IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received June 8, 2013; revised December 18, 2013; accepted January 10, 2014. Date of publication 15 January 2014;
date of current version 30 July 2014.

Digital Object Identifier 10.1109/TETC.2014.2300632

Energy-Aware Data Allocation and Task
Scheduling on Heterogeneous
Multiprocessor Systems
With Time Constraints

YAN WANG', KENLI LI', HAO CHEN', LIGANG HE2, AND KEQIN LI3

TCollege of Information Science and Engineering, Hunan University, Changsha 410082, China
2College of Information Science and Engineering, Hunan University, Changsha 410082, China, and
also with the Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.
3College of Information Science and Engineering, Hunan University, Changsha 410082, China, and
also with the Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

CORRESPONDING AUTHOR: K. LI (Iki@hnu.edu.cn)
This work was supported by the Key Program of National Natural Science Foundation of China under Grant 61133005, the National Science

Foundation of China under Grants 61070057, 90715029, and 61370095, the National Science Foundation for Distinguished Young Scholars
of Hunan under Grant 12JJ1011, and the Innovation Fund Designated for Graduate Students of Hunan Province under Grant CX2013B142.

ABSTRACT In this paper, we address the problem of energy-aware heterogeneous data allocation and
task scheduling on heterogeneous multiprocessor systems for real-time applications. In a heterogeneous
distributed shared-memory multiprocessor system, an important problem is how to assign processors to
real-time application tasks, allocate data to local memories, and generate an efficient schedule in such
a way that a time constraint can be met and the total system energy consumption can be minimized.
We propose an optimal approach, i.e., an integer linear programming method, to solve this problem. As the
problem has been conclusively shown to be computationally very complicated, we also present two heuristic
algorithms, i.e., task assignment considering data allocation (TAC-DA) and task ratio greedy scheduling
(TRGS), to generate near-optimal solutions for real-time applications in polynomial time. We evaluate the
performance of our algorithms by comparing them with a greedy algorithm that is commonly used to
solve heterogeneous task scheduling problems. Based on our extensive simulation study, we observe that
our algorithms exhibit excellent performance. We conducted experimental performance evaluation on two
heterogeneous multiprocessor systems. The average reduction rates of the total energy consumption of the
TAC-DA and TRGS algorithms to that of the greedy algorithm are 13.72% and 15.76%, respectively, on the
first system, and 19.76% and 24.67%, respectively, on the second system. To the best of our knowledge,
this is the first study to solve the problem of task scheduling incorporated with data allocation and energy
consumption on heterogeneous distributed shared-memory multiprocessor systems.

INDEX TERMS Data allocation, energy consumption, heterogeneous system, task scheduling, time
constraint.
I. INTRODUCTION All real-time applications executed on heterogeneous mul-

A. MOTIVATION

A modern high-performance computing system normally
consists of heterogeneous computing and communi-
cation resources, including heterogeneous processors,
heterogeneous memories, and heterogeneous communication
interconnections. For instances, both Tianhe-2 [2] and
Titan [3] are heterogenecous multiprocessor systems.

tiprocessor systems must satisfy certain deadlines. Together
with increased demand on high-performance computing, the
energy consumption problem in heterogeneous multiproces-
sor systems has also become more and more important and
received extensive attention as green computing becomes a
new trend. Heterogeneous multiprocessor systems extend the
energy-time tradeoff flexibility, provide more opportunity to

2168-6750 © 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

134 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 2, NO. 2, JUNE 2014

Wang et al.: Energy-Aware DA and Task Scheduling

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

finer tuning of resource utilization for particular applications,
and raise new challenges to the research community.

While a real-time application with data dependencies is
executed on a heterogeneous multiprocessor system, the fol-
lowing requirements must be satisfied. First, to guarantee
the performance of the system, the application must be
completed within a time constraint. Second, to improve
energy efficiency, both processor and memory energy con-
sumption should be reduced as much as possible under the
time constraint. Third, to enhance parallelism among pro-
cessors and memories, memory latency should be hidden
as much as possible, which implies that memory access
operations should be carefully scheduled together with task
execution operations.

As more and more heterogeneous processors become
available, the same type of operations can be processed by
different processors with different execution time and
different energy consumption. Furthermore, different com-
ponents of a distributed shared-memory show significant
heterogeneity in data access time and energy consumption.
Therefore, there are several important problems arising,
i.e., how to assign a proper processor to each compu-
tational task; how to assign a proper memory to each
datum; and how to generate a schedule for both task
execution and data access in such way that certain
performance requirement can be met and the energy con-
sumption can be minimized. We call the problem as
heterogeneous data allocation and task scheduling (HDATS)
problem.

However, finding an effective HDAT'S solution to success-
fully satisfy the above three requirements is very difficult,
because different processors have different task execution
time and energy consumption for the same task, and differ-
ent memories have different data access times and energy
consumption for the same processor. Therefore, different
HDATS approaches show different capabilities in dealing
with the tradeoff of performance constraint and energy
consumption. Consequently, finding an efficient HDATS
approach to minimizing total energy consumption with a time
constraint is significant for real-time applications on het-
erogeneous multiprocessor systems. The problem of finding
an optimal data assignment and an optimal task schedule
that have the minimal system energy consumption (i.e., the
combined task execution and data access cost) for a given
time constraint becomes a critical problem for optimizing
the energy-delay tradeoff of a heterogeneous multiprocessor
system.

B. RELATED RESEARCH

Generally speaking, the objectives of heterogeneous task
scheduling are to map tasks onto processors and to
order their executions, so that the task precedence con-
straints are satisfied and other performance and resource
requirements can be met. It is well known that the
heterogeneous task scheduling problem with resource con-
straints is NP-hard [34]. The task scheduling problems on

VOLUME 2, NO. 2, JUNE 2014

heterogeneous systems have been studied in [8], [14], [17],
[23], [24], [26], and [30]. These work mainly addressed the
problem of minimizing an application’s completion time [24],
[26], [29], and provided high-quality schedules, with their
performance comparable with other algorithms in the litera-
ture at shorter scheduling times. There are also algorithms in
the literature [10], [11], [16], [25] incorporating the reliability
into heterogeneous multiprocessor systems. In these work,
scheduling is performed based on a fixed architecture to
maximize the reliability of a system.

Energy savings when solving the heterogeneous data
assignment and task scheduling problem can be significant.
In heterogeneous multiprocessor systems, there are large
families of embedded processors with different execution
speed and energy consumption characteristics. Incorporat-
ing execution speed, communication overhead, and energy
consumption into heterogeneous systems, energy consump-
tion driven assignment and scheduling problems have been
studied in [4], [6], [13], [15], and [34]. For example,
Shao et al. proposed a two-phase approach to solving hetero-
geneous assignment problems, so that all requirements can
be met and the total cost can be minimized [34]. Real-time
applications can be modeled as acyclic dataflow graphs that
capture task dependencies, where multiple tasks have data
dependency constraints. In such an application, each task has
some input data and some output data. The process of data
allocation determines the location of each datum in software-
controlled memories. However, the above mentioned studies
attempted to solve the task scheduling problem without
considering data allocation in detail.

Due to the influence of data allocation on the performance
of systems, task scheduling problems have been extensively
studied to incorporate data allocation into consideration, and
various heuristic algorithms were proposed in the literature
[51, [7], [12], [19], [21], [22], [28], [30], [31]. They mainly
focus on optimizing the performance of a system, where the
algorithms provide good quality solutions and their perfor-
mance are compared so that the schedule length or some
predefined cost functions can be minimized. Due to the
gap in performance between memories and processors, by
incorporating memory latency into multiprocessor systems,
the memory latency driven assignment and scheduling prob-
lems have been studied in [5], [12], [22], [28], and [30].
However, when considering memory constraints, the com-
plexity of the data allocation and task scheduling problem
increases significantly, and developing efficient algorithms
on heterogeneous multiprocessor systems encounters some
challenges. Incorporating memory constraints into multipro-
cessor systems, the memory constraint driven data assignment
and task scheduling problem has been studied in [9], [18],
[32], and [35]. In these work, allocation of data in different
levels of memory units is based on data access frequen-
cies in order to satisfy performance requirement with both
cost and energy efficiency consideration. For example, the
authors in [18] studied the problem of minimizing the total
cost of computation and communication in a heterogeneous

135

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Wang et al.: Energy-Aware DA and Task Scheduling

computing system with a resource constraint. The problem
was shown to be NP-hard. A simple and effective iterative
greedy algorithm was proposed for the scheduled tasks. The
main idea in this algorithm is to improve the quality of an
assignment in an iterative manner using results from previous
iterations. The algorithm first uses a constructive heuristic to
second an initial assignment and iteratively improves it in a
greedy way.

However, there exist several problems when these
techniques are applied to heterogeneous multiproces-
sor systems to solve the HDATS problem. This is
because distributed heterogeneous memories and scalable
interconnection networks in heterogeneous multiprocessor
systems lead to non-uniform structures of memory access.
The objective of the present paper is to develop efficient
algorithms to solve the HDATS problem, which generate a
schedule that has minimal energy consumption within certain
time constraint.

C. OUR CONTRIBUTIONS
In this paper, we present an optimal algorithm and two
heuristic algorithms to solve the HDATS problem. The
three algorithms aim to obtain an efficient task schedule
incorporated with data allocation, so that certain timing
requirement can be met and total system (i.e., both pro-
cessors and memories) energy consumption can be min-
imized. To obtain an optimal solution, we present an
integer linear programming (ILP) formulation to solve the
HDATS problem. Since it takes a long time for the ILP
method to get results even for medium-sized DAGs with
no more than 100 nodes, we propose two heuristic algo-
rithms, i.e., the TAC-DA (task assignment considering data
allocation) and the TRGS (task ratio greedy scheduling)
algorithms. The TAC-DA algorithm includes two phases.
The first phase uses the DFG_Assign_CP algorithm [34]
to find a better mapping for each task node. The second
phase chooses an assignment for all data whose total energy
consumption is minimized within a time constraint according
to the result from the first phase. Since it is possible that the
time constraint is too tight for TAC-DA to obtain a solution,
we propose the TRGS algorithm in which data assignment is
considered in conjunction with task scheduling.

Experimental results show that our algorithms have better
performance compared with the greedy algorithm [18]. On
the average, reduction rates of the total energy consumption
of the TAC-DA and TRGS algorithms to that of the greedy
algorithm are 13.72% and 15.76% respectively on one sys-
tem, and 19.76% and 24.67% respectively on another system.
The computation time of the ILP method is unacceptable for
large-sized DAGs. On the contrary, the TAC-DA algorithm
can obtain near-optimal solutions for loose time constraints
and the TRGS algorithm can always generate near-optimal
solutions efficiently for all the benchmarks, if there exists a
solution.

The major contributions of this paper are summarized as
follows.

136

« We consider heterogeneous processors, heterogeneous
memories, precedence constrained tasks, input/output
data of each task, processor execution times, data access
times, time constraints, and energy consumption, in solv-
ing the data allocation and task scheduling problem to
minimize the total energy consumption.

o« We formulate an integer linear programming (ILP)
model to solve the HDATS problem and to obtain an
optimal solution in which the total energy consumption
is the minimum within a time constraint.

« We propose two efficient heuristic algorithms, i.e., the
TAC-DA algorithm and the TRGS algorithm, to solve
the HDATS problem. The algorithms have improved
performance compared with an existing algorithm.

To the best of our knowledge, this is the first study to solve
the problem of task scheduling incorporated with data allo-
cation and energy consumption on heterogeneous distributed
shared-memory multiprocessor systems.

The remainder of this paper is organized as follows.
In Section II, we present our heterogeneous system model and
task model. In Section III, we use an example to illustrate the
motivation and method of this paper. In Section IV, we design
an ILP model to obtain an optimal solution. In Section V,
we propose two heuristic algorithms to solve the heteroge-
neous data allocation and task scheduling (HDATS) problem.
In Section VI, we evaluate and analyze our techniques com-
pared with the greedy algorithm. In Section VII, we conclude
this paper and discuss future work.

Il. THE MODELS

In this section, we first describe our heterogeneous multipro-
cessor system model. Then, we introduce the task scheduling
system model for our algorithms. Finally, we define our
heterogeneous data allocation and task scheduling (HDATS)
problem.

A. ARCHITECTURE MODEL

In this paper, the architecture model is a heterogeneous
distributed shared-memory multiprocessor system shown in
Fig. 1. The architecture model consists of a set of connected
heterogeneous processors denoted by P = {P1, P2, ..., Py},
where n is the number of heterogeneous processors.
Each processor P; is tightly coupled with its own local mem-
ory M;, and all local memories of individual processors form
a distributed shared-memory. For example, for processor Pq,
M is the local memory, while M> and M3 are remote but
accessible memories. For processor P2, M is the local mem-
ory, while M| and M3 are remote memories. Integrating the
distributed memories into a global address space, every pro-
cessor has full access to the memories, and a memory access
operation represents the processor’s reading from or writing
to a memory. Due to distributed heterogeneous memories and
a scalable interconnection network, the structure of memory
access in our architecture model is non-uniform. Therefore,
different processors’ accesses to a datum in the same memory
show different access times and energy consumption.

VOLUME 2, NO. 2, JUNE 2014

Wang et al.: Energy-Aware DA and Task Scheduling

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

‘ Interconnection network

P4 P2 P3
‘ memo
‘ network ‘ ‘ network ‘ ‘ network ‘ v AT, | AE; | ATo | AE; | ATs | AE3
control control control
M 1 3 4 6 6 5
My M; M3
\ N P - M, 5 8 1 2 7 6
| TH I T 0 I I A I
A 4

\ DSM shared

(a)

address space

(b)

FIGURE 1. An architecture model. (a) An architecture with three heterogeneous processors, each is embedded with
a local memory. (b) Access times and energy consumption for transmitting one unit of data between processors and

local memories.

In our model, local memories are heterogeneous and differ-
ent from each other in terms of capacity, access concurrency,
access time, energy consumption, and other characteristics.
We describe the access time as a function AT : P x M — R,
where AT (P;, M;) is the time for processor P; to access a unit
data from local memory M;. For example, in Fig. 1(b), the
value in the cell of column “AT;” and row “M5,” indicates
that the access time is 5 time units when processor Py accesses
a unit data from memory M5.

Our architecture uses the radio energy model as defined
in [27], in which the energy consumption for transmitting a
k-bit datum is as follows:

k(Eeie + ers x d*), (1)

where E,j, represents electronic energy, ers denotes a trans-
mit amplifier parameter, and d is the transmission distance.
We describe the access energy as afunctionAE : P x M — R,
where AE(P;, M) is the amount of energy consumed by
processor P; to access a unit data from local memory M;.
For example, in Fig. 1(b), the value in the cell of column
“AE;” and row “M>” indicates that the access energy is 8
energy units when processor Py accesses a unit data from
memory M>.

B. COMPUTATION MODEL

In this subsection, we describe the memory-access data
flow graph (MDFG) model, which is used to model an
application to be executed on a heterogeneous distributed
shared-memory multiprocessor system. Before we formally
describe the MDFG model for the heterogeneous data allo-
cation and task scheduling (HDATS) problem, let us first
introduce a directed acyclic graph (DAG) model as shown
in Fig. 2. In this paper, we use a DAG as a description of a
given input graph.

Definition 2.1: A DAG is a node-weighted directed graph
represented by G (V,E,D,in,out, ET, EE), where
V ={vi,va,...,vy}isasetof task nodes,and E C V x V
is a set of edges that describe the precedence constraints
among nodes in V. D is a set of data. in(v;) € D is a set

VOLUME 2, NO. 2, JUNE 2014

e ° Task Input data Output data
a A(2KB),B(1KB) A(2KB)
b B(1KB),C(1KB) C(1KB)
c A(2KB),D(1KB)

G 6 d E(1.5KB),F(1KB) | F(1KB)

(a) (b)

FIGURE 2. An input DAG. (a) Precedence constraints among
tasks. (b) The input data and output data of each task.

of input data of task v;, and out(v;) € D is a set of output
data of task v;. ET(v;) is used to represent the execution
times of task v; € V on different processors, i.e., ET (v;) =
(et1(D), etz(i), . . ., ety(i)), where et;(i) denotes the execution
time of v; on processor P;. EE(v;) is used to represent the
energy consumption of task v; € V on different processors,
ie., EE(v;) = (ee1(i), eex(i), .. ., eey(i)), where ee;j(i) denotes
the energy consumption of v; on processor P;.

An example of DAG is shown in Fig. 2. In the exam-
ple, there are N = 4 tasks, i.e., a, b, ¢, d. Fig. 2(a) shows
the precedence constraints among the tasks. The data set is
D = {A,B,C,D, E, F}, and Fig. 2(b) shows the input data
and output data of each task. For example, task a reads input
data A and B before it is started, and writes output data A after
it is finished.

Table 1 shows the execution time and energy consumption
of each task in the DAG of Fig. 2. For example, the value
in the cell of column “ET;” and row “b” indicates that the

TABLE 1. The Execution Time and Energy Consumption of the
Tasks in the Input Graph.

P P P
Task ‘g BB T ET, T BB [ET: | BE
a 1 0 5 8 7 6
b 3 18 6 20 0 8
c 6 5 1 15 8 12
d 0 20 8 24 2 20

137

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Wang et al.: Energy-Aware DA and Task Scheduling

execution time of task b is 8 time units when it is executed on
processor Pp; and the value in the cell of column “EE;” and
row “b” indicates that the energy consumption of task b is 18
energy units when it is executed on processor P .

If we treat a memory access operation as a node, we can
redefine a DAG to obtain a memory-access data flow graph
(MDFG).

Definition 2.2: An MDFG derived from a DAG is
a node-weighted directed graph represented by G' =
Vi, Vo, E,D,var, P, M,AT ,AE, ET, EE), where V| =
{vi,va,...,vm} is a set of Nj task nodes, and
Voo = {ur,uz,...,un,} is a set of N memory access
operation nodes. E € V x V (V. = Vi|JV,) is a set
of edges. An edge (i, v) € E represents the dependency
between node p and node v, indicating that task or operation
1 has to be executed before task or operation v. D is a set
of data. var : Vi x V, x D — {true, false} is a binary
function, where var(v;, u;, h) denotes whether the memory
access operation i; € V> is transmitting datum 4 € D for task
vi € Vi.P = {P1,P,,..., Py} is a set of processors, and
M = {M{,M,,...,M,} is a set of local memories.
AT and AE are access time and access energy functions.
ET(vi, Pj) = et;(i) is the execution time of task v; when
it is executed on processor P;, and EE(v;, P;) = eej(i) is
the energy consumed by task v; when it is executed on
processor P;.

FIGURE 3. An MDFG obtained from the example input graph.

An MDFG of the DAG in Fig. 2 is shown in Fig. 3, where
we have N = 4 task nodes and N = 11 memory access
operation nodes.

C. PROBLEM DEFINITION

Assume that we are given a heterogeneous distributed
shared-memory multiprocessor system, which consists of
n heterogeneous processors Pp, P2, ..., P,, where each
processor P; is tightly coupled with a local memory M;.
The access time and access energy of each processor

138

in accessing a unit data from a local memory are
known in advance. The heterogeneous data allocation and
task scheduling (HDATS) problem is formally defined as
follows. Given a DAG G = (V,E,D,in,out,ET, EE),
and a time constraint S, we treat a memory access oper-
ation as a node and reconstruct the DAG to obtain an
MDFG G = (Vy, V2, E,D,var,P,M,AT,AE,ET, EE).
The HDATS problem is to find (1) a data allocation Mem :
D — M, where Mem(h) € M is the memory to store i € D;
(2) a task assignment A : Vi — P, where A(v;) is the
processor to execute task v; € Vp; (3) and a schedule, i.e.,
the starting time of each task in V; and each memory access
operation in V3, such that the completion time of the MDFG
G’ satisfies the constraint 7(G') < S, and the total energy
consumption E(G’) is minimized.

The general HDATS problem is NP-hard. The het-
erogeneous assignment problem has been proved to be
NP-complete [34]. The NP-hardness of the HDATS problem
can be easily proved by a reduction from the heterogeneous
assignment problem defined by Shao et al. [34].

lll. A MOTIVATIONAL EXAMPLE

In this section, we use an example to illustrate the effective-
ness of our algorithms. The example application in Fig. 2
is executed on a heterogeneous distributed shared-memory
multiprocessor systems shown in Fig. 1.

Based on the dependency constraints in the MDFG shown
in Fig. 3, a schedule is generated by a greedy scheduling
algorithm shown in Fig. 4(a). Conventionally, the approach to
attacking the scheduling problem would be to minimize the
completion time by scheduling the tasks using the shortest
processing time policy. Hence, in this schedule, tasks a and
c are scheduled on processor Pj, and tasks b and d are
scheduled on P,. The data A and B are allocated to M, data
C and D are allocated to M», and data E and F are allocated
to M3. The completion time of this schedule is 23 time units,
and the total energy consumption for completing this sched-
ule is 127.5 energy units. However, this approach may not
produce a good result in terms of energy consumption, since
this approach only considers completion time. Therefore, we
should explore a new technique to obtain a better schedule
which considers energy consumption.

Fig. 4(b) shows an improved schedule, which considers
energy consumption together with a time constraint, i.e.,
S = 30. In this schedule, task d is scheduled on Py, task b is
scheduled on P;, and tasks a and c are scheduled on P3. The
data E and F are allocated to M1, data B and C are allocated
to M, and A and D are allocated to M3. The completion
time of the improved schedule is 24 time units, and the
total energy consumption is 81.5 energy units. Although the
schedule has slightly longer completion time, it has con-
siderably lower energy consumption than the greedy sched-
ule. The energy consumption of the schedule is reduced
by (127.5 — 81.5)/127.5 = 36.5% compared with the
greedy schedule, while the time constraint S = 30 is
satisfied.

VOLUME 2, NO. 2, JUNE 2014

Wang et al.: Energy-Aware DA and Task Scheduling

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

step P1| P2 P3

OO\‘G)T"JA(DN

M1:AB M2:C,D M3:E,F

D :Task node D :Memory access node
(@)

step P1 | P2 | P3 M1 \

@oo\lmt‘n.hwm

‘;
- o
\
e

247 L

M1:EF M2:B,C M3:A,D
D :Task node D :Memory access node

(b)

FIGURE 4. Data allocation and task scheduling (the data access times are scaled by a factor of 0.5). (a) A greedy
schedule with time 23 and energy 127.5. (b) An improved schedule with time 24 and energy 81.5.

From the above example, we can see that the energy con-
sumption can be reduced by exploring data allocation and task
scheduling on a heterogeneous multiprocessor system while a
time constraint is satisfied. A heterogeneous architecture has
more choices and challenges than a homogeneous architec-
ture in selecting a right processor for a task and in selecting a
right memory for a datum in order to achieve our objectives of
energy saving and satisfaction of a time constraint. Therefore,
it is important to study the data allocation and task scheduling
problem on heterogeneous multiprocessor systems.

IV. AN ILP FORMULATION

In this section, we develop our ILP formulation. We aim to
find an allocation of all data and an assignment of all tasks
in a given input DAG, such that the total energy consumption
is minimized under a time deadline requirement and various
resource constraints. We build up our ILP formulation step
by step, including a task assignment with processor con-
straint, a data allocation with memory size and concurrency
constraints, precedence constraints, a time constraint, and an
objective function.

VOLUME 2, NO. 2, JUNE 2014

TABLE 2. Notations Used in the ILP Formulation.

Notation | Definition

N1 Number of task nodes

N2 Number of memory access operation nodes
n Number of processors
S Time constraint

Size; Size of memory M;

MA Concurrent access number

Ny Number of data

d(h) Size of data h

Before describing data allocation and task scheduling, we
provide notations used in Table 2.

The data allocation and task scheduling model consists
of two major parts, i.e., a processor part and a mem-
ory part. The processor part aims to find a task assign-
ment for all tasks of a given input DAG, and the mem-
ory part aims to find a data allocation for all data needed
by task executions. In our algorithms, all data have been
allocated in different local memories before tasks are
executed.

139

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Wang et al.: Energy-Aware DA and Task Scheduling

A. TASK ASSIGNMENT AND PROCESSOR CONSTRAINT

In the processor part, a task assignment is modeled with two
binary variables x; ; x and x; j,m» Where x; . denotes whether
task v; in an MDFG G’ starts to execute in step k on processor
Pj, and xl.” im denotes whether task v; is scheduled in step m on
processor P;. Each task node can start execution in one and

only one step and on one and only one processor:

n S
YO xijx=1. Viel[l.N])

j=1 k=1

To make sure that there is at most one task scheduled in any
step on any processor, a second constraint is added:

Ny
Y xlim<1 Vjell.nl, Vmell,Ss] 3)
i=1

To satisfy processor constraint, in each step, the num-
ber of tasks executed should be bounded by the number of
processors:

N1 n
DY xjm<n YmellS]. @)

i=1 j=1

The processor P(i) on which task v; is executed can be defined
as

n S
PGi)=) "> jxxijkx. Viell,N]. (5)

j=1 k=1

B. DATA ALLOCATION AND MEMORY CONSTRAINT

In the memory part, a data allocation is modeled with a binary
variable dj, j, which denotes whether data A is allocated to
local memory M;. For each data block, it can be allocated to
one and only one local memory:

n
Y dpj=1, Yh € [1,Ngl. 6)
j=1
Let Size; be the capacity of local memory M;. For each local
memory M;, the size of all data in M; must be smaller or equal
to Size;:
Na
> d(h) x dyj < Sizej, Vj e[l nl. (7)
h=1
To ensure data allocation, recall that data A is allocated to

memory Mem(h). The local memory Mem(h) to which data
h is allocated can be stated in terms of dj, j as

n
Mem(h) = Zj x dpj, Vhell,Ngl. (8)
j=1
Let binary variable y; j; denote whether memory access

operation node u; starts to execute in step k on local memory
M;. Each memory access operation node can start execution

140

in one and only one step and on one and only one local
memory:

n S
D> yjk=1. VIe[l.N)])

j=1 k=1

Let binary variable y}’ im denote whether memory access
operation node y; is scheduled in step m on local memory M;.
In each step, the number of memory access operation nodes
should be bounded by the concurrent access number of a local
memory:

N
Zy;’j’m <MA, Vjel[l,n,Vme[l,S]. (10)

=1
We define a variable M (I) to show the relationship between
data allocation and memory access operations. According to
the architectural model, a memory access operation must be
scheduled on the memory to which the corresponding data
has been allocated. The memory module M (/) for the memory
access operation u; which accesses data s = D(]) is defined as

n S
Mem(D(1)) = M(I) =Y "y " j x yijk. VI €[1,Na]. (11)
j=1 k=1

C. PRECEDENCE CONSTRAINTS

In addition, edge e(u, v) € E represents a precedence relation-
ship. We use four constraints to ensure that each task and each
memory access operation correctly follow the precedence
constraints. The dependency constraints can be formulated
by Egs. (12)—-(15), as shown at the top of the next page.
Eq. (12) characterizes the precedence constraints among
tasks. Egs. (13) and (15) show the precedence constraints
between tasks and memory access operations. Eq. (14) rep-
resents the precedence constraints among memory access
operations. Basically, each equation means that ¥ must be
completed before v can be started. Notice that RT (u, j) in Eqs.
(12)—(13), i.e., the execution time of task u, and RA_z(u, j) in
Egs. (14)—(15), i.e., the access time of memory access opera-
tion u, will be given in Section D.

D. EXECUTION AND ACCESS TIME
Let RT (i, j) represent the real execution time of task v; on
processor P;:

S
RT(i.j)=_xijx x ET(vi, P), (16)
k=1

where ET (v;, Pj) is given in Definition 2.1. For each task,
the following relationship between x,f,j’m and RT (i, j) must be
satisfied:
S

D Xl SRTG), Viell,N], Vjell,al, (7

m=1
which is to bound the total number of steps to execute task
vion P;. If x; jx = 1, then xtf’j’m must satisfy the following

VOLUME 2, NO. 2, JUNE 2014

Wang et al.: Energy-Aware DA and Task Scheduling

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

n S n S

DOk +RT.) x Xujk <Y Y kX Xy jk, Ye(,v) € G',Vu € [1,N1], ¥ € [1, Ny]. (12)
j=1 k=1 j=1 k=1

n S n S

DOk +RTw,) X Xujk <Y Yk X yujk. Ve v) € G',Yu € [1,N1], ¥v € [1, Ny]. (13)
j=1 k=1 J=1 k=1

n S n S
DO e+ RAtW) X Yujk < DDk X yujk. Ye(u,v) € G, Vu € [1,Na], Vv € [1, Na]. (14)
j=1 k=1 j=1 k=1

n S n S
DDk RALLD) X Yujk < DDk X Xk, Ve, v) € G/, Vu € [1,N2], Vv € [1, V1], (15)
j=1 k=1 J=1 k=1

equation:

k+RT (i,j)—1

> X, =RTG.)),

m=k

Vie[l,N1],Vje[l,n]

(18)
which means that the steps to execute a task must be
consecutive.

Let RA_t represent the real memory access time of a
memory access operation u; on local memory M;:

N1 Ng S
RALIL D= Y > yijkvar(vi, u, HAT(PG), Mp)d(h),
i=1 h=1 k=1
(19)

where we notice that u; accesses data h of size d(h) for
task v;, which is executed on processor P(i) with access time
AT (P(i), M;) for a unit data. For each memory access opera-
tion, the following relationship between y;’ im and RA_t(L,)
must be satisfied:

S

Zy;,j,m <RA_t(l,)), Yl e [1,M2],Vj e [l,n], (20)

m=1

which is similar to Eq. (17). If y;jx = 1, then yg’j’m must
satisfy the following equation:
k-+RA_t(1,j)—1
> Vijm=RAW.j). VI €[1,N2],Vj € [1,n],

m=k

(21)
which is similar to Eq. (18).

E. ENERGY CONSUMPTION
The real energy consumption RE (i, j) of a task v; on processor
Pj can be defined as

N

REQ, j) = in’j’k x EE(v;, Pj), (22)
k=1

where EE(v;, P;) is given in Definition 2.1. Also, the real
access energy consumption RA_e(/, j) of a memory access

VOLUME 2, NO. 2, JUNE 2014

operation u; on local memory M; can be defined as

N1 Ng S
RA_e(l.)=)) > yijkvar(vi.u. DAE(PG), Mpd(h).
i=lh=1 k=1
(23)

which is similar to Eq. (19).

F OBJECTIVE FUNCTION
Therefore, the objective function can be defined as:

N1 n N n
E=) Y REG)+)) RAel.)), (24

i=1 j=1 =1 j=1

which is to be minimized.

V. HEURISTIC ALGORITHMS

In this section, we propose two polynomial time heuristic
algorithms, i.e., the task assignment considering data
allocation (TAC-DA) algorithm and the task ratio greedy
scheduling (TRGS) algorithm, to solve the HDATS problem.
They aim to reduce total energy consumption, while satisfy-
ing time constraints. In the two algorithms, A(v;) indicates
the assignment of node v;; T(G’) represents the completion
time of an MDFG; and E(G’) represents the total energy
consumption of an MDFG.

Before presenting the details of the TAC-DA algorithm
and the TRGS algorithm, we define two cost-to-time ratio
computing functions as shown in Equations (25) and (26).
The two functions decide the reassignments of tasks and data,
respectively. First, we define

DiffCost(v;, P))

DiffTime(v;, P;)’
where DiffCost(v;, P;) is the increased energy consumption
when task v; is moved from the currently assigned processor
to a new processor P;, and DiffTime(v;, P;) is the increased
execution time when task v; is moved from the currently
assigned processor to a new processor P;. Next, we define

Ratio(v;, Pj) = (25)

DiffCost(u;, M;)

Ratio(u;, M;) =)
(uar, M) DiffTime(u;, M;)

(26)

141

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Wang et al.: Energy-Aware DA and Task Scheduling

where DiffCost(u;, M;) is the increased energy consumption
when the data accessed by memory access operation u; is
moved from the currently allocated memory to a new memory
M, and DiffTime(u;, M) is the increased access time when the
data accessed by memory access operation u; is moved from
the currently allocated memory to a new memory M;.

Let op(h) denote the set of memory access operations u;
that access data h. Then, we define

DiffTime(h, Mj) =y DiffTime(u, M), 27

uj€op(h)

and
Ratio(h, M;) = Z Ratio(u;, Mj). (28)
ur€op(h)

A. TAC-DA AIGORITHM

The TAC-DA algorithm is shown in Algorithm 1, which
consists of two phases and is a straightforward heuristic
algorithm. The first phase aims to find a better mapping for
each task node, and the second phase aims to find the best
assignment for each memory access operation according to
the first step.

In the first phase, we wuse the DFG_Assign_CP
algorithm [34] to find a better mapping for each task. The
DFG_Assign_CP algorithm in [34] is used to solve the
heterogeneous assignment problem for real-time DSP appli-
cations, where all requirements should be met and the
total cost should be minimized. To obtain a better solution,
before using the DFG_Assign_CP algorithm to solve the task
mapping problem, we set a new deadline L = pS for task
mapping, where p is a correlation coefficient between the
memory access operation nodes and the task nodes. For
simplicity, we set p = ny/(n] + nz), where n; and ny are
the number of task nodes and the number of memory access
operation nodes on a critical path in an MDFG, respectively.
The critical path indicates a path with the maximum number
of nodes including task nodes and memory access operation
nodes among all paths in an MDFG G’. Intuitively, p is the
proportion of task execution time and 1 — p is the proportion
of memory access time.

In the second phase, we should find an allocation for each
data according to the first phase. Since a data may be needed
by different tasks, more than one memory access operation
may be associated with the data. For each data, we calculate
the total energy consumption of each available assignment.
Then, we assign the data to a local memory with the minimum
total energy consumption of all memory access operations
associated with the data. After solving the task mapping
and data allocation problem, we need to detect whether the
total completion time T(G’) meets the time constraint or
not. If the total completion time 7' (G’) satisfies the time
constraint, we obtain a solution; otherwise, we should re-
allocate some data. In re-allocating data to satisfy the time
constraint, we select a data with the lowest cost-to-time ratio
Ratio(h, M;) and DiffTime(h, M;) < 0 to be moved to local

142

Algorithm 1 TAC-DA Algorithm

Require: (1) A DAG G (MDFG G); (2) A deadline S.
Ensure: (1) A near-optimal data allocation; (2) A near-
optimal task assignment.
1: /* task assignment */
2: set a deadline L = pS for task mapping
: call DFG_Assign_CP algorithm [34] to find an effective
mapping for each task node

W

4: /* data allocation */

5: for each datah € D do

6: for each M; € M do

7: if M; is a new local memory and has space to store
the data / then

8: compute the energy consumption of all u; € op(h)

9: end if

10: end for
11: re-allocate the data & to M} which yields the minimum
energy consumption

12: end for

13: if T(G') > S then

14: repeat

15: for each data h € D do

16: for each M; € M do

17: if M; has space to store the data h and
DiffTime(h, M;) < O then

18: compute Ratio(h, M;)

19: end if

20: end for

21: end for

22: re-allocate data i to M which yields the minimum

Ratio(h, My,)
23: until T(G') < S or T(G") cannot be reduced
24: end if

memory M;. After adjustment of data allocation is done, the
algorithm tries to find a new data allocation and attempts
to reduce its completion time until the time constraint is
satisfied, or the completion time of G’ cannot be reduced any
more.

In the TAC-DA algorithm, it takes O(|Vi||E1| + [V1|%)
time to find a better mapping for each task node, where V|
represents the number of task nodes and E; represents the
number of edges between task nodes. To find a better data
allocation, it tasks at most O(|V>|M) time to calculate the
ratios, select a data from the MDFG, and change its allocation,
where V5 indicates the number of memory access operation
nodes and M indicates the number of local memory. The
second phase iterates at most O(|V2|M) times, since each
local memory of a data is only assigned one time. Thus,
the second phase takes O((|V>|M)?) to obtain a better data
allocation. If M is treated as a constant, the time complex of
the TAC-DA algorithm is O(|V|*> 4 |V||E|), where |V| and
|E| are the number of all nodes and the number of all edges,
respectively.

VOLUME 2, NO. 2, JUNE 2014

Wang et al.: Energy-Aware DA and Task Scheduling

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

However, the TAC-DA algorithm may not be able to
obtain a solution, because data allocation is not considered in
conjunction with task scheduling. In an actual case, to
solve the HDATS problem, data allocation should be
considered together with task scheduling at the same
time, so that both data allocation and task scheduling
can be improved. Therefore, we present the TRGS algo-
rithm, which considers task scheduling and data allocation
simultaneously.

B. TRGS ALGORITHM

The TRGS algorithm is shown in Algorithm 2, which aims
to complete all tasks with minimum energy consumption and
to meet a given time constraint. In the TRGS algorithm, a
critical path (CP) is defined as a path p : u ~» v with
the maximum completion time among all paths in G’. Thus,
the completion time of the critical path p is equal to the
completion time of an MDFG G'.

In algorithm TRGS, we first use the list scheduling
algorithm to assign each task and each data. In the list
scheduling, we assign a data to a local memory according to
a task assignment. Each data is located in the same processor
of a task which needs the data to execute the earliest. We
then find a critical path that has the maximum execution time
among all possible paths based on the current assignment.
Next, if the execution time of the critical path is greater than
the given time constraint S, we reduce it by changing the
processor of a task or the local memory of a memory access
operation that is selected from the critical path. The task or
operation is selected from the critical path, since only the
completion time of the critical path is equal to the completion
time of the MDFG G'. In order to obtain the minimal energy
consumption and satisfy the time constraint with the resource
constraint, the TRGS algorithm always selects a node with
the lowest cost-to-time ratio to be moved to a processor
P; or a local memory M;, and the new match must satisfy
DiffTime < 0 compared with the original match. For the
same amount of reduction on completion time, a smaller
cost-to-time ratio indicates a smaller increase of energy.
After adjusting the assignment of a critical path is done, the
algorithm tries to find a new critical path in G’ and attempts
to reduce its completion time until the time constraint is
satisfied, or the completion time of G’ cannot be reduced any
more.

On the other hand, if the completion time of G’ under the
initial assignment satisfies the time constraint, the algorithm
tries to reduce the energy consumption by moving a node
with the lowest cost-to-time ratio to a new processor or
local memory. Since the goal of re-assignment is to reduce
energy consumption, for each node, the energy consumption
of the new assignment must be lower than that of the orig-
inal assignment. In other words, the new assignment must
satisfy DiffCost < 0. In these cases, the cost-to-time ratio
indicates the benefit of reduction with a sacrifice on time
performance. After reassigning a node, the algorithm tries
to find another node and continues to make such attempt

VOLUME 2, NO. 2, JUNE 2014

Algorithm 2 TRGS Algorithm

Require: (1) A DAG G (MDFG G'); (2) A deadline S.
Ensure: (1) A near-optimal data allocation; (2) A near-optimal task
assignment.
1: obtain a list schedule with data allocation A(uy,) < M} and
processor assignment A(v;) < Px
2: if T(G') > S then
3 repeat
4 find a critical path: u; ~> uj and v; ~> vj in G’
5: Vep < all nodes in the critical path
6: for each ve; € Ve do
7.
8
9

if ve; € V1 then
for each P; € P do
if P; is a mnew processor for vc; and
DiffTime(vc;, Pj) < 0 then

10: compute Ratio(vc;, pj)

11: end if

12: end for

13: else

14: for each M; € M do

15: if M; is a new local memory and has space

to store the data of access operation vc;, and
DiffTime(vci, Mj) < O then

16: compute Ratio(vc;, Mj)

17: end if

18: end for

19: end if

20: end for

21: Ratio(vci, M) or Ratio(vci, Py) < the minimal ratio in
critical path p

22: A(vei) < My or Py

23 wntil T7(G) <S

24: else

25: repeat

26: for each node v; in G’ do

27: if the node v; € V| then

28: for each P; € P do

29: if P; is an available processor for task v; and

DiffCost(v;, P;}) < 0 and T(G') < S then

30: compute Ratio(v;, pj)

31: end if

32: end for

33: else

34: for each M; € M do

35: if M; is a new local memory and has space

to store the data of access operation v;, and
DiffCost(v;, Mj) < 0 and T(G) < S then

36: compute Ratio(vi, M;)

37: end if

38: end for

39: end if

40: end for

41: Ratio(v;, M}) or Ratio(v;, P;y) < the minimal ratio in
critical path p

42: A(vj) < My, or Py

43: until E(G’) cannot be reduced

44: end if

until the energy consumption of G’ cannot be reduced any
more. The TRGS algorithm iteratively tries each free pro-
cessor for task assignment and each local memory with
enough space for data allocation to find a schedule with the
minimum energy consumption, while the time constraint is
satisfied.

143

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Wang et al.: Energy-Aware DA and Task Scheduling

The time complexity of the TRGS algorithm is
O(V|>(P + M)’2IE| + |V|)), where |V| is the number of
all nodes, P is the number of processors, M is the number
of local memories, and |E| is the number of edges. If M
and P are treated as constants, the TRGS algorithm takes
O(IVIA(IE| + |V])) time.

VI. PERFORMANCE EVALUATION

In this section, we first describe the experimental setup. We
then show the results of evaluating the effectiveness of the
proposed algorithms on different systems.

A. EXPERIMENT SETUP

We use the following benchmarks in our experiments,
i.e., IIR, Allople, Floyd, Elliptic, and 10-4lattic-iir. These
benchmarks are from DSPstone [33], and frequently used
on multicore systems. We compile the benchmarks with gcc
and extract the task graphs and the read/write data sets from
gcc. There are three phases. First, the source codes must be
compiled with profiling (-fprofile-generate). Then,
the compiled binary must be executed with a data set cor-
responding to the use case. Finally, the source code must
be compiled again with both profile-guided optimization
and ABSINTH enabled (-fprofile—-use-fabsinth).
The pass_absinth_bbs traverses all RTL expres-
sions within each basic block. For each expression,
pass_absinth_bbs analyzes whether it is an instruction
or not, and generates one execute primitive per each instruc-
tion [20]. Then, the task graphs and access sets are fed into
our simulator. The number of tasks, dependency edges, and
data of each benchmark are shown in Table 3.

TABLE 3. Sizes of DSPstone Benchmarks.

Benchmark | Tasks | Edges | Data B ETR | Dpra
IR 8 7 12 0.2 1.1 6KB
Allople 15 17 24 045 | 1.25 2KB
Floyd 16 20 28 0.75 | 0.95 5KB
Elliptic 34 47 48 0.5 1.75 4KB
10-4lattic-iir 260 221 380 1.0 1.2 3KB

Our graphs extracted require the following parameters to
build weighted MDFGs.

Range of task execution time 8 — It is basically the hetero-
geneity factor for processor speeds. A higher 8 value causes
more difference among a task’s execution time on the proces-
sors. The average execution time 7; of task v; in the graph
is selected randomly from a uniform distribution with range
[0, 2TprGl, where Tprg is the average computation time of
the given graph, which is set randomly in the algorithm. Then,
the execution time of each task v; on each processor P; in the
system is randomly set from the following range:

<1 - g) T; < ET(vi, Pj) < (1 + g) L. (29

The above equation implies that ET (v;, P;) is a uniform ran-
dom variable with mean 7; over an interval of length B7;,
where S is the degree of heterogeneity of task execution time.

144

Energy to time ratio (ETR) — It is the ratio of the average
energy consumption to the average execution time of an
MDFG. Then, the energy consumption of task v; on processor
Pjis EE(v;, Pj) = E x ET (v;, Pj) x ETR, where E scales the
energy consumption of processor P;.

Data parameter o — The number of data needed in the
graphis Ny = a x +/V x /E, where V is the number of tasks
in the graph and E is the number of edges in the MDFG.

Data size y — Dprg is the average data size of a task graph,
which is set randomly in the algorithm. For a data A, the
data size parameter yj, is selected randomly from a uniform
distribution in the range [0, 2]. Then, the data size of each data
his d(h) = yn X Dprg.

All the experiments for DAGs are conducted on two dif-
ferent architecture models which are defined in Section 2.1.
The first one is composed of three heterogeneous processors
shown in Fig. 1. Fig. 5 shows the second one, which consists
of five heterogeneous processors. A set of parameters of
the two architecture models are collected from ARM7 and
MSP430 by using the CACTI tools [1] provided by HP. The
set of parameters are shown in Table 4. The row “Time
latency” and row ““Energy consumption” show the wake-up
time and the wake-up energy of each processor, respectively.
The access time per unit data is time latency + epr X d,
where epr is the transmission parameter for access time and
d is the transmission distance between two processors, whose
values are set randomly. The access energy per unit data is
Eole + €rs x d*, where E,j, is the wake-up energy, and ey is
the transmit amplifier parameter, whose value is set randomly.

For convenience, we have given the execution time and
energy consumption of a unit data for the two models shown
in Figs. 1 and 5. Values of execution time and energy con-
sumption are given for all task nodes. Data reads and writes
are pre-determined. All the experiments are conducted by a
simulator on an Intel® Core”™ 2 Duo Processor E7500 2.93G
with a 2GB main memory running Red Hat Linux 7.3.

We performed two groups of experiments. In the
two groups of experiments, we use all benchmarks run-
ning on heterogeneous multiprocessor models shown in
Figs. 1 and 5 to demonstrate the effectiveness of the TAC-DA
algorithm and the TRGS algorithm. Two performance met-
rics considered in our experiments are completion time
and energy consumption. In the two sets of experiments,
our algorithms are compared with the greedy algorithm [18].
The greedy algorithm first uses a constructive heuristic to
second an initial assignment and iteratively improves it in
a greedy way. This is a recently published algorithm to
minimize the total cost of computation and communication,
which is employed to schedule tasks with time constraints in
heterogeneous systems. For example, the greedy algorithm
has been applied in application-special DSP processors to
optimize scheduling, and it has been shown to be very
effective. Therefore, the greedy algorithm is the most related
work and an excellent algorithm for comparison. In this paper,
the greedy algorithm has been adjusted so that it is suitable to
our model to solve the HDATS problem. To make fair compar-

VOLUME 2, NO. 2, JUNE 2014

Wang et al.: Energy-Aware DA and Task Scheduling

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

‘ Interconnection network ‘ P, P, Ps P, Ps
memo

v ATy | AEy | AT, | AE; | ATs | AE3 | ATs | AEs | ATs | AEs
networl network ‘ network ‘ network ‘ network

control control control control control ‘ M, 1 2 3 4 4 6 5 8 2 3

Ms M. Ms Mq Ms M, | 4 | 3| 1] 2|4 |7 |59 3]s

T Ms | 3| 3| 4|5 1|16]|8]2]2

L [N [] | I N
DSM shared

address space Ms 2 | 23| 3| 4| 9|5 |13]|1 1

(a)

(b)

FIGURE 5. The second architecture model. (a) An architecture with five heterogeneous processors, each is embedded with a local memory.
(b) Access times and energy consumption for transmitting one unit of data between processors and local memories.

TABLE 4. System Specification for Model 1 and Model 2.

Parameter Model 1 Model 2
Core 1 Core 2 | Core 3 Core 1 Core 2 Core 3 Core 4 Core 5
Frequency 64MHz | 30MHz | 7.5Mhz || 6MHz 3MHz 1.5MHz | 0.75MHz | 12MHz
Local memory size 128KB 64KB 32KB 32KB 16KB 8KB 8KB 64KB
Time latency 1.4ms 2.38ms 2.45ms 1.225ms | 2.787ms | 2.781ms | 3.781ms 0.876ms
Energy consumption | 0.1m] 1.47m] 1.53m] 0.593m] | 1.359m] | 1.849m] | 2.187m] 0.252m]
TABLE 5. The Results of the Four Algorithms on the First System With Three Heterogeneous Processors.
Benchmark | TC [Greedy [ILP method | TAC-DA [TRGS |
| energy [energy | energy [%(greedy) [%(ILP) | energy | %(greedy) | %(ILP) |
20 118 106 115 2.5% 8.4% 109 7.62% 2.83%
25 118 91 106 10.17% 16.48% 96 18.64% 5.49%
IIR 30 105 84 89 15.23% 5.95% 87 17.14% 3.57%
8) 35 81 65 67 17.28% 3.07% 66 18.51% 1.53%
40 72 60 60 16.67% 0.00% 60 16.67% 0.00%
37 256 232 241 5.86% 3.01% 238 7.03% 2.59%
Allople 42 226 199 204 9.73% 2.51% 203 10.17% 2.01%
(15) 47 196 169 175 10.71% 3.55% 172 12.24% 1.78%
52 179 139 144 19.55% 3.59% 143 20.11% 2.88%
57 147 116 119 19.04% 2.59% 119 19.04% 2.59%
70 213 176 198 7.04% 12.5% 187 12.21% 6.25%
75 199 168 174 12.56% 3.45% 172 13.57% 2.38%
Floyd 80 156 136 141 9.61% 3.67% 140 10.25% 2.94%
(16) 85 144 121 124 13.89% 2.48% 124 13.89% 2.48%
90 129 109 110 14.73% 0.92% 110 14.73% 0.92%
114 | 501 159 — - — 176 199% 3.70%
128 439 382 408 7.06% 4.97% 396 9.79% 3.66%
Elliptic 142 343 280 287 16.33% 2.50% 285 16.91% 1.79%
(34) 156 328 270 275 16.16% 1.85% 275 16.16% 1.85%
170 328 270 275 16.16% 1.85% 275 16.16% 1.85%
120 3689 X 3012 18.35% X 2983 19.14% X
10-4Lat 140 2912 X 2246 22.87% X 2145 26.34% X
-IIR 160 2458 X 1921 21.85% X 1879 23.56% X
(260) 180 2143 X 1659 22.58% X 1654 22.82% X
200 2143 X 1578 26.36% X 1578 26.36% X
Average 13.72% 2.64% 15.76% 2.06%

isons, we implement all the four algorithms, i.e., greedy, ILP,
TAC-DA, and TRGS, within the same scheduling framework.
In doing so, we ensure that the performance disadvantage of
the greedy algorithm is not due to fundamental limitations of
the implementations.

B. RESULTS AND ANALYSIS
The first group of experimental results are shown in Table 5,
which reports the statistical performance comparison of all

VOLUME 2, NO. 2, JUNE 2014

the four algorithms and for all benchmarks based on the
architectural model shown in Fig. 1. In the table, column TC
shows the given time constraint. Each ““x” indicates that the
corresponding experiment cannot generate a solution within
24 hours, and each “-” represents that the algorithm cannot
obtain a solution under the time constraint. Table 5 shows that
our algorithms TAC-DA and TRGS can achieve better per-
formance than the greedy algorithm, and their performance
is very close to that of the ILP method. The reduction rates

145

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Wang et al.: Energy-Aware DA and Task Scheduling

350

300

300
250
200
150

energy consumption
energy consumption

100
50

15 2 2 36 43 3 4

Time constraints

250

200

150

energy consumption

100

50

40 46 52

Time constraints

28 34 40 46 52

Time constraints

OILP B greedy O TAC-DA O TRGS

‘ O ILP @ greedy O TAC-DA O TRGS

‘ OILP B greedy O TAC-DA O TRGS

(a)

(b)

(c)

energy consumption

86 100 114 130 144

Time constraints

‘ O ILP @ greedy O TAC-DA O TRGS

4500
4000
3500

2500
2000
1500
1000

energy consumption

90 115 140 165 180

Time cnstraints

‘ OILP B greedy O TAC-DA OTRGS ‘

(d

(e)

FIGURE 6. The results of the four algorithms on the second system with five heterogeneous processors. (a) lIR. (b) Allople.

(c) Floyd. (d) Elliptic. (e) 10-4lat-lIR.

of our techniques compared with the greedy algorithm are
(E; — E)/E,, where E, indicates the energy consumption
of the greedy algorithm and E represents the energy con-
sumption of our techniques. From the row ‘““Average,” the
TAC-DA and TRGS algorithms reduce the total energy
consumption by 13.72% and 15.76% on the average com-
pared with the greedy algorithm, respectively. The incre-
ment rates of TAC-DA and TRGS compared with ILP are
(E — Epp)/Epp, where Ejp is the energy consumption
of the ILP method. From the row “Average’, the aver-
age increment rates of the total energy consumption of the
TAC-DA and TRGS algorithms are only 2.64% and 2.06%,
respectively.

Fig. 6 shows the second group of experimental results,
which are obtained by running a set of simulations on all
benchmarks based on the architectural model shown in Fig. 5.
As we can see, with the extension of the time constraint,
the energy consumption of all the four algorithms decreases
and the gap of energy consumption between the four algo-
rithms becomes smaller. From the figure, we know that the
energy consumption of the TAC-DA and TRGS algorithms
are less than that of the greedy algorithm, and are greater
than that of the ILP method. The TAC-DA and TRGS algo-
rithms reduce the total energy consumption by 19.76% and
24.67% on the average compared with the greedy algorithm,
respectively. Furthermore, the larger the time constraint, the
closer their performance is to that of the ILP method. There-
fore, the TAC-DA and TRGS algorithms are superior to the
greedy algorithm. The average increment rates of total energy

146

consumption of the TAC-DA and TRGS algorithms are
only 1.27% and 0.092%, respectively. Furthermore, from the
figure, we are able to compare TAC-DA and TRGS
algorithms. We can see that, in general, the energy consump-
tion of the TRGS algorithm is less than that of the TAC-DA
algorithm. Although the TAC-DA algorithm might be better
than the TRGS algorithm when the time constraint is greater
than a special value, it may not obtain a solution under a tight
time constraint, because data allocation is not considered in
conjunction with task scheduling at the same time. Therefore,
the TRGS algorithm is superior to the TAC-DA algorithm.

From the two groups of experimental results, we know
that the computation time of the ILP method grows exponen-
tially with increasing size of benchmarks, although the ILP
method obtains optimal results on some of the benchmarks.
Our experimental results show that the ILP method takes
a long time to get results even for a medium-sized DAG
with no more than 50 nodes. For example, on the system
with three processors shown in Fig. 1, the ILP method takes
287 minutes to calculate the result for a Floyd filter with time
constraint § = 85, while the TAC-DA and TRGS algorithms
take less than 1 minute to produce near-optimal solutions.
Furthermore, the ILP method cannot generate a solution for
10-4lattice filter within 24 hours. The computation time of
the ILP method is unacceptable for large-sized DAGs. On the
contrary, the TAC-DA algorithm can obtain a near-optimal
solution with a loose time constraint and the TRGS algorithm
can always generate a near-optimal solution efficiently for all
the benchmarks.

VOLUME 2, NO. 2, JUNE 2014

Wang et al.: Energy-Aware DA and Task Scheduling

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

VIl. CONCLUSION
In this paper, we presented an optimal algorithm, i.e., the
ILP method, and two heuristic algorithms, i.e., the TAC-DA
and TRGS algorithms, to solve the HDATS problem that
aims to obtain better task scheduling incorporated with data
allocation, such that the total system energy consumption
is minimized for a given time constraint. For experimental
studies, we employed two heterogeneous multiprocessor sys-
tems to execute various applications, where one consists
of three heterogeneous processors, and the other consists
of five heterogeneous processors, and both systems have
different heterogeneity characteristics in terms of access time
and access energy. In the experiments conducted on the
two systems, both TAC-DA and TRGS algorithms achiev
noticeable average reduction rates of the total energy con-
sumption compared with the greedy algorithm. Furthermore,
the performance of the two techniques are very close to that
of the ILP method, with very low average increment rates of
the total energy consumption. Moreover, the TRGS algorithm
is superior to the TAC-DA algorithm.

Further research can be directed towards finding more
effective and efficient algorithms with reduced time
complexity and improved energy efficiency.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the three
anonymous reviewers whose constructive comments have
helped to improve the manuscript.

REFERENCES

[1] (2008). Cacti
research/cacti

[2] (2013). tianhe-i [Online]. Available: http://en.wikipedia.org/wiki/tianhe-i

[3] (2013).10p500 [Online]. Available: http:/www.top500.org/system/176958.

[4] G. Attiya and Y. Hamam, “Task allocation for maximizing reliability of
distributed systems: A simulated annealing approach,” J. Parallel Distrib.
Comput., vol. 66, no. 10, pp. 1259-1266, 2006.

[5] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling
of deadline-constrained sporadic task systems,” IEEE Trans. Comput.,
vol. 55, no. 7, pp. 918-923, Jul. 2006.

[6] T. Chantem, X. Hu, and R. Dick, “Temperature-aware scheduling and
assignment for hard real-time applications on MPSoCs,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 10, pp. 1884-1897,
Oct. 2011.

[7] T. Chen and J. Sheu, “Communication-free data allocation techniques for
parallelizing compilers on multicomputers,” IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 9, pp. 924-938, Sep. 1994.

[8] Y. Chen, H. Liao, and T. Tsai, “On-line real-time task scheduling in
heterogeneous multi-core system-on-a-chip,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 1, pp. 118-130, Jan. 2013.

[9] T. Chiang, P. Chang, and Y. Huang, ‘“Multi-processor tasks with resource
and timing constraints using particle swarm optimization,” Int. J. Comput.
Sci. Netw. Security, vol. 6, no. 4, pp. 71-77, 2006.

[10] A.Dogan and F. Ozgiiner, “Scheduling of a meta-task with QoS require-
ments in heterogeneous computing systems,” J. Parallel Distrib. Comput.,
vol. 66, no. 2, pp. 181-196, 2006.

[11] J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, “Bi-objective scheduling
algorithms for optimizing makespan and reliability on heterogeneous sys-
tems,” in Proc. 19th Annu. ACM Symp. Parallel Algorithms Archit., 2007,
pp. 280-288.

[12] J.Du, Y. Wang, Q. Zhuge, J. Hu, and E. Sha, “Efficient loop scheduling for
chip multiprocessors with non-volatile main memory,” J. Signal Process.
Syst., vol. 71, no. 3, pp. 261-273, 2012.

Model [Online]. Available: http://www.hpl.hp.com/

VOLUME 2, NO. 2, JUNE 2014

[13]

[14

[15]

[16]

[17]

(18]

[19]

[20]

21

]
=

[25]

[26]

[27]

(28]

=
2

[30

[31]

M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao, “Energy-optimal software partitioning in heterogeneous multipro-
cessor embedded systems,” in Proc. 45th Annu. Des. Autom. Conf., 2008,
pp- 191-196.

T. Hagras and J. Janecek, ““A high performance, low complexity algorithm
for compile-time task scheduling in heterogeneous systems,” Parallel
Comput., vol. 31, no. 7, pp. 653-670, 2005.

J. Hu and R. Marculescu, “Energy-aware communication and task schedul-
ing for network-on-chip architectures under real-time constraints,” in Proc.
Des., Autom. Test Eur. Conf. Exhibit., vol. 1. 2004, pp. 234-239.

L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task allocation
and scheduling for MPSoC platforms,” in Proc. Conf. Des., Autom. Test
Eur. Conf. Exhibit., 2009, pp. 51-56.

E. Ilavarasan and P. Thambidurai, “Low complexity performance effective
task scheduling algorithm for heterogeneous computing environments,” J.
Comput. Sci., vol. 3, no. 2, pp. 94-103, 2007.

Q. Kang, H. He, and H. Song, ““Task assignment in heterogeneous comput-
ing systems using an effective iterated greedy algorithm,” J. Syst. Softw.,
vol. 84, no. 6, pp. 985-992, 2011.

S. Kang and A. Dean, “DARTS: Techniques and tools for predictably fast
memory using integrated data allocation and real-time task scheduling,” in
Proc. 16th IEEE RTAS, Apr. 2010, pp. 333-342.

J. Kreku, K. Tiensyrjd, and G. Vanmeerbeeck, ‘‘Automatic workload gen-
eration for system-level exploration based on modified GCC compiler,” in
Proc. Des., Autom. Test Eur. Conf. Exhibit., 2010, pp. 369-374.

K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task schedul-
ing, allocation and synchronization on multiprocessors,” in Proc. 30th
IEEE RTSS, Dec. 2009, pp. 469-478.

B. Ouni, R. Ayadi, and A. Mtibaa, ““Partitioning and scheduling technique
for run time reconfigured systems,” Int. J. Comput. Aided Eng. Technol.,
vol. 3, no. 1, pp. 77-91, 2011.

A. Page, T. Keane, and T. Naughton, ‘“Multi-heuristic dynamic task allo-
cation using genetic algorithms in a heterogeneous distributed system,” J.
parallel Distrib. Comput., vol. 70, no. 7, pp. 758-766, 2010.

A. Prayati, C. Koulamas, S. Koubias, and G. Papadopoulos, “A method-
ology for the development of distributed real-time control applications
with focus on task allocation in heterogeneous systems,” IEEE Trans. Ind.
Electron., vol. 51, no. 6, pp. 1194-1207, Dec. 2004.

X. Qin and H. Jiang, “A dynamic and reliability-driven scheduling algo-
rithm for parallel real-time jobs executing on heterogeneous clusters,”
J. Parallel Distrib. Comput., vol. 65, no. 8, pp. 885-900, 2005.

X. Qin and T. Xie, “An availability-aware task scheduling strategy
for heterogeneous systems,” [IEEE Trans. Comput., vol. 57, no. 2,
pp. 188-199, Feb. 2008.

M. Qiu, J. Liu, J. Li, Z. Fei, Z. Ming, and E.-M. Sha, “A novel energy-
aware fault tolerance mechanism for wireless sensor networks,” in Proc.
IEEE/ACM Int. Conf. Green Comput. Commun., Aug. 2011, pp. 56-61.
K. Ranganathan and I. Foster, “Decoupling computation and data schedul-
ing in distributed data-intensive applications,” in Proc. 1th IEEE Int. Symp.
High Perform. Distrib. Comput., Jul. 2002, pp. 352-358.

R. Sakellariou and H. Zhao, ““A hybrid heuristic for DAG scheduling on
heterogeneous systems,” in Proc. 18th Int. Parallel Distrib. Process. Symp.,
Apr. 2004, p. 111.

H. Salamy and J. Ramanujam, “An effective solution to task schedul-
ing and memory partitioning for multiprocessor system-on-chip,” IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 31, no. 5,
pp. 717-725, May 2012.

V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad mem-
ory optimization and task scheduling for MPSoC architectures,” in
Proc. Int. Conf. Compil., Archit. Synthesis Embedded Syst., 2006,
pp. 401-410.

Y. Tian, H. Edwin, C. Chantrapornchai, and P. Kogge, “Optimization for
data placement and data scheduling on processor-in-memory arrays,” in
Proc. 1st Merged Int. Symp. Parallel Distrib. Process. Parallel Process.
Symp., Apr. 1998, pp. 57-61.

C. S. V. Zivojnovic, J. Martinez, and H. Meyr, “DSPstone: A DSP-oriented
benchmarking methodology,” in Proc. ICSPAT, 1994, pp. 1-6.

C. X. Z. Shao, Q. Zhuge, and E. H. M. Sha, “Efficient assignment and
scheduling for heterogeneous DSP systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 16, no. 6, pp. 516525, Jun. 2005.

Q. Zhuge, Y. Guo, J. Hu, W. Tseng, S. Xue, and E. Sha, ‘““Minimizing access
cost for multiple types of memory units in embedded systems through data
allocation and scheduling,” IEEE Trans. Signal Process., vol. 60, no. 6,
pp. 3253-3263, Jun. 2012.

147

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Wang et al.: Energy-Aware DA and Task Scheduling

YAN WANG received the B.S. degree in infor-
mation management and information technology
from Shenyang Aerospace University in 2010. She
is currently pursuing the Ph.D. degree with Hunan
University, China. Her research interests include
modeling and scheduling in parallel and dis-
tributed computing systems, and high performance
computing.

KENLI LI received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a Visiting
Scholar with the University of Illinois at Urbana-
Champaign from 2004 to 2005. He is currently a
Full Professor of computer science and technology
with Hunan University and an Associate Director
of the National Supercomputing Center, Changsha.
His current research includes parallel computing,
grid and cloud computing, and DNA computing.
He has published more than 90 papers in international conferences and jour-
nals, such as the IEEE TrRANSACTIONS ON CoMPUTERS, THE IEEE TRANSACTIONS
ON PARALLEL AND DiIsTRIBUTED SYSTEMS, JPDC, ICPP, and CCGrid. He is an
Outstanding Member of CCF.

HAO CHEN received the B.S. degree in chemi-
cal engineering from Sichuan University, China,
in 1998, and the Ph.D. degree in computer sci-
ence from the Huazhong University of Science and
Technology, China, in 2005. He is currently an
Associate Professor with the School of Informa-
tion Science and Engineering, Hunan University,
China. His research interests include parallel and
distributed computing, operating systems, cloud
computing, and systems security. He has pub-
lished more than 60 papers in journals and conferences, such as the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS
oN CoMPUTERS, the International Parallel and Distributed Processing Sympo-
sium, and the International Workshop on Quality of Service. He is a member
of the ACM.

148

LIGANG HE received the bachelor’s and master’s
degrees from the Huazhong University of Science
and Technology, Wuhan, China, and the Ph.D.
degree in computer science from the University of
Warwick, U.K. He was a Post-Doctoral Researcher
with the University of Cambridge, U.K. In 2006,
he joined the Department of Computer Science,
University of Warwick, as an Assistant Professor,
\ \ and is currently an Associate Professor. His areas

of interest are parallel and distributed computing,
grid computing, and cloud computing. He has published more than 50 papers
in international conferences and journals, such as the IEEE TRANSACTIONS
ON PARALLEL AND DisTRIBUTED SYsTEMS (TPDS), the International Parallel
and Distributed Processing Symposium, Cluster, CCGrid, and MASCOTS.
He served as a member of the program committee for many international
conferences and he was the reviewer for a number of international journals,
including the IEEE TPDS, IEEE TransacTiONs oN ComPUTERS, and the IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING.

KEQIN LI is a SUNY Distinguished Professor of
computer science. He was an Intellectual Ventures
endowed Visiting Chair Professor with Tsinghua
University, China, from 2011 to 2013. His research
interests are mainly in design and analysis of
algorithms, parallel and distributed computing,
and computer networking. He has published over
280 refereed research publications. He has served
on the editorial board of the IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TrANSACTIONS ON COMPUTERS, the Journal of Parallel and Distributed Comput-
ing, the International Journal of Parallel, Emergent and Distributed Systems,
the International Journal of High Performance Computing and Networking,
the International Journal of Big Data Intelligence, and Optimization Letters.

VOLUME 2, NO. 2, JUNE 2014

