
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018 307
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Yan Wang, Kenli Li, Senior Member, IEEE, Jun Zhang, and Keqin Li, Fellow, IEEE

Abstract— The gradually widening disparity in the speed of the
CPU and memory has become a bottleneck for the development
of chip multiprocessor (CMP) systems. Increasing penalties
caused by frequent on-chip memory access have raised critical
challenges in delivering high memory access performance with
tight energy and latency budgets. To overcome the memory wall
and energy wall issues, this paper adopts CMP systems with
hybrid scratchpad memories (SPMs), which are configured from
SRAM and nonvolatile memory. Based on this architecture, we
propose two novel algorithms, i.e., energy-aware data alloca-
tion (EADA) and balancing data allocation to energy and write
operations (BDAEW), to perform data allocation to different
memories and task mapping to different cores, reducing energy
consumption and latency. We evaluate the performance of our
proposed algorithms by comparison with a parallel solution that
is commonly used to solve data allocation and task scheduling
problems. Experiments show the merits of the hybrid SPM
architecture over the traditional pure memory system and the
effectiveness of the proposed algorithms. Compared with the
AGADA algorithm, the EADA and BDAEW algorithms can
reduce energy consumption by 23.05% and 19.41%, respectively.

Index Terms— Data allocation, energy consumption,
nonvolatile memory, write operations.
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I. INTRODUCTION

BECAUSE the performance gap between the CPU and
memory is expanding, energy consumption has become

more important and received extensive attention in chip
multiprocessor (CMP) systems. To bridge the performance
gap, solutions adopt the SRAM cache as on-chip memory.
SRAM caches have facilitated the layered memory hierarchy
and improved memory performance. However, SRAM caches
account for up to 25%-50% of the overall CMP’s energy
consumption and do not guarantee predictability of cache
misses [2]. Therefore, it is desirable to integrate NVM like
flash memory or phase change memory (PCM) for CMP
systems because it is nonvolatile and consumes less energy
than SRAM. For instance, if a 4GB SRAM on-chip memory
is replaced by a 4GB NVM, 65% of energy consumption
can be saved in intensive write access on CMP systems [31].
The disadvantages of NVM are explicit. First, the speed
and cost of read operations and write operations in NVMs
are asymmetric. Second, there is a maximum number of
write operations that NVM can perform. Third, memory
access in NVM is slower than in SRAM. Considering the
properties of DRAM and PRAM, in this paper, we utilize
a hybrid on-chip memory composed of a SRAM and a
NVM to achieve energy-efficient CMP systems. With hybrid
on-chip memory, a substantial performance gain is achieved
by the proposed techniques, while consuming less energy and
extending the lifetime of NVMs.

To develop alternative energy-efficient techniques, in this
paper, the hybrid on-chip memory uses a software controllable
hybrid Scratch-Pad memory (SPM). SPM has been widely
employed in CMP systems to replace the hardware-controlled
cache [10], [20]. This is because SPM has three major
advantages compared with the cache. First, SPM is directly
addressing and does not need the comparator and tag SRAM.
Second, SPM generally guarantees the single-cycle access
latency. Third, SPM is purely managed by software, either
directly via the application program or through the automated
compiler support [19]. To efficiently manage SPMs, in this
paper, we use compiler-analyzable data access patterns to
strategically allocate data. The proposed technique benefits
energy consumption while minimizing performance degrada-
tion and endurance caused by the physical limitation of NVM.

When an application with data dependencies is executed
on a CMP system with hybrid SPMs, the following problems
cannot be overlooked, i.e., reducing energy consumption,
improving the endurance of NVM (reducing the number of
write operations), and minimizing scheduling time. In this
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paper, we reconsider the variable partitioning problem of a
DSP application on CMP systems with hybrid SPMs. Unfortu-
nately, different objectives may conflict in this hybrid memory
architecture. For example, placing data in NVM can reduce
energy consumption but may lead to more writes to NVM,
which shortens system lifetime and degrades performance.
Therefore, techniques are proposed to address the trade-offs
between low energy consumption and the performance and
endurance degradation caused by write activities on an NVM.
These improvements are achieved through the following novel
contributions of this paper.

• We first propose a data allocation algorithm for single
core systems to reduce energy consumption while
controlling the number of write operations
on NVM.

• Then, we propose two novel algorithms, i.e., EADA and
BDAEW, for CMP systems with hybrid SPMs to solve the
energy optimization problems of data allocation and task
scheduling. The two algorithms generate a well-planned
data allocation and task scheduling scheme so that all
requirements can be met and the total energy consumption
can be minimized while reducing the number of write
operations on NVM.

Experimental results show that our proposed algorithms per-
form better than parallel solutions [5]. On average, reduction
in the total energy consumption of the EADA and BDAEW
algorithms is 16.44% and 27.8% compared to parallel solu-
tions. The number of write operations on NVM can be reduced
greatly by EADA and BDAEW algorithms. This means the
lifetime of NVM can be prolonged. If the original life of NVM
is 5 years, our proposed techniques can extend the life of NVM
to at least 12 years.

The remainder of this paper is organized as follows.
Section II reviews related work. In Section III, we present
our CMP with hybrid SPMs architecture and computational
model. In Section IV, we use an example for illustration. In
Section V, we first propose a data allocation approach for a
single core system, and then propose two heuristic algorithms
to solve the energy optimization problem of data allocation
and task scheduling on CMP systems. In Section VI, we
evaluate and analyze our techniques compared with the parallel
solution. Section VII concludes this paper and discusses future
work.

II. RELATED WORK

Numerous sophisticated SPM data allocation and
management techniques have been proposed to reduce energy
consumption or improve performance. Wang et al. [27]
presented algorithms for WCET-aware energy-efficient
static data allocation on SPM, i.e., selectively allocating
data variables to SPM to minimize program’s energy
consumption, while respecting a given WCET upper bound.
Udayakumaran et al. [22], proposed a heuristic algorithm
to allocate global and stack data for SPMs to minimize
allocation cost. Udayakumaran and Barua [21] proposed a
dynamic data allocation method for allocating heap data on
SPMs to improve performance. The above techniques target
SPMs consisting of pure SRAM. None of the techniques

above can apply to the architecture in this paper when
integrating the lifetime issues of NVM.

Many data allocation techniques have also been proposed
to extend the lifetime of the NVM-based memory subsystem,
while reducing energy consumption and improving overall
system performance [13], [14], [17], [28]. Monazzah et al. [16]
presented algorithms for fault-tolerant data allocation on
hybrid SPM that consist of NVM and SRAM, protected
with error-correcting code (ECC), and parity. Qiu et al. [18]
proposed a novel genetic algorithm to solve the data allocation
problem of heterogeneous SPM with SRAM and NVMs.
Dhiman et al. [7] proposed an architecture and system policy
for managing a hybrid SRAM+PRAM memory. Hu et al. [9]
considered a hybrid SPM configuration consisting of SRAM
and PCM-based NVM, and presented a dynamic data
allocation algorithm for reducing write operations on NVM
by preferentially allocating read-intensive data variables
into NVM, and write-intensive data variables into SRAM.
Wang et al. [27] considered a multitasking system with hybrid
main memory consisting of PCM and DRAM, and addressed
the problem of partitioning and allocating data variables to
minimize average power consumption while guaranteeing
schedulability. In this paper, we address the data allocation
problem for CMP systems with hybrid SPM architecture
by proposing novel scheduling algorithms. The goal is to
reduce the energy consumption and extend the lifetime of
the NVMs.

Due to the influence of task scheduling on system perfor-
mance, data allocation problems have been extensively studied
to incorporate task scheduling. Various heuristic algorithms
were proposed in [1], [4], [12], [14], [23], [24], [29], and [30].
These works mainly focus on optimizing the performance of
a system, where the algorithms provide quality solutions to
minimize the application’s total execution time. Together with
the increasing demand for high-performance CMP systems, the
energy consumption problem has also become more impor-
tant and attracts extensive attention. Banikazemi et al. [3]
proposed a novel low-overhead, user-level meta-schedule to
improve both system performance and energy consumption.
Wang et al. [26] proposed an optimal ILP based algorithm,
and two heuristic algorithms, TAC-DA and TRGS algorithms,
to solve heterogeneous data allocation and task scheduling
problems; minimizing energy consumption and satisfying the
time constraint. Their methods achieve a well-planned data
allocation and task scheduling approach. However, the data
allocation and task scheduling problem in CMP with hybrid
SPMs differs from existing data allocation problems for non-
uniform memory access architectures, since the write and
read operations to one component of the architectures are
asymmetric, and it is desirable to avoid writes to that com-
ponent. Compared with the above approaches, this paper has
several unique aspects. First, we target the CMP embedded
systems with hybrid SRAM+NVM SPMs to solve the energy
optimization problem of data allocation and task scheduling.
Second, we propose several novel algorithms to obtain a well-
planned data allocation and task scheduling approach such that
the overall performance can be improved while reducing total
energy consumption.
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Fig. 1. (a) An architecture model (b) SPM architecture.

TABLE I

TIME AND ENERGY CONSUMPTION FOR

ACCESS TO DIFFERENT MEMORIES

III. THE MODEL

A. Architecture Model

In this paper, we target the embedded chip multi-cores
with hybrid local memories. As shown in Figure 1, the
architecture model consists of a set of connected homogeneous
cores denoted by core = {core1, core2, . . . , coren}, where
n is the number of homogeneous cores. Each core is tightly
coupled with an on-chip local memory composed of a SRAM
and a NVM. The SRAM and NVM of each core corei are
denoted by M2i−1 and M2i . All cores share a DRAM main
memory with large capacity. Each core can access its own local
memory and other cores’ local memories. We call core access
from local memory local access, while access from an SPM
held by another core is referred as remote access. Generally,
remote access is supported by an on-chip interconnect and
all cores access the off-chip DRAM through a shared bus.
The IBM CELL processor, which includes a multi-channel
ring structure to allow communication between any two cores
without intervention from other cores, is an example that
adopts this architecture. We can safely assume that the data
transfer cost between cores is constant. Local access is faster
and consumes less energy than remote access while accessing
the off-chip DRAM incurs the longest latency and consumes
the most energy. Table I, which is introduced from [18],
shows the time and energy consumption for access to different
memories. In the table, the columns of “LS”, “RS”, “LN”,
“RN”, and “DM” indicates the memory access cost to local
SRAM, remote SRAM, local NVM, remote NVM, and off-
chip DRAM. “Ti” and “En” are time and energy consumption.

It is important to note that the hybrid local memories
in the architecture model can not be pure caches because
issues such as cache consistency and cache conflict are not
considered. In this paper, the architecture employs SPMs
as on-chip local memories. To make hybrid SPMs possible,
researchers proposed several hybrid hardware/software support
SPMs [6], [15]. For example, [18] employs hybrid SPMs com-
posed of a SRAM and two NVM to study cost optimization
incurred by data allocation. [8] explores hybrid nonvolatile

Fig. 2. An input DAG. (a) Precedence constraints among tasks. (b) The input
data and output data of each task. (c) An MDFG combined tasks with data.

SPM architectures. In a hybrid SPM, SRAM and NVM share
the same address space with the main memory. The CPU can
load data from both of them directly.

As shown in Figure 1(b), the hybrid SPM can be fabricated
with 3-D chips because 3-D integration is a feasible and
promising approach to fabricating the hybrid SPM [8]. In 3-D
chips, multiple active device layers are stacked together with
short and fast vertical interconnects. For fabrication, SRAM
can be fitted into the same layer as the core and NVM can
be fitted into a separate layer, so that designers can take full
advantage of the attractive benefits that NVM provides.

B. Computational Model

In this subsection, we describe the memory access data flow
graph (MDFG), which is used to model an application to be
executed on the target embedded chip multiprocessors. Before
we formally describe the MDFG model, we first introduce a
directed acyclic graph (DAG) model as shown in Figure 2(a).
In this paper, we use a DAG as a description of a given input
graph.

Definition 1: A DAG is a node-weighted directed graph
represented by G = (V , E, D, in, out, Nr, Nw), where
V = {v1, v2, . . . , vN } is a set of task nodes, and E ⊆ V × V
is a set of edges that describe the precedence constraints
among nodes in V . D is a set of data. in(vi ) ⊆ D is
a set of input data of task vi , and out (vi ) ⊆ D is a
set of output data of task vi . Nr(vi ) is used to represent
the read number of task vi for different input data, i.e.,
Nr(vi ) = (nr1(i), nr2(i), . . . , nrn(i)), where nrh(i) denotes
the read time of vi for input data h. Nw(vi ) is used to
represent the write number of task vi for different output data,
i.e., Nw(vi ) = (nw1(i), nw2(i), . . . , nwn(i)), where nwh(i)
denotes the write time of vi for output data h.

If we treat a memory access operation as a node, we
can redefine a DAG to obtain a memory access data flow
graph (MDFG) defined as the following.

Definition 2: An MDFG is a node-weighted directed
graph by G′ = (V1, V2, E, D, var, Nr, Nw, P, M), where
V1 = {v1, v2, . . . , vN1 } is a set of N1 task nodes, and
V2 = {u1, u2, . . . , uN2 } is a set of N2 memory access
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operation nodes. E ⊆ V × V (V = V1
⋃

V2) is a set of
edges. An edge (μ, ν) ∈ E represents the dependency between
node μ and node ν, indicating that task or operation μ has
to be executed before task or operation ν. D is a set of
data. var : V1 × V2 × D → {true,false} is a binary
function, where var(vi , ul , h) denotes whether the memory
access operation ul ∈ V2 is transmitting datum h ∈ D for task
vi ∈ V1. Nr(vi , h) = nrh(i) is the read time of task vi for his
input data h. Nw(vi , h) = nwh(i) is the write time of task vi

for his output data h. P = {core1, core2, . . . , coren} is a set
of cores, and M = {M1, M2, . . . , M2n} is a set of on-chip
memories. The SRAM and NVM of each core corei denoted
by M2i−1 and M2i , respectively.

An example of MDFG from DAG is shown in Figure 2.
In the example, Figure 2(a) shows the DAG, there are
N = 4 tasks, i.e., v1, v2, v3, v4. Figure 2(a) shows the
precedence constraints among the tasks. The data set is
D = {A, B, C, D, E, F, G, H }, and Figure 2(b) shows the
input data and output data of each task. For example, task a
reads input data A and B before it is started, and writes
output data D after it is finished. If we treat a memory access
operation as a node, we can obtain an MDFG from the DAG
is shown in Figure 2(c), where we have N1 = 4 task nodes
and N2 = 13 memory access operation nodes. For example,
the node 1 is memory access operation node and represents
reading data A.

C. Problem Definition

Assume that we are given a multi-core systems with n cores,
where each core is integrated with a SPM which consists
of a SRAM and a NVM. The access time and energy con-
sumption of each processor in accessing a unit data from
different memories are known in advance. The capacity of
each core’s SRAM and NVM is also known in advance.
The energy optimization problem of data allocation and task
scheduling can be defined as follows: Given an DAG G =
(V , E, D, in, out, Nr, Nw), we treat a memory access oper-
ation as a node and reconstruct the DAG to obtain an MDFG
G′ = (V1, V2, E, D, var, Nr, Nw, P, M). The objectives of
an energy optimization problem of data allocation and task
scheduling are to find (1) a data allocation Mem: D −→ M ,
where Mem(h) ∈ M is the memory to store h ∈ D; (2) a
task assignment A: V1 −→ P , where C(vi ) is the core to
execute task vi ∈ V1, such that the total energy consumption
can be minimized, the write operations on NVM can be
reduced, and the scheduling length can be shortened. In this
problem, we assume each core can access SRAM and NVM
in its local SPM, every remote SPM, and off-chip DRAM
with different time and energy consumption. The time and
energy consumption of access to different memories is given
in Table I. The objective function of the target problem is
described as:

Objective 1: Energy consumption is minimized. For each
available assignment of data, we obtain the number of local
read operations Nlr , local write operations Nlw , remote read
operations Nrr , and remote write operations Nrw ; the cor-
responding energy consumption is indicated as Elr , Elw,

Err , and Erw; the energy consumption of each data can be
formulated as follows.

Eh = Nlr (h) × Elr + Nlw(h) × Elw

+ Nrr (h) × Err + Nrw(h) × Erw (1)

However, the above equation does not consider the case that
data h is allocated in main memory. If one data h is allocated
in main memory, we would use the following equation to
compute the energy consumption:

Eh = (totalr + totalw) × Edm (2)

where totalr and totalw are the total number of read
operations and write operations of data h, respectively. Edm is
the energy consumption when an access operation takes place
in main memory.

Given the energy consumption of each task Ev i , the total
energy consumption of a MDFG can be formulated as:

Etotal =
∑

v i∈V1

Ev i +
∑

h∈D

Eh (3)

Objective 2: The number of write operations on NVM is
minimized. For each NVM, the number of write operations
can be formulated as:

NN V M (i) =
∑

M(h)=Mi ,i=2k

(Nlw(h) + Nrw(h)) (4)

The NVM of each core is denoted by M2k , where k is the id of
the corresponding cores. The total number of write operations
on NVM is:

T NN V M =
∑

Mi ,i=2k

(NN V M (i)). (5)

IV. MOTIVATION EXAMPLE

In this section, we use an example to illustrate the
effectiveness of our proposed algorithms. The example of
MDFG application in Figure 2 is executed on a two-core
system. As shown in Figure 1, each core is equipped with
a hybrid local memory, composed of a SRAM and an
NVM. The access latency and energy consumption of the
target two-core system are shown in Table I. Based on the
dependency constraints in the MDFG shown in Figure 2,
two solutions of data allocation and tasks scheduling are
generated by two compared algorithms shown in Figure 3.

Figure 3(a) shows a schedule generated by parallel solu-
tion [5]. Conventionally, the parallel solutions to attack the task
scheduling and data allocation problem would be to minimize
scheduling time by mapping tasks and allocating data using
shortest processing time policy. In this schedule, task v1 and v3
are scheduled on core1, task v2 and v4 are scheduled on core2,
the data A, D, and H are allocated on NVM, and all other data
are allocated on SRAM. The completion time of this schedule
is 18, the total energy consumption is 77, and the number of
write operations on NVM is 3. However, this approach may
not produce a good result in terms of energy consumption.
Since reducing write operations on NVM is also one of the
objectives, we should explore a better trade-off approach to
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Fig. 3. The data allocation and task schedule of the example (a) parallel
solutions with energy consumption 77 and the number of writes on NVM 3
(b) the proposed solution with energy consumption 57 and the number writes
on NVM 2.

minimize energy consumption and reduce the number of write
operations on NVM.

Figure 3(b) shows an improved schedule, which considers
energy consumption and the number of write operations on
NVM. In this schedule, tasks v1 and v3 are scheduled on
core1, tasks v2 and v4 are scheduled on core2, the data A, C,
E, F, and G are allocated in NVM. The other data are allocated
in SRAM. The schedule length of the improved schedule
is 15, the total energy consumption is 57, and the number
of write operations on NVM is 1. Energy consumption is
reduced by (77−57)/57 = 35.08% compared with the parallel
solution. From the above example, we can see that energy
consumption can be reduced by exploring data allocation and
task scheduling on CMP systems with hybrid SPMs.

V. ALGORITHM

In this section, we first discuss the data allocation mecha-
nism for single core embedded chip system. Then, we propose
several methods for CMP to solve the energy optimization
problem of data allocation and task scheduling based on hybrid
SRAM+NVM local memory.

A. Data Allocation for Single Core Embedded Chip System

A single core embedded chip system is a special embedded
chip multiprocessor system. We only consider data allocation
for hybrid local memory when an MDFG is run in a single
core embedded chip system. This is because all tasks will
be assigned to the same core leading to a constant execution
time and energy consumption for task nodes. In this section,
we propose the data allocation for the single core (DASC)
algorithm as shown in Algorithm 1. For the hybrid SPM, there
are two disadvantages based on NVM: 1) the limited number
of write operations and asymmetric access speed and energy
consumption in read and write operations; and 2) errors in
storing information when updating operations of an NVM cell
is beyond the limited number of write operations. Therefore,
we use two thresholds T rw and maxw to prevent the NVMs
from wearing out. T rw restricts NVMs from storing data
whose write operations are more than Trw . In this paper,
T rw is equal to the average number of write operations of
data in an application. The maximum write operations of a

Algorithm 1 Data Allocation for Single Core

Input: (1) An application MDFG G′ = (V 1, V 2, E, D, var);
(2) a hybrid SRAM and NVM local memory; (3) a write
threshold Trw for NVM. (4) setting maximum write oper-
ations maxw on NVM for an application.

Output: Assign data into SRAM or NVM.
1: find all data with cw > T rw, put them in set L
2: while L is not full do
3: select a data with maximum writes on L
4: if SRAM have space to allocate the data then
5: allocate it in SRAM
6: else
7: allocate it in main memory
8: end if
9: N f lag(h) = 0

10: remove it from L
11: end while
12: for each un-allocated data do
13: compute the energy consumption E S(h) and E N(h)
14: if E S(h) > E N(h), NVM have space to allocate the

data, the total write operations on NVM is less than maxw

then
15: allocate the data in NVM, N f lag(h) = 1
16: else
17: if SRAM has space to allocate the data then
18: allocate it in SRAM
19: else
20: allocate it in main memory
21: end if
22: end if
23: N f lag(h) = 0
24: end for

NVM is maxw. If the total number of write operations on a
NVM exceeds maxw, data with write operations should not
be allocated to the NVM. Data that will be allocated in NVM
must satisfy the following properties.

Property 3: If data h can be allocated in NVM, then

cw(h) ≤ T rw

where cw(h) is the total write operations of data h.
Property 4: Let the binary variable N f lag(h) denotes

whether allocated data h in NVM. The total number of write
operations on NVM must be less than maxw:

∑

h

(N f lag(h) × cw(h)) ≤ maxw

where N f lag(h) = 1 means data h is allocated in NVM.
In the following, we will discuss the DASC algorithm about

how to allocate data in memories to avoid the disadvantages of
NVM and reduce total energy consumption for a single core
embedded chip system.

In Algorithm 1, data are divided into two categories
according to the number of write operations and the
threshold T rw . If the total number of write operations of one
data is more than T rw , the data is the first type of categories
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and is put in set L (Line 1). For the data in set L, if SRAM
has enough space to hold the data, the data is allocated in
the SRAM; otherwise, the data is allocated in main memory
(Lines 2-12). For the data not in set L, we first calculate the
energy consumption of each available assignment for data h
and use minimum energy consumption min(E S(h), E N(h))
as a measurement for deciding the memory to store the
data (Lines 13-14). If data h is allocated in SRAM, energy
consumption of data h on SRAM can be formulated as:

E S(h) = Nlw(h) × eslw + Nlr × eslr (6)

where eslw and eslr are the energy consumption of each local
write operation and each local read operation on SRAM,
respectively. And, if the data is allocated in NVM, the energy
consumption of data h can be obtained as

E N(h) = Nlw(h) × enlw + Nlr × enlr (7)

where enlw and enlr are the energy consumption of each
local write operation and each local read operation on
NVM, respectively. In computing the energy consumption,
E S(h) and E N(h), we only consider local memory access
operations. This is because each data allocated in SPM only
have local read operations and local write operations since
the target system is a single core embedded chip system.

The algorithm also confirms whether the total number of
write operations on NVM exceed the maxw. For data to be
allocated in the NVM, the following three conditions must be
satisfied: 1) the total number of write operations on NVM
is less than maxw; 2) NVM is not full; 3) the data with
E S(h) > E N(h) (Lines 15-17). If one of the above conditions
cannot be met, we will determine the free space of SRAM.
If SRAM has sufficient space to hold the data, the data is
allocated in SRAM (Lines 18-21). Otherwise, the data is
allocated in main memory (Lines 22-27).

The data allocation for a single core algorithm considers
two objectives. For the endurance of NVM, it is detrimental
to place data with too many writes on NVM; the algorithm
controls the maximum write operations on NVM. For energy
consumption, it places data into a memory with minimum
energy consumption among all available assignments. The
complexity of data allocation for a single core algorithm
is O(H ), where H is the amount of data.

B. Chip Multiprocessors System

CMPs generally consist of multiple cores sharing an
off-chip main memory. In this subsection, the target archi-
tecture is a CMP shown in Figure 1. For solving the energy
optimization problem of data allocation and task scheduling
incurred by applications execution on a CMP with N cores
(each of these cores is integrated with a hybrid SPM which
consists of a SARM and a NVM), we propose two algo-
rithms, i.e., energy-aware data allocation (EDAC) algorithm
and balance data allocation with energy and writes (BDAEW)
algorithm.

In The EDAC algorithm as shown in Algorithm 2, we first
call the parallel algorithm [5] to find an effective mapping for
each task. The parallel algorithm in [5] is used to solve the task

Algorithm 2 Energy-Aware Data Allocation

Input: (1) An application MDFG G′ = (V 1, V 2, E, D, var);
(2) an embedded chip multiprocessors with hybrid SRAM
and NVM local memory; (3) a write threshold Trw for
NVM. (4) setting maximum write operations maxw on
NVM for an application.

Output: A data allocation and task scheduling with mini-
mized energy.

1: call parallel algorithm to find an effective map for each
task nodes

2: /*data allocation*/
3: for each data h do
4: for each processors pi do
5: compute the number of read operations Nr(h, pi ), and

the number of write operations Nw(h, pi )
6: end for
7: choose the processor with maximum (Nr(h, pi ) +

Nw(h, pi )) to assign the data into its corresponding
hybrid local memory

8: end for
9: for each processor pi do

10: call the Algorithm 1
11: end for

scheduling problem, where all requirements are met and the
scheduling length is minimized. After task mapping, we find
an allocation for data using task assignments. In the following,
we will discuss in detail how to assign data nodes in different
memories. Data allocation consists of two phases. The first
phase finds a proper core for the data so that remote memory
access operations can be reduced. Since data may be needed
by different tasks, more than one memory access operation
may be associated with the data. For data h, we first calculate
the number of memory access operations on each core corei

as follows:

Nr(h, corei ) =
∑

C(v j )=corei

(Nr( j, h)), ∀e(h, v j ) ∈ G′,

Nw(h, corei ) =
∑

C(v j )=corei

(Nw( j, h)), ∀e(v j , h) ∈ G′ (8)

where C(v j ) is the core to execute the task v j .
Then, we use maximum memory access operations
max (Nr(h, corei ) + Nw(h, corei )) as a measurement
to decide in which core’s SPM to place the data (Lines 3-8).
In the second phase, we find data allocation according to the
first phase. For each core, we call the Algorithm 1 to decide
which memory is allocated data (Lines 9-11).

In the EADA algorithm, it takes O(|V E |) time to find a
better mapping for each task, where V represents the number
of tasks and E represents the number of edges between tasks.
To find a better data allocation, it takes O(|V H P|) determine
which processor to allocate data and takes O(H ) to allocate
data to a determinate memory, where H is the number of
data and P is the number of cores. Therefore, if P is treated
as a constant, the time complex of the EADA algorithm is
O(|V E | + |V H | + |H |)
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Algorithm 2 has two objectives, minimizing energy
consumption and reducing write operations on NVM.
However, the two objectives may conflict: assigning data in
NVM can save energy consumption but may cause many
write operations on NVM. Therefore, we propose BDAEW
algorithm as shown in Algorithm 3 to balance the conflict of
minimizing energy consumption and reducing write operations
on NVM. Before the details of the algorithm are presented,
several theorems on our algorithms are built as follows.

Theorem 5: For all h ∈ in(vi ), if and only if the data h
and task vi are allocated the same core, the binary variable
R f lag(vi , h) = 1. The total local read number for data h can
be formulated as:

Nlr (h) =
∑

vi

(R f lag(vi , h) × Nr(vi , h) × in(vi , h))

and the total remote read number for data h can be formulated
as:

Nrr (h) =
∑

vi

((1 − R f lag(vi , h)) × Nr(vi , h) × in(vi , h))

where Nr(vi , h) is the read number of data h for task vi and
binary variable in(vi , h) = 1 denotes h is a input of task vi .

Proof: For each task and data pair (vi , h), if task vi

and data h are allocated the same core, the read operations
for pair (vi , h) are local read operations. Otherwise, the read
operations for pair (vi , h) are remote read operations. Thus,
for pair (vi , h), the local reads number is R f lag(vi , h) ×
Nr(vi , h) × in(vi , h) and the remote reads number is
(1 − R f lag(vi , h)) × Nr(vi , h) × in(vi , h). Furthermore, for
each data h, we can obtain the total number of local read
operations and remote read operations as Theorem 5.

Theorem 6: For all h ∈ out (vi ), if and only if the data h
and task vi are allocated the same core, the binary variable
W f lag(vi , h) = 1. The total local write number for data h is:

Nlw(h) =
∑

vi

(W f lag(vi , h) × Nw(vi , h) × out (vi , h))

and the total remote write number for data h is:

Nrw(h) =
∑

vi

((1 − W f lag(vi , h)) × Nw(vi , h) × out (vi , h))

where Nw(vi , h) is the write number of data h for task vi

and binary variable out (vi , h) = 1 denotes h is a output of
task vi .

Proof: The proof is similar to the proof of Theorem 5.
Summing up all of these memory access operations for each

data h ∈ D, we can obtain the total number of each type of
memory access operations as follows:

• The total local read number Nlr = ∑
h Nlr (h)

• The total remote read number Nrr = ∑
h Nrr (h)

• The total local write number Nlw = ∑
h Nlw(h)

• The total remote write number Nrw = ∑
h Nrw(h)

Since data may be needed by different tasks, we should
calculate the energy consumption of data for each available
allocation. For each available allocation Mem(h) = Mi , given
the energy consumption of each local read operation Elr (Mi ),
each remote read operation Err (Mi ), each local write

operation Elw(Mi ), and each remote write operation
Erw(Mi ), the energy consumption can be formulated as:

En(h, Mi ) = Nlr (h) × Elr (Mi ) + Nrr (h) × Err (Mi )

+ Nlw(h) × Elw(Mi ) + Nrw(h) × Erw(Mi )

(9)

Additionally, the really energy consumption of each data can
be formulated as follows:

Eh =
∑

Mi

(En(h, Mi ) × f lag(h, Mi )) (10)

where f lag(h, Mi ) is a binary variable, denoting whether
allocated data h is in Mi . If f lag(h, Mi ) = 1 it means data h
is allocated in Mi .

In algorithm BDAEW as shown in Algorithm 3, we first
use the parallel algorithm to find a better mapping for each
task. Then, we find better allocation for data to meet all
requirements and to minimize total energy consumption while
reducing the number of write operations on NVMs. Data
allocation consists of two phases. The first phase finds a
minimum energy consumption assignment for the data, and
the second phase allocates write operations on NVMs in such
a way as to balance write operations on NVMs and total energy
consumption.

In the first phase, we first calculate the energy consumption
of each available assignment for each data h. Then, we use
min{En(h, Mi )} as a measurement to decide which memory
is assigned data h. In other words, for each data h, we choose
a memory Mi with minimum energy consumption En(h, Mi )
among all available assignment of data h to hold the data
(Lines 3-8). In the second phase, for each processor, we
first determine if all data allocated in NVM meet the write
constraints. If there is data with cw(h) > T rw on NVM,
we reassign the data to SRAM (SRAM has enough space
to hold the data) or main memory (SRAM is full), where
cw(h) is the total write operations of data h, and is equal
to Nlw(h) + Nrw(h) (Lines 9-19). Then, we determine if the
total number of write operations on NVM meets the constraint
Tcw < maxw. If the total number of write operations on NVM
Tcw < maxw, we obtain a solution; otherwise, we reallo-
cate some data; In reallocating data to satisfy the constraint
Tcw < maxw, we use read-to-write ratio = cw(h)

cw(h)+cr(h) as
a measurement to select a data in NVM with the maximum
read-to-write ratio to be moved into SRAM or main memory,
where cr(h) is the total number of read operations of data h
(Lines 20-28). After adjustment of data allocation, the algo-
rithm finds a new data allocation and reduces write operations
on NVM until the constraint Tcw < maxw is satisfied.

In the BDAEW algorithm, it takes O(|V E |) time to find a
better mapping for each tasks and takes O(|V M H |) to find
a original data mapping , where V represents the number of
tasks and E represents the number of edges between tasks,
H is the number of data, and M is the number of memories.
To reallocate data, it takes at most O(| log2(H M)|) to obtain
a better allocation where the maximum number of write
operations on NVM is controlled. Thus, the time complexity
of BDAEW algorithm is O(|V E | + |V H | + | log2 H |).
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Algorithm 3 Balance Data Allocation With Energy and Write
Operations

Input: (1) An application MDFG G′ = (V 1, V 2, E, D, var);
(2) an embedded chip multiprocessors with hybrid SRAM
and NVM local memory; (3) a write threshold T rw for
NVM. (4) setting maximum write operations maxw on
NVM for an application.

Output: A data allocation and task scheduling with mini-
mized energy.

1: call parallel algorithm to find an effective map for each
task nodes

2: /*data allocation*/
3: for each data h do
4: for each memory Mi do
5: compute the energy consumption if the data is assigned

in the memory En(h, Mi )
6: end for
7: choose the memory with minimum En(h, Mi ) to allocate

the data, and marked f lag(h, Mi ) = 1
8: end for
9: for each processor pi do

10: while NVM M2i exist data with cw > Trw do
11: select a data h with maximum writes cw(h) on M2i

12: let f lag(h, M2i ) = 0
13: if SRAM M2i−1 has enough space to hold the data

then
14: reallocate the data h on M2i−1, f lag(h, M2i−1) = 1,
15: else
16: reallocate the data h on main memory
17: end if
18: end while
19: compute the total number of write operations Tcw on its

NVM
20: while Tcw > maxw do
21: find a data in NVM with maximum ratio = cw

cr+cw ,
where cr is the number of read operations on NVM
for this data

22: let f lag(h, M2i ) = 0
23: if SRAM M2i−1 is not full then
24: reallocate the data in M2i−1, f lag(h, M2i−1) = 1
25: else
26: reallocate the data in main memory
27: end if
28: end while
29: end for

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

In this section, we present experimental results to illustrate
the effectiveness of the proposed algorithms. We use the
following benchmarks from DSPstone [32], i.e., IIR, Allope,
Floyd, Elliptic, Volterra, and 8-lattic. These benchmarks
are frequently used in multicore systems research. We
compile each benchmark using GCC and obtain the task
graphs accompanied by the read/write data sets. There are
three notes. First, the source codes must be compiled with

TABLE II

PERFORMANCE PARAMETERS FOR THE TARGET MEMORY MODULES

profiling option on (-fprofile-generate). Then, the
compiled binary must be executed by feeding a data set
corresponding to the use case. Finally, the source code must
be compiled again with both profile-guided optimization and
ABSINTH enabled (-fprofile-use-fabsinth). The
pass_absinth_bbs traverses all RTL expressions within
each basic block. For each expression, pass_absinth_bbs
analyzes whether it is an instruction or not, and generates
one execute primitive per each instruction [11]. Then, the
task graphs and access sets are fed into our simulator. Our
simulator requires data to be processed by the extracted
graphs. To make the experiment more rigorous, we reuse the
same task graph but feed various data volume. The amount of
data needed in the graph is modeled as Nd = α × √

V × √
E ,

where V is the amount of tasks in the graph and E is
the number of edges in the MDFG. The α is a tuning
parameter which is randomly selected from the Poisson
distribution where λ is picked from a uniform distribution in
the range [0,10]. As α grows, the number of data increases
and the dependency between tasks associated with the data is
stronger. For each task node, the number of read/write access
of data is set randomly from a uniform distribution in the
range [0,20]. To thoroughly evaluate the proposed algorithms,
we conducted a rigorous simulation with different α settings.

The experiments for benchmarks are conducted on an
architecture model which is defined in Section III. The target
architecture consists of three cores. Each core is equipped
with hybrid local memory units composed of a SRAM and a
PRAM. The configurations of the target architecture systems
are shown in Table II. We integrated all these parameters
into our in-house simulator to verify the effectiveness of
our proposed algorithms. All the simulations run on an
Intel� CoreT M 2 Duo Processor E7500 2.93GHz with a 2GB
main memory operated by Red Hat Linux 7.3.

We compared the performance of our proposed algorithms
to that of the parallel solution [5] and AGADA algorithm [18].
AGADA algorithm is a recently published algorithm to mini-
mize the total cost of data allocation on hybrid memories with
NVM. The parallel solution is a classical algorithm to solve
the task scheduling and data allocation problem. Therefore, the
AGADA algorithm and parallel solution are the most related
works and two excellent candidates for benchmarking. In this
paper, the AGADA algorithm has been evolved so that it is
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Fig. 4. The energy consumption of benchmarks under different approaches when change α. (a)iir, (b) allope, (c) floyd, (d) elliptic, (e) voltera, (f) 8_lattice.

TABLE III

THE NUMBER OF WRITES ON PRAM

comparable to our model to consider the energy consumption
problem of task scheduling and data allocation. The parallel
solution is originally used in the system with (a) a pure SRAM
local memory, and (b) a hybrid local memory composed of a
SRAM and a PRAM. To make fair comparisons, we imple-
mented all four algorithms, i.e., parallel solution, AGADA,
EADA, and BDAEW, in the same scheduling framework. By
doing so, we ensured that the performance loss of the parallel
solution and AGADA algorithm is not due to different settings
of the implementations. The results for energy consumption
are shown in Figure 4. The results for the number of writes on

PRAM are shown in Table III. Last, the results for execution
time are shown in Figure 5.

B. Results and Analysis

This section presents the experimental results to illustrate
the effectiveness of our proposed algorithms. The results of
total energy consumption are represented by the statistical
comparison of different approaches when changing α. As we
can observe, with the increase of the data parameter α,
the energy consumption of all five approaches increase and
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Fig. 5. The comparison of execution time under different approaches.
α = 2, maxw = 500.

the gap in energy consumption among the five algorithms
become larger. For all benchmarks, the energy consumption
of EADA and BDAEW algorithms is less than that of
the parallel solution using a hybrid PRAM+SRAM local
memory. Additionally, the energy consumption of the parallel
solution using a pure SRAM is the maximum of the five
different approaches. Compared with parallel+SRAM, the
EADA and BDAEW can reduce energy consumption by
47.52% and 36.65%, respectively on average. The EADA and
BDAEW algorithms also can reduce energy consumption by
29.08% and 25.47% on average compared with the parallel
solution using a hybrid local memory, respectively. Therefore,
algorithms EADA and BDAEW save energy better than the
parallel solution. From Figure 4, we also observe that the
energy consumption of EADA and BDAEW algorithms is less
than that of AGADA algorithm in most cases. On average,
the EADA and BDAEW algorithms can reduce energy
consumption by 23.05% and 19.41%, respectively. Although
the energy consumption of AGADA algorithm is less than
that of EADA and BDAEW algorithms in several cases, the
AGADA algorithm does not consider data-dependency, which
will result in overhead write operations.

The number of write operations on PRAM has a large effect
on the PRAM’s lifetime. In this paper, we use the following
formulation to compute the number of write operations on
PRAM:

NP R AM =
∑

h

(N_lw(h) + N_rw(h)) × N f lag(h) (11)

Although the parallel solution is used as a baseline tech-
nique to evaluate the PRAM’s write operations on NVM
of our proposed algorithms, our proposed algorithm is not
comparable with the parallel solution using a pure SRAM.
This is because there are no write operations on PRAM in
parallel+SRAM. The results for write operations on PRAM
are shown in Table III, which is the statistical comparison
of all four algorithms for all benchmarks based on the tar-
get architectural model. In Table III, the eighth and ninth
columns show the ratio of the reduction of write operations
on PRAM by EADA compared with the parallel+hybrid and
AGADA algorithm. The eleventh and twelfth columns show
the reduction ratio of write operations on PRAM by BDAEW
compared with the parallel+hybrid and AGADA algorithm.
From the table, we can observe that our algorithm EADA

and BDAEW can achieve better write operation reduction
than the parallel solution and AGADA algorithm. Compared
with parallel+hybrid, EADA and BDAEW can reduce the
number of write operations on PRAM by 42.06% and 48.28%,
respectively on average. Compared with AGADA, EADA
and BDAEW can reduce the number of write operations on
PRAM by 29.57% and 35.80%, respectively on average. The
lifetime improvement ratio of PRAM can be estimated by

( M/W ′−M/W
M/W ) [25], where M stands for the maximum write

operations of PRAM, W is the number of write operations
on PRAM when using parallel solutions, and W ′ stands
for the number of write operations on PRAM when using
our proposed technique. Approximately, 28.82% and 29.93%
reduction on the number of write operations is equivalent to
a 144.03% and 155.76% increase on the lifetime on PRAM.
It means that our proposed techniques can prolong the lifetime
of PRAM to 12 years if the PRAM’s original lifetime is
5 years.

However, NVM introduces longer latency. For example,
when α = 2, the statistical comparisons of execution time
under different approaches are shown in Figure 5. From
the figure, we can see that the scheduling length of EADA
and BDAEW algorithms are longer than the parallel solution
using pure SRAMs, but shorter than AGADA and parallel
solution using hybrid SPMs. However, as we can see from the
results, the negative impact on applications’ execution time
is not significant. This is because we can use PRAM with
write buffers and write operations are relatively insensitive
to memory in hierarchies that are far from the CPU [31].
As shown in Figure 5, EADA and BDAEW algorithms can
reduce the execution time of benchmarks by 15.54% and
21.49% compared with parallel solutions using hybrid SPMs,
respectively on average. Compared with AGADA algorithm,
EADA and BDAEW algorithms can reduce the execution time
of benchmarks by 5.83% and 12.44%, respectively on average.

In order to further illustrate the effectiveness of the pro-
posed algorithm, we compared the scheduling length and
overhead energy consumption of the five approaches using
different benchmarks. The overhead energy consumption is
a result of the scheduling cost, the cost of computing all
data- dependencies, and other logistic costs. The results of
scheduling length and overhead energy consumption are shown
in Figures 6 and 7, respectively. From the two figures, we
can observe that the scheduling time and overhead energy
consumption of the parallel solution are less than that of the
other four algorithms, and that of the EADA and BDAEW
algorithms are less than AGADA algorithm in most cases.
However, as the data-dependency grows, the gap between
the AGADA algorithm and the proposed algorithm decreases.
When the data-dependency application is represented by a
large MDFG, the scheduling time and overhead energy con-
sumption of AGADA algorithm is less than the proposed
algorithms. This is because the time complexity of AGADA
is O(G ∗ P ∗ H ), where G and P represent the maximum
number of iterations and the population size of the genetic
algorithm, respectively. In more detail, the scheduling time
and overhead energy consumption of the proposed algorithms
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Fig. 6. The comparison of scheduling time under different approaches.
α = 2, maxw = 500.

Fig. 7. The comparison of overhead energy consumption under different
approaches. α = 2, maxw = 500.

are not simply dependent on the number of data but depends
on the product of data-dependency, the amount of data, and the
amount of memories, while that of AGADA increases linearly
with the growth of data. When the data-dependency and size
of applications grow to a certain size that is greater than
G ∗ P , the scheduling time and overhead energy consumption
of AGADA are less than that of the proposed algorithm. For
example, if the population size is set as 100 and maximum
generation is set as 1000, the scheduling time and overhead
energy consumption of AGADA will be less than that of
the proposed algorithm, when the number of tasks and data
increase to 50 and 350, respectively. However, even in this
case, the net execution time and the net energy consumption of
the proposed algorithm are still less than the AGADA. Hence,
the benefits we gain by the proposed technique outweigh the
extra overheads.

In summary, for CMP with hybrid SPMs composed of
a SRAM and NVM, the EADA and BDAEW algorithms
can obtain a well-planned assignment such that the total
energy consumption is minimized with little degradation
in performance and endurance of PRAM. The EADA and
BDAEW algorithms are also evaluated with experimental
results showing that the EADA and BDAEW algorithms
can obtain a better solution in energy consumption and the
number of write operations on PRAM than parallel solutions
and the AGADA algorithm.

VII. CONCLUSION AND FUTURE WORK

Hybrid local memory is an effective approach to reduce
energy consumption and memory access latency for

multi-core systems. In this paper, we propose two novel
heuristic algorithms, EADA and BDAEW. Based on the
hybrid SRAM+NVM SPM architecture, data are allocated
efficiently and tasks are scheduled reasonably, such that
the total energy consumption is minimized with little
degradation in performance and endurance caused by NVM.
In experimental studies, we employed hybrid SRAM+PRAM
SPM for multi-core systems to execute various applications.
The results show that both the EADA and BDAEW algorithms
achieve noticeable average reduction rates of total energy
consumption compared with parallel solutions and AGADA
algorithm. Both the EADA and BDAEW algorithms can
reduce the number of write operations on NVM. This means
that the lifetime of NVM can be extended when EADA and
BDAEW are used in the hybrid SPM architecture.

The proposed algorithms can be extensible to heterogeneous
cores. To achieve this, the cost of memory operations in each
memory must be redefined and the method of computing
energy consumption changed. A modern high-performance
computing system normally consists of heterogeneous
computing and communication resources, i.e., heterogeneous
processors, heterogeneous memories, and heterogeneous com-
munication interconnections. In heterogeneous processors, the
same type of operations can be processed by different proces-
sors with various execution times and energy consumption.
This makes the task scheduling and data allocation problem
more complicated. Although the proposed algorithm can be
extensible for heterogeneous cores, the performance and effec-
tiveness need more precise investigations. Therefore, we will
study the task and data allocation problem for heterogeneous
processors with hybrid on-chip memory in the future research
work.
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