for achieving high processor utilization. These
prefetching techniques can be classified into three categories, i.e., those based on soft-
ware [1,20,24], hardware [8,11,14], or both [7,41,43]. Software-based prefetching
techniques depend on compiler techniques to analyze a program statistically and insert
explicit prefetch instructions into the program code. In hardware-based prefetching
techniques, the prefetching activities are controlled solely by the hardware and depend
on the dynamic information available during program execution. However, the three
prefetching techniques scarcely consider the processor part of the scheduling. In het-
erogeneous multicore processor systems, solely considering the prefetching is not
enough for improving the overall system performance.

Both processor part andmemorypart are importance for improveperformance, there
have been various researches considering both scheduling and software prefetching
scheme in multi-dimensional problems at the same time [21,25,27,28]. In [26], the
authors considered the problem of scheduling parallel loops whose iterations operate
on large array data structures and proposed a general parallel loop implementation
template for message-pass distributed memory multiprocessors. Liu and Abdelrah-
man [22] develop a compiler transformation, which overlaps the communication time
resulting form memory access with the computation time in parallel loops to effec-
tively hide the latency of the remote accesses, that improves the performance of parallel
programs on Network-of-Workstation shared memory multiprocessors. Qiu et al. [29]
proposed an efficient algorithm, Energy Aware Loop Scheduling with Prefetching
and Partition to maximize energy saving while hiding memory latency with the com-
bination of loop scheduling, data prefetching, memory partition, and heterogeneous
memory module type assignment.

123

Author's personal copy

830 Int J Parallel Prog (2017) 45:827–852

In this paper, the partition technique is incorporated into the HMP algorithm based
on the prefetching technique to hide memory latency. Partition techniques divide the
entire iteration space into multiple partitions, and then execute partitions one by one.
Partitioning to minimize communication in distributed memory multiprocessors to
support task level parallelism for real-time applications were investigated in [32].
In [38], the partitioning techniques are adopted to increase data locality. In [10],
the authors used the partitioning technique to reduce memory stalls and improve
computation parallelization. In [39], iterational retiming is used in conjunction with
partition techniques. The authors proposed a new loop scheduling with memory man-
agement technique that can completely hide memory latency for applications with
multi-dimensional loops on architectures like the CELL processor. However, these
previous techniques only explore instruction level parallelism and are not able to be
applied in heterogeneous multiprocessors.

1.3 Our Contributions

In the present paper, we propose a new loop partition scheduling algorithm with
memory management techniques to hide memory latency and increase parallelism for
multi-dimensional loops applications on heterogeneous multicore processor systems.
In our HMP algorithm, the Recom_Task_Assign algorithm is used in conjunction with
a partition technique. The Recom_Task_Assign algorithm can obtain a good com-
putational task assignment for each multicore processor. Then, the HMP algorithm
partitions the iteration space into different partitions according to the computational
task assignment on each multicore processor. We experiment with the HMP algorithm
on a set of benchmarks and compare the HMP algorithm with the IRP algorithm [39]
and the List scheduling algorithm, which is the most traditional algorithm. According
to the experimental results, the HMP algorithm has better performance compared with
the IRP and the List scheduling algorithms. The average schedule length obtained by
the HMP algorithm is 48.67 and 16.8% of that obtained by using the IRP and the
List scheduling algorithms, respectively. The experimental results show that overlap-
ping processor computation time and memory access time by partitioning the iteration
space is essential for hiding the memory latency.

1.4 Computational Model

The major contributions of this paper include the following aspects.

– To the best of the authors’ knowledge, this is the first paper to explore the memory
latency problem for heterogeneous multicore processor systems with multiple
levels of memory.

– By combining recomputing and a one-dimensional retiming technique,we propose
a novel loop scheduling technique to reduce memory store activity.

– We propose a new multi-dimensional loops scheduling algorithm with memory
management techniques, i.e., the HMP algorithm, for heterogeneous multicore
processor systems, which can generate a two-part schedule and effectively hide
memory latency.

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 831

The rest of this paper is organized as follows. The computational model and the
architecture model used in this paper are described in Sect. 2. The main algorithms
are developed and illustrated in detail in Sect. 3. The relationship between partition
size and memory requirements is investigated in Sect. 4. The experiments and results
are presented in Sect. 5. Finally, we conclude our paper in Sect. 6.

2 Models

In this section, we first describe the computational model for our algorithms. Then,
we describe our heterogeneous multicore processor system model.

In this subsection, we describe the multi-dimensional data flow graph (MDFG),
which is used tomodel a uniformnested loop.AnMDFGG = (V, E, d, t, w) is a node
weighted and edge weighted directed graph, where V is a set of computational nodes;
E ⊆ V × V is a set of edges that describe the precedence constraints among nodes in
V ; d is a function from E to Zn representing the multi-dimensional data dependence
(delay vector) between twonodes,where n is the depth of the nested loop; t is a function
from V to positive integers, representing the computation time of each node; and w

is a function from E to positive integers, representing the amount of data required to
be transmitted through each edge. In this paper, we consider two-dimensional DFG
(2DFG) applications. We use d(e) = (di , d j) as a general formulation of any delay
shown in a 2DFG. A two-dimensional loop program is shown in Fig. 1a. In this loop
program, there are 4 computations, which are calculating A[i, j], B[i, j], C[i, j], and
D[i, j], respectively. The corresponding equivalent MDFG is shown in Fig. 1b. In
the MDFG, the nodes represent the corresponding computations in the original loop
program, and an edge between two nodes means the precedence constraint.

An iteration is the execution of the loop body once. The computation time of the
longest path without delay is called the iteration period. For example, the iteration
period of the MDFG shown in Fig. 1b is 3, which is from the longest zero-delay path
including 3 nodes, that are A, B, and C, respectively. We use i to identify iteration,
equivalent to the nested loop index and starting from (0, 0). The execution of the entire
loop will scan over all loop indices. All iterations constitute the iteration space. Each
iteration is a node in the iteration space. The horizontal axis corresponds to the j index

(a) (b) (c)

Fig. 1 The MDFG representation of the IIR filter

123

Author's personal copy

832 Int J Parallel Prog (2017) 45:827–852

Fig. 2 The architecture diagram

which is the inner-loop, and the vertical axis corresponds to the i index which is the
outer-loop. Figure 1c illustrates a representation of the iteration space for the MDFG
shown in Fig. 1b. The solid vectors represent the inter-iteration data dependency. In
this paper, the proposed algorithm is based on 2DFG. In 2DFG, an iteration node can
be represented as i teration(i, j). If a task in i teration(i, j) depends on another task
in i teration(x, y), the dependence vector is d(e) = (i − x, j − y). An edge with
delay d(e) = (0, 0) represents an intra-iteration dependence. For example, the vector
from node C to node D with delay vector (0,1) means that the computational node D
in i teration(0, 1) depends on the computational node C in i teration(0, 0).

A scheduling vector s is the normal vector such that s · d ≥ 0 for any delay d in
the MDFG. The vector defines a sequence of execution of an iteration space for a set
of parallel equitemporal hyperplane. In this paper, the schedule vector is s = (1, 0),
because we execute a given nested loop in a row-wise fashion.

2.1 Architecture Model

Our technique is designed for use in a system containing multiple multicore proces-
sors and special hardware called memory units inside each processor. The multiple

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 833

multicore processor system shown in Fig. 2 can be homogeneous or heterogeneous, in
the sense that the numbers of cores in the processors can be identical or different, and
the core speeds of different processors can be identical or different. A shared bus is
presented to facilitate the data exchanges among all processors. A three-level memory
hierarchy is adopted in our architecture model. Each processing core is equipped with
a local memory called scratch pad memory (SPM), which has the tightest memory
size constraint and the fastest accessing speed. Associated with each processor is a
mainmemory. Accessing themainmemory is slower than accessing the local memory.
There is also a large multi-port remote memory. However, The remote memory has the
slowest accessing speed. In order to minimize the total cost of accessing data and hide
memory latency, our algorithm is to load data into SPM before its explicit access take
place. Therefore, we can overlap the computations and access operations to reduce
the total execution time.

Our scheme includes two phases. The first phase aims to reduce the execution cost
of each iteration. The second phase aims to overlap processing computation and access
operation between the main memory and the remote memory. There are five types of
memory instructions, i.e., load, store, prefetch, write, and cross instructions, which
are added to the code when our scheme is complied. These memory instructions are
supported by the memory units. The load instructions are to load data from the main
memory to a processing core’s local memory. The store instructions are to store data
fromaprocessing core’s localmemory into themainmemory.Theprefetch instructions
prefetch data from the remote memory to the main memory. The write instructions
write data back to the remote memory for future accessing operations. The cross
instructions migrate data from one processor’s main memory to another processor’s
main memory. All of them are issued to make sure that those data which will be
referenced soon will appear in the local memory of the corresponding processing core.

It is significant to note that the lower level memories in the architecture model are
SPM.There are two reasons. First, the localmemory cannot be pure caches, becausewe
do not consider the cache consistency and cache conflict in this paper. Second, SPM
is a small on-chip memory component that is managed by software. Furthermore,
SPM is efficient in performance and power compared with hardware-managed cache.
Our architecture is a general model. In a homogeneous multicore processor system, a
real implementation was done in the CELL processor. The heterogeneous multicore
processor architecture is similar to the super-computing system such as the Tianhe-1
system, and a blade server system. Samsung Exynos 5 Octa [17] is a heterogeneous
multicore processor architecture. The usual setup involves utilizing ARMbig.LITTLE
technology with two groups of cores, i.e., one set of low-power cores, usually Cortex-
A7, and one set of more powerful cores, at the moment Cortex-A15. In Samsung’s
initial software implementation, only half of the eight cores can be used at a time,
depending on the workload required.

3 Algorithm

In this section, we first discuss task assignment and scheduling of the processor part
and present the Recom_Task_Assign algorithm to reduce the execution cost for the

123

Author's personal copy

834 Int J Parallel Prog (2017) 45:827–852

processor part of a schedule. Then, we introduce the loop partition technique. Next,
we illustrate the heterogeneous multicore processor scheduling framework. Finally,
we present the heterogeneous multiprocessor partition (HMP) algorithm.

3.1 Task Assignment and Scheduling

In this subsection, we propose an efficient algorithm called Recom_Task_Assign to
reduce the execution cost of each iteration. Before we present the Recom_Task_Assign
algorithm, we will introduce the rotation technique and the recomputing technique.

The one-dimensional retiming technique is used in our algorithm. It evenly distrib-
utes the delays in the MDFG to optimize the iteration period. Then, we can rearrange
the sequence of computations of each iteration. Given anMDFGG = (V, E, d, t, w),
the retiming function r(v) from V to integers is the number of delays moved through
node v ∈ V . The technique of retiming moves delays around in the following way,
i.e., delays are drawn from each of the incoming edges of v, and then pushed to
each of the outgoing edges of v, or vice versa. Let Gr = (V, Er , dr , t, w) denote
the retimed graph of G with retiming r . The number of delays can be calculated as
dr (e) = d(e) + r(u) − r(v) for any edge e(u → v) ∈ Er in Gr . We have dr (e) ≥ 0
for any edge, if the retiming r is legal, and the total number of delays remains constant
in the MDFG. It is important to note that one-dimensional retiming is used instead of
multi-dimensional retiming for maintaining the row-wise execution. This is because
multi-dimensional retiming will change the execution sequence of the iterations and
the schedule vector.

The recomputing technique, which is to further reduce the total completion time
and number of store activities, is used in our algorithm. The idea is to discard some
of the computed data, so that they are not written to main memory. The recomputing
techniques reduce the number of store activities in the following way, i.e., when the
data is requested by latter tasks, we will load the necessary operands and recompute
the data. The recomputing minimize write algorithm [18] further reduces store activity
on main memory by finding appropriate nodes to duplicate. The main idea of the
recomputing minimize write algorithm is for each store operation to calculate the cost
of recomputing the related nodes that produce this dirty page. If the cost of recomputing
is lower than the cost of dirty eviction, we discard the dirty eviction of the dirty page
and recompute the corresponding nodes before future load of the dirty page.

The goal of Recom_Task_Assign is to reduce the execution cost of each iteration.
The execution cost consists of computational cost and data accessing cost between
local memory and main memory. Given an MDFG G = (V, E, d, t, w), the number
of processing cores, and the size of SPM, algorithm Recom_Task_Assign generates a
heuristic assignment and scheduling as shown in Algorithm 3.1.

TheRecom_Task_Assign algorithm consists of several steps. First, one-dimensional
rotation is applied to transform the graph into a retimed graph so that the iterations
can be scheduled in parallel. Second, to satisfy the input condition of the recomput-
ing minimize write algorithm, we eliminate edges with inter-iteration dependence to
re-construct a DFG G ′

r = (V, E ′
r , d

′
r , t, w

′), which does not have any cycles. For
example, Fig. 3b is re-construct graph from Fig. 3a. Third, we add new virtual nodes

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 835

Algorithm 3.1 Recom_Task_Assign algorithm
Require: AnMDFGG = (V, E, d, t, w), the number of cores, the capacity of each SPMof each processor.
Ensure: An assignment of tasks in each iteration, and the schedule length of the processor part on a

processor.
1: Call the one-dimensional retiming algorithm to obtain a retimed MDFG Gr = (V, Er , dr , t, w).
2: Reconstruct a graph DFG G′

r = (V, E ′
r , d

′
r , t, w

′) by eliminating all edges except some edges with a
delay d(e) = (0, 0).
/*Add new virtual nodes to guarantee the right data access:*/

3: for each node v in G′
r do

4: if there exist incoming edges of the node have been eliminated then
5: for each eliminated incoming edges do
6: adding a virtual parent node
7: end for
8: end if
9: add the right weight for each corresponding added edges.
10: end for
11: Do task assignment and scheduling via the recomputing minimize write algorithm: for each node, regard

the weight of incoming edge as its input data, and treat the weight of outgoing edges as output data;
12: for each computational node vi ∈ V do
13: pni ← the number of pages in the local memory needed to execution the node;
14: f pi ← the number of free pages of local memory at the load step;
15: cpi ← the number of clean pages of local memory at the load step;
16: end for
17: call the recomputing minimize write algorithm to obtain task assignment and scheduling.

(a) (b) (c)

Fig. 3 An example of Algorithm 3.2

to guarantee the right data access, which does not affect the schedule. Adding virtual
nodes must follow the following principle: for each eliminated edge, a parent node is
added first for its corresponding outgoing node, And then the weight is added for its
corresponding edge. For example, we add some virtual nodes for Fig. 3b, the result
is shown in Fig. 3c. Finally, the recomputing minimize write algorithm is applied to
obtain task assignment and scheduling. How to re-construct a graph and add new vir-
tual nodes are shown in algorithm Recom_Task_Assign in detail. The retiming and
recomputing techniques are explained in detail in the above paragraphs.

In the algorithm, it takes O(|V ||E |) time to retime the MDFG, where |V | is the
number of nodes and |E | is the number of edges. Reconstructing the retimed MDFG
takes O(|V | + |E |) time. The time for the recomputing minimize write algorithm
is O(n2), where n is the number of steps in the schedule without the recomputing
technique. Therefore, the complexity of Recom_Task_Assign is O(|V ||E | + |V | +
|E | + n2) = O(|V ||E | + n2).

123

Author's personal copy

836 Int J Parallel Prog (2017) 45:827–852

Fig. 4 aAn illegal partition of the iteration space. bThe partition dependency graph of a. cA legal partition
of the iteration space. d The partition dependency graph of c

3.2 Partition Iteration Space

Regular execution of an entire multi-dimensional loop is performed in either a row-
wise or a column-wise manner until we reach the end of the row or column. However,
it takes a lot of time and generates huge amount of write activity. In this paper, for
overcoming these disadvantages, a partition technique is applied instead of the regular
execution. We first partition the iteration space, and then execute the partitions one by
one. We use two boundaries of a partition called partition vectors, i.e., Pi and Pj , to
identify a parallelogram as the partition shape. Without loss of generality, the angle
between Pi and Pj is less than 180◦, and Pj is clockwise of Pi . Then, the partition shape
and size can be denoted by the direction and the length of these two vectors. To satisfy
the partition execution order, partitions must be legal partitions, which require that
there cannot exist cycles (two-way dependencies) among partitions. In other words,
the partition vectors cannot be arbitrarily chosen due to the dependencies in MDFG.
For example,we consider the iteration space of Fig. 3. If we partition the iteration space
with partition vectors Pi = (2, 0) and Pj = (0, 1) shown in Fig. 4a, the partition is
illegal because of the forward dependency from partition (0, 0) to partition (0, 1) and
the backward dependency from partition (0, 1) to partition (0, 0) as shown in Fig. 4b.
In contrast, let us partition the iteration space with partition vectors Pj = (0, 1) and
Pi = (2, 2) as shown in Fig. 4c. The partition is legal because there is no two-way
dependency as shown in Fig. 4d. To obtain legal partitions, the partition vectors Pi
and Pj should surround all vectors d(e) and must satisfy the following property to
guarantee executing partitions one by one.

Property 1 It is a legal partition shape if and only if the cross products d(e)× Pj ≤ 0
and d(e) × Pi ≥ 0, for all delay dependence d(e) in MDFG.

From Property 1, we can obtain the following result.

Theorem 1 All delay dependencies in an MDFG are in the counterclockwise region
of partition vector Pj and are in the clockwise region of partition vector Pi .

Proof For two vectors p1 and p2, themagnitude of the cross product, denoted by p1×
p2, is used to determine the relative position of the two vectors. If p1 = (p1.i, p1. j)

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 837

and p2 = (p2.i, p2. j), then p1 × p2 = p1. j × p2.i − p2. j × p1.i . If p1 × p2
is positive, then p1 is clockwise related p2 with respect to the origin (0, 0). On the
contrary, if p1 × p2 is negative, then p1 is counterclockwise related to p2. From
Property 1, we know that the cross product d(e)× Pj ≤ 0 for all delay dependencies
in MDFG. Therefore, all delay dependencies in anMDFG are in the counterclockwise
region of partition vector Pj . In a similarway,we can obtain that all delay dependencies
in an MDFG are in the clockwise region of partition vector Pi .

The objective of Property 1 and Theorem 1 is to legal partition iteration space.
The advantage of the partition technique is that the data locality and parallelism are
improved. Assume that we do not partition the iteration space and instead, execute the
iterations in the row-wise order. It is possible that, after finishing one row/column of
iterations, generating huge amount of data will create a largememory latency whenwe
start a new row/column where those data are needed. Provided that the total iteration
space is divided into partitions, the partitions is executed in turn left to right, andwithin
each partition, iterations are executed in row-wise order. By this way, those new data
are stored in the lower memory and prefetching operations are reduced.

3.3 HMP Algorithm Framework

HMP generates a schedule consisting of two parts: the processor part and the memory
part. Incorporating load/store operations into the processor part, the processor part of a
schedule for one iteration is generated by using the Recom_Task_Assign algorithm to
increase parallelism and reduce the scheduling length. Since the Recom_Task_Assign
algorithm uses a one-dimensional retiming technique to reduce the iteration period, it
produces more inter-iteration dependencies, which require more memory prefetching
operations and create a large memory latency. Therefore, the memory part of the
schedule is lengthened. In order to hide memory latency, the partition techniques is
applied in the HMP algorithm.

We call the partition just finished execution on a processor the last partition, the
partition that is being executed on the same processor the current partition, and the
partition that will be executed next on the same processor the next partition. All other
partitionswhich have not been executed are called other partitions. A diagram is shown
in Fig. 5a. When scheduling the memory part, we should consider the two types of
delay dependence. The first type is the nonzero delay transits from the current partition
into other partitions. For this type of delays, a prefetching and a write-back operations
are needed. The second type is the directed edge from the current partition to the next
partition. For this type of delays, a store operation is needed. When scheduling the
memory part, we expect to prefetch all data needed by the next partition into the main
memory at the same time as the processing core computations are being executed for
the current partition. Figure 5b shows an example of our overall schedule.

In reality, different processors have different configurations in a heterogeneous
multiprocessor system. It is necessary to study partition scheduling with multiple
heterogeneous multicore processors. In the HMP algorithm, we will determine the
partition size and shape for each processor. The values of partition sizes for different
multicore processors are different, although all partition shapes are the same. In order

123

Author's personal copy

838 Int J Parallel Prog (2017) 45:827–852

(a) (b)

Fig. 5 aA representation of last partition, current partition, next partition, and other partitions. b The HMP
schedule for a partition

(a) (b)

Fig. 6 The multiprocessor partition hyperplane

to reduce the waiting latency, we guarantee the same scheduling length of processor
part for all partitions.

Figure 6 shows the multiprocessor partition scheduled in order. A hyperplane is
denoted by hpi . We use the value of hpi mod n to determine which processor to
perform partitions on each hyperplane, where n is the number of processors. If hpi
mod n = k, all partitions in this hyperplane will be executed on processor P(k).
The example diagram is shown in Fig. 6a. The execution order of hyperplanes as
follows. We first execute the n hyperplanes, then we proceed to the next n hyper-
planes. We can treat each partition as a dot, as shown in Fig. 6b. We treat the
partitions which will be executed at the same time as a cluster partition, and treat
these hyperplanes which will be executed at the same time as a high-hyperplane.
For example, the black dots in Fig. 6b represent the partitions in the same cluster.
Then, we execute the cluster partitions from left to right in the Pj direction, and the
next high-hyperplane along the direction of vector perpendicular to Pj . The order of
partitions scheduling must satisfy the following condition, i.e., if there are two parti-
tions, parti tion(k, v) and parti tion(u, v), which are in the same high-hyperplane,

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 839

(a) (b)

Fig. 7 The different kinds of delay dependence

and u < k, the parti tion(u, v) must be executed no earlier than parti tion(k, v).
Therefore, we use two cluster vectors, (0, 1) and (n,−2n), to determine the cluster
shape.

When considering the cluster, we treat partitions as the basic integral units. Then,
the cluster will be a combination of a number of partitions based on the number of
processors. For instance, the cluster size in Fig. 7 is 3 × 1, because there are three
heterogeneous processors. We call the cluster currently being executed the current
cluster, the cluster that will be executed next the next cluster, and all other clusters
which have not been executed the other clusters (see Fig. 7). In the case of multi-
processor partitions, there will be two kinds of delay dependence, which need to be
treated differently when scheduling the loop. The first kind is the delay dependence
that goes to the other cluster from the current cluster. For the delay dependence, it
will be treated with a write operation in order to retain the corresponding data for
near future use. The second kind is the delay dependence that goes to the next cluster
which will be executed in different processor from the current cluster. For this delay
dependence, the cross operations between two processors are needed.

3.4 HMP Scheduling Algorithm

In this subsection, we illustrate the heterogeneous multiprocessor partition (HMP)
algorithm, which consists of two parts, the processor part and the memory part. The
processor part, incorporated with load/store operations, of the schedule for iterations
is generated by using the Recom_Task_Assign algorithm. The Recom_Task_Assign
algorithm is a loop pipelining technique which introduces the retiming scheduling and
recomputing technique to obtain a more compact scheduling with less store operation.
The Recom_Task_Assign algorithm is described in detail in Sect. 3.1. In heteroge-
neous multiprocessor systems, we use Recom_Task_Assign to obtain a schedule for
an application on each multicore processor. Since different processors have different

123

Author's personal copy

840 Int J Parallel Prog (2017) 45:827–852

configurations in a heterogeneous multiprocessor system, different multicore proces-
sors show different scheduling sequence and length for each iteration. Therefore, the
partition sizes in different hyperplane show different values.

Algorithm 3.2 Heterogeneous multiprocessor partition (HMP) algorithm
Require: An MDFG G = (V, E, d, t, w), the number of processors, the number of cores of each proces-

sors, the capacity of each SPM of each processors.
Ensure: A heterogeneous multiprocessor partition schedule that hides memory latency, increases paral-

lelism, and reduces the schedule length.

/* determine the direction vector, P ′
i and P ′

j , of partition vectors Pi and Pj */
1: for each delay dependence di (e) do
2: if d(e) × di (e) ≥ 0, ∀d(e) in MDFG then

3: P ′
i =

di (e)|di (e)|
4: end if
5: end for
6: P ′

j = (0, 1);
7: f j = k,where (x, k) is the maximum innermost loop delay dependence;
8: Pj = f j × P ′

j = (0, k);
9: for each processor P(h) do
10: call the Recom_Task_Assign algorithm to obtain the task assignment and schedule length L(h) of

each iteration;
11: end for
12: Lmax ←− the maximum L(h) in the schedule length sets;
13: obtain the partition size fmax based on the Theorem 4;
14: for each processor P(h) do
15: f (h) = Lmax × fmax/L(h);
16: Pi (h) = f (h) × P ′

i ;
17: end for
18: do multiprocessor partition scheduling;
19: do memory part scheduling.

Scheduling of the memory part consists of several steps. First, we need to decide
a legal partition vector direction. Second, partition sizes for different processors are
calculated to ensure an optimal scheduling and guarantee that the same schedule
length between two partitions should be executed on different processors. Third, we
call multiprocessor partition frame to obtain clusters. Fourth, both the processor part
and the memory part of a schedule are generated. We will illustrate these steps in
detail.

For one partition should be performed on processorsP(h), the partition is identified
by two partition vectors, Pi (h) and Pj , where Pi (h) = P ′

i × f (h) and Pj = P ′
j × f j .

While P ′
i and P ′

j are the direction vectors and determine the shape of partition, f j
and f (h) determine the size of a partition based on processor P(h). How to choose
the vectors P ′

i and P ′
j are discussed in Sect. 3.2 in detail. The HMP algorithm shows

how to choose f j and f (h). In the algorithm, the partition vector Pj is constant for
all partitions. The direction vector is P ′

j = (0, 1), and the size f j is equal to the value
of the maximum innermost loop delay. Therefore, we will pay more attention on how
f (h) is chosen to achieve the goal of complete memory latency hiding, which means
that the schedule length of the memory part will always be no more than the schedule

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 841

length of the processor part, and the schedule length of two different partitions based
on different processors show the same value. How f (h) is chosen is discussed in detail
in Sect. 4.

After obtaining the partition directions and sizes, we can begin construct the proces-
sor part and the memory part of a schedule. Prefetching operations are scheduled
as early as possible, because they do not have any data dependence. Therefore, the
prefetching for the current partition is scheduled at the end of the last partition. Write-
back and crossing operations have the data dependencies from the processor part of
the schedule. Therefore, the write-back and crossing operations must be scheduled
after the corresponding computational task is finished. In our paper, the write-back
and crossing operations for the current partition is scheduled at the beginning of the
next partition. In the processor part of a schedule, the execution time for all partitions
are the same.

4 Partition Size and Memory Requirements

In this section, we will discuss how partition sizes are chosen to completely hide
memory latency.

To determine the partition size, we will first define the number of prefetching
operations given a partition size f (h) and f j . The number of prefetching operations
can be approximated by computing the shaded area, as shown in Fig. 8, with respect
to every inter-iteration delay vector d(e) ∈ D. Consider a delay dependence d(e) =
(di , d j). All of its duplicate vectors originating in the region PQRS will enter other
partitions, which is when the write-back and prefetching operations are needed when
the two partitions are located in two different clusters. We denote the area of PQRS
as Ago_others .

Lemma 1 Given a delay dependence d(e) = (di , d j), we have Ago_others(d) = f j di .

Proof As shown in the shaded area in Fig. 8, we have Ago_others(d) = the area of
parallelogram PQRS = f j di .

Summing up of these areas for every delay dependence d(e) in an MDFG, we can
obtain the total number of prefetch operations as:

NUMpre =
∑

A(d) =
∑

(f j di), ∀d(e) = (di , d j).

From the definition of the number of prefetching operations, we know that it is
proportional to the size of f j . However, it dose not change with f (h). We will try
to have the least number of prefetching and write-back operations to hide memory
latency. Therefore, we keep f j fixed and find the applicable f (h) to improve the
schedule where memory latency can be hidden.

Theorem 2 In a cluster, the number of write-back operations is equal to the number
of prefetching operations.

123

Author's personal copy

842 Int J Parallel Prog (2017) 45:827–852

(a) (b)

Fig. 8 The different kinds of delay dependence

Proof Since we only write back those data that we will ever need to fetch from remote
memory, the number of write-back operations equals to the number of prefetching
operations. ��
Theorem 3 If there exist crossing operations in a partition, the number of crossing
operations for a processor is equal to the number of prefetching operations in the first
processor.

Proof The number of crossing operations and the number of prefetching operations are
both shown as the shaded areas in Fig. 8a. This is because all the delay dependencies
are uniform, and all the shaded areas are equal. We can see from Fig. 7b, that the area
of each cross region is equal to the area of top region. And, the number of crossing
operations for a processor is equal to the number of prefetching operation in the first
processor.

When considering a cluster, as shown in Fig. 7b, the top region is located in the top
partition of the cluster, and other partitions have a cross region. The memory units of
processor P1 need to fetch the data in top region from the remote memory and need
migrate the data in cross region to processor P2. We mainly concern the memory
schedule of processor P1, which schedules the bottom partition of a cluster. This is
because prefetching operations take longer time to complete than either write-back
or crossing operations. Therefore, the processor which proceeds the bottom partition
must satisfy Theorem 4.

Theorem 4 Assume that Ncore ≤ Nmem. The following inequality is satisfied:

⌈
Npre

Nmem

⌉
× Tpre +

⌈
Ncro

Nmem

⌉
× Tcro ≤ L(h) × f (h) × f j .

Proof In thememory part of the schedule, the length of the prefetch part for the bottom
partition is
Npre/Nmem�×Tpre, and the length of the crossing part is
Ncro/Nmem�×
Tcro. Hence, the left-hand side represents the length of thememory part of the schedule
for the bottom partition. In the processor part of the schedule, L(h) represents the

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 843

schedule length of one iteration scheduled in processor P(h), and f (h) × f j shows
the number of iterations to be executed by the processor. Thus, the right-hand side
denotes the length of the processor part of the schedule for the bottom partition. To
hide memory latency completely, the length of memory part of the schedule must be
no less than that of processor part for any partitions. ��

The top partition needs to write the data in top region back to remotememory. Thus,
the processor which proceeds the top partition must satisfy Theorem 5.

Theorem 5 Assume that Ncore ≤ Nmem. The following inequality is satisfied:

⌈
Nwri te

Nmem

⌉
× Twri te ≤ L(h) × f (h) × f j .

Proof The proof is similar to the Proof of Theorem 4. ��
All partitions besides the top partition and bottom partition need cross the data in

cross region to another processor. Thus, the processors must satisfy Theorem 6.

Theorem 6 Assume that Ncore ≤ Nmem. The following inequality is satisfied:

⌈
Ncro

Nmem

⌉
× Tcro ≤ L(h) × f (h) × f j .

Proof The proof is similar to the Proof of Theorem 4. ��
Lemma 2 When f (h) = Lmax × f (max)/L(h), the schedule length in the memory
part must be equal to or shorter than the schedule length in the processor part. In
other words, f (h) = Lmax × f (max)/L(h) satisfies Theorems 4–6, where Lmax is
the longest schedule length of iterations on processor part, and f (max) is the partition
size obtained from Theorem 4 based on Lmax .

Proof We put f (h) = Lmax × f (max)/L(h) into the inequalities of Theorems 4–
6. Their right-hand sides are all equal to Lmax × f (max) × f j . Since we obtain
f (max) from the inequality of Theorem 4, f (h) = Lmax × f (max)/L(h) must
satisfy Theorem 4. For Theorem 5, the left-hand side of the inequality equals to the
length of crossing part ofTheorem4andmust be less than the length of thememorypart
of bottom partition of a cluster. Hence, Lmax × f (max)× f j also satisfies Theorem 5.
In Theorem6, the left-hand side of the inequality is the length of thememory part of the
top partition. Since the number of write-back operations equals to that of prefetching
operations in a cluster, the length of memory part of the top partition must be less
than Lmax × f (max)× f j . Therefore, by requiring the length of memory part of the
bottom partition of a cluster to be less than the length of processor part, we guarantee
that the length of memory schedule is not longer than the length of processor schedule
on any processors.

The discussion on partition sizes has been finished. However, it is not enough for
designing a real heterogeneous multiprocessor system.When designing a real system,

123

Author's personal copy

844 Int J Parallel Prog (2017) 45:827–852

the designers want to know how much main memory is required to implement the
proposed HMP schedule. In the following, we will concentrate on this problem.

The main memory should be large enough to hold all the data that are needed
during the execution of partitions. For a processor, we classify the requirements of
main memory into two categories, i.e., the first category used to store the data for
the partition to be executed next, and the second category used to store prefetched,
crossed, and written back data. The requirements of main memory must satisfy the
following theorem.

Theorem 7 The requirements of main memory menreq is calculated by the following
equation:

memreq = 2(Npre + Ncro) +
∑

(d j × P(h)).

Proof In a partition, the first category corresponds to all the delay dependencies into
the partition which will be executed next in the same processor. Similar to Lemma 1,
for a delay dependence d(e) = (di , d j), we will store d j × P(h) data in the main
memory. Summing up all of these for every delay dependence d(e) in an MDFG,
we can obtain memory locations needed by the first category as

∑
(d j × P(h)).

The second category reserves memory space for prefetching, crossing, and write-
back operations. These operations indicate the data pre-loaded or pre-stored in the
memory before we execute each partition. We need to pre-load data for the current
partition and store newly generated data for the partition which will be executed
next on the same processor. Therefore, the size of the second category of memory is
2(Npre + Ncro). Finally, the memory size needed to execute a partition is memreq =
2(Npre + Ncro) + ∑

(d j × P(h)).

5 Experiments

To evaluate the efficiency of the HMP algorithm, we experiment with our algorithm on
a set of DSPstone benchmarkswhich are found in [42]. TheMDFGs are extracted from
the gcc compiler and then the MDFGs are fed into a custom simulator. We use both
homogeneous and heterogeneous multiple multicore processor systems to perform
these benchmarks. The configuration of the memory part for all experiments is shown
in Table 1.

Table 1 Target system specification

Component Description

Local memory SPM (SRAM) access latency: 3.94ns

Main memory Read latency: 40ns; write latency: 60ns; cross latency: 150ns

Remote memory Access latency: 300ns

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 845

5.1 Evaluation of HMP on Homogeneous Systems

To evaluate the efficiency of the HMP algorithm on a homogeneous system, we con-
duct two groups of experiments. In our empirical studies, we compare our HMP
algorithm with the IRP algorithm. The IRP algorithm is employed to partition sched-
ule tasks for hiding memory latency completely in a homogeneous system. To make
fair comparisons, we implement the IRP and HMP algorithms with the same schedul-
ing framework. Thus, the implementations of the two algorithms share identical data
structures (e.g., a schedule queue and multiple local queues) and supporting modules
(e.g., the task dispatcher). In doing so, we ensure that the performance disadvantages
of IRP is not due to fundamental limitations of the implementations.

In the first group of the experiment, we focus on the scheduling problem for bench-
marks running on one multicore processor. We assume that the multicore processor
contains 4 cores, and the execution time for each task is 10ns. The experimental results
are shown in Fig. 9. From the figure, we can see that the schedule length of the HMP
algorithm is shorter than that of the IRP algorithm. Therefore, the HMP scheduling
algorithm has better performance compare with the IRP scheduling algorithm when
evaluating the efficiency of the two algorithms on one multicore processor.

In the second group of the experiment, these DSPstone benchmarks are performed
on multiple homogeneous multicore processors. We assume that there are 3 multicore
processors, and each processor is equipped with 3 cores. The execution time of each
processing core for each task is 10ns. Figure 10 shows the experimental results. From
the figure, we can see that the HMP scheduling algorithm also outperforms the IRP
scheduling algorithm in schedule length when the benchmarks are executed on a
homogeneous multiprocessor system.

Through the two groups of experimental results from Figs. 9 and 10, we find that
the HMP algorithm is superior to the IRP algorithm when evaluating the efficiency of

Fig. 9 Comparison results between IRP and HMP on one multicore processor

123

Author's personal copy

846 Int J Parallel Prog (2017) 45:827–852

Fig. 10 Comparison results between IRP and HMP on multiple multicore processors

the two algorithms on homogeneous systems. This is because the IRP algorithm does
not consider the load/store operations.

5.2 Evaluation of HMP on Heterogeneous Systems

In this subsection, we will present the experimental results of evaluating the HMP
algorithm on heterogeneous multicore processor systems. Each processor in a het-
erogeneous multicore processor system consists of multiple processing cores and a
special hardware called memory units inside each processor. A three-level memory
hierarchy is adopted in our architecture model. Each processing core is equipped with
a local memory called scratch padmemory (SPM), and associated with each processor
is a main memory, and there is also a large multi-port remote memory. We simulate
the cases when there are three multicore processors. The three processors have differ-
ent configurations on processing cores and the same configuration on memory part.
The system specification of the memory part used to evaluated the HMP algorithm is
shown in Table 1. Three groups of experiments are conducted. In the set of experi-
ments, we regard memory latency as the primary optimization objective. Meanwhile,
the schedule length is also reduced.

We implemented the HMP algorithm as a stand-alone program which takes profile
MDFG and the memory access time as input. In the set of experiments, the HMP algo-
rithm is compared with the IRP algorithm and the List algorithm. In this subsection,
the IRP algorithm has been adjusted, so that it is suitable to a heterogeneous multi-
processor system. To make fair comparisons, we implement all the three algorithms,
i.e., IRP, HMP, and List algorithms, within the same scheduling framework. In doing
so, we ensure that the performance disadvantage of the IRP and the List algorithms
are not due to fundamental limitations of the implementations.

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 847

Table 2 The experimental results of the first group of experiments

Benchmark Node Partition size HMP IRP List

f1 f2 f3 fj Lavg Mreq len ratio (%) len ratio (%)

IIR 16 11 13 15 2 167.83 495 265.26 63.26 595.00 28.07

Floyd 144 4 5 7 1 1215.00 816 1850.00 65.67 4860.00 25.00

DPCM 16 7 8 10 4 104.00 957 302.00 34.43 600.00 17.33

WDF 12 6 7 8 1 157.14 96 265.32 59.27 550.00 28.57

2D 26 12 13 15 1 255.00 490 562.00 45.37 1125.00 22.67

8_lattice 42 8 9 10 1 299.26 807 492.18 60.80 1010.00 29.63

4latirr 52 8 9 12 1 456.55 954 709.25 64.37 2025.00 22.55

diff 10 15 16 20 1 60.19 180 87.75 68.59 325.00 18.52

Average ratio 57.72 24.04

Tables 2, 3 and 5 show our experimental results. The first column gives the bench-
marks’ names. The second column gives the node numbers of the input MDFGs. The
partition generated by the HMP algorithm is shown in the third to sixth columns. The
next two columns show the final schedule generated by the HMP algorithm. The col-
umn Lavg is the average schedule length for each iteration. The column Mreq shows
the requirements of main memory. In the set of experiments, the HMP algorithm is
compared to the IRP and the List algorithms. The results are shown in the columns
IRP and List, where the subcolumn len is the schedule length of each iteration and the
subcolumn ratio compares the HMP schedule length with the IRP and List schedule
length, that is, ratio=Lavg/len.

In the first group of experiments, we consider heterogeneous processor sizes, where
benchmarks are running on a three-processor heterogeneous computing system. The
three processors consist of three, four, and five processing cores, respectively. We
assume that all processing cores have the same characteristics. The computation time
for each task is 10ns. Table 2 shows the first group of experimental results. As we can
see, List scheduling rarely achieves the optimal schedule length. The List schedule
length is longer than the HMP schedule length. This is because a List schedule is
often dominated by a long memory part. Although the IRP algorithm is better than
the List scheduling algorithm by generating a balanced schedule, it is not able to
take full advantage of all the hardware resources available by exploring higher level of
parallelism. In Table 2, the average ratio of the schedule length of the HMP scheduling
algorithm to those of the IRP scheduling algorithm and the List scheduling algorithm
are 57.72 and 24.04%, respectively.

In the second group of experiments, we consider heterogeneous execution times
when all processors have the same number of processing cores. We assume that each
processor has four processing cores, and different processors have different execution
times. In our experiments, the execution times of the processors P1, P2, and P3 for a
computational task are 8, 10, and 12ns, respectively. Table 3 shows the second group
of experimental results. From the table, we can see the HMP schedule length is shorter
than the IRP schedule length and the List schedule length for all benchmarks. This is

123

Author's personal copy

848 Int J Parallel Prog (2017) 45:827–852

Table 3 The experimental results of the second group of experiments

Benchmark Node Partition size HMP IRP List

f1 f2 f3 fj Lavg Mreq len ratio (%) len ratio (%)

IIR 16 16 17 20 2 161.85 621 226.45 71.47 485.00 33.37

Floyd 144 5 6 7 1 1301.10 828 1908.00 68.19 4684.00 27.78

DPCM 16 8 9 11 4 95.14 1111 306.00 31.09 625.00 15.22

WDF 12 8 8 10 1 156.92 106 228.72 68.61 480.00 32.69

2D 26 13 13 14 1 267.15 424 558.00 47.87 1068.00 25.01

8_lattice 42 8 8 8 1 306.33 744 502.15 61.00 919.00 33.33

4latirr 52 16 17 19 1 476.00 1368 708.00 67.23 1906.00 24.97

diff 10 19 23 24 1 67.93 228 108.21 62.78 361.00 18.82

Average ratio 59.78 26.98

Table 4 The processor
configurations in the third group
of experiments

Processor P1 P2 P3

Time (ns) 10 12 8

Core 3 4 4

Table 5 The experimental results of the third group of experiments

Benchmark Node Partition size HMP IRP List

f1 f2 f3 fj Lavg Mreq len ratio (%) len ratio (%)

IIR 16 14 17 20 2 163.85 603 239.24 68.48 526.00 31.15

Floyd 144 5 6 8 1 1278.10 834 1904.00 67.12 4860.00 26.30

DPCM 16 7 8 11 4 96.29 1100 302.00 31.88 575.00 16.75

WDF 12 8 9 11 1 157.15 124 245.52 64.01 460.00 34.16

2D 26 12 13 14 1 268.42 426 587.60 45.68 1025.00 26.19

8_lattice 42 8 9 9 1 310.77 786 510.72 60.84 948.00 32.78

4latirr 52 10 11 13 1 486.76 1044 734.84 66.24 2116.00 23.00

diff 10 12 23 23 1 64.71 232 100.91 64.13 345.00 18.76

Average ratio 58.55 26.13

because different processors having different execution times affect the processors’
schedule lengths, but do not affect how the HMP algorithm performs memory latency
hiding. In Table 3, the average ratio of the schedule length of the HMP scheduling
algorithm to those of the IRP scheduling algorithm and the List scheduling algorithm
are 59.78 and 26.98%, respectively.

In the third group of experiments, we consider heterogeneous processor sizes and
speeds. Table 4 shows the processors’ configurations, where the row time shows the
execution time of a task when it is executed on a processor, and the row core shows
the core number of a processor. Table 5 shows the third group of experimental results.

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 849

Table 6 The experimental results on the effect of different memory latency

Benchmark Node Partition size HMP IRP List

f1 f2 f3 fj Lavg Mreq len ratio (%) len ratio (%)

IIR 16 15 18 21 2 165.28 918 289.00 57.17 1200 13.77

Floyd 144 8 7 14 1 1215.00 984 2168.48 56.03 6210 19.57

DPCM 16 16 17 18 4 101.96 1617 400.16 25.48 1200 8.50

WDF 12 16 19 23 1 151.72 140 291.71 52.01 620 34.47

2D 26 19 20 24 1 256.35 600 702.91 36.47 2250 11.39

8_lattice 42 12 13 16 1 295.61 986 569.25 51.93 1780 16.61

4latirr 52 20 22 31 1 453.42 1746 816.00 55.56 4050 21.20

diff 10 27 28 34 1 60.67 274 110.89 54.71 650 9.33

Average ratio 48.67 16.86

From the table, we can see the HMP schedule is superior to the IRP and the List
schedules in schedule length for all benchmarks. The row average ratio shows that
the HMP algorithm can reduce the schedule length by 1−58.55% = 41.45% and
1−26.13% = 73.87% compared with the IRP and List algorithms, respectively.

Through the three groups of experimental results from Tables 2, 3, and 5, we find
that the HMP algorithm has better performance compared with the IRP and the List
algorithms when evaluating the efficiency of the three algorithms on heterogeneous
multiprocessor systems.

To see the effect of different memory latency, we conducted a set of experiments
assuming that the processor part are the same as that of the third group of experiments,
when the prefetch takes 600ns, write back takes 600ns, and cross takes 300ns. The
experimental results are shown in Table 6. We can see that the HMP algorithm still
outperforms the List scheduling algorithm. The average ratio of the schedule length of
the HMP algorithm to those of the IRP and the List algorithms are 48.67 and 16.86%,
respectively. Comparing Tables 5 and 6, we can see that the HMP algorithm tends to
create a larger partition in order to compensate for this long latency, when the memory
latency is increased, and the improvement over IRP and List scheduling becomesmore
obvious.

6 Conclusion and Future Work

In this paper, we present a novel loop partition algorithm, i.e., the HMP algorithm,
for MDFG applications to hide memory latency on heterogeneous multicore proces-
sor systems. By fully exploiting the properties of schedule length and memory
requirement, the algorithm can give a partition shape and size, so that the overall
minimal schedule length can be obtained. For experimental studies, we employed
two homogeneous multicore processor systems and three heterogeneous multicore
processor systems to execute various applications. In the experiments conducted on
both homogeneous and heterogeneous multiprocessor systems, the HMP algorithm

123

Author's personal copy

850 Int J Parallel Prog (2017) 45:827–852

can effectively reduce the overall schedule length compared with the IRP and the List
scheduling algorithms.

Acknowledgements This research was partially funded by the Key Program of National Natural Sci-
ence Foundation of China (61133005, 61432005), the National Science Foundation of China (Grant Nos.
61070057, 90715029, 61370095, 61472124), and theNational Science Foundation for DistinguishedYoung
Scholars of Hunan (12JJ1011).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Human and Animal Rights This article does not contain any studies with human participants or animals
performed by any of the authors.

Informed Consent Informed consent was obtained from all individual participants included in the study.

References

1. Bala, K., Kaashoek, M.F., Weihl, W.E.: Software prefetching and caching for translation lookaside
buffers. In: Proceedings of the 1st USENIX Conference on Operating Systems Design and Implemen-
tation, p. 18. USENIX Association (1994)

2. Beaumont, O., Boudet, V., Robert, Y., et al.: A realistic model and an efficient heuristic for scheduling
with heterogeneous processors (2001)

3. Belviranli, M.E., Bhuyan, L.N., Gupta, R.: A dynamic self-scheduling scheme for heterogeneous
multiprocessor architectures. ACM Trans. Archit. Code Optim. (TACO) 9(4), 57 (2013)

4. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.: Dague: a generic
distributed dag engine for high performance computing. Parallel Comput. 38(1), 37–51 (2012)

5. Chen, J., Tao, X., Yang, Z., Peir, J.-K., Li, X., Lu, S.-L.: Guided region-based gpu scheduling: utilizing
multi-thread parallelism to hide memory latency. In: 2013 IEEE 27th International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 441–451. IEEE (2013)

6. Chen, T., Zhang, T., Sura, Z., Tallada, M.G.: Prefetching irregular references for software cache on
cell. In: Proceedings of the 6th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, pp. 155–164. ACM (2008)

7. Chen, T.-F., Baer, J.-L.: A performance study of software and hardware data prefetching schemes. In:
Proceedings the 21st Annual International Symposium on Computer Architecture, 1994, pp. 223–232.
IEEE (1994)

8. Chen, T.-F., Baer, J.-L.: Effective hardware-based data prefetching for high-performance processors.
IEEE Trans. Comput. 44(5), 609–623 (1995)

9. Chen, Y., Liao, H., Tsai, T.: On-line real-time task scheduling in heterogeneous multi-core system-on-
a-chip. IEEE Trans. Parallel Distrib. Syst. 24, 118–130 (2013)

10. Chu, M., Ravindran, R., Mahlke, S.: Data access partitioning for fine-grain parallelism on multicore
architectures. In: MICRO 2007. 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture, 2007, pp. 369–380. IEEE (2007)

11. Dahlgren, F., Dubois, M., Stenstrom, P.: Sequential hardware prefetching in shared-memory multi-
processors. IEEE Trans. Parallel Distrib. Syst. 6(7), 733–746 (1995)

12. Daoud, M.I., Kharma, N.: A high performance algorithm for static task scheduling in heterogeneous
distributed computing systems. J. Parallel Distrib. Comput. 68(4), 399–409 (2008)

13. Eryigit, S., Bayhan, S., Tugcu, T.: Energy-efficient multi-channel cooperative sensing scheduling with
heterogeneous channel conditions for cognitive radio networks. IEEE Trans. Veh. Technol. 62, 2690–
2699 (2013)

14. Ganusov, I., Burtscher, M.: Future execution: a hardware prefetching technique for chip multiproces-
sors. In: 14th International Conference on Parallel Architectures and Compilation Techniques, 2005.
PACT 2005, pp. 350–360. IEEE (2005)

123

Author's personal copy

Int J Parallel Prog (2017) 45:827–852 851

15. Hagras, T., Janeček, J.:Ahighperformance, lowcomplexity algorithm for compile-time task scheduling
in heterogeneous systems. Parallel Comput. 31(7), 653–670 (2005)

16. Hoogerbrugge, J., Terechko, A.: Amultithreadedmulticore system for embeddedmedia processing. In:
Transactions onHigh-performance EmbeddedArchitectures and Compilers III, pp. 154–173. Springer,
Berlin (2011)

17. http://www.androidheadlines.com/2013/09/samsung-upgrades-exynos-5-to-true-octa-core-status-w
ith-heterogeneous-multi-processing.html (2013)

18. Hu, J., Xue, C.J., Tseng, W.-C., Zhuge, Q., Sha, E.-M.: Minimizing write activities to non-volatile
memory via scheduling and recomputation. In: 2010 IEEE 8th Symposium on Application Specific
Processors (SASP), pp. 101–106. IEEE (2010)

19. Jeong, J., Kim, H., Hwang, J., Lee, J., Maeng, S.: Rigorous rental memory management for embedded
systems. ACM Trans. Embed. Comput. Syst. (TECS) 12(1s), 43 (2013)

20. Klaiber, A.C., Levy, H.M.: An architecture for software-controlled data prefetching. In: ACM
SIGARCH Computer Architecture News, vol. 19, pp. 43–53. ACM (1991)

21. Lilja, D.J.: The impact of parallel loop scheduling strategies on prefetching in a shared memory
multiprocessor. IEEE Trans. Parallel Distrib. Syst. 5(6), 573–584 (1994)

22. Liu, G., Abdelrahman, T.: Computation–communication overlap on network-of-workstation multi-
processors. In: Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, pp. 1635–1642 (1998)

23. Luk, C.-K.: Tolerating memory latency through software-controlled pre-execution in simultaneous
multithreading processors. In: Proceedings. 28thAnnual International SymposiumonComputerArchi-
tecture, 2001, pp. 40–51. IEEE (2001)

24. Mowry, T., Gupta, A.: Tolerating latency through software-controlled prefetching in shared-memory
multiprocessors. J. Parallel Distrib. Comput. 12(2), 87–106 (1991)

25. Nishiyama, H., Kikuchi, S.: Method for compiling loops containing prefetch instructions that replaces
one or more actual prefetches with one virtual prefetch prior to loop scheduling and unrolling, Sept. 7
1999. US Patent 5,950,007

26. Orlando, S., Perego, R.: Exploiting partial replication in unbalanced parallel loop scheduling on mul-
ticomputer. Microprocess. Microprogram. 41(8), 645–658 (1996)

27. Page, A.J., Naughton, T.J.: Dynamic task scheduling using genetic algorithms for heterogeneous dis-
tributed computing. In: Proceedings. 19th IEEE International, Parallel and Distributed Processing
Symposium, 2005, p. 189a. IEEE (2005)

28. Poulsen, D.K., Yew, P.-C.: Data prefetching and data forwarding in sharedmemorymultiprocessors. In:
International Conference on Parallel Processing, 1994. ICPP 1994, vol. 2, pp. 280–280. IEEE (1994)

29. Qiu, M., Liu, M., Hu, F., Liu, S., Wang, L.: Energy aware loop scheduling for high performance multi-
module memory. In: Sixth IFIP International Conference on Network and Parallel Computing, 2009.
NPC’09, pp. 16–22. IEEE (2009)

30. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory system using
phase-change memory technology. ACM SIGARCH Comput. Archit. News 37(3), 24–33 (2009)

31. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software transactional
memory. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed
Computing, pp. 240–248. ACM (2005)

32. Shukla, S.B., Agrawal, D.P.: Scheduling pipelined communication in distributed memory multiproces-
sors for real-timeapplications. In:ACMSIGARCHComputerArchitectureNews,Vol. 19, pp. 222–231.
ACM (1991)

33. Stone, J.E., Gohara, D., Shi, G.: Opencl: a parallel programming standard for heterogeneous computing
systems. Comput. Sci. Eng. 12(3), 66 (2010)

34. Tang, X., Li, K., Liao, G., Li, R.: List scheduling with duplication for heterogeneous computing
systems. J. Parallel Distrib. Comput. 70(4), 323–329 (2010)

35. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

36. Tosun, S.: Energy-and reliability-aware task scheduling onto heterogeneous mpsoc architectures. J.
Supercomput. 62(1), 265–289 (2012)

37. Wang, L., Siegel, H.J., Roychowdhury, V.P., Maciejewski, A.A.: Task matching and scheduling in
heterogeneous computing environments using a genetic-algorithm-based approach. J. Parallel Distrib.
Comput. 47(1), 8–22 (1997)

123

Author's personal copy

http://www.androidheadlines.com/2013/09/samsung-upgrades-exynos-5-to-true-octa-core-status-with-heterogeneous-multi-processing.html
http://www.androidheadlines.com/2013/09/samsung-upgrades-exynos-5-to-true-octa-core-status-with-heterogeneous-multi-processing.html

852 Int J Parallel Prog (2017) 45:827–852

38. Wolf, M.E., Lam, M.S.: A loop transformation theory and an algorithm to maximize parallelism. IEEE
Trans. Parallel Distrib. Syst. 2(4), 452–471 (1991)

39. Xue,C.J., Hu, J., Shao, Z., Sha, E.: Iterational retimingwith partitioning: loop schedulingwith complete
memory latency hiding. ACM Trans. Embed. Comput. Syst. (TECS) 9(3), 22 (2010)

40. Zhong, C., Qu, Z.-Y., Yang, F., Yin,M.-X., Li, X.: Efficient and scalable thread-level parallel algorithms
for sorting multisets on multi-core systems. J. Comput. 7(1), 30–41 (2012)

41. Zhuang, X., Pande, S.: Power-efficient prefetching for embedded processors. ACM Trans. Embed.
Comput. Syst. (TECS) 6(1), 3 (2007)

42. Zivojnovic, V., Velarde, J.M., Schlager, C.,Meyr, H.: Dspstone: aDSP-oriented benchmarkingmethod-
ology. In: Proceedings of ICSPAT 94 (1994)

43. Zucker, D.F., Lee, R.B., Flynn, M.J.: Hardware and software cache prefetching techniques for mpeg
benchmarks. IEEE Trans. Circuits Syst. Video Technol. 10(5), 782–796 (2000)

123

Author's personal copy

	Partition Scheduling on Heterogeneous Multicore Processors for Multi-dimensional Loops Applications
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Our Contributions
	1.4 Computational Model

	2 Models
	2.1 Architecture Model

	3 Algorithm
	3.1 Task Assignment and Scheduling
	3.2 Partition Iteration Space
	3.3 HMP Algorithm Framework
	3.4 HMP Scheduling Algorithm

	4 Partition Size and Memory Requirements
	5 Experiments
	5.1 Evaluation of HMP on Homogeneous Systems
	5.2 Evaluation of HMP on Heterogeneous Systems

	6 Conclusion and Future Work
	Acknowledgements
	References

