
IEE
E P

ro
of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 1

Energy Optimization for Data Allocation
With Hybrid SRAM+NVM SPM

Yan Wang, Kenli Li, Senior Member, IEEE, Jun Zhang, and Keqin Li, Fellow, IEEE

Abstract— The gradually widening disparity in the speed of the1

CPU and memory has become a bottleneck for the development2

of chip multiprocessor (CMP) systems. Increasing penalties3

caused by frequent on-chip memory access have raised critical4

challenges in delivering high memory access performance with5

tight energy and latency budgets. To overcome the memory wall6

and energy wall issues, this paper adopts CMP systems with7

hybrid scratchpad memories (SPMs), which are configured from8

SRAM and nonvolatile memory. Based on this architecture, we9

propose two novel algorithms, i.e., energy-aware data alloca-10

tion (EADA) and balancing data allocation to energy and write11

operations (BDAEW), to perform data allocation to different12

memories and task mapping to different cores, reducing energy13

consumption and latency. We evaluate the performance of our14

proposed algorithms by comparison with a parallel solution that15

is commonly used to solve data allocation and task scheduling16

problems. Experiments show the merits of the hybrid SPM17

architecture over the traditional pure memory system and the18

effectiveness of the proposed algorithms. Compared with the19

AGADA algorithm, the EADA and BDAEW algorithms can20

reduce energy consumption by 23.05% and 19.41%, respectively.21

Index Terms— Data allocation, energy consumption,22

nonvolatile memory, write operations.23

Manuscript received December 5, 2016; revised May 4, 2017 and
June 4, 2017; accepted June 22, 2017. This work was supported in part by
the Key Program of National Natural Science Foundation of China under
Grant 61432005, in part by the National Outstanding Youth Science Program
of National Natural Science Foundation of China under Grant 61625202, in
part by the International (Regional) Cooperation and Exchange Program of
National Natural Science Foundation of China under Grant 61661146006,
in part by the National Natural Science Foundation of China under
Grant 61370095 and Grant 61472124, in part by the International Science &
Technology Cooperation Program of China under Grant 2015DFA11240,
in part by the National Key R&D Program of China under
Grant 2016YFB0201402 and Grant 2016YFB0201303, and in part by
the Innovation Team Project of Guangdong Province University under
Grant 2016KCXTD017. This paper was recommended by Associate Editor
A. Sangiovanni Vincentelli. (Corresponding author: Kenli Li.)

Y. Wang is with the College of Information Science and Engineering, Hunan
University, Changsha 410082, China, and also with the College of Computer

AQ:1 Science and Educational Software, Guangzhou University, Guangzhou, China
(e-mail: bessie11@yeah.net).

K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha 410082, China, and also with the National Supercom-
puting Center in Changsha, Changsha, China (e-mail: lkl@hnu.edu.cn).

J. Zhang is with the College of Information Science and Engineering,
Hunan University, Changsha 410082, China, and also with the Department of
Electrical and Computer Engineering, New York University, New York City,
NY USA (e-mail: jeffjunzhang@gmail.com).

K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561 USA
(e-mail: lik@newpaltz.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2017.2720678

I. INTRODUCTION 24

BECAUSE the performance gap between the CPU and 25

memory is expanding, energy consumption has become 26

more important and received extensive attention in chip 27

multiprocessor (CMP) systems. To bridge the performance 28

gap, solutions adopt the SRAM cache as on-chip memory. 29

SRAM caches have facilitated the layered memory hierarchy 30

and improved memory performance. However, SRAM caches 31

account for up to 25%-50% of the overall CMP’s energy 32

consumption and do not guarantee predictability of cache 33

misses [2]. Therefore, it is desirable to integrate NVM like 34

flash memory or phase change memory (PCM) for CMP 35

systems because it is nonvolatile and consumes less energy 36

than SRAM. For instance, if a 4GB SRAM on-chip memory 37

is replaced by a 4GB NVM, 65% of energy consumption 38

can be saved in intensive write access on CMP systems [31]. 39

The disadvantages of NVM are explicit. First, the speed 40

and cost of read operations and write operations in NVMs 41

are asymmetric. Second, there is a maximum number of 42

write operations that NVM can perform. Third, memory 43

access in NVM is slower than in SRAM. Considering the 44

properties of DRAM and PRAM, in this paper, we utilize 45

a hybrid on-chip memory composed of a SRAM and a 46

NVM to achieve energy-efficient CMP systems. With hybrid 47

on-chip memory, a substantial performance gain is achieved 48

by the proposed techniques, while consuming less energy and 49

extending the lifetime of NVMs. 50

To develop alternative energy-efficient techniques, in this 51

paper, the hybrid on-chip memory uses a software controllable 52

hybrid Scratch-Pad memory (SPM). SPM has been widely 53

employed in CMP systems to replace the hardware-controlled 54

cache [10], [20]. This is because SPM has three major 55

advantages compared with the cache. First, SPM is directly 56

addressing and does not need the comparator and tag SRAM. 57

Second, SPM generally guarantees the single-cycle access 58

latency. Third, SPM is purely managed by software, either 59

directly via the application program or through the automated 60

compiler support [19]. To efficiently manage SPMs, in this 61

paper, we use compiler-analyzable data access patterns to 62

strategically allocate data. The proposed technique benefits 63

energy consumption while minimizing performance degrada- 64

tion and endurance caused by the physical limitation of NVM. 65

When an application with data dependencies is executed 66

on a CMP system with hybrid SPMs, the following problems 67

cannot be overlooked, i.e., reducing energy consumption, 68

improving the endurance of NVM (reducing the number of 69

write operations), and minimizing scheduling time. In this 70

1549-8328 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

paper, we reconsider the variable partitioning problem of a71

DSP application on CMP systems with hybrid SPMs. Unfortu-72

nately, different objectives may conflict in this hybrid memory73

architecture. For example, placing data in NVM can reduce74

energy consumption but may lead to more writes to NVM,75

which shortens system lifetime and degrades performance.76

Therefore, techniques are proposed to address the trade-offs77

between low energy consumption and the performance and78

endurance degradation caused by write activities on an NVM.79

These improvements are achieved through the following novel80

contributions of this paper.81

• We first propose a data allocation algorithm for single82

core systems to reduce energy consumption while83

controlling the number of write operations84

on NVM.85

• Then, we propose two novel algorithms, i.e., EADA and86

BDAEW, for CMP systems with hybrid SPMs to solve the87

energy optimization problems of data allocation and task88

scheduling. The two algorithms generate a well-planned89

data allocation and task scheduling scheme so that all90

requirements can be met and the total energy consumption91

can be minimized while reducing the number of write92

operations on NVM.93

Experimental results show that our proposed algorithms per-94

form better than parallel solutions [5]. On average, reduction95

in the total energy consumption of the EADA and BDAEW96

algorithms is 16.44% and 27.8% compared to parallel solu-97

tions. The number of write operations on NVM can be reduced98

greatly by EADA and BDAEW algorithms. This means the99

lifetime of NVM can be prolonged. If the original life of NVM100

is 5 years, our proposed techniques can extend the life of NVM101

to at least 12 years.102

The remainder of this paper is organized as follows.103

Section II reviews related work. In Section III, we present104

our CMP with hybrid SPMs architecture and computational105

model. In Section IV, we use an example for illustration. In106

Section V, we first propose a data allocation approach for a107

single core system, and then propose two heuristic algorithms108

to solve the energy optimization problem of data allocation109

and task scheduling on CMP systems. In Section VI, we110

evaluate and analyze our techniques compared with the parallel111

solution. Section VII concludes this paper and discusses future112

work.113

II. RELATED WORK114

Numerous sophisticated SPM data allocation and115

management techniques have been proposed to reduce energy116

consumption or improve performance. Wang et al. [27]117

presented algorithms for WCET-aware energy-efficient118

static data allocation on SPM, i.e., selectively allocating119

data variables to SPM to minimize program’s energy120

consumption, while respecting a given WCET upper bound.121

Udayakumaran et al. [22], proposed a heuristic algorithm122

to allocate global and stack data for SPMs to minimize123

allocation cost. Udayakumaran and Barua [21] proposed a124

dynamic data allocation method for allocating heap data on125

SPMs to improve performance. The above techniques target126

SPMs consisting of pure SRAM. None of the techniques127

above can apply to the architecture in this paper when 128

integrating the lifetime issues of NVM. 129

Many data allocation techniques have also been proposed 130

to extend the lifetime of the NVM-based memory subsystem, 131

while reducing energy consumption and improving overall 132

system performance [13], [14], [17], [28]. Monazzah et al. [16] 133

presented algorithms for fault-tolerant data allocation on 134

hybrid SPM that consist of NVM and SRAM, protected 135

with error-correcting code (ECC), and parity. Qiu et al. [18] 136

proposed a novel genetic algorithm to solve the data allocation 137

problem of heterogeneous SPM with SRAM and NVMs. 138

Dhiman et al. [7] proposed an architecture and system policy 139

for managing a hybrid SRAM+PRAM memory. Hu et al. [9] 140

considered a hybrid SPM configuration consisting of SRAM 141

and PCM-based NVM, and presented a dynamic data 142

allocation algorithm for reducing write operations on NVM 143

by preferentially allocating read-intensive data variables 144

into NVM, and write-intensive data variables into SRAM. 145

Wang et al. [27] considered a multitasking system with hybrid 146

main memory consisting of PCM and DRAM, and addressed 147

the problem of partitioning and allocating data variables to 148

minimize average power consumption while guaranteeing 149

schedulability. In this paper, we address the data allocation 150

problem for CMP systems with hybrid SPM architecture 151

by proposing novel scheduling algorithms. The goal is to 152

reduce the energy consumption and extend the lifetime of 153

the NVMs. 154

Due to the influence of task scheduling on system perfor- 155

mance, data allocation problems have been extensively studied 156

to incorporate task scheduling. Various heuristic algorithms 157

were proposed in [1], [4], [12], [14], [23], [24], [29], and [30]. 158

These works mainly focus on optimizing the performance of 159

a system, where the algorithms provide quality solutions to 160

minimize the application’s total execution time. Together with 161

the increasing demand for high-performance CMP systems, the 162

energy consumption problem has also become more impor- 163

tant and attracts extensive attention. Banikazemi et al. [3] 164

proposed a novel low-overhead, user-level meta-schedule to 165

improve both system performance and energy consumption. 166

Wang et al. [26] proposed an optimal ILP based algorithm, 167

and two heuristic algorithms, TAC-DA and TRGS algorithms, 168

to solve heterogeneous data allocation and task scheduling 169

problems; minimizing energy consumption and satisfying the 170

time constraint. Their methods achieve a well-planned data 171

allocation and task scheduling approach. However, the data 172

allocation and task scheduling problem in CMP with hybrid 173

SPMs differs from existing data allocation problems for non- 174

uniform memory access architectures, since the write and 175

read operations to one component of the architectures are 176

asymmetric, and it is desirable to avoid writes to that com- 177

ponent. Compared with the above approaches, this paper has 178

several unique aspects. First, we target the CMP embedded 179

systems with hybrid SRAM+NVM SPMs to solve the energy 180

optimization problem of data allocation and task scheduling. 181

Second, we propose several novel algorithms to obtain a well- 182

planned data allocation and task scheduling approach such that 183

the overall performance can be improved while reducing total 184

energy consumption. 185

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 3

Fig. 1. (a) An architecture model (b) SPM architecture.

TABLE I

TIME AND ENERGY CONSUMPTION FOR

ACCESS TO DIFFERENT MEMORIES

III. THE MODEL186

A. Architecture Model187

In this paper, we target the embedded chip multi-cores188

with hybrid local memories. As shown in Figure 1, the189

architecture model consists of a set of connected homogeneous190

cores denoted by core = {core1, core2, . . . , coren}, where191

n is the number of homogeneous cores. Each core is tightly192

coupled with an on-chip local memory composed of a SRAM193

and a NVM. The SRAM and NVM of each core corei are194

denoted by M2i−1 and M2i . All cores share a DRAM main195

memory with large capacity. Each core can access its own local196

memory and other cores’ local memories. We call core access197

from local memory local access, while access from an SPM198

held by another core is referred as remote access. Generally,199

remote access is supported by an on-chip interconnect and200

all cores access the off-chip DRAM through a shared bus.201

The IBM CELL processor, which includes a multi-channel202

ring structure to allow communication between any two cores203

without intervention from other cores, is an example that204

adopts this architecture. We can safely assume that the data205

transfer cost between cores is constant. Local access is faster206

and consumes less energy than remote access while accessing207

the off-chip DRAM incurs the longest latency and consumes208

the most energy. Table I, which is introduced from [18],209

shows the time and energy consumption for access to different210

memories. In the table, the columns of “LS”, “RS”, “LN”,211

“RN”, and “DM” indicates the memory access cost to local212

SRAM, remote SRAM, local NVM, remote NVM, and off-213

chip DRAM. “Ti” and “En” are time and energy consumption.214

It is important to note that the hybrid local memories215

in the architecture model can not be pure caches because216

issues such as cache consistency and cache conflict are not217

considered. In this paper, the architecture employs SPMs218

as on-chip local memories. To make hybrid SPMs possible,219

researchers proposed several hybrid hardware/software support220

SPMs [6], [15]. For example, [18] employs hybrid SPMs com-221

posed of a SRAM and two NVM to study cost optimization222

incurred by data allocation. [8] explores hybrid nonvolatile223

Fig. 2. An input DAG. (a) Precedence constraints among tasks. (b) The input
data and output data of each task. (c) An MDFG combined tasks with data.

SPM architectures. In a hybrid SPM, SRAM and NVM share 224

the same address space with the main memory. The CPU can 225

load data from both of them directly. 226

As shown in Figure 1(b), the hybrid SPM can be fabricated 227

with 3-D chips because 3-D integration is a feasible and 228

promising approach to fabricating the hybrid SPM [8]. In 3-D 229

chips, multiple active device layers are stacked together with 230

short and fast vertical interconnects. For fabrication, SRAM 231

can be fitted into the same layer as the core and NVM can 232

be fitted into a separate layer, so that designers can take full 233

advantage of the attractive benefits that NVM provides. 234

B. Computational Model 235

In this subsection, we describe the memory access data flow 236

graph (MDFG), which is used to model an application to be 237

executed on the target embedded chip multiprocessors. Before 238

we formally describe the MDFG model, we first introduce a 239

directed acyclic graph (DAG) model as shown in Figure 2(a). 240

In this paper, we use a DAG as a description of a given input 241

graph. 242

Definition 1: A DAG is a node-weighted directed graph 243

represented by G = (V , E, D, in, out, Nr, Nw), where 244

V = {v1, v2, . . . , vN } is a set of task nodes, and E ⊆ V × V 245

is a set of edges that describe the precedence constraints 246

among nodes in V . D is a set of data. in(vi) ⊆ D is 247

a set of input data of task vi , and out (vi) ⊆ D is a 248

set of output data of task vi . Nr(vi) is used to represent 249

the read number of task vi for different input data, i.e., 250

Nr(vi) = (nr1(i), nr2(i), . . . , nrn(i)), where nrh(i) denotes 251

the read time of vi for input data h. Nw(vi) is used to 252

represent the write number of task vi for different output data, 253

i.e., Nw(vi) = (nw1(i), nw2(i), . . . , nwn(i)), where nwh(i) 254

denotes the write time of vi for output data h. 255

If we treat a memory access operation as a node, we 256

can redefine a DAG to obtain a memory access data flow 257

graph (MDFG) defined as the following. 258

Definition 2: An MDFG is a node-weighted directed 259

graph by G′ = (V1, V2, E, D, var, Nr, Nw, P, M), where 260

V1 = {v1, v2, . . . , vN1 } is a set of N1 task nodes, and 261

V2 = {u1, u2, . . . , uN2 } is a set of N2 memory access 262

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

operation nodes. E ⊆ V × V (V = V1
⋃

V2) is a set of263

edges. An edge (μ, ν) ∈ E represents the dependency between264

node μ and node ν, indicating that task or operation μ has265

to be executed before task or operation ν. D is a set of266

data. var : V1 × V2 × D → {true,false} is a binary267

function, where var(vi , ul , h) denotes whether the memory268

access operation ul ∈ V2 is transmitting datum h ∈ D for task269

vi ∈ V1. Nr(vi , h) = nrh(i) is the read time of task vi for his270

input data h. Nw(vi , h) = nwh(i) is the write time of task vi271

for his output data h. P = {core1, core2, . . . , coren} is a set272

of cores, and M = {M1, M2, . . . , M2n} is a set of on-chip273

memories. The SRAM and NVM of each core corei denoted274

by M2i−1 and M2i , respectively.275

An example of MDFG from DAG is shown in Figure 2.276

In the example, Figure 2(a) shows the DAG, there are277

N = 4 tasks, i.e., v1, v2, v3, v4. Figure 2(a) shows the278

precedence constraints among the tasks. The data set is279

D = {A, B, C, D, E, F, G, H }, and Figure 2(b) shows the280

input data and output data of each task. For example, task a281

reads input data A and B before it is started, and writes282

output data D after it is finished. If we treat a memory access283

operation as a node, we can obtain an MDFG from the DAG284

is shown in Figure 2(c), where we have N1 = 4 task nodes285

and N2 = 13 memory access operation nodes. For example,286

the node 1 is memory access operation node and represents287

reading data A.288

C. Problem Definition289

Assume that we are given a multi-core systems with n cores,290

where each core is integrated with a SPM which consists291

of a SRAM and a NVM. The access time and energy con-292

sumption of each processor in accessing a unit data from293

different memories are known in advance. The capacity of294

each core’s SRAM and NVM is also known in advance.295

The energy optimization problem of data allocation and task296

scheduling can be defined as follows: Given an DAG G =297

(V , E, D, in, out, Nr, Nw), we treat a memory access oper-298

ation as a node and reconstruct the DAG to obtain an MDFG299

G′ = (V1, V2, E, D, var, Nr, Nw, P, M). The objectives of300

an energy optimization problem of data allocation and task301

scheduling are to find (1) a data allocation Mem: D −→ M ,302

where Mem(h) ∈ M is the memory to store h ∈ D; (2) a303

task assignment A: V1 −→ P , where C(vi) is the core to304

execute task vi ∈ V1, such that the total energy consumption305

can be minimized, the write operations on NVM can be306

reduced, and the scheduling length can be shortened. In this307

problem, we assume each core can access SRAM and NVM308

in its local SPM, every remote SPM, and off-chip DRAM309

with different time and energy consumption. The time and310

energy consumption of access to different memories is given311

in Table I. The objective function of the target problem is312

described as:313

Objective 1: Energy consumption is minimized. For each314

available assignment of data, we obtain the number of local315

read operations Nlr , local write operations Nlw , remote read316

operations Nrr , and remote write operations Nrw ; the cor-317

responding energy consumption is indicated as Elr , Elw,318

Err , and Erw; the energy consumption of each data can be 319

formulated as follows. 320

Eh = Nlr (h) × Elr + Nlw(h) × Elw 321

+ Nrr (h) × Err + Nrw(h) × Erw (1) 322

However, the above equation does not consider the case that 323

data h is allocated in main memory. If one data h is allocated 324

in main memory, we would use the following equation to 325

compute the energy consumption: 326

Eh = (totalr + totalw) × Edm (2) 327

where totalr and totalw are the total number of read 328

operations and write operations of data h, respectively. Edm is 329

the energy consumption when an access operation takes place 330

in main memory. 331

Given the energy consumption of each task Ev i , the total 332

energy consumption of a MDFG can be formulated as: 333

Etotal =
∑

v i∈V1

Ev i +
∑

h∈D

Eh (3) 334

Objective 2: The number of write operations on NVM is 335

minimized. For each NVM, the number of write operations 336

can be formulated as: 337

NN V M (i) =
∑

M(h)=Mi ,i=2k

(Nlw(h) + Nrw(h)) (4) 338

The NVM of each core is denoted by M2k , where k is the id of 339

the corresponding cores. The total number of write operations 340

on NVM is: 341

T NN V M =
∑

Mi ,i=2k

(NN V M (i)). (5) 342

IV. MOTIVATION EXAMPLE 343

In this section, we use an example to illustrate the 344

effectiveness of our proposed algorithms. The example of 345

MDFG application in Figure 2 is executed on a two-core 346

system. As shown in Figure 1, each core is equipped with 347

a hybrid local memory, composed of a SRAM and an 348

NVM. The access latency and energy consumption of the 349

target two-core system are shown in Table I. Based on the 350

dependency constraints in the MDFG shown in Figure 2, 351

two solutions of data allocation and tasks scheduling are 352

generated by two compared algorithms shown in Figure 3. 353

Figure 3(a) shows a schedule generated by parallel solu- 354

tion [5]. Conventionally, the parallel solutions to attack the task 355

scheduling and data allocation problem would be to minimize 356

scheduling time by mapping tasks and allocating data using 357

shortest processing time policy. In this schedule, task v1 and v3 358

are scheduled on core1, task v2 and v4 are scheduled on core2, 359

the data A, D, and H are allocated on NVM, and all other data 360

are allocated on SRAM. The completion time of this schedule 361

is 18, the total energy consumption is 77, and the number of 362

write operations on NVM is 3. However, this approach may 363

not produce a good result in terms of energy consumption. 364

Since reducing write operations on NVM is also one of the 365

objectives, we should explore a better trade-off approach to 366

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 5

Fig. 3. The data allocation and task schedule of the example (a) parallel
solutions with energy consumption 77 and the number of writes on NVM 3
(b) the proposed solution with energy consumption 57 and the number writes
on NVM 2.

minimize energy consumption and reduce the number of write367

operations on NVM.368

Figure 3(b) shows an improved schedule, which considers369

energy consumption and the number of write operations on370

NVM. In this schedule, tasks v1 and v3 are scheduled on371

core1, tasks v2 and v4 are scheduled on core2, the data A, C,372

E, F, and G are allocated in NVM. The other data are allocated373

in SRAM. The schedule length of the improved schedule374

is 15, the total energy consumption is 57, and the number375

of write operations on NVM is 1. Energy consumption is376

reduced by (77−57)/57 = 35.08% compared with the parallel377

solution. From the above example, we can see that energy378

consumption can be reduced by exploring data allocation and379

task scheduling on CMP systems with hybrid SPMs.380

V. ALGORITHM381

In this section, we first discuss the data allocation mecha-382

nism for single core embedded chip system. Then, we propose383

several methods for CMP to solve the energy optimization384

problem of data allocation and task scheduling based on hybrid385

SRAM+NVM local memory.386

A. Data Allocation for Single Core Embedded Chip System387

A single core embedded chip system is a special embedded388

chip multiprocessor system. We only consider data allocation389

for hybrid local memory when an MDFG is run in a single390

core embedded chip system. This is because all tasks will391

be assigned to the same core leading to a constant execution392

time and energy consumption for task nodes. In this section,393

we propose the data allocation for the single core (DASC)394

algorithm as shown in Algorithm 1. For the hybrid SPM, there395

are two disadvantages based on NVM: 1) the limited number396

of write operations and asymmetric access speed and energy397

consumption in read and write operations; and 2) errors in398

storing information when updating operations of an NVM cell399

is beyond the limited number of write operations. Therefore,400

we use two thresholds T rw and maxw to prevent the NVMs401

from wearing out. T rw restricts NVMs from storing data402

whose write operations are more than Trw . In this paper,403

T rw is equal to the average number of write operations of404

data in an application. The maximum write operations of a405

Algorithm 1 Data Allocation for Single Core

Input: (1) An application MDFG G′ = (V 1, V 2, E, D, var);
(2) a hybrid SRAM and NVM local memory; (3) a write
threshold Trw for NVM. (4) setting maximum write oper-
ations maxw on NVM for an application.

Output: Assign data into SRAM or NVM.
1: find all data with cw > T rw, put them in set L
2: while L is not full do
3: select a data with maximum writes on L
4: if SRAM have space to allocate the data then
5: allocate it in SRAM
6: else
7: allocate it in main memory
8: end if
9: N f lag(h) = 0

10: remove it from L
11: end while
12: for each un-allocated data do
13: compute the energy consumption E S(h) and E N(h)
14: if E S(h) > E N(h), NVM have space to allocate the

data, the total write operations on NVM is less than maxw

then
15: allocate the data in NVM, N f lag(h) = 1
16: else
17: if SRAM has space to allocate the data then
18: allocate it in SRAM
19: else
20: allocate it in main memory
21: end if
22: end if
23: N f lag(h) = 0
24: end for

NVM is maxw. If the total number of write operations on a 406

NVM exceeds maxw, data with write operations should not 407

be allocated to the NVM. Data that will be allocated in NVM 408

must satisfy the following properties. 409

Property 3: If data h can be allocated in NVM, then 410

cw(h) ≤ T rw 411

where cw(h) is the total write operations of data h. 412

Property 4: Let the binary variable N f lag(h) denotes 413

whether allocated data h in NVM. The total number of write 414

operations on NVM must be less than maxw: 415

∑

h

(N f lag(h) × cw(h)) ≤ maxw 416

where N f lag(h) = 1 means data h is allocated in NVM. 417

In the following, we will discuss the DASC algorithm about 418

how to allocate data in memories to avoid the disadvantages of 419

NVM and reduce total energy consumption for a single core 420

embedded chip system. 421

In Algorithm 1, data are divided into two categories 422

according to the number of write operations and the 423

threshold T rw . If the total number of write operations of one 424

data is more than T rw , the data is the first type of categories 425

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

and is put in set L (Line 1). For the data in set L, if SRAM426

has enough space to hold the data, the data is allocated in427

the SRAM; otherwise, the data is allocated in main memory428

(Lines 2-12). For the data not in set L, we first calculate the429

energy consumption of each available assignment for data h430

and use minimum energy consumption min(E S(h), E N(h))431

as a measurement for deciding the memory to store the432

data (Lines 13-14). If data h is allocated in SRAM, energy433

consumption of data h on SRAM can be formulated as:434

E S(h) = Nlw(h) × eslw + Nlr × eslr (6)435

where eslw and eslr are the energy consumption of each local436

write operation and each local read operation on SRAM,437

respectively. And, if the data is allocated in NVM, the energy438

consumption of data h can be obtained as439

E N(h) = Nlw(h) × enlw + Nlr × enlr (7)440

where enlw and enlr are the energy consumption of each441

local write operation and each local read operation on442

NVM, respectively. In computing the energy consumption,443

E S(h) and E N(h), we only consider local memory access444

operations. This is because each data allocated in SPM only445

have local read operations and local write operations since446

the target system is a single core embedded chip system.447

The algorithm also confirms whether the total number of448

write operations on NVM exceed the maxw. For data to be449

allocated in the NVM, the following three conditions must be450

satisfied: 1) the total number of write operations on NVM451

is less than maxw; 2) NVM is not full; 3) the data with452

E S(h) > E N(h) (Lines 15-17). If one of the above conditions453

cannot be met, we will determine the free space of SRAM.454

If SRAM has sufficient space to hold the data, the data is455

allocated in SRAM (Lines 18-21). Otherwise, the data is456

allocated in main memory (Lines 22-27).457

The data allocation for a single core algorithm considers458

two objectives. For the endurance of NVM, it is detrimental459

to place data with too many writes on NVM; the algorithm460

controls the maximum write operations on NVM. For energy461

consumption, it places data into a memory with minimum462

energy consumption among all available assignments. The463

complexity of data allocation for a single core algorithm464

is O(H), where H is the amount of data.465

B. Chip Multiprocessors System466

CMPs generally consist of multiple cores sharing an467

off-chip main memory. In this subsection, the target archi-468

tecture is a CMP shown in Figure 1. For solving the energy469

optimization problem of data allocation and task scheduling470

incurred by applications execution on a CMP with N cores471

(each of these cores is integrated with a hybrid SPM which472

consists of a SARM and a NVM), we propose two algo-473

rithms, i.e., energy-aware data allocation (EDAC) algorithm474

and balance data allocation with energy and writes (BDAEW)475

algorithm.476

In The EDAC algorithm as shown in Algorithm 2, we first477

call the parallel algorithm [5] to find an effective mapping for478

each task. The parallel algorithm in [5] is used to solve the task479

Algorithm 2 Energy-Aware Data Allocation

Input: (1) An application MDFG G′ = (V 1, V 2, E, D, var);
(2) an embedded chip multiprocessors with hybrid SRAM
and NVM local memory; (3) a write threshold Trw for
NVM. (4) setting maximum write operations maxw on
NVM for an application.

Output: A data allocation and task scheduling with mini-
mized energy.

1: call parallel algorithm to find an effective map for each
task nodes

2: /*data allocation*/
3: for each data h do
4: for each processors pi do
5: compute the number of read operations Nr(h, pi), and

the number of write operations Nw(h, pi)
6: end for
7: choose the processor with maximum (Nr(h, pi) +

Nw(h, pi)) to assign the data into its corresponding
hybrid local memory

8: end for
9: for each processor pi do

10: call the Algorithm 1
11: end for

scheduling problem, where all requirements are met and the 480

scheduling length is minimized. After task mapping, we find 481

an allocation for data using task assignments. In the following, 482

we will discuss in detail how to assign data nodes in different 483

memories. Data allocation consists of two phases. The first 484

phase finds a proper core for the data so that remote memory 485

access operations can be reduced. Since data may be needed 486

by different tasks, more than one memory access operation 487

may be associated with the data. For data h, we first calculate 488

the number of memory access operations on each core corei 489

as follows: 490

Nr(h, corei) =
∑

C(v j)=corei

(Nr(j, h)), ∀e(h, v j) ∈ G′, 491

Nw(h, corei) =
∑

C(v j)=corei

(Nw(j, h)), ∀e(v j , h) ∈ G′ (8) 492

where C(v j) is the core to execute the task v j . 493

Then, we use maximum memory access operations 494

max (Nr(h, corei) + Nw(h, corei)) as a measurement 495

to decide in which core’s SPM to place the data (Lines 3-8). 496

In the second phase, we find data allocation according to the 497

first phase. For each core, we call the Algorithm 1 to decide 498

which memory is allocated data (Lines 9-11). 499

In the EADA algorithm, it takes O(|V E |) time to find a 500

better mapping for each task, where V represents the number 501

of tasks and E represents the number of edges between tasks. 502

To find a better data allocation, it takes O(|V H P|) determine 503

which processor to allocate data and takes O(H) to allocate 504

data to a determinate memory, where H is the number of 505

data and P is the number of cores. Therefore, if P is treated 506

as a constant, the time complex of the EADA algorithm is 507

O(|V E | + |V H | + |H |) 508

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 7

Algorithm 2 has two objectives, minimizing energy509

consumption and reducing write operations on NVM.510

However, the two objectives may conflict: assigning data in511

NVM can save energy consumption but may cause many512

write operations on NVM. Therefore, we propose BDAEW513

algorithm as shown in Algorithm 3 to balance the conflict of514

minimizing energy consumption and reducing write operations515

on NVM. Before the details of the algorithm are presented,516

several theorems on our algorithms are built as follows.517

Theorem 5: For all h ∈ in(vi), if and only if the data h518

and task vi are allocated the same core, the binary variable519

R f lag(vi , h) = 1. The total local read number for data h can520

be formulated as:521

Nlr (h) =
∑

vi

(R f lag(vi , h) × Nr(vi , h) × in(vi , h))522

and the total remote read number for data h can be formulated523

as:524

Nrr (h) =
∑

vi

((1 − R f lag(vi , h)) × Nr(vi , h) × in(vi , h))525

where Nr(vi , h) is the read number of data h for task vi and526

binary variable in(vi , h) = 1 denotes h is a input of task vi .527

Proof: For each task and data pair (vi , h), if task vi528

and data h are allocated the same core, the read operations529

for pair (vi , h) are local read operations. Otherwise, the read530

operations for pair (vi , h) are remote read operations. Thus,531

for pair (vi , h), the local reads number is R f lag(vi , h) ×532

Nr(vi , h) × in(vi , h) and the remote reads number is533

(1 − R f lag(vi , h)) × Nr(vi , h) × in(vi , h). Furthermore, for534

each data h, we can obtain the total number of local read535

operations and remote read operations as Theorem 5.536

Theorem 6: For all h ∈ out (vi), if and only if the data h537

and task vi are allocated the same core, the binary variable538

W f lag(vi , h) = 1. The total local write number for data h is:539

Nlw(h) =
∑

vi

(W f lag(vi , h) × Nw(vi , h) × out (vi , h))540

and the total remote write number for data h is:541

Nrw(h) =
∑

vi

((1 − W f lag(vi , h)) × Nw(vi , h) × out (vi , h))542

where Nw(vi , h) is the write number of data h for task vi543

and binary variable out (vi , h) = 1 denotes h is a output of544

task vi .545

Proof: The proof is similar to the proof of Theorem 5.546

Summing up all of these memory access operations for each547

data h ∈ D, we can obtain the total number of each type of548

memory access operations as follows:549

• The total local read number Nlr = ∑
h Nlr (h)550

• The total remote read number Nrr = ∑
h Nrr (h)551

• The total local write number Nlw = ∑
h Nlw(h)552

• The total remote write number Nrw = ∑
h Nrw(h)553

Since data may be needed by different tasks, we should554

calculate the energy consumption of data for each available555

allocation. For each available allocation Mem(h) = Mi , given556

the energy consumption of each local read operation Elr (Mi),557

each remote read operation Err (Mi), each local write558

operation Elw(Mi), and each remote write operation 559

Erw(Mi), the energy consumption can be formulated as: 560

En(h, Mi) = Nlr (h) × Elr (Mi) + Nrr (h) × Err (Mi) 561

+ Nlw(h) × Elw(Mi) + Nrw(h) × Erw(Mi) 562

(9) 563

Additionally, the really energy consumption of each data can 564

be formulated as follows: 565

Eh =
∑

Mi

(En(h, Mi) × f lag(h, Mi)) (10) 566

where f lag(h, Mi) is a binary variable, denoting whether 567

allocated data h is in Mi . If f lag(h, Mi) = 1 it means data h 568

is allocated in Mi . 569

In algorithm BDAEW as shown in Algorithm 3, we first 570

use the parallel algorithm to find a better mapping for each 571

task. Then, we find better allocation for data to meet all 572

requirements and to minimize total energy consumption while 573

reducing the number of write operations on NVMs. Data 574

allocation consists of two phases. The first phase finds a 575

minimum energy consumption assignment for the data, and 576

the second phase allocates write operations on NVMs in such 577

a way as to balance write operations on NVMs and total energy 578

consumption. 579

In the first phase, we first calculate the energy consumption 580

of each available assignment for each data h. Then, we use 581

min{En(h, Mi)} as a measurement to decide which memory 582

is assigned data h. In other words, for each data h, we choose 583

a memory Mi with minimum energy consumption En(h, Mi) 584

among all available assignment of data h to hold the data 585

(Lines 3-8). In the second phase, for each processor, we 586

first determine if all data allocated in NVM meet the write 587

constraints. If there is data with cw(h) > T rw on NVM, 588

we reassign the data to SRAM (SRAM has enough space 589

to hold the data) or main memory (SRAM is full), where 590

cw(h) is the total write operations of data h, and is equal 591

to Nlw(h) + Nrw(h) (Lines 9-19). Then, we determine if the 592

total number of write operations on NVM meets the constraint 593

Tcw < maxw. If the total number of write operations on NVM 594

Tcw < maxw, we obtain a solution; otherwise, we reallo- 595

cate some data; In reallocating data to satisfy the constraint 596

Tcw < maxw, we use read-to-write ratio = cw(h)
cw(h)+cr(h) as 597

a measurement to select a data in NVM with the maximum 598

read-to-write ratio to be moved into SRAM or main memory, 599

where cr(h) is the total number of read operations of data h 600

(Lines 20-28). After adjustment of data allocation, the algo- 601

rithm finds a new data allocation and reduces write operations 602

on NVM until the constraint Tcw < maxw is satisfied. 603

In the BDAEW algorithm, it takes O(|V E |) time to find a 604

better mapping for each tasks and takes O(|V M H |) to find 605

a original data mapping , where V represents the number of 606

tasks and E represents the number of edges between tasks, 607

H is the number of data, and M is the number of memories. 608

To reallocate data, it takes at most O(| log2(H M)|) to obtain 609

a better allocation where the maximum number of write 610

operations on NVM is controlled. Thus, the time complexity 611

of BDAEW algorithm is O(|V E | + |V H | + | log2 H |). 612

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Algorithm 3 Balance Data Allocation With Energy and Write
Operations

Input: (1) An application MDFG G′ = (V 1, V 2, E, D, var);
(2) an embedded chip multiprocessors with hybrid SRAM
and NVM local memory; (3) a write threshold T rw for
NVM. (4) setting maximum write operations maxw on
NVM for an application.

Output: A data allocation and task scheduling with mini-
mized energy.

1: call parallel algorithm to find an effective map for each
task nodes

2: /*data allocation*/
3: for each data h do
4: for each memory Mi do
5: compute the energy consumption if the data is assigned

in the memory En(h, Mi)
6: end for
7: choose the memory with minimum En(h, Mi) to allocate

the data, and marked f lag(h, Mi) = 1
8: end for
9: for each processor pi do

10: while NVM M2i exist data with cw > Trw do
11: select a data h with maximum writes cw(h) on M2i

12: let f lag(h, M2i) = 0
13: if SRAM M2i−1 has enough space to hold the data

then
14: reallocate the data h on M2i−1, f lag(h, M2i−1) = 1,
15: else
16: reallocate the data h on main memory
17: end if
18: end while
19: compute the total number of write operations Tcw on its

NVM
20: while Tcw > maxw do
21: find a data in NVM with maximum ratio = cw

cr+cw ,
where cr is the number of read operations on NVM
for this data

22: let f lag(h, M2i) = 0
23: if SRAM M2i−1 is not full then
24: reallocate the data in M2i−1, f lag(h, M2i−1) = 1
25: else
26: reallocate the data in main memory
27: end if
28: end while
29: end for

VI. EXPERIMENTAL RESULTS613

A. Experiment Setup614

In this section, we present experimental results to illustrate615

the effectiveness of the proposed algorithms. We use the616

following benchmarks from DSPstone [32], i.e., IIR, Allope,617

Floyd, Elliptic, Volterra, and 8-lattic. These benchmarks618

are frequently used in multicore systems research. We619

compile each benchmark using GCC and obtain the task620

graphs accompanied by the read/write data sets. There are621

three notes. First, the source codes must be compiled with622

TABLE II

PERFORMANCE PARAMETERS FOR THE TARGET MEMORY MODULES

profiling option on (-fprofile-generate). Then, the 623

compiled binary must be executed by feeding a data set 624

corresponding to the use case. Finally, the source code must 625

be compiled again with both profile-guided optimization and 626

ABSINTH enabled (-fprofile-use-fabsinth). The 627

pass_absinth_bbs traverses all RTL expressions within 628

each basic block. For each expression, pass_absinth_bbs 629

analyzes whether it is an instruction or not, and generates 630

one execute primitive per each instruction [11]. Then, the 631

task graphs and access sets are fed into our simulator. Our 632

simulator requires data to be processed by the extracted 633

graphs. To make the experiment more rigorous, we reuse the 634

same task graph but feed various data volume. The amount of 635

data needed in the graph is modeled as Nd = α × √
V × √

E , 636

where V is the amount of tasks in the graph and E is 637

the number of edges in the MDFG. The α is a tuning 638

parameter which is randomly selected from the Poisson 639

distribution where λ is picked from a uniform distribution in 640

the range [0,10]. As α grows, the number of data increases 641

and the dependency between tasks associated with the data is 642

stronger. For each task node, the number of read/write access 643

of data is set randomly from a uniform distribution in the 644

range [0,20]. To thoroughly evaluate the proposed algorithms, 645

we conducted a rigorous simulation with different α settings. 646

The experiments for benchmarks are conducted on an 647

architecture model which is defined in Section III. The target 648

architecture consists of three cores. Each core is equipped 649

with hybrid local memory units composed of a SRAM and a 650

PRAM. The configurations of the target architecture systems 651

are shown in Table II. We integrated all these parameters 652

into our in-house simulator to verify the effectiveness of 653

our proposed algorithms. All the simulations run on an 654

Intel� CoreT M 2 Duo Processor E7500 2.93GHz with a 2GB 655

main memory operated by Red Hat Linux 7.3. 656

We compared the performance of our proposed algorithms 657

to that of the parallel solution [5] and AGADA algorithm [18]. 658

AGADA algorithm is a recently published algorithm to mini- 659

mize the total cost of data allocation on hybrid memories with 660

NVM. The parallel solution is a classical algorithm to solve 661

the task scheduling and data allocation problem. Therefore, the 662

AGADA algorithm and parallel solution are the most related 663

works and two excellent candidates for benchmarking. In this 664

paper, the AGADA algorithm has been evolved so that it is 665

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 9

Fig. 4. The energy consumption of benchmarks under different approaches when change α. (a)iir, (b) allope, (c) floyd, (d) elliptic, (e) voltera, (f) 8_lattice.

TABLE III

THE NUMBER OF WRITES ON PRAM

comparable to our model to consider the energy consumption666

problem of task scheduling and data allocation. The parallel667

solution is originally used in the system with (a) a pure SRAM668

local memory, and (b) a hybrid local memory composed of a669

SRAM and a PRAM. To make fair comparisons, we imple-670

mented all four algorithms, i.e., parallel solution, AGADA,671

EADA, and BDAEW, in the same scheduling framework. By672

doing so, we ensured that the performance loss of the parallel673

solution and AGADA algorithm is not due to different settings674

of the implementations. The results for energy consumption675

are shown in Figure 4. The results for the number of writes on676

PRAM are shown in Table III. Last, the results for execution 677

time are shown in Figure 5. 678

B. Results and Analysis 679

This section presents the experimental results to illustrate 680

the effectiveness of our proposed algorithms. The results of 681

total energy consumption are represented by the statistical 682

comparison of different approaches when changing α. As we 683

can observe, with the increase of the data parameter α, 684

the energy consumption of all five approaches increase and 685

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 5. The comparison of execution time under different approaches.
α = 2, maxw = 500.

the gap in energy consumption among the five algorithms686

become larger. For all benchmarks, the energy consumption687

of EADA and BDAEW algorithms is less than that of688

the parallel solution using a hybrid PRAM+SRAM local689

memory. Additionally, the energy consumption of the parallel690

solution using a pure SRAM is the maximum of the five691

different approaches. Compared with parallel+SRAM, the692

EADA and BDAEW can reduce energy consumption by693

47.52% and 36.65%, respectively on average. The EADA and694

BDAEW algorithms also can reduce energy consumption by695

29.08% and 25.47% on average compared with the parallel696

solution using a hybrid local memory, respectively. Therefore,697

algorithms EADA and BDAEW save energy better than the698

parallel solution. From Figure 4, we also observe that the699

energy consumption of EADA and BDAEW algorithms is less700

than that of AGADA algorithm in most cases. On average,701

the EADA and BDAEW algorithms can reduce energy702

consumption by 23.05% and 19.41%, respectively. Although703

the energy consumption of AGADA algorithm is less than704

that of EADA and BDAEW algorithms in several cases, the705

AGADA algorithm does not consider data-dependency, which706

will result in overhead write operations.707

The number of write operations on PRAM has a large effect708

on the PRAM’s lifetime. In this paper, we use the following709

formulation to compute the number of write operations on710

PRAM:711

NP R AM =
∑

h

(N_lw(h) + N_rw(h)) × N f lag(h) (11)712

Although the parallel solution is used as a baseline tech-713

nique to evaluate the PRAM’s write operations on NVM714

of our proposed algorithms, our proposed algorithm is not715

comparable with the parallel solution using a pure SRAM.716

This is because there are no write operations on PRAM in717

parallel+SRAM. The results for write operations on PRAM718

are shown in Table III, which is the statistical comparison719

of all four algorithms for all benchmarks based on the tar-720

get architectural model. In Table III, the eighth and ninth721

columns show the ratio of the reduction of write operations722

on PRAM by EADA compared with the parallel+hybrid and723

AGADA algorithm. The eleventh and twelfth columns show724

the reduction ratio of write operations on PRAM by BDAEW725

compared with the parallel+hybrid and AGADA algorithm.726

From the table, we can observe that our algorithm EADA727

and BDAEW can achieve better write operation reduction 728

than the parallel solution and AGADA algorithm. Compared 729

with parallel+hybrid, EADA and BDAEW can reduce the 730

number of write operations on PRAM by 42.06% and 48.28%, 731

respectively on average. Compared with AGADA, EADA 732

and BDAEW can reduce the number of write operations on 733

PRAM by 29.57% and 35.80%, respectively on average. The 734

lifetime improvement ratio of PRAM can be estimated by 735

(M/W ′−M/W
M/W) [25], where M stands for the maximum write 736

operations of PRAM, W is the number of write operations 737

on PRAM when using parallel solutions, and W ′ stands 738

for the number of write operations on PRAM when using 739

our proposed technique. Approximately, 28.82% and 29.93% 740

reduction on the number of write operations is equivalent to 741

a 144.03% and 155.76% increase on the lifetime on PRAM. 742

It means that our proposed techniques can prolong the lifetime 743

of PRAM to 12 years if the PRAM’s original lifetime is 744

5 years. 745

However, NVM introduces longer latency. For example, 746

when α = 2, the statistical comparisons of execution time 747

under different approaches are shown in Figure 5. From 748

the figure, we can see that the scheduling length of EADA 749

and BDAEW algorithms are longer than the parallel solution 750

using pure SRAMs, but shorter than AGADA and parallel 751

solution using hybrid SPMs. However, as we can see from the 752

results, the negative impact on applications’ execution time 753

is not significant. This is because we can use PRAM with 754

write buffers and write operations are relatively insensitive 755

to memory in hierarchies that are far from the CPU [31]. 756

As shown in Figure 5, EADA and BDAEW algorithms can 757

reduce the execution time of benchmarks by 15.54% and 758

21.49% compared with parallel solutions using hybrid SPMs, 759

respectively on average. Compared with AGADA algorithm, 760

EADA and BDAEW algorithms can reduce the execution time 761

of benchmarks by 5.83% and 12.44%, respectively on average. 762

In order to further illustrate the effectiveness of the pro- 763

posed algorithm, we compared the scheduling length and 764

overhead energy consumption of the five approaches using 765

different benchmarks. The overhead energy consumption is 766

a result of the scheduling cost, the cost of computing all 767

data- dependencies, and other logistic costs. The results of 768

scheduling length and overhead energy consumption are shown 769

in Figures 6 and 7, respectively. From the two figures, we 770

can observe that the scheduling time and overhead energy 771

consumption of the parallel solution are less than that of the 772

other four algorithms, and that of the EADA and BDAEW 773

algorithms are less than AGADA algorithm in most cases. 774

However, as the data-dependency grows, the gap between 775

the AGADA algorithm and the proposed algorithm decreases. 776

When the data-dependency application is represented by a 777

large MDFG, the scheduling time and overhead energy con- 778

sumption of AGADA algorithm is less than the proposed 779

algorithms. This is because the time complexity of AGADA 780

is O(G ∗ P ∗ H), where G and P represent the maximum 781

number of iterations and the population size of the genetic 782

algorithm, respectively. In more detail, the scheduling time 783

and overhead energy consumption of the proposed algorithms 784

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 11

Fig. 6. The comparison of scheduling time under different approaches.
α = 2, maxw = 500.

Fig. 7. The comparison of overhead energy consumption under different
approaches. α = 2, maxw = 500.

are not simply dependent on the number of data but depends785

on the product of data-dependency, the amount of data, and the786

amount of memories, while that of AGADA increases linearly787

with the growth of data. When the data-dependency and size788

of applications grow to a certain size that is greater than789

G ∗ P , the scheduling time and overhead energy consumption790

of AGADA are less than that of the proposed algorithm. For791

example, if the population size is set as 100 and maximum792

generation is set as 1000, the scheduling time and overhead793

energy consumption of AGADA will be less than that of794

the proposed algorithm, when the number of tasks and data795

increase to 50 and 350, respectively. However, even in this796

case, the net execution time and the net energy consumption of797

the proposed algorithm are still less than the AGADA. Hence,798

the benefits we gain by the proposed technique outweigh the799

extra overheads.800

In summary, for CMP with hybrid SPMs composed of801

a SRAM and NVM, the EADA and BDAEW algorithms802

can obtain a well-planned assignment such that the total803

energy consumption is minimized with little degradation804

in performance and endurance of PRAM. The EADA and805

BDAEW algorithms are also evaluated with experimental806

results showing that the EADA and BDAEW algorithms807

can obtain a better solution in energy consumption and the808

number of write operations on PRAM than parallel solutions809

and the AGADA algorithm.810

VII. CONCLUSION AND FUTURE WORK811

Hybrid local memory is an effective approach to reduce812

energy consumption and memory access latency for813

multi-core systems. In this paper, we propose two novel 814

heuristic algorithms, EADA and BDAEW. Based on the 815

hybrid SRAM+NVM SPM architecture, data are allocated 816

efficiently and tasks are scheduled reasonably, such that 817

the total energy consumption is minimized with little 818

degradation in performance and endurance caused by NVM. 819

In experimental studies, we employed hybrid SRAM+PRAM 820

SPM for multi-core systems to execute various applications. 821

The results show that both the EADA and BDAEW algorithms 822

achieve noticeable average reduction rates of total energy 823

consumption compared with parallel solutions and AGADA 824

algorithm. Both the EADA and BDAEW algorithms can 825

reduce the number of write operations on NVM. This means 826

that the lifetime of NVM can be extended when EADA and 827

BDAEW are used in the hybrid SPM architecture. 828

The proposed algorithms can be extensible to heterogeneous 829

cores. To achieve this, the cost of memory operations in each 830

memory must be redefined and the method of computing 831

energy consumption changed. A modern high-performance 832

computing system normally consists of heterogeneous 833

computing and communication resources, i.e., heterogeneous 834

processors, heterogeneous memories, and heterogeneous com- 835

munication interconnections. In heterogeneous processors, the 836

same type of operations can be processed by different proces- 837

sors with various execution times and energy consumption. 838

This makes the task scheduling and data allocation problem 839

more complicated. Although the proposed algorithm can be 840

extensible for heterogeneous cores, the performance and effec- 841

tiveness need more precise investigations. Therefore, we will 842

study the task and data allocation problem for heterogeneous 843

processors with hybrid on-chip memory in the future research 844

work. 845

REFERENCES 846

[1] K. Bai and A. Shrivastava, “Heap data management for limited 847

local memory (LLM) multi-core processors,” in Proc. IEEE/ACM/IFIP 848

Int. Conf. Hardw./Softw. Codesign Syst. Synthesis (CODES+ISSS), 849

Oct. 2010, pp. 317–325. 850

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, 851

“Scratchpad memory: Design alternative for cache on-chip memory in 852

embedded systems,” in Proc. 10th Int. Symp. Hardw./Softw. Codesign, 853

2002, pp. 73–78. 854

[3] M. Banikazemi, D. Poff, and B. Abali, “PAM: A novel perfor- 855

mance/power aware meta-scheduler for multi-core systems,” in Proc. 856

Int. Conf. High Perform. Comput., Netw., Storage Anal., 2008, 857

pp. 1–12. 858

[4] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource 859

allocation heuristics for efficient management of data centers for cloud 860

computing,” Future Generat. Comput. Syst., vol. 28, no. 5, pp. 755–768, 861

2012. 862

[5] C. Boyd, “Data-parallel computing,” Queue, vol. 6, no. 2, pp. 30–39, 863

2008. 864

[6] Y.-T. Chen et al., “Dynamically reconfigurable hybrid cache: An energy- 865

efficient last-level cache design,” in Proc. Design, Autom. Test Eur. Conf. 866

Exhibit. (DATE), 2012, pp. 45–50. 867

[7] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid pram and 868

dram main memory system,” in Proc. 46th ACM/IEEE Design Autom. 869

Conf. (DAC), Jul. 2009, pp. 664–669. 870

[8] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H. Sha, “Data allocation 871

optimization for hybrid scratch pad memory with SRAM and nonvolatile 872

memory,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, 873

no. 6, pp. 1094–1102, Jun. 2012. 874

[9] J. Hu, Q. Zhuge, C. J. Xue, W.-C. Tseng, and E. H.-M. Sha, “Manage- 875

ment and optimization for nonvolatile memory-based hybrid scratchpad 876

memory on multicore embedded processors,” ACM Trans. Embedded 877

Comput. Syst., vol. 13, no. 4, p. 79, 2014. 878

IEE
E P

ro
of

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

[10] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad879

memory hierarchy design and management,” in Proc. 39th Annu. Design880

Autom. Conf., 2002, pp. 628–633.881

[11] J. Kreku and K. Tiensyrjä, and G. Vanmeerbeeck, “Automatic work-882

load generation for system-level exploration based on modified GCC883

compiler,” in Proc. Conf. Design, Autom. Test Eur., 2010, pp. 369–374.884

[12] K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling precedence885

constrained stochastic tasks on heterogeneous cluster systems,” IEEE886

Trans. Comput., vol. 64, no. 1, pp. 191–204, Jan. 2015.887

[13] S. Matsuno, M. Tawada, M. Yanagisawa, S. Kimura, N. Togawa, and888

T. Sugibayashi, “Energy evaluation for two-level on-chip cache with889

non-volatile memory on mobile processors,” in Proc. IEEE 10th Int.890

Conf. ASIC (ASICON), 2013, pp. 1–4.891

[14] S. Mittal and J. S. Vetter, “AYUSH: A technique for extending lifetime892

of SRAM-NVM hybrid caches,” IEEE Comput. Archit. Lett., vol. 14,893

no. 2, pp. 115–118, Dec. 2014.894

[15] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi, “Operating895

system support for NVM+ dram hybrid main memory,” in Proc. HotOS,896

2009.AQ:2 897

[16] A. M. H. Monazzah, H. Farbeh, S. G. Miremadi, M. Fazeli, and898

H. Asadi, “FTSPM: A fault-tolerant scratchpad memory,” in Proc.899

IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2013, pp. 1–10.900

[17] C. D. Nicholson, W. J. Westerinen, C. Ergan, M. R. Fortin, and901

M. Iyigun, “Reliability of diskless network-bootable computers using902

non-volatile memory cache,” U.S. Patent 7 036 040, Apr. 25, 2006.903

[18] M. Qiu et al., “Data allocation for hybrid memory with genetic algo-904

rithm,” IEEE Trans. Emerg. Topics Comput., vol. 3, no. 4, pp. 544–555,905

Dec. 2015.906

[19] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory907

optimization and task scheduling for MPSOC architectures,” in Proc. Int.908

Conf. Compil., Archit. Synthesis Embedded Syst., 2006, pp. 401–410.909

[20] H. Takase, H. Tomiyama, and H. Takada, “Partitioning and allocation910

of scratch-pad memory for priority-based preemptive multi-task sys-911

tems,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2010,912

pp. 1124–1129.913

[21] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory914

allocation for scratch-pad based embedded systems,” in Proc. Int. Conf.915

Compil., Archit. Synthesis Embedded Syst., 2003, pp. 276–286.916

[22] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation917

for scratch-pad memory using compile-time decisions,” ACM Trans.918

Embedded Comput. Syst., vol. 5, no. 2, pp. 472–511, May 2006.919

[23] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,920

A. Davis, and N. P. Jouppi, “Rethinking dram design and organization921

for energy-constrained multi-cores,” ACM SIGARCH Comput. Archit.922

News, vol. 38, no. 3, pp. 175–186, 2010.923

[24] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and924

partitioning for energy optimization in real-time multi-core systems,” in925

Proc. 48th ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2011,926

pp. 948–953.927

[25] Y. Wang, J. Du, J. Hu, Q. Zhuge, and E. H. M. Sha, “Loop scheduling928

optimization for chip-multiprocessors with non-volatile main memory,”929

in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),930

Mar. 2012, pp. 1553–1556.931

[26] Y. Wang, K. Li, H. Chen, L. He, and K. Li, “Energy-aware data932

allocation and task scheduling on heterogeneous multiprocessor systems933

with time constraints,” IEEE Trans. Emerg. Topics Comput., vol. 2, no. 2,934

pp. 134–148, Feb. 2014.935

[27] Z. Wang, Z. Gu, and Z. Shao, “WCET-aware energy-efficient data936

allocation on scratchpad memory for real-time embedded systems,”937

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11,938

pp. 2700–2704, Nov. 2015.939

[28] J. Xing, A. Serb, A. Khiat, R. Berdan, H. Xu, and T. Prodromakis, “An940

FPGA-based instrument for en-masse RRAM characterization with ns941

pulsing resolution,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63,942

no. 6, pp. 818–826, Jun. 2016.943

[29] Y. Yi, W. Han, X. Zhao, A. T. Erdogan, and T. Arslan, “An ILP formu-944

lation for task mapping and scheduling on multi-core architectures,” in945

Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2009, pp. 33–38.946

[30] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing947

reliability with energy conservation for parallel task scheduling in948

a heterogeneous cluster,” Inf. Sci. Int. J., vol. 319, pp. 113–131,949

Oct. 2015.950

[31] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient 951

main memory using phase change memory technology,” ACM SIGARCH 952

Comput. Archit. News, vol. 37, pp. 14–23, Jun. 2009. 953

[32] V. Zivojnovic, J. M. Velarde, C. Schlager, and H. Meyr, “DSPSTONE: 954

A DSP-oriented benchmarking methodology,” in Proc. Int. Conf. Signal 955

Process. Appl. Technol., 1994, pp. 715–720. 956

Yan Wang received the B.S. degree in information 957

management and information technology from 958

Shenyang Aerospace University in 2010 and the 959

Ph.D. degree from the College of Information Sci- 960

ence and Engineering, Hunan University, Changsha, 961

China, in 2016. Her research interests include mod- 962

eling and scheduling in parallel and distributed com- 963

puting systems, and high performance computing. 964

Kenli Li received the M.S. degree in mathematics 965

from Central South University, China, in 2000, and 966

the Ph.D. degree in computer science from the 967

Huazhong University of Science and Technology, 968

China, in 2003. He was a Visiting Scholar with the 969

University of Illinois at Urbana–Champaign from 970

2004 to 2005. He is currently the Deputy Dean of 971

the School of Information Science and Technology, 972

Hunan University, and also the Deputy Director 973

of the National Supercomputing Center, Changsha. 974

He has authored over 160 papers in international 975

conferences and journals, such as the IEEE TC, the IEEE-TPDS, JPDC, ICPP, 976

and CCGrid. His major research includes parallel computing, grid and cloud 977

computing, and DNA computing. He is an outstanding member of CCF. 978

Jun Zhang received the bachelor’s and master’s 979

degrees in computer science from Hunan Univer- 980

sity, Changsha, China. He is currently pursuing 981

the Ph.D. degree with the Department of Electrical 982

and Computer Engineering, New York University. 983

His research interests include computer architecture, 984

FPGA, real time embedded systems, and machine 985

learning. 986

Keqin Li (F’–) is currently a SUNY Distinguished 987

Professor of Computer Science. He has authored 988

over 480 journal articles, book chapters, and refereed 989

conference papers. His current research interests 990

include parallel computing and high-performance 991

computing, distributed computing, energy-efficient 992

computing and communication, heterogeneous com- 993

puting systems, cloud computing, big data comput- 994

ing, CPU–GPU hybrid and cooperative computing, 995

multicore computing, storage and file systems, 996

wireless communication networks, sensor networks, 997

peer-to-peer file sharing systems, mobile computing, service computing, 998

Internet of Things, and cyber-physical systems. He has received several 999

best paper awards. He is currently or has served on the editorial boards 1000

of the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1001

the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON 1002

CLOUD COMPUTING, the IEEE TRANSACTIONS ON SERVICES COMPUTING, 1003

and the IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING. 1004

AQ:3

IEE
E P

ro
of

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF
proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us
your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ:1 = Please provide the postal codes for “Guangzhou University, National Supercomputing Center in
Changsha, and New York University.”

AQ:2 = Please provide the page range for ref. [15].
AQ:3 = Please provide the missing IEEE membership year for the author “Keqin Li.”

IEE
E P

ro
of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 1

Energy Optimization for Data Allocation
With Hybrid SRAM+NVM SPM

Yan Wang, Kenli Li, Senior Member, IEEE, Jun Zhang, and Keqin Li, Fellow, IEEE

Abstract— The gradually widening disparity in the speed of the1

CPU and memory has become a bottleneck for the development2

of chip multiprocessor (CMP) systems. Increasing penalties3

caused by frequent on-chip memory access have raised critical4

challenges in delivering high memory access performance with5

tight energy and latency budgets. To overcome the memory wall6

and energy wall issues, this paper adopts CMP systems with7

hybrid scratchpad memories (SPMs), which are configured from8

SRAM and nonvolatile memory. Based on this architecture, we9

propose two novel algorithms, i.e., energy-aware data alloca-10

tion (EADA) and balancing data allocation to energy and write11

operations (BDAEW), to perform data allocation to different12

memories and task mapping to different cores, reducing energy13

consumption and latency. We evaluate the performance of our14

proposed algorithms by comparison with a parallel solution that15

is commonly used to solve data allocation and task scheduling16

problems. Experiments show the merits of the hybrid SPM17

architecture over the traditional pure memory system and the18

effectiveness of the proposed algorithms. Compared with the19

AGADA algorithm, the EADA and BDAEW algorithms can20

reduce energy consumption by 23.05% and 19.41%, respectively.21

Index Terms— Data allocation, energy consumption,22

nonvolatile memory, write operations.23

Manuscript received December 5, 2016; revised May 4, 2017 and
June 4, 2017; accepted June 22, 2017. This work was supported in part by
the Key Program of National Natural Science Foundation of China under
Grant 61432005, in part by the National Outstanding Youth Science Program
of National Natural Science Foundation of China under Grant 61625202, in
part by the International (Regional) Cooperation and Exchange Program of
National Natural Science Foundation of China under Grant 61661146006,
in part by the National Natural Science Foundation of China under
Grant 61370095 and Grant 61472124, in part by the International Science &
Technology Cooperation Program of China under Grant 2015DFA11240,
in part by the National Key R&D Program of China under
Grant 2016YFB0201402 and Grant 2016YFB0201303, and in part by
the Innovation Team Project of Guangdong Province University under
Grant 2016KCXTD017. This paper was recommended by Associate Editor
A. Sangiovanni Vincentelli. (Corresponding author: Kenli Li.)

Y. Wang is with the College of Information Science and Engineering, Hunan
University, Changsha 410082, China, and also with the College of Computer

AQ:1 Science and Educational Software, Guangzhou University, Guangzhou, China
(e-mail: bessie11@yeah.net).

K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha 410082, China, and also with the National Supercom-
puting Center in Changsha, Changsha, China (e-mail: lkl@hnu.edu.cn).

J. Zhang is with the College of Information Science and Engineering,
Hunan University, Changsha 410082, China, and also with the Department of
Electrical and Computer Engineering, New York University, New York City,
NY USA (e-mail: jeffjunzhang@gmail.com).

K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561 USA
(e-mail: lik@newpaltz.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2017.2720678

I. INTRODUCTION 24

BECAUSE the performance gap between the CPU and 25

memory is expanding, energy consumption has become 26

more important and received extensive attention in chip 27

multiprocessor (CMP) systems. To bridge the performance 28

gap, solutions adopt the SRAM cache as on-chip memory. 29

SRAM caches have facilitated the layered memory hierarchy 30

and improved memory performance. However, SRAM caches 31

account for up to 25%-50% of the overall CMP’s energy 32

consumption and do not guarantee predictability of cache 33

misses [2]. Therefore, it is desirable to integrate NVM like 34

flash memory or phase change memory (PCM) for CMP 35

systems because it is nonvolatile and consumes less energy 36

than SRAM. For instance, if a 4GB SRAM on-chip memory 37

is replaced by a 4GB NVM, 65% of energy consumption 38

can be saved in intensive write access on CMP systems [31]. 39

The disadvantages of NVM are explicit. First, the speed 40

and cost of read operations and write operations in NVMs 41

are asymmetric. Second, there is a maximum number of 42

write operations that NVM can perform. Third, memory 43

access in NVM is slower than in SRAM. Considering the 44

properties of DRAM and PRAM, in this paper, we utilize 45

a hybrid on-chip memory composed of a SRAM and a 46

NVM to achieve energy-efficient CMP systems. With hybrid 47

on-chip memory, a substantial performance gain is achieved 48

by the proposed techniques, while consuming less energy and 49

extending the lifetime of NVMs. 50

To develop alternative energy-efficient techniques, in this 51

paper, the hybrid on-chip memory uses a software controllable 52

hybrid Scratch-Pad memory (SPM). SPM has been widely 53

employed in CMP systems to replace the hardware-controlled 54

cache [10], [20]. This is because SPM has three major 55

advantages compared with the cache. First, SPM is directly 56

addressing and does not need the comparator and tag SRAM. 57

Second, SPM generally guarantees the single-cycle access 58

latency. Third, SPM is purely managed by software, either 59

directly via the application program or through the automated 60

compiler support [19]. To efficiently manage SPMs, in this 61

paper, we use compiler-analyzable data access patterns to 62

strategically allocate data. The proposed technique benefits 63

energy consumption while minimizing performance degrada- 64

tion and endurance caused by the physical limitation of NVM. 65

When an application with data dependencies is executed 66

on a CMP system with hybrid SPMs, the following problems 67

cannot be overlooked, i.e., reducing energy consumption, 68

improving the endurance of NVM (reducing the number of 69

write operations), and minimizing scheduling time. In this 70

1549-8328 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

paper, we reconsider the variable partitioning problem of a71

DSP application on CMP systems with hybrid SPMs. Unfortu-72

nately, different objectives may conflict in this hybrid memory73

architecture. For example, placing data in NVM can reduce74

energy consumption but may lead to more writes to NVM,75

which shortens system lifetime and degrades performance.76

Therefore, techniques are proposed to address the trade-offs77

between low energy consumption and the performance and78

endurance degradation caused by write activities on an NVM.79

These improvements are achieved through the following novel80

contributions of this paper.81

• We first propose a data allocation algorithm for single82

core systems to reduce energy consumption while83

controlling the number of write operations84

on NVM.85

• Then, we propose two novel algorithms, i.e., EADA and86

BDAEW, for CMP systems with hybrid SPMs to solve the87

energy optimization problems of data allocation and task88

scheduling. The two algorithms generate a well-planned89

data allocation and task scheduling scheme so that all90

requirements can be met and the total energy consumption91

can be minimized while reducing the number of write92

operations on NVM.93

Experimental results show that our proposed algorithms per-94

form better than parallel solutions [5]. On average, reduction95

in the total energy consumption of the EADA and BDAEW96

algorithms is 16.44% and 27.8% compared to parallel solu-97

tions. The number of write operations on NVM can be reduced98

greatly by EADA and BDAEW algorithms. This means the99

lifetime of NVM can be prolonged. If the original life of NVM100

is 5 years, our proposed techniques can extend the life of NVM101

to at least 12 years.102

The remainder of this paper is organized as follows.103

Section II reviews related work. In Section III, we present104

our CMP with hybrid SPMs architecture and computational105

model. In Section IV, we use an example for illustration. In106

Section V, we first propose a data allocation approach for a107

single core system, and then propose two heuristic algorithms108

to solve the energy optimization problem of data allocation109

and task scheduling on CMP systems. In Section VI, we110

evaluate and analyze our techniques compared with the parallel111

solution. Section VII concludes this paper and discusses future112

work.113

II. RELATED WORK114

Numerous sophisticated SPM data allocation and115

management techniques have been proposed to reduce energy116

consumption or improve performance. Wang et al. [27]117

presented algorithms for WCET-aware energy-efficient118

static data allocation on SPM, i.e., selectively allocating119

data variables to SPM to minimize program’s energy120

consumption, while respecting a given WCET upper bound.121

Udayakumaran et al. [22], proposed a heuristic algorithm122

to allocate global and stack data for SPMs to minimize123

allocation cost. Udayakumaran and Barua [21] proposed a124

dynamic data allocation method for allocating heap data on125

SPMs to improve performance. The above techniques target126

SPMs consisting of pure SRAM. None of the techniques127

above can apply to the architecture in this paper when 128

integrating the lifetime issues of NVM. 129

Many data allocation techniques have also been proposed 130

to extend the lifetime of the NVM-based memory subsystem, 131

while reducing energy consumption and improving overall 132

system performance [13], [14], [17], [28]. Monazzah et al. [16] 133

presented algorithms for fault-tolerant data allocation on 134

hybrid SPM that consist of NVM and SRAM, protected 135

with error-correcting code (ECC), and parity. Qiu et al. [18] 136

proposed a novel genetic algorithm to solve the data allocation 137

problem of heterogeneous SPM with SRAM and NVMs. 138

Dhiman et al. [7] proposed an architecture and system policy 139

for managing a hybrid SRAM+PRAM memory. Hu et al. [9] 140

considered a hybrid SPM configuration consisting of SRAM 141

and PCM-based NVM, and presented a dynamic data 142

allocation algorithm for reducing write operations on NVM 143

by preferentially allocating read-intensive data variables 144

into NVM, and write-intensive data variables into SRAM. 145

Wang et al. [27] considered a multitasking system with hybrid 146

main memory consisting of PCM and DRAM, and addressed 147

the problem of partitioning and allocating data variables to 148

minimize average power consumption while guaranteeing 149

schedulability. In this paper, we address the data allocation 150

problem for CMP systems with hybrid SPM architecture 151

by proposing novel scheduling algorithms. The goal is to 152

reduce the energy consumption and extend the lifetime of 153

the NVMs. 154

Due to the influence of task scheduling on system perfor- 155

mance, data allocation problems have been extensively studied 156

to incorporate task scheduling. Various heuristic algorithms 157

were proposed in [1], [4], [12], [14], [23], [24], [29], and [30]. 158

These works mainly focus on optimizing the performance of 159

a system, where the algorithms provide quality solutions to 160

minimize the application’s total execution time. Together with 161

the increasing demand for high-performance CMP systems, the 162

energy consumption problem has also become more impor- 163

tant and attracts extensive attention. Banikazemi et al. [3] 164

proposed a novel low-overhead, user-level meta-schedule to 165

improve both system performance and energy consumption. 166

Wang et al. [26] proposed an optimal ILP based algorithm, 167

and two heuristic algorithms, TAC-DA and TRGS algorithms, 168

to solve heterogeneous data allocation and task scheduling 169

problems; minimizing energy consumption and satisfying the 170

time constraint. Their methods achieve a well-planned data 171

allocation and task scheduling approach. However, the data 172

allocation and task scheduling problem in CMP with hybrid 173

SPMs differs from existing data allocation problems for non- 174

uniform memory access architectures, since the write and 175

read operations to one component of the architectures are 176

asymmetric, and it is desirable to avoid writes to that com- 177

ponent. Compared with the above approaches, this paper has 178

several unique aspects. First, we target the CMP embedded 179

systems with hybrid SRAM+NVM SPMs to solve the energy 180

optimization problem of data allocation and task scheduling. 181

Second, we propose several novel algorithms to obtain a well- 182

planned data allocation and task scheduling approach such that 183

the overall performance can be improved while reducing total 184

energy consumption. 185

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 3

Fig. 1. (a) An architecture model (b) SPM architecture.

TABLE I

TIME AND ENERGY CONSUMPTION FOR

ACCESS TO DIFFERENT MEMORIES

III. THE MODEL186

A. Architecture Model187

In this paper, we target the embedded chip multi-cores188

with hybrid local memories. As shown in Figure 1, the189

architecture model consists of a set of connected homogeneous190

cores denoted by core = {core1, core2, . . . , coren}, where191

n is the number of homogeneous cores. Each core is tightly192

coupled with an on-chip local memory composed of a SRAM193

and a NVM. The SRAM and NVM of each core corei are194

denoted by M2i−1 and M2i . All cores share a DRAM main195

memory with large capacity. Each core can access its own local196

memory and other cores’ local memories. We call core access197

from local memory local access, while access from an SPM198

held by another core is referred as remote access. Generally,199

remote access is supported by an on-chip interconnect and200

all cores access the off-chip DRAM through a shared bus.201

The IBM CELL processor, which includes a multi-channel202

ring structure to allow communication between any two cores203

without intervention from other cores, is an example that204

adopts this architecture. We can safely assume that the data205

transfer cost between cores is constant. Local access is faster206

and consumes less energy than remote access while accessing207

the off-chip DRAM incurs the longest latency and consumes208

the most energy. Table I, which is introduced from [18],209

shows the time and energy consumption for access to different210

memories. In the table, the columns of “LS”, “RS”, “LN”,211

“RN”, and “DM” indicates the memory access cost to local212

SRAM, remote SRAM, local NVM, remote NVM, and off-213

chip DRAM. “Ti” and “En” are time and energy consumption.214

It is important to note that the hybrid local memories215

in the architecture model can not be pure caches because216

issues such as cache consistency and cache conflict are not217

considered. In this paper, the architecture employs SPMs218

as on-chip local memories. To make hybrid SPMs possible,219

researchers proposed several hybrid hardware/software support220

SPMs [6], [15]. For example, [18] employs hybrid SPMs com-221

posed of a SRAM and two NVM to study cost optimization222

incurred by data allocation. [8] explores hybrid nonvolatile223

Fig. 2. An input DAG. (a) Precedence constraints among tasks. (b) The input
data and output data of each task. (c) An MDFG combined tasks with data.

SPM architectures. In a hybrid SPM, SRAM and NVM share 224

the same address space with the main memory. The CPU can 225

load data from both of them directly. 226

As shown in Figure 1(b), the hybrid SPM can be fabricated 227

with 3-D chips because 3-D integration is a feasible and 228

promising approach to fabricating the hybrid SPM [8]. In 3-D 229

chips, multiple active device layers are stacked together with 230

short and fast vertical interconnects. For fabrication, SRAM 231

can be fitted into the same layer as the core and NVM can 232

be fitted into a separate layer, so that designers can take full 233

advantage of the attractive benefits that NVM provides. 234

B. Computational Model 235

In this subsection, we describe the memory access data flow 236

graph (MDFG), which is used to model an application to be 237

executed on the target embedded chip multiprocessors. Before 238

we formally describe the MDFG model, we first introduce a 239

directed acyclic graph (DAG) model as shown in Figure 2(a). 240

In this paper, we use a DAG as a description of a given input 241

graph. 242

Definition 1: A DAG is a node-weighted directed graph 243

represented by G = (V , E, D, in, out, Nr, Nw), where 244

V = {v1, v2, . . . , vN } is a set of task nodes, and E ⊆ V × V 245

is a set of edges that describe the precedence constraints 246

among nodes in V . D is a set of data. in(vi) ⊆ D is 247

a set of input data of task vi , and out (vi) ⊆ D is a 248

set of output data of task vi . Nr(vi) is used to represent 249

the read number of task vi for different input data, i.e., 250

Nr(vi) = (nr1(i), nr2(i), . . . , nrn(i)), where nrh(i) denotes 251

the read time of vi for input data h. Nw(vi) is used to 252

represent the write number of task vi for different output data, 253

i.e., Nw(vi) = (nw1(i), nw2(i), . . . , nwn(i)), where nwh(i) 254

denotes the write time of vi for output data h. 255

If we treat a memory access operation as a node, we 256

can redefine a DAG to obtain a memory access data flow 257

graph (MDFG) defined as the following. 258

Definition 2: An MDFG is a node-weighted directed 259

graph by G′ = (V1, V2, E, D, var, Nr, Nw, P, M), where 260

V1 = {v1, v2, . . . , vN1 } is a set of N1 task nodes, and 261

V2 = {u1, u2, . . . , uN2 } is a set of N2 memory access 262

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

operation nodes. E ⊆ V × V (V = V1
⋃

V2) is a set of263

edges. An edge (μ, ν) ∈ E represents the dependency between264

node μ and node ν, indicating that task or operation μ has265

to be executed before task or operation ν. D is a set of266

data. var : V1 × V2 × D → {true,false} is a binary267

function, where var(vi , ul , h) denotes whether the memory268

access operation ul ∈ V2 is transmitting datum h ∈ D for task269

vi ∈ V1. Nr(vi , h) = nrh(i) is the read time of task vi for his270

input data h. Nw(vi , h) = nwh(i) is the write time of task vi271

for his output data h. P = {core1, core2, . . . , coren} is a set272

of cores, and M = {M1, M2, . . . , M2n} is a set of on-chip273

memories. The SRAM and NVM of each core corei denoted274

by M2i−1 and M2i , respectively.275

An example of MDFG from DAG is shown in Figure 2.276

In the example, Figure 2(a) shows the DAG, there are277

N = 4 tasks, i.e., v1, v2, v3, v4. Figure 2(a) shows the278

precedence constraints among the tasks. The data set is279

D = {A, B, C, D, E, F, G, H }, and Figure 2(b) shows the280

input data and output data of each task. For example, task a281

reads input data A and B before it is started, and writes282

output data D after it is finished. If we treat a memory access283

operation as a node, we can obtain an MDFG from the DAG284

is shown in Figure 2(c), where we have N1 = 4 task nodes285

and N2 = 13 memory access operation nodes. For example,286

the node 1 is memory access operation node and represents287

reading data A.288

C. Problem Definition289

Assume that we are given a multi-core systems with n cores,290

where each core is integrated with a SPM which consists291

of a SRAM and a NVM. The access time and energy con-292

sumption of each processor in accessing a unit data from293

different memories are known in advance. The capacity of294

each core’s SRAM and NVM is also known in advance.295

The energy optimization problem of data allocation and task296

scheduling can be defined as follows: Given an DAG G =297

(V , E, D, in, out, Nr, Nw), we treat a memory access oper-298

ation as a node and reconstruct the DAG to obtain an MDFG299

G′ = (V1, V2, E, D, var, Nr, Nw, P, M). The objectives of300

an energy optimization problem of data allocation and task301

scheduling are to find (1) a data allocation Mem: D −→ M ,302

where Mem(h) ∈ M is the memory to store h ∈ D; (2) a303

task assignment A: V1 −→ P , where C(vi) is the core to304

execute task vi ∈ V1, such that the total energy consumption305

can be minimized, the write operations on NVM can be306

reduced, and the scheduling length can be shortened. In this307

problem, we assume each core can access SRAM and NVM308

in its local SPM, every remote SPM, and off-chip DRAM309

with different time and energy consumption. The time and310

energy consumption of access to different memories is given311

in Table I. The objective function of the target problem is312

described as:313

Objective 1: Energy consumption is minimized. For each314

available assignment of data, we obtain the number of local315

read operations Nlr , local write operations Nlw , remote read316

operations Nrr , and remote write operations Nrw ; the cor-317

responding energy consumption is indicated as Elr , Elw,318

Err , and Erw; the energy consumption of each data can be 319

formulated as follows. 320

Eh = Nlr (h) × Elr + Nlw(h) × Elw 321

+ Nrr (h) × Err + Nrw(h) × Erw (1) 322

However, the above equation does not consider the case that 323

data h is allocated in main memory. If one data h is allocated 324

in main memory, we would use the following equation to 325

compute the energy consumption: 326

Eh = (totalr + totalw) × Edm (2) 327

where totalr and totalw are the total number of read 328

operations and write operations of data h, respectively. Edm is 329

the energy consumption when an access operation takes place 330

in main memory. 331

Given the energy consumption of each task Ev i , the total 332

energy consumption of a MDFG can be formulated as: 333

Etotal =
∑

v i∈V1

Ev i +
∑

h∈D

Eh (3) 334

Objective 2: The number of write operations on NVM is 335

minimized. For each NVM, the number of write operations 336

can be formulated as: 337

NN V M (i) =
∑

M(h)=Mi ,i=2k

(Nlw(h) + Nrw(h)) (4) 338

The NVM of each core is denoted by M2k , where k is the id of 339

the corresponding cores. The total number of write operations 340

on NVM is: 341

T NN V M =
∑

Mi ,i=2k

(NN V M (i)). (5) 342

IV. MOTIVATION EXAMPLE 343

In this section, we use an example to illustrate the 344

effectiveness of our proposed algorithms. The example of 345

MDFG application in Figure 2 is executed on a two-core 346

system. As shown in Figure 1, each core is equipped with 347

a hybrid local memory, composed of a SRAM and an 348

NVM. The access latency and energy consumption of the 349

target two-core system are shown in Table I. Based on the 350

dependency constraints in the MDFG shown in Figure 2, 351

two solutions of data allocation and tasks scheduling are 352

generated by two compared algorithms shown in Figure 3. 353

Figure 3(a) shows a schedule generated by parallel solu- 354

tion [5]. Conventionally, the parallel solutions to attack the task 355

scheduling and data allocation problem would be to minimize 356

scheduling time by mapping tasks and allocating data using 357

shortest processing time policy. In this schedule, task v1 and v3 358

are scheduled on core1, task v2 and v4 are scheduled on core2, 359

the data A, D, and H are allocated on NVM, and all other data 360

are allocated on SRAM. The completion time of this schedule 361

is 18, the total energy consumption is 77, and the number of 362

write operations on NVM is 3. However, this approach may 363

not produce a good result in terms of energy consumption. 364

Since reducing write operations on NVM is also one of the 365

objectives, we should explore a better trade-off approach to 366

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 5

Fig. 3. The data allocation and task schedule of the example (a) parallel
solutions with energy consumption 77 and the number of writes on NVM 3
(b) the proposed solution with energy consumption 57 and the number writes
on NVM 2.

minimize energy consumption and reduce the number of write367

operations on NVM.368

Figure 3(b) shows an improved schedule, which considers369

energy consumption and the number of write operations on370

NVM. In this schedule, tasks v1 and v3 are scheduled on371

core1, tasks v2 and v4 are scheduled on core2, the data A, C,372

E, F, and G are allocated in NVM. The other data are allocated373

in SRAM. The schedule length of the improved schedule374

is 15, the total energy consumption is 57, and the number375

of write operations on NVM is 1. Energy consumption is376

reduced by (77−57)/57 = 35.08% compared with the parallel377

solution. From the above example, we can see that energy378

consumption can be reduced by exploring data allocation and379

task scheduling on CMP systems with hybrid SPMs.380

V. ALGORITHM381

In this section, we first discuss the data allocation mecha-382

nism for single core embedded chip system. Then, we propose383

several methods for CMP to solve the energy optimization384

problem of data allocation and task scheduling based on hybrid385

SRAM+NVM local memory.386

A. Data Allocation for Single Core Embedded Chip System387

A single core embedded chip system is a special embedded388

chip multiprocessor system. We only consider data allocation389

for hybrid local memory when an MDFG is run in a single390

core embedded chip system. This is because all tasks will391

be assigned to the same core leading to a constant execution392

time and energy consumption for task nodes. In this section,393

we propose the data allocation for the single core (DASC)394

algorithm as shown in Algorithm 1. For the hybrid SPM, there395

are two disadvantages based on NVM: 1) the limited number396

of write operations and asymmetric access speed and energy397

consumption in read and write operations; and 2) errors in398

storing information when updating operations of an NVM cell399

is beyond the limited number of write operations. Therefore,400

we use two thresholds T rw and maxw to prevent the NVMs401

from wearing out. T rw restricts NVMs from storing data402

whose write operations are more than Trw . In this paper,403

T rw is equal to the average number of write operations of404

data in an application. The maximum write operations of a405

Algorithm 1 Data Allocation for Single Core

Input: (1) An application MDFG G ′ = (V 1, V 2, E, D, var);
(2) a hybrid SRAM and NVM local memory; (3) a write
threshold Trw for NVM. (4) setting maximum write oper-
ations maxw on NVM for an application.

Output: Assign data into SRAM or NVM.
1: find all data with cw > T rw, put them in set L
2: while L is not full do
3: select a data with maximum writes on L
4: if SRAM have space to allocate the data then
5: allocate it in SRAM
6: else
7: allocate it in main memory
8: end if
9: N f lag(h) = 0

10: remove it from L
11: end while
12: for each un-allocated data do
13: compute the energy consumption E S(h) and E N(h)
14: if E S(h) > E N(h), NVM have space to allocate the

data, the total write operations on NVM is less than maxw

then
15: allocate the data in NVM, N f lag(h) = 1
16: else
17: if SRAM has space to allocate the data then
18: allocate it in SRAM
19: else
20: allocate it in main memory
21: end if
22: end if
23: N f lag(h) = 0
24: end for

NVM is maxw. If the total number of write operations on a 406

NVM exceeds maxw, data with write operations should not 407

be allocated to the NVM. Data that will be allocated in NVM 408

must satisfy the following properties. 409

Property 3: If data h can be allocated in NVM, then 410

cw(h) ≤ T rw 411

where cw(h) is the total write operations of data h. 412

Property 4: Let the binary variable N f lag(h) denotes 413

whether allocated data h in NVM. The total number of write 414

operations on NVM must be less than maxw: 415

∑

h

(N f lag(h) × cw(h)) ≤ maxw 416

where N f lag(h) = 1 means data h is allocated in NVM. 417

In the following, we will discuss the DASC algorithm about 418

how to allocate data in memories to avoid the disadvantages of 419

NVM and reduce total energy consumption for a single core 420

embedded chip system. 421

In Algorithm 1, data are divided into two categories 422

according to the number of write operations and the 423

threshold T rw . If the total number of write operations of one 424

data is more than T rw , the data is the first type of categories 425

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

and is put in set L (Line 1). For the data in set L, if SRAM426

has enough space to hold the data, the data is allocated in427

the SRAM; otherwise, the data is allocated in main memory428

(Lines 2-12). For the data not in set L, we first calculate the429

energy consumption of each available assignment for data h430

and use minimum energy consumption min(E S(h), E N(h))431

as a measurement for deciding the memory to store the432

data (Lines 13-14). If data h is allocated in SRAM, energy433

consumption of data h on SRAM can be formulated as:434

E S(h) = Nlw(h) × eslw + Nlr × eslr (6)435

where eslw and eslr are the energy consumption of each local436

write operation and each local read operation on SRAM,437

respectively. And, if the data is allocated in NVM, the energy438

consumption of data h can be obtained as439

E N(h) = Nlw(h) × enlw + Nlr × enlr (7)440

where enlw and enlr are the energy consumption of each441

local write operation and each local read operation on442

NVM, respectively. In computing the energy consumption,443

E S(h) and E N(h), we only consider local memory access444

operations. This is because each data allocated in SPM only445

have local read operations and local write operations since446

the target system is a single core embedded chip system.447

The algorithm also confirms whether the total number of448

write operations on NVM exceed the maxw. For data to be449

allocated in the NVM, the following three conditions must be450

satisfied: 1) the total number of write operations on NVM451

is less than maxw; 2) NVM is not full; 3) the data with452

E S(h) > E N(h) (Lines 15-17). If one of the above conditions453

cannot be met, we will determine the free space of SRAM.454

If SRAM has sufficient space to hold the data, the data is455

allocated in SRAM (Lines 18-21). Otherwise, the data is456

allocated in main memory (Lines 22-27).457

The data allocation for a single core algorithm considers458

two objectives. For the endurance of NVM, it is detrimental459

to place data with too many writes on NVM; the algorithm460

controls the maximum write operations on NVM. For energy461

consumption, it places data into a memory with minimum462

energy consumption among all available assignments. The463

complexity of data allocation for a single core algorithm464

is O(H), where H is the amount of data.465

B. Chip Multiprocessors System466

CMPs generally consist of multiple cores sharing an467

off-chip main memory. In this subsection, the target archi-468

tecture is a CMP shown in Figure 1. For solving the energy469

optimization problem of data allocation and task scheduling470

incurred by applications execution on a CMP with N cores471

(each of these cores is integrated with a hybrid SPM which472

consists of a SARM and a NVM), we propose two algo-473

rithms, i.e., energy-aware data allocation (EDAC) algorithm474

and balance data allocation with energy and writes (BDAEW)475

algorithm.476

In The EDAC algorithm as shown in Algorithm 2, we first477

call the parallel algorithm [5] to find an effective mapping for478

each task. The parallel algorithm in [5] is used to solve the task479

Algorithm 2 Energy-Aware Data Allocation

Input: (1) An application MDFG G ′ = (V 1, V 2, E, D, var);
(2) an embedded chip multiprocessors with hybrid SRAM
and NVM local memory; (3) a write threshold Trw for
NVM. (4) setting maximum write operations maxw on
NVM for an application.

Output: A data allocation and task scheduling with mini-
mized energy.

1: call parallel algorithm to find an effective map for each
task nodes

2: /*data allocation*/
3: for each data h do
4: for each processors pi do
5: compute the number of read operations Nr(h, pi), and

the number of write operations Nw(h, pi)
6: end for
7: choose the processor with maximum (Nr(h, pi) +

Nw(h, pi)) to assign the data into its corresponding
hybrid local memory

8: end for
9: for each processor pi do

10: call the Algorithm 1
11: end for

scheduling problem, where all requirements are met and the 480

scheduling length is minimized. After task mapping, we find 481

an allocation for data using task assignments. In the following, 482

we will discuss in detail how to assign data nodes in different 483

memories. Data allocation consists of two phases. The first 484

phase finds a proper core for the data so that remote memory 485

access operations can be reduced. Since data may be needed 486

by different tasks, more than one memory access operation 487

may be associated with the data. For data h, we first calculate 488

the number of memory access operations on each core corei 489

as follows: 490

Nr(h, corei) =
∑

C(v j)=corei

(Nr(j, h)), ∀e(h, v j) ∈ G′, 491

Nw(h, corei) =
∑

C(v j)=corei

(Nw(j, h)), ∀e(v j , h) ∈ G′ (8) 492

where C(v j) is the core to execute the task v j . 493

Then, we use maximum memory access operations 494

max (Nr(h, corei) + Nw(h, corei)) as a measurement 495

to decide in which core’s SPM to place the data (Lines 3-8). 496

In the second phase, we find data allocation according to the 497

first phase. For each core, we call the Algorithm 1 to decide 498

which memory is allocated data (Lines 9-11). 499

In the EADA algorithm, it takes O(|V E |) time to find a 500

better mapping for each task, where V represents the number 501

of tasks and E represents the number of edges between tasks. 502

To find a better data allocation, it takes O(|V H P|) determine 503

which processor to allocate data and takes O(H) to allocate 504

data to a determinate memory, where H is the number of 505

data and P is the number of cores. Therefore, if P is treated 506

as a constant, the time complex of the EADA algorithm is 507

O(|V E | + |V H | + |H |) 508

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 7

Algorithm 2 has two objectives, minimizing energy509

consumption and reducing write operations on NVM.510

However, the two objectives may conflict: assigning data in511

NVM can save energy consumption but may cause many512

write operations on NVM. Therefore, we propose BDAEW513

algorithm as shown in Algorithm 3 to balance the conflict of514

minimizing energy consumption and reducing write operations515

on NVM. Before the details of the algorithm are presented,516

several theorems on our algorithms are built as follows.517

Theorem 5: For all h ∈ in(vi), if and only if the data h518

and task vi are allocated the same core, the binary variable519

R f lag(vi , h) = 1. The total local read number for data h can520

be formulated as:521

Nlr (h) =
∑

vi

(R f lag(vi , h) × Nr(vi , h) × in(vi , h))522

and the total remote read number for data h can be formulated523

as:524

Nrr (h) =
∑

vi

((1 − R f lag(vi , h)) × Nr(vi , h) × in(vi , h))525

where Nr(vi , h) is the read number of data h for task vi and526

binary variable in(vi , h) = 1 denotes h is a input of task vi .527

Proof: For each task and data pair (vi , h), if task vi528

and data h are allocated the same core, the read operations529

for pair (vi , h) are local read operations. Otherwise, the read530

operations for pair (vi , h) are remote read operations. Thus,531

for pair (vi , h), the local reads number is R f lag(vi , h) ×532

Nr(vi , h) × in(vi , h) and the remote reads number is533

(1 − R f lag(vi , h)) × Nr(vi , h) × in(vi , h). Furthermore, for534

each data h, we can obtain the total number of local read535

operations and remote read operations as Theorem 5.536

Theorem 6: For all h ∈ out (vi), if and only if the data h537

and task vi are allocated the same core, the binary variable538

W f lag(vi , h) = 1. The total local write number for data h is:539

Nlw(h) =
∑

vi

(W f lag(vi , h) × Nw(vi , h) × out (vi , h))540

and the total remote write number for data h is:541

Nrw(h) =
∑

vi

((1 − W f lag(vi , h)) × Nw(vi , h) × out (vi , h))542

where Nw(vi , h) is the write number of data h for task vi543

and binary variable out (vi , h) = 1 denotes h is a output of544

task vi .545

Proof: The proof is similar to the proof of Theorem 5.546

Summing up all of these memory access operations for each547

data h ∈ D, we can obtain the total number of each type of548

memory access operations as follows:549

• The total local read number Nlr = ∑
h Nlr (h)550

• The total remote read number Nrr = ∑
h Nrr (h)551

• The total local write number Nlw = ∑
h Nlw(h)552

• The total remote write number Nrw = ∑
h Nrw(h)553

Since data may be needed by different tasks, we should554

calculate the energy consumption of data for each available555

allocation. For each available allocation Mem(h) = Mi , given556

the energy consumption of each local read operation Elr (Mi),557

each remote read operation Err (Mi), each local write558

operation Elw(Mi), and each remote write operation 559

Erw(Mi), the energy consumption can be formulated as: 560

En(h, Mi) = Nlr (h) × Elr (Mi) + Nrr (h) × Err (Mi) 561

+ Nlw(h) × Elw(Mi) + Nrw(h) × Erw(Mi) 562

(9) 563

Additionally, the really energy consumption of each data can 564

be formulated as follows: 565

Eh =
∑

Mi

(En(h, Mi) × f lag(h, Mi)) (10) 566

where f lag(h, Mi) is a binary variable, denoting whether 567

allocated data h is in Mi . If f lag(h, Mi) = 1 it means data h 568

is allocated in Mi . 569

In algorithm BDAEW as shown in Algorithm 3, we first 570

use the parallel algorithm to find a better mapping for each 571

task. Then, we find better allocation for data to meet all 572

requirements and to minimize total energy consumption while 573

reducing the number of write operations on NVMs. Data 574

allocation consists of two phases. The first phase finds a 575

minimum energy consumption assignment for the data, and 576

the second phase allocates write operations on NVMs in such 577

a way as to balance write operations on NVMs and total energy 578

consumption. 579

In the first phase, we first calculate the energy consumption 580

of each available assignment for each data h. Then, we use 581

min{En(h, Mi)} as a measurement to decide which memory 582

is assigned data h. In other words, for each data h, we choose 583

a memory Mi with minimum energy consumption En(h, Mi) 584

among all available assignment of data h to hold the data 585

(Lines 3-8). In the second phase, for each processor, we 586

first determine if all data allocated in NVM meet the write 587

constraints. If there is data with cw(h) > T rw on NVM, 588

we reassign the data to SRAM (SRAM has enough space 589

to hold the data) or main memory (SRAM is full), where 590

cw(h) is the total write operations of data h, and is equal 591

to Nlw(h) + Nrw(h) (Lines 9-19). Then, we determine if the 592

total number of write operations on NVM meets the constraint 593

Tcw < maxw. If the total number of write operations on NVM 594

Tcw < maxw, we obtain a solution; otherwise, we reallo- 595

cate some data; In reallocating data to satisfy the constraint 596

Tcw < maxw, we use read-to-write ratio = cw(h)
cw(h)+cr(h) as 597

a measurement to select a data in NVM with the maximum 598

read-to-write ratio to be moved into SRAM or main memory, 599

where cr(h) is the total number of read operations of data h 600

(Lines 20-28). After adjustment of data allocation, the algo- 601

rithm finds a new data allocation and reduces write operations 602

on NVM until the constraint Tcw < maxw is satisfied. 603

In the BDAEW algorithm, it takes O(|V E |) time to find a 604

better mapping for each tasks and takes O(|V M H |) to find 605

a original data mapping , where V represents the number of 606

tasks and E represents the number of edges between tasks, 607

H is the number of data, and M is the number of memories. 608

To reallocate data, it takes at most O(| log2(H M)|) to obtain 609

a better allocation where the maximum number of write 610

operations on NVM is controlled. Thus, the time complexity 611

of BDAEW algorithm is O(|V E | + |V H | + | log2 H |). 612

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Algorithm 3 Balance Data Allocation With Energy and Write
Operations

Input: (1) An application MDFG G ′ = (V 1, V 2, E, D, var);
(2) an embedded chip multiprocessors with hybrid SRAM
and NVM local memory; (3) a write threshold T rw for
NVM. (4) setting maximum write operations maxw on
NVM for an application.

Output: A data allocation and task scheduling with mini-
mized energy.

1: call parallel algorithm to find an effective map for each
task nodes

2: /*data allocation*/
3: for each data h do
4: for each memory Mi do
5: compute the energy consumption if the data is assigned

in the memory En(h, Mi)
6: end for
7: choose the memory with minimum En(h, Mi) to allocate

the data, and marked f lag(h, Mi) = 1
8: end for
9: for each processor pi do

10: while NVM M2i exist data with cw > Trw do
11: select a data h with maximum writes cw(h) on M2i

12: let f lag(h, M2i) = 0
13: if SRAM M2i−1 has enough space to hold the data

then
14: reallocate the data h on M2i−1, f lag(h, M2i−1) = 1,
15: else
16: reallocate the data h on main memory
17: end if
18: end while
19: compute the total number of write operations Tcw on its

NVM
20: while Tcw > maxw do
21: find a data in NVM with maximum ratio = cw

cr+cw ,
where cr is the number of read operations on NVM
for this data

22: let f lag(h, M2i) = 0
23: if SRAM M2i−1 is not full then
24: reallocate the data in M2i−1, f lag(h, M2i−1) = 1
25: else
26: reallocate the data in main memory
27: end if
28: end while
29: end for

VI. EXPERIMENTAL RESULTS613

A. Experiment Setup614

In this section, we present experimental results to illustrate615

the effectiveness of the proposed algorithms. We use the616

following benchmarks from DSPstone [32], i.e., IIR, Allope,617

Floyd, Elliptic, Volterra, and 8-lattic. These benchmarks618

are frequently used in multicore systems research. We619

compile each benchmark using GCC and obtain the task620

graphs accompanied by the read/write data sets. There are621

three notes. First, the source codes must be compiled with622

TABLE II

PERFORMANCE PARAMETERS FOR THE TARGET MEMORY MODULES

profiling option on (-fprofile-generate). Then, the 623

compiled binary must be executed by feeding a data set 624

corresponding to the use case. Finally, the source code must 625

be compiled again with both profile-guided optimization and 626

ABSINTH enabled (-fprofile-use-fabsinth). The 627

pass_absinth_bbs traverses all RTL expressions within 628

each basic block. For each expression, pass_absinth_bbs 629

analyzes whether it is an instruction or not, and generates 630

one execute primitive per each instruction [11]. Then, the 631

task graphs and access sets are fed into our simulator. Our 632

simulator requires data to be processed by the extracted 633

graphs. To make the experiment more rigorous, we reuse the 634

same task graph but feed various data volume. The amount of 635

data needed in the graph is modeled as Nd = α × √
V × √

E , 636

where V is the amount of tasks in the graph and E is 637

the number of edges in the MDFG. The α is a tuning 638

parameter which is randomly selected from the Poisson 639

distribution where λ is picked from a uniform distribution in 640

the range [0,10]. As α grows, the number of data increases 641

and the dependency between tasks associated with the data is 642

stronger. For each task node, the number of read/write access 643

of data is set randomly from a uniform distribution in the 644

range [0,20]. To thoroughly evaluate the proposed algorithms, 645

we conducted a rigorous simulation with different α settings. 646

The experiments for benchmarks are conducted on an 647

architecture model which is defined in Section III. The target 648

architecture consists of three cores. Each core is equipped 649

with hybrid local memory units composed of a SRAM and a 650

PRAM. The configurations of the target architecture systems 651

are shown in Table II. We integrated all these parameters 652

into our in-house simulator to verify the effectiveness of 653

our proposed algorithms. All the simulations run on an 654

Intel� CoreT M 2 Duo Processor E7500 2.93GHz with a 2GB 655

main memory operated by Red Hat Linux 7.3. 656

We compared the performance of our proposed algorithms 657

to that of the parallel solution [5] and AGADA algorithm [18]. 658

AGADA algorithm is a recently published algorithm to mini- 659

mize the total cost of data allocation on hybrid memories with 660

NVM. The parallel solution is a classical algorithm to solve 661

the task scheduling and data allocation problem. Therefore, the 662

AGADA algorithm and parallel solution are the most related 663

works and two excellent candidates for benchmarking. In this 664

paper, the AGADA algorithm has been evolved so that it is 665

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 9

Fig. 4. The energy consumption of benchmarks under different approaches when change α. (a)iir, (b) allope, (c) floyd, (d) elliptic, (e) voltera, (f) 8_lattice.

TABLE III

THE NUMBER OF WRITES ON PRAM

comparable to our model to consider the energy consumption666

problem of task scheduling and data allocation. The parallel667

solution is originally used in the system with (a) a pure SRAM668

local memory, and (b) a hybrid local memory composed of a669

SRAM and a PRAM. To make fair comparisons, we imple-670

mented all four algorithms, i.e., parallel solution, AGADA,671

EADA, and BDAEW, in the same scheduling framework. By672

doing so, we ensured that the performance loss of the parallel673

solution and AGADA algorithm is not due to different settings674

of the implementations. The results for energy consumption675

are shown in Figure 4. The results for the number of writes on676

PRAM are shown in Table III. Last, the results for execution 677

time are shown in Figure 5. 678

B. Results and Analysis 679

This section presents the experimental results to illustrate 680

the effectiveness of our proposed algorithms. The results of 681

total energy consumption are represented by the statistical 682

comparison of different approaches when changing α. As we 683

can observe, with the increase of the data parameter α, 684

the energy consumption of all five approaches increase and 685

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 5. The comparison of execution time under different approaches.
α = 2, maxw = 500.

the gap in energy consumption among the five algorithms686

become larger. For all benchmarks, the energy consumption687

of EADA and BDAEW algorithms is less than that of688

the parallel solution using a hybrid PRAM+SRAM local689

memory. Additionally, the energy consumption of the parallel690

solution using a pure SRAM is the maximum of the five691

different approaches. Compared with parallel+SRAM, the692

EADA and BDAEW can reduce energy consumption by693

47.52% and 36.65%, respectively on average. The EADA and694

BDAEW algorithms also can reduce energy consumption by695

29.08% and 25.47% on average compared with the parallel696

solution using a hybrid local memory, respectively. Therefore,697

algorithms EADA and BDAEW save energy better than the698

parallel solution. From Figure 4, we also observe that the699

energy consumption of EADA and BDAEW algorithms is less700

than that of AGADA algorithm in most cases. On average,701

the EADA and BDAEW algorithms can reduce energy702

consumption by 23.05% and 19.41%, respectively. Although703

the energy consumption of AGADA algorithm is less than704

that of EADA and BDAEW algorithms in several cases, the705

AGADA algorithm does not consider data-dependency, which706

will result in overhead write operations.707

The number of write operations on PRAM has a large effect708

on the PRAM’s lifetime. In this paper, we use the following709

formulation to compute the number of write operations on710

PRAM:711

NP R AM =
∑

h

(N_lw(h) + N_rw(h)) × N f lag(h) (11)712

Although the parallel solution is used as a baseline tech-713

nique to evaluate the PRAM’s write operations on NVM714

of our proposed algorithms, our proposed algorithm is not715

comparable with the parallel solution using a pure SRAM.716

This is because there are no write operations on PRAM in717

parallel+SRAM. The results for write operations on PRAM718

are shown in Table III, which is the statistical comparison719

of all four algorithms for all benchmarks based on the tar-720

get architectural model. In Table III, the eighth and ninth721

columns show the ratio of the reduction of write operations722

on PRAM by EADA compared with the parallel+hybrid and723

AGADA algorithm. The eleventh and twelfth columns show724

the reduction ratio of write operations on PRAM by BDAEW725

compared with the parallel+hybrid and AGADA algorithm.726

From the table, we can observe that our algorithm EADA727

and BDAEW can achieve better write operation reduction 728

than the parallel solution and AGADA algorithm. Compared 729

with parallel+hybrid, EADA and BDAEW can reduce the 730

number of write operations on PRAM by 42.06% and 48.28%, 731

respectively on average. Compared with AGADA, EADA 732

and BDAEW can reduce the number of write operations on 733

PRAM by 29.57% and 35.80%, respectively on average. The 734

lifetime improvement ratio of PRAM can be estimated by 735

(M/W ′−M/W
M/W) [25], where M stands for the maximum write 736

operations of PRAM, W is the number of write operations 737

on PRAM when using parallel solutions, and W ′ stands 738

for the number of write operations on PRAM when using 739

our proposed technique. Approximately, 28.82% and 29.93% 740

reduction on the number of write operations is equivalent to 741

a 144.03% and 155.76% increase on the lifetime on PRAM. 742

It means that our proposed techniques can prolong the lifetime 743

of PRAM to 12 years if the PRAM’s original lifetime is 744

5 years. 745

However, NVM introduces longer latency. For example, 746

when α = 2, the statistical comparisons of execution time 747

under different approaches are shown in Figure 5. From 748

the figure, we can see that the scheduling length of EADA 749

and BDAEW algorithms are longer than the parallel solution 750

using pure SRAMs, but shorter than AGADA and parallel 751

solution using hybrid SPMs. However, as we can see from the 752

results, the negative impact on applications’ execution time 753

is not significant. This is because we can use PRAM with 754

write buffers and write operations are relatively insensitive 755

to memory in hierarchies that are far from the CPU [31]. 756

As shown in Figure 5, EADA and BDAEW algorithms can 757

reduce the execution time of benchmarks by 15.54% and 758

21.49% compared with parallel solutions using hybrid SPMs, 759

respectively on average. Compared with AGADA algorithm, 760

EADA and BDAEW algorithms can reduce the execution time 761

of benchmarks by 5.83% and 12.44%, respectively on average. 762

In order to further illustrate the effectiveness of the pro- 763

posed algorithm, we compared the scheduling length and 764

overhead energy consumption of the five approaches using 765

different benchmarks. The overhead energy consumption is 766

a result of the scheduling cost, the cost of computing all 767

data- dependencies, and other logistic costs. The results of 768

scheduling length and overhead energy consumption are shown 769

in Figures 6 and 7, respectively. From the two figures, we 770

can observe that the scheduling time and overhead energy 771

consumption of the parallel solution are less than that of the 772

other four algorithms, and that of the EADA and BDAEW 773

algorithms are less than AGADA algorithm in most cases. 774

However, as the data-dependency grows, the gap between 775

the AGADA algorithm and the proposed algorithm decreases. 776

When the data-dependency application is represented by a 777

large MDFG, the scheduling time and overhead energy con- 778

sumption of AGADA algorithm is less than the proposed 779

algorithms. This is because the time complexity of AGADA 780

is O(G ∗ P ∗ H), where G and P represent the maximum 781

number of iterations and the population size of the genetic 782

algorithm, respectively. In more detail, the scheduling time 783

and overhead energy consumption of the proposed algorithms 784

IEE
E P

ro
of

WANG et al.: ENERGY OPTIMIZATION FOR DATA ALLOCATION WITH HYBRID SRAM+NVM SPM 11

Fig. 6. The comparison of scheduling time under different approaches.
α = 2, maxw = 500.

Fig. 7. The comparison of overhead energy consumption under different
approaches. α = 2, maxw = 500.

are not simply dependent on the number of data but depends785

on the product of data-dependency, the amount of data, and the786

amount of memories, while that of AGADA increases linearly787

with the growth of data. When the data-dependency and size788

of applications grow to a certain size that is greater than789

G ∗ P , the scheduling time and overhead energy consumption790

of AGADA are less than that of the proposed algorithm. For791

example, if the population size is set as 100 and maximum792

generation is set as 1000, the scheduling time and overhead793

energy consumption of AGADA will be less than that of794

the proposed algorithm, when the number of tasks and data795

increase to 50 and 350, respectively. However, even in this796

case, the net execution time and the net energy consumption of797

the proposed algorithm are still less than the AGADA. Hence,798

the benefits we gain by the proposed technique outweigh the799

extra overheads.800

In summary, for CMP with hybrid SPMs composed of801

a SRAM and NVM, the EADA and BDAEW algorithms802

can obtain a well-planned assignment such that the total803

energy consumption is minimized with little degradation804

in performance and endurance of PRAM. The EADA and805

BDAEW algorithms are also evaluated with experimental806

results showing that the EADA and BDAEW algorithms807

can obtain a better solution in energy consumption and the808

number of write operations on PRAM than parallel solutions809

and the AGADA algorithm.810

VII. CONCLUSION AND FUTURE WORK811

Hybrid local memory is an effective approach to reduce812

energy consumption and memory access latency for813

multi-core systems. In this paper, we propose two novel 814

heuristic algorithms, EADA and BDAEW. Based on the 815

hybrid SRAM+NVM SPM architecture, data are allocated 816

efficiently and tasks are scheduled reasonably, such that 817

the total energy consumption is minimized with little 818

degradation in performance and endurance caused by NVM. 819

In experimental studies, we employed hybrid SRAM+PRAM 820

SPM for multi-core systems to execute various applications. 821

The results show that both the EADA and BDAEW algorithms 822

achieve noticeable average reduction rates of total energy 823

consumption compared with parallel solutions and AGADA 824

algorithm. Both the EADA and BDAEW algorithms can 825

reduce the number of write operations on NVM. This means 826

that the lifetime of NVM can be extended when EADA and 827

BDAEW are used in the hybrid SPM architecture. 828

The proposed algorithms can be extensible to heterogeneous 829

cores. To achieve this, the cost of memory operations in each 830

memory must be redefined and the method of computing 831

energy consumption changed. A modern high-performance 832

computing system normally consists of heterogeneous 833

computing and communication resources, i.e., heterogeneous 834

processors, heterogeneous memories, and heterogeneous com- 835

munication interconnections. In heterogeneous processors, the 836

same type of operations can be processed by different proces- 837

sors with various execution times and energy consumption. 838

This makes the task scheduling and data allocation problem 839

more complicated. Although the proposed algorithm can be 840

extensible for heterogeneous cores, the performance and effec- 841

tiveness need more precise investigations. Therefore, we will 842

study the task and data allocation problem for heterogeneous 843

processors with hybrid on-chip memory in the future research 844

work. 845

REFERENCES 846

[1] K. Bai and A. Shrivastava, “Heap data management for limited 847

local memory (LLM) multi-core processors,” in Proc. IEEE/ACM/IFIP 848

Int. Conf. Hardw./Softw. Codesign Syst. Synthesis (CODES+ISSS), 849

Oct. 2010, pp. 317–325. 850

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, 851

“Scratchpad memory: Design alternative for cache on-chip memory in 852

embedded systems,” in Proc. 10th Int. Symp. Hardw./Softw. Codesign, 853

2002, pp. 73–78. 854

[3] M. Banikazemi, D. Poff, and B. Abali, “PAM: A novel perfor- 855

mance/power aware meta-scheduler for multi-core systems,” in Proc. 856

Int. Conf. High Perform. Comput., Netw., Storage Anal., 2008, 857

pp. 1–12. 858

[4] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource 859

allocation heuristics for efficient management of data centers for cloud 860

computing,” Future Generat. Comput. Syst., vol. 28, no. 5, pp. 755–768, 861

2012. 862

[5] C. Boyd, “Data-parallel computing,” Queue, vol. 6, no. 2, pp. 30–39, 863

2008. 864

[6] Y.-T. Chen et al., “Dynamically reconfigurable hybrid cache: An energy- 865

efficient last-level cache design,” in Proc. Design, Autom. Test Eur. Conf. 866

Exhibit. (DATE), 2012, pp. 45–50. 867

[7] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid pram and 868

dram main memory system,” in Proc. 46th ACM/IEEE Design Autom. 869

Conf. (DAC), Jul. 2009, pp. 664–669. 870

[8] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H. Sha, “Data allocation 871

optimization for hybrid scratch pad memory with SRAM and nonvolatile 872

memory,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, 873

no. 6, pp. 1094–1102, Jun. 2012. 874

[9] J. Hu, Q. Zhuge, C. J. Xue, W.-C. Tseng, and E. H.-M. Sha, “Manage- 875

ment and optimization for nonvolatile memory-based hybrid scratchpad 876

memory on multicore embedded processors,” ACM Trans. Embedded 877

Comput. Syst., vol. 13, no. 4, p. 79, 2014. 878

IEE
E P

ro
of

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

[10] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad879

memory hierarchy design and management,” in Proc. 39th Annu. Design880

Autom. Conf., 2002, pp. 628–633.881

[11] J. Kreku and K. Tiensyrjä, and G. Vanmeerbeeck, “Automatic work-882

load generation for system-level exploration based on modified GCC883

compiler,” in Proc. Conf. Design, Autom. Test Eur., 2010, pp. 369–374.884

[12] K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling precedence885

constrained stochastic tasks on heterogeneous cluster systems,” IEEE886

Trans. Comput., vol. 64, no. 1, pp. 191–204, Jan. 2015.887

[13] S. Matsuno, M. Tawada, M. Yanagisawa, S. Kimura, N. Togawa, and888

T. Sugibayashi, “Energy evaluation for two-level on-chip cache with889

non-volatile memory on mobile processors,” in Proc. IEEE 10th Int.890

Conf. ASIC (ASICON), 2013, pp. 1–4.891

[14] S. Mittal and J. S. Vetter, “AYUSH: A technique for extending lifetime892

of SRAM-NVM hybrid caches,” IEEE Comput. Archit. Lett., vol. 14,893

no. 2, pp. 115–118, Dec. 2014.894

[15] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi, “Operating895

system support for NVM+ dram hybrid main memory,” in Proc. HotOS,896

2009.AQ:2 897

[16] A. M. H. Monazzah, H. Farbeh, S. G. Miremadi, M. Fazeli, and898

H. Asadi, “FTSPM: A fault-tolerant scratchpad memory,” in Proc.899

IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2013, pp. 1–10.900

[17] C. D. Nicholson, W. J. Westerinen, C. Ergan, M. R. Fortin, and901

M. Iyigun, “Reliability of diskless network-bootable computers using902

non-volatile memory cache,” U.S. Patent 7 036 040, Apr. 25, 2006.903

[18] M. Qiu et al., “Data allocation for hybrid memory with genetic algo-904

rithm,” IEEE Trans. Emerg. Topics Comput., vol. 3, no. 4, pp. 544–555,905

Dec. 2015.906

[19] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory907

optimization and task scheduling for MPSOC architectures,” in Proc. Int.908

Conf. Compil., Archit. Synthesis Embedded Syst., 2006, pp. 401–410.909

[20] H. Takase, H. Tomiyama, and H. Takada, “Partitioning and allocation910

of scratch-pad memory for priority-based preemptive multi-task sys-911

tems,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2010,912

pp. 1124–1129.913

[21] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory914

allocation for scratch-pad based embedded systems,” in Proc. Int. Conf.915

Compil., Archit. Synthesis Embedded Syst., 2003, pp. 276–286.916

[22] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation917

for scratch-pad memory using compile-time decisions,” ACM Trans.918

Embedded Comput. Syst., vol. 5, no. 2, pp. 472–511, May 2006.919

[23] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,920

A. Davis, and N. P. Jouppi, “Rethinking dram design and organization921

for energy-constrained multi-cores,” ACM SIGARCH Comput. Archit.922

News, vol. 38, no. 3, pp. 175–186, 2010.923

[24] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and924

partitioning for energy optimization in real-time multi-core systems,” in925

Proc. 48th ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2011,926

pp. 948–953.927

[25] Y. Wang, J. Du, J. Hu, Q. Zhuge, and E. H. M. Sha, “Loop scheduling928

optimization for chip-multiprocessors with non-volatile main memory,”929

in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),930

Mar. 2012, pp. 1553–1556.931

[26] Y. Wang, K. Li, H. Chen, L. He, and K. Li, “Energy-aware data932

allocation and task scheduling on heterogeneous multiprocessor systems933

with time constraints,” IEEE Trans. Emerg. Topics Comput., vol. 2, no. 2,934

pp. 134–148, Feb. 2014.935

[27] Z. Wang, Z. Gu, and Z. Shao, “WCET-aware energy-efficient data936

allocation on scratchpad memory for real-time embedded systems,”937

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11,938

pp. 2700–2704, Nov. 2015.939

[28] J. Xing, A. Serb, A. Khiat, R. Berdan, H. Xu, and T. Prodromakis, “An940

FPGA-based instrument for en-masse RRAM characterization with ns941

pulsing resolution,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63,942

no. 6, pp. 818–826, Jun. 2016.943

[29] Y. Yi, W. Han, X. Zhao, A. T. Erdogan, and T. Arslan, “An ILP formu-944

lation for task mapping and scheduling on multi-core architectures,” in945

Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2009, pp. 33–38.946

[30] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing947

reliability with energy conservation for parallel task scheduling in948

a heterogeneous cluster,” Inf. Sci. Int. J., vol. 319, pp. 113–131,949

Oct. 2015.950

[31] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient 951

main memory using phase change memory technology,” ACM SIGARCH 952

Comput. Archit. News, vol. 37, pp. 14–23, Jun. 2009. 953

[32] V. Zivojnovic, J. M. Velarde, C. Schlager, and H. Meyr, “DSPSTONE: 954

A DSP-oriented benchmarking methodology,” in Proc. Int. Conf. Signal 955

Process. Appl. Technol., 1994, pp. 715–720. 956

Yan Wang received the B.S. degree in information 957

management and information technology from 958

Shenyang Aerospace University in 2010 and the 959

Ph.D. degree from the College of Information Sci- 960

ence and Engineering, Hunan University, Changsha, 961

China, in 2016. Her research interests include mod- 962

eling and scheduling in parallel and distributed com- 963

puting systems, and high performance computing. 964

Kenli Li received the M.S. degree in mathematics 965

from Central South University, China, in 2000, and 966

the Ph.D. degree in computer science from the 967

Huazhong University of Science and Technology, 968

China, in 2003. He was a Visiting Scholar with the 969

University of Illinois at Urbana–Champaign from 970

2004 to 2005. He is currently the Deputy Dean of 971

the School of Information Science and Technology, 972

Hunan University, and also the Deputy Director 973

of the National Supercomputing Center, Changsha. 974

He has authored over 160 papers in international 975

conferences and journals, such as the IEEE TC, the IEEE-TPDS, JPDC, ICPP, 976

and CCGrid. His major research includes parallel computing, grid and cloud 977

computing, and DNA computing. He is an outstanding member of CCF. 978

Jun Zhang received the bachelor’s and master’s 979

degrees in computer science from Hunan Univer- 980

sity, Changsha, China. He is currently pursuing 981

the Ph.D. degree with the Department of Electrical 982

and Computer Engineering, New York University. 983

His research interests include computer architecture, 984

FPGA, real time embedded systems, and machine 985

learning. 986

Keqin Li (F’–) is currently a SUNY Distinguished 987

Professor of Computer Science. He has authored 988

over 480 journal articles, book chapters, and refereed 989

conference papers. His current research interests 990

include parallel computing and high-performance 991

computing, distributed computing, energy-efficient 992

computing and communication, heterogeneous com- 993

puting systems, cloud computing, big data comput- 994

ing, CPU–GPU hybrid and cooperative computing, 995

multicore computing, storage and file systems, 996

wireless communication networks, sensor networks, 997

peer-to-peer file sharing systems, mobile computing, service computing, 998

Internet of Things, and cyber-physical systems. He has received several 999

best paper awards. He is currently or has served on the editorial boards 1000

of the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1001

the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON 1002

CLOUD COMPUTING, the IEEE TRANSACTIONS ON SERVICES COMPUTING, 1003

and the IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING. 1004

AQ:3

IEE
E P

ro
of

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF
proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us
your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ:1 = Please provide the postal codes for “Guangzhou University, National Supercomputing Center in
Changsha, and New York University.”

AQ:2 = Please provide the page range for ref. [15].
AQ:3 = Please provide the missing IEEE membership year for the author “Keqin Li.”

