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ABSTRACT Low-power and short-latency memory access is critical to the performance of chip multipro-
cessor (CMP) system devices, especially to bridge the performance gap betweenmemory and CPU. Together
with increased demand for low-energy consumption and high-speed memory, scratch-pad memory (SPM)
has been widely adopted in multiprocessor systems. In this paper, we employ a hybrid SPM, composed of a
static random-accessmemory and a nonvolatilememory (NVM), to replace the cache in CMP.However, there
are several challenges related to the CMP that need to be addressed, including how to dynamically assign
processors to application tasks and dynamically allocate data to memories. To solve these problems based on
this architecture, we propose a novel dynamic data allocation and task scheduling algorithm, i.e., dynamic
greedy data allocation and task scheduling (DGDATS). Experiments on DSP benchmarks demonstrate the
effectiveness and efficiency of our proposed algorithms; namely, our proposed algorithm can generate a
highly efficient dynamic data allocation and task scheduling approach to minimize the total execution cost
and produce the least amount of write operations on NVMs. Our extensive simulation study demonstrates
that our proposed algorithm exhibits an excellent performance compared with the heuristic allocation (HA)
and adaptive genetic algorithm for data allocation (AGADA) algorithms. Based on the CMP systems with
hybrid SPMs, DGDATS reduces the total execution cost by 22.18% and 51.37% compared with those of the
HA and AGADA algorithms, respectively. Additionally, the average number of write operations on NVM is
19.82% lower than that of HA.

INDEX TERMS Data allocation, endurance, execution cost, nonvolatile memory, wear-leveling.

I. INTRODUCTION
Low-power and short-latency memory access is critical to the
performance of chip multiprocessor (CMP) system devices.
Several recent studies have revealed a potential low-power
and short-latency alternative by replacing the hardware-
controlled cache with scratchpad memory (SPM), such as
IBM’s CELL processor, TI TMS370CX7X, and M-core
MMC221. SPM, a software-managed on-chip memory, has
been used in CMPs as a part of the memory hierarchy
to improve system performance. Compared to hardware-
managed cache, SPM is managed by the compiler and
programmer and has considerable advantages in area estima-
tion, power consumption, and timing predictability [7], [31].
However, since the speed transistor of CMOS grows with the

increasing density, the leakage power consumption of pure
static random-access memory (SRAM) SPMs is massive. For
example, the literature [10] has demonstrated that the SRAM
SPM consumes 33.7% of the total energy consumption of a
CMP on average. Therefore, nonvolatile memory (NVM) has
been adopted in SPMs because it allows for lower memory
power consumption.

NVM, such as magnetic RAM (MRAM) and phase
change memory (PCM), has a low static power consump-
tion, high storage density, and high resistance to soft errors
such as shifts from single event upsets. Several previous
studies have demonstrated the use and benefits of NVM
at different levels of the memory hierarchy. For exam-
ple, [5], [6], [12], [26], [30], and [32] used NVM as the
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main memory. These studies confirmed a considerable reduc-
tion in the energy consumption and performance that was
comparable to that when DRAM was used as the main mem-
ory. However, although NVMs have many attractive charac-
teristics as described above, their disadvantages are explicit.
First, the lifespan of NVM is bounded by a limited number
of write operations. Second, the cost of a read operation is
much less than that of a write operation on NVMs. In addi-
tion, to the best of our knowledge, no previous studies have
considered SPMs that use pure NVM. Therefore, exploring
an efficient memory architectural model is necessary to con-
trol the number of write operations on NVMs. Many works
have used NVMs to build cache or hybrid SPM hierarchies.
For example, [7], [15], [19], [20], [28], and [29] employed
NVM together with SRAM to construct a hybrid SPM. These
works demonstrated that, compared to SRAM, NVMs could
improve the system performance considerably when con-
figured and appropriately used in hybrid SPM hierarchies.
To fully utilize the benefits of NVM, in the article, we adopt
an NVM-based hybrid SPM architecture that is composed
of an NVM and an SRAM. Significant energy reductions
can be achieved using the target hybrid SPM architecture
while improving the performance and extending the lifetime
of NVM.

In the NVM-based hybrid SPM architecture, a signifi-
cant problem is how to allocate data to maximize the ben-
efits of NVM. Several studies have focused on the data
allocation problem and proposed static or dynamic data
allocation techniques in embedded systems with hybrid
SPM [8], [9], [13], [14], [23], [25]. Power-driven data allo-
cation problems were studied in [17], [21], [22], [27],
and [28] by incorporating the power cost into the embedded
systemwith hybrid SPMs. However, the above data allocation
algorithms do not consider the data dependencies or the
relationship between memory access operations and tasks.
Numerous problems, such as long latency, occur when data
dependency applications are executed on multiprocessor sys-
tems with hybrid on-chip SPMs. There are many static data
allocation and task scheduling techniques for SPM that con-
sider data dependency [11], [15], [26], [29]. However, to the
best of our knowledge, no existing dynamic data allocation
and task scheduling research has considered data dependency
with regard to the hybrid SPM. Fortunately, applications can
fully utilize compiler-analyzable data access patterns, which
can offer efficient dynamic data and task assignment mecha-
nisms for CMP systems with a hybrid SPM architecture.

In the article, the target architectural model is application-
specific CMP systems, on which application programs can
be comprehensively analyzed. The CMP system adopts a
hybrid SPM, which consists of an SRAM and an NVM,
as the on-chip memory to utilize the high density and low
leakage power of NVM. Based on the target architecture,
we first propose an initial data assignment algorithm to
obtain an initial data assignment with minimum memory
access. The initial data assignment can also be used as a
static data allocation algorithm for the target architecture.

Second, we propose a dynamic greedy data allocation and
task scheduling (DGDATS) algorithm based on the initial
data assignment. In this algorithm, we first generate a data-
task pair set that describes the relationship between exe-
cutable tasks and data. Second, according to the current data
assignment, we reallocate data and schedule executable tasks
in terms of data-task pair sets. The goal of this paper is to
achieve an on-chipmemory solution that is long-lived and has
low execution costs by utilizing the benefits of both NVM
and SRAM. We have evaluated our proposed data and task
allocation techniques based on the target architecture, which
uses NVM and SRAM as a hybrid SPM. The experimental
results demonstrate that, compared to the HA algorithm,
our proposed algorithm can reduce energy consumption by
22.18% and the writes on NVM by 19.82% on average.

The main contributions of this paper include the following:
1) We focus on data dependency to solve the issue of

dynamic data allocation and task scheduling on the
multiprocessor’s NVM-based hybrid SPM. The goal
is to decrease the execution costs and to lower the
number of write operations for the sake of maximizing
the lifetime of the NVM parts of the hybrid SPM.

2) We propose an initial data assignment algorithm to
obtain an initial data assignment with minimum mem-
ory access. The initial data assignment can also be
used as a static data allocation algorithm for the target
architecture.

3) We propose a dynamic greedy data allocation and task
scheduling algorithm for the CMP with a hybrid SPM
that can reduce the total execution cost while extending
the lifespan of the NVM.

The remainder of this paper is organized as follows. In the
next section, background and related studies are discussed.
In section III, the basic definitions and models used in the
remainder of the paper are provided. In section IV, we use
a motivational example to illustrate the effectiveness of our
proposed algorithm. Section V shows the main algorithms
in detail. Experimental results and concluding remarks are
provided in Section VI and Section VII, respectively.

II. RELATED WORK
Existing works on the data and task allocation problem
can be categorized into two categories, static data and task
allocation and dynamic data and task allocation, depending
on the cost when the data and task allocation decision is
made. In static data allocation and task scheduling scenarios,
the analysis of an application program, task mapping and
data allocation decision is made at the compile-time (offline).
The task execution order and data allocation decisions are
made before running the application. The required tasks and
data are loaded at the system initialization stage and remain
unchanged during the execution. For example, Gu et al. [4]
studied static task assignments and data allocation on multi-
core systems with multi-port SPMs to minimize the cost.
The authors also formulated the problem as an integer lin-
ear programming and used a heuristic algorithm to solve it.
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Wang et al. [28] studied static data allocation on a hybrid
SPM and proposed the EADA and BDAEW algorithms to
allocate data on different memories and map tasks to dif-
ferent cores, thus to reduce the memory latency and energy
consumption.

In dynamic data allocation and task scheduling, the task
mapping and data allocation are performed in real time
as the application executes. Many studies have focused on
dynamic techniques to move data back and forth between the
on-chip memory and main memory at runtime to improve
the performance or reduce the energy consumption. For
example, Ghattas et al. [3] proposed a synergistic optimal
approach to allocate data objects and to schedule real-time
tasks for embedded systems. In [1], to enable more effi-
cient data center resizing and minimize the communication
cost, the authors proposed an efficient data allocation tech-
nique and a generic model that considers both the static and
dynamic characteristics. Ji et al. [9] presented a dynamic
and adaptive SPM management strategy that targets a multi-
task environment. Marchal et al. [18] presented an SDRAM
data assignment technique for dynamic multithreaded multi-
media applications. This technique was combined with task
scheduling to minimize the energy cost and the number
of deadline violations. The above methods could obtain a
highly-efficient data and task allocation approach to improve
the performance. However, when applications are run on
multi-processors systems with NVM-based hybrid SPMs,
the data and task allocation problem is different from the
existing data and task assignment problems on uniformmem-
ory access architectures. This is because the costs of read
and write operations on NVMs are asymmetric, and the write
times to that component should not exceed the limitation.

Many dynamic data allocation algorithms have been pre-
sented to enhance the lifespan of NVM-based SPMs while
reducing the total energy consumption and improving the
performance. Long et al. [16] studied the benefits of high-
density MLC and low-energy SLC and then proposed a spe-
cific SPM with a morphable NVM and a theory of thermal
expansion and contraction optimization technique by which
data can be dynamically programmed and allocated into the
MLC mode or SLC mode. Soliman and Pellizzoni [24] intro-
duced a compiler-directed prefetching scheme,WCET-driven
dynamic data allocation, for the SPM. The method can over-
lap data transfers and task execution to achieve the purpose
of hiding the memory latency. Udayakumaran and Barua [25]
presented methods for allocating the global and stack data
based on a hybrid SPM. Wang [16], [29] presented algo-
rithms for allocating data variables to the SPM and distribut-
ing the write activity evenly in the SPM address space to
achieve wear leveling and prolong the lifetime of the NVM.
In these techniques, data could be reloaded into the SPM and
migrated among memories to guarantee the execution of the
application. However, the above techniques did not consider
the data dependencies. Compared to the above approaches,
the approach presented in this paper has several different
aspects. First, to solve the data and task allocation problem,

we employ CMP systems with NVM-based hybrid SPMs as
the target architectural model. Second, we propose a dynamic
data allocation and task scheduling algorithm to obtain an
efficient dynamic execution approach such that the total exe-
cution cost can be reduced while the overall performance can
be improved.

FIGURE 1. Architecture model.

III. MODELS
A. ARCHITECTURAL MODEL
In this paper, we target the CMPs using a hybrid SPM
to replace the cache. In the architectural model shown in
Figure 1, each core is tightly equipped with an on-chip
hybrid SPM, which consists of an NVM and an SRAM.
In a hybrid SPM, the NVM and SRAM use jointly the same
address space with the DRAM main memory. Additional,
in the architectural model, all of the cores use jointly the same
address space with a large-capacity main memory. Each core
can access data from its local SPM directly and from another
remote SPM by bus, and data can be migrated between mem-
ories using an individual instruction supported by the cores.
Core access from the local SPM is referred to as local access,
whereas access from the SPM of another core is called remote
access. This architecture is similar to the CELL processor,
in which a multi-channel ring structure permits the commu-
nication between any two cores without intervention from
other cores. The cost of data transfer between cores can safely
be assumed to be a constant value. Remote access consumes
more energy and is slower than local access, whereas access-
ing the main memory results in the most energy consumption
and the longest latency.

In this architecture, a hybrid SPM is fabricated with
3-D chips. This arrangement is chosen because 3-D inte-
gration is a promising and feasible scheme to fabricat-
ing hybrid SPMs. For fabrication, as shown in Figure 2,
the SRAM is equipped into the same layer as the core, and the
separation layer is equipped with NVM. This device method
enables designers to fully utilize the advantages of NVM.

B. COMPUTATIONAL MODEL
In this subsection, we formally present the computational
model. The applications are modeled as directed acyclic
graph (DAG). A DAGG = (V ,E,D, in, out,Nr,Nw,C,M )
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FIGURE 2. SPM architecture.

FIGURE 3. An example of DAG. (a) data dependencies among tasks.
(b) the input and output data of tasks.

is a node-weighted and edge-weighted directed graph. A note
set V = {v1, v2, . . . , vN } represents a set of N tasks. A set
E ⊆ V × V describes the dependency relations among
the nodes in V . The set D consists of all data for tasks.
in(vi) ⊆ D represents a set of input data of task vi, and
in(h, vi) means that executing task vi needs to read data h
to the corresponding core. out(vi) ⊆ D represents a set
of output data of task vi, and out(h, vi) means that out-
put data h needs to be written to the memory after task
vi completion. Nr(vi) denotes the read times of different
input data for the task vi, i.e., Nr(h, vi) represents the read
times of data h for the task vi. Nw(vi) is the write times of
the output data h for task vi, i.e., Nw(h, vi) represents the
write times of h for task vi. Set C = {c1, c2, c3, . . . , cn}
is a set of n cores that should schedule tasks. Set M =

{M1,M2, . . . ,M2i−1,M2i, . . . ,M2n1 ,M2n} is a set of local
memories to access data. For a core ci, its equipped SRAM
and NVM are denoted by M2i−1 and M2i, respectively.
Figure 3 illustrates an example of a DAG. There are N = 4

tasks, i.e., v1, v2, v3, v4. Figure 3 (a) shows the data dependen-
cies among the tasks, and Figure 3 (b) shows the read times
and write times of each datum for the tasks.

C. PROBLEM DEFINITION
Before giving the problem definition, we use Table 1 to
provide the notations used in the article. Here, the cost can
be any cost, such as energy consumption, reliability cost,
or execution time, being dependent on the optimization goal.

Assume that we are given a CMP system consisting of
n cores c1, c2, . . . cn, where each core is equipped with
a hybrid SRAM+NVM SPM. The cost of each type of
memory operation for a unit of data is known beforehand

TABLE 1. Notation used in the paper.

to be useful, as is the capacity of each type of memory.
We define the cost optimization data allocation and task
scheduling (CODATS) problem as follows: Given an input
DAG G = (V ,E,D, in, out,Nr,Nw,C,M ), the objectives
of the CODATS problem are to find (1) a data assignment
Mem for each task: D → M , where Mem(h, vi) ∈ M
represents the memory to hold data h ∈ D for task vi;
(2) a movement path: M → M , where Mh(i, j) shows the
data h moving from the memoryMi toMj before executing a
task; and (3) and a task allocation A: V → C , where A(vi) is
the core to schedule task vi ∈ V such that the execution cost
of the DAG is minimized. We describe the objective function
of the target problem as below.

For each data assignment and task mapping, the inputs of
our algorithm are the size of the NVM Sizen, the size of the
SRAM Sises, the read and write numbers of each datum for
each task, the initial data allocation in the CMP, and the cost
of each type of memory operation for a unit of data.

The outputs are a data movement path, data allocation and
task mapping under which the total cost of the executable
tasks set is minimized. The cost of each datum for each task
can be defined as follows:

C(h, vi) = Nr(h, i)× CR(h, vi)+ Nw(h, i)× CW (h, vi)

+moving_cost + overhead_cost (1)

where moving_cost represents the cost of migrating data h
from one memory to another memory; overhead_cost rep-
resents the additional reads, writes, and migration costs of
another data set that is generated by changing the data h
assignment for performing the task vi; and CR(h, vi) and
CW (h, vi) represent the cost of each read and each write
for the data h, respectively. move_cost and overhead_cost
depend on the migration path of the data h. The values of
CR(h, vi) and CW (h, vi) relate to the assignment of data h
and task vi. Let the binary variable MF(h, vi) = Mem(h, vi)
mod 2 indicate whether data h for task vi is assigned in NVM
or not. If MF(h, vi)=1, then data are allocated in NVM. Let
CM (h, vi) = dMem(h, vi)/2e represent the corresponding
core of stored data h for task vi. The CR(h, vi) and CW (h, vi)
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can be obtained as follows:

CR(h, vi)=


RSL , if MF(h, vi) = 0, CM (h, vi) = A(vi)
RSR, if MF(h, vi) = 0, CM (h, vi) 6= A(vi)
RNL , if MF(h, vi) = 1, CM (h, vi) = A(vi)
RNR, if MF(h, vi) = 1, CM (h, vi) 6= A(vi)

(2)

CW (h, vi)=


WSL , if MF(h, vi) = 0, CM (h, vi) = A(vi)
WSR, if MF(h, vi) = 0, CM (h, vi) 6= A(vi)
WNL , if MF(h, vi) = 1, CM (h, vi) = A(vi)
WNR, if MF(h, vi) = 1, CM (h, vi) 6= A(vi)

(3)

The total cost consists of two parts: the cost of the memory
operation part and the cost of the computing part. Hence,
given the cost of each task Cvi , the total cost of the DAG can
be calculated as follows:

Ctotal =
∑
vi∈V

∑
h∈D

C(h, vi)+
∑
vi∈V

Cvi (4)

IV. MOTIVATIONAL EXAMPLE
To show the effectiveness of the data and task allocation
algorithm presented in this paper, we provide a motivational
example in this section. In the example, we demonstrate that
with well-planned data and task allocation, we can reduce
the total costs and improve system performance while also
utilizing the benefits of NVM in the hybrid SPM architecture.

Assume that there are two cores and that each core is
equipped with a hybrid SPM. In the hybrid SPM, the SRAM
can store 3 units of data, the NVM can store 2 units of
data, and the DRAM main memory can store all of the data
needed for an application. The example shown in Figure 3
is used as a motivational example. Here, we have four tasks:
V1, V2, V3, and V4. For simplicity, the size of all data is equal
in the example. The number of reads and the number of writes
of each data for each task are shown in Fig 3 (b), and Table 2
shows all the costs used in the example.

In the example, we compare the data allocation and task
scheduling generated by our proposed algorithm and the

TABLE 2. Cost of each access.

HA algorithm. For simplicity, we illustrate only the results
of these two techniques without detailing how each result is
generated. Based on the example application, the HA algo-
rithm generates a data allocation and task schedule shown
in Figure 4 (a). In this approach, tasks V1, V3, and V4 are
scheduled on core 1, and task V2 is scheduled on core 2.
The initial data allocation is as follows:B,C , andD in core 1’s
SRAM, A in core 1’s NVM, E , F , and G in core 2’s SRAM,
H in core 2’s NVM, and I and J in the main memory. In this
approach, the execution cost is 672, the overhead is 139, and
there are 21 writes on NVM.

However, when we use another data allocation and task
scheduling scheme, the total execution cost can be reduced.
Instead of the data allocation and task schedule generated by
the HA algorithm, if V1 and V3 are executed on core 1, then
V2 and V4 are executed on core 2. Before performing tasks
V1 and V2, B, C , and D are allocated in core 1’s SRAM;
A in core 1’s NVM; E , F , and G in core 2’s SRAM; H and J
in the NVM of core 2; and I in the main memory. Then,
we dynamically schedule tasks and reallocate the data accord-
ing to the current data allocation. For example, we should
schedule task V4 in core 2 according to the current data
allocation, then we reallocate data F and B in core 2’s NVM,
data G and A in core 1’s SRAM, and data C in core 1’s NVM
to get better benefits. In this case, there are 22writes onNVM,
the execution cost can be reduced to 583, and the overhead
can be reduced to 80. Compared with the HA approach,
the execution cost is reduced by (672 − 583)/672=13.24%,
and the overhead is reduced by 42.44%.

The above example demonstrates that studying a well-
planned data and task allocation algorithm on the CMP
system with hybrid SPM can reduce the total execution cost.

FIGURE 4. Data allocation and task schedule comparison (a) greedy approach (b) the proposed approach.

1552 VOLUME 7, 2019



Y. Wang et al.: Dynamic Data Allocation and Task Scheduling on Multiprocessor Systems

A hybrid SPM architecture has more challenges than a pure
cache or pure SPM in terms of selecting the appropriate
memory for a datum to accomplish our objectives of cost
saving and reducing the write operations onNVM. Therefore,
the data and task allocation problem on the CMP system with
hybrid SPMs must be investigated.

V. ALGORITHMS
In this section, we will discuss the details of the Dynamic
Greedy Data Allocation and Task Scheduling (DGDATS)
algorithm. In the algorithm, A(vi) indicates the assignment of
task vi; and Mem(h, vi) represents the assignment of data h
for task vi. Before we formally discuss the details of the
DGDATS algorithm to solve the CODATS problem, let us
first propose an initial data allocation approach.

A. INITIAL DATA ALLOCATION
The initial data allocation approach is shown in Algorithm 1,
which is a straightforward heuristic algorithm and includes
two phases. The first phase aims to determine the earliest
execution task for each core and achieve a better data allo-
cation for the input and output data of the earliest execution
tasks. The second phase proposes to find a preferred initial
assignment for each unassigned data. In the algorithm, EL is
the set of earliest execution tasks, and set AS_data contains
all data that must be allocated.

In the first phase, we first find the earliest execution task
for each core and put it in set EL (Line 3). Then, we find each
input and output data to map a data-task pair pa(h, vi) ∈ PA
for each task in set EL (Lines 4-7), where a data-task pair
pa(h, vi) means that performing task vi requires reading or
writing data h. More than one data-task pair can be closely
associatedwith the data h because different tasks could access
the same data. To reduce remote memory access operations,
we prioritize the allocation of data h in data-task pair pa(h, vi)
with the maximummemory operations among all of the data-
task pairs (Line 9). To allocate data h, we first compute the
cost of each available allocation for data h and then employ
theminimum cost as ameasurement to determine thememory
in which to place the data h (Lines 10-15). After the data
assignment of a data-task pair is performed, the algorithm
attempts to find a new data allocation for other data in such a
way to reduce the cost until the data-task pair set PA is empty.

In the second phase, a data assignment should be estab-
lished for each unassigned datum. In this phase, although a
datum may be accessed by different tasks, we assign these
data only according to task vi that is the earliest access to
the data h. For convenience, we call task vi, which has the
earliest access to data h among all of the unassigned tasks,
the earliest task. To reduce the reassignment and migration
operations, we use the maximum priority value as a mea-
sure for deciding how to prioritize the assignment of the
data (Line 20). In allocating data h in AS_data to achieve
a high-efficiency initial data allocation approach, we use
Max{Nd(cj, vi)} as a measurement to determine which core
is assigned to hold data h, where Nd(cj, vi) represents the

Algorithm 1 Initial Data Allocation Approach
Input: An DAG G = (V ,E,D, in, out,Nr,Nw,C,M ),

the capacity of each memory, and the number of cores.
Output: a initial data allocation approach.
1: built a priority queue wq by execution order and tasks

dependency
2: put all data in set AS_data
3: find the earliest execution task for each core →
el(vi, corek ) ∈ EL

4: for each el(vi, corek ) do
5: find all reads and writes data, and marked as data-task

pairs pa(h, vi) ∈ PA
6: remove vi from wq
7: end for
8: while PA 6= ∅ do
9: select a data-task pair pa(h, vi) with maximum value

of Nr(h, vi)+ Nw(h, vi) in PA
10: for each memory Mk do
11: ifmemoryMk has enough free space to allocate data

h then
12: compute the cost Ck (h, vi)
13: end if
14: end for
15: choose the memory with minimum cost Ck (h, vi) to

allocate data h→ Mem(h, vi) = k
16: remove pa(h, vi) from PA
17: remove data h from AS_data
18: end while
19: while AS_data 6= ∅ do
20: choose data h ∈ AS_data with maximum priority

value
21: choose corej with Maximum Nd(cj, vi) to hold data h.
22: if M2j−1 have enough free space to hold data h then
23: allocate h in M2j−1, IM (h) = 2j− 1
24: else
25: if M2j have enough free space to hold data h then
26: allocate h in M2j, IM (h) = 2j
27: else
28: allocate h in main memory, IM (h) = 0
29: end if
30: end if
31: remove data h from AS_data
32: end while
33: return an initial data assignment

amount of data accessed by task vi on core cj. We find the
locations of all of the assigned data for earliest task vi, and
we select the core corej that allocated the majority of the data
needed by performing earliest task vi to hold data h (Line 21).
Tominimize the cost, we select a befittingmemory to hold the
data as follows: if the SRAM has enough free space to save
the datum, then allocate the datum into SRAM. In contrast,
we must detect the free space of the NVM. If the NVM has
enough free space to store the datum, then allocate the datum
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into the NVM; otherwise, allocate the datum into the main
memory (Lines 22-30).

In Algorithm 1, it takesO(|VED|) time to mark the priority
value and takes O(P|V |) time to find the earliest execution
task for each core, where V represents the number of tasks,
E is the number of edges, D represents the number of data
instances, and P represents the number of cores. In the first
phase, O(P|D|) is used to obtain a data-task pair set and
calculate the cost. In the second phase, O(|VDP| + |D|) is
used to achieve a better data allocation. Thus, if P is treated
as a constant, the complexity of Algorithm 1 isO(|V |+|D|+
|VED| + |VD|).
Algorithm 1 can also be seen as a static data allocation

approach to reduce the total cost. However, because a datum
could be required by different tasks, a constant static data
allocationwill result in a different memory access cost for dif-
ferent tasks and might not be ideal for all tasks that are asso-
ciated with the data. Therefore, we will present a dynamic
data and task allocation algorithm that uses Algorithm 1 as
an input to generate a more efficient data allocation and task
scheduling.

B. DYNAMIC DATA ALLOCATION AND
TASK SCHEDULING APPROACH
In this section, we illustrate theDGDATS algorithm, as shown
in Algorithm 2. The goal of the DGDATS algorithm is to
minimize the execution cost by dynamically allocating the
data in the memories and scheduling tasks on a suitable core,
which is based on the scheduled tasks and the current data
allocation. In the DGDATS algorithm, ST is a current exe-
cutable task set. Additionally, in each dynamic assignment,
we select k ≤ n executable tasks from priority queue wq
to ST (Line 2). To achieve a better allocation scheme, each
executable task and its corresponding data are dynamically
assigned as follows. First, we find all data-task pairs for the
executable task vi and use max{Nd(cj, vi)} as a measurement
to determine which core is assigned to executable task vi,
where Nd(cj, vi) represents the amount of data accessed by
executable task vi on core cj (Lines 4-8). Then, we migrate
or allocate data in descending order according to the number
of accesses to the data for executable task vi. For executable
task vi, we select a data-task pair pa(h, vi) with the maximum
number of memory operations among set PA and calculate
the cost Cj(h, vi) of each available assignment allocation for
data h. In migrating data to reduce the memory access oper-
ation cost, we use min{Cj(h, vi)} as a measure to determine
which memory can be a target memory to allocate data h for
schedule task vi. If min{Cj(h, vi)} is less than the cost of the
original assignment for data h, we will migrate the data to
the target memory (Lines 10-20). After the adjustment of the
data allocation, the algorithm finds a new data migration to
minimize the memory operation cost until the task-pair set
PA is empty. In this manner, the executable task vi can be
executed. After a task is executed, the algorithm attempts to
find a new task to schedule and allocates its corresponding
data until all of the tasks have been performed.

Algorithm 2 Dynamic Greedy Data Allocation and Task
Scheduling (DGDATS)
Input: Initial data allocation, an DAG G = (V ,E,D,R,

W ,Nr,Nw,C,M ), the capacity of each memory, and the
cost of each read and write on each memory.

Output: a scheduling with dynamic data and task
assignment.

1: while wq 6= ∅ do
2: select k ≤ n executable tasks from wq and put in

set ST
3: for each task vi ∈ ST do
4: remove vi from wq
5: find all reads and writes data and put in set

pa(h, vi) ∈ PA
6: calculate the number of data Nd(cj, vi)in each

core cj for execution task vi
7: choose the corej with the max{Nd(cj, vi)} for execu-

tion task vi
8: assign task vi on corej→ A(vi) = k
9: remove task vi from ST
10: while PA 6= ∅ do
11: find the data hwithmaximumvalue ofNr(h, vi)+

Nw(h, vi) in PA
12: Mem(h, vi) = IM (h)
13: compute the cost of C(h, vi) for the latest data

assignment
14: for each memory Mj do
15: compute the cost of each data h on Mj for task

vi→ Cj(h, vi)
16: if Cj(h, vi) < C(h, vi) then
17: C(h, vi) = Cj(h, vi)
18: Mem(h, vi) = j
19: end if
20: end for
21: IM (h) = Mem(h, vi)
22: remove pa(h, vi) from PA
23: end while
24: end for
25: end while
26: return a near-optimal schedule

If the target memory does not have sufficient space, wewill
choose data and migrate that data from the target memory
to another memory. Because the cost of the memory part
includes the migration overhead and access cost, the migra-
tion path must be considered when calculating cost Cj(h, vi).
Since data could have more than one migration path and
different migration paths show significant heterogeneity in
their migration costs, an optimal migration path with a min-
imum cost must be determined. How to choose an opti-
mal migration path will be discussed in detail in the next
subsection.

In Algorithm 2, it takes O(P|D|) time to obtain a better
assignment for tasks, where P is the core number and D is
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the number of data points. To dynamically assign data for
each task, it spends at most O(D2) time to determine which
data will be reallocated and at most O(DM ) to find the target
memory for the data. The DGDATS algorithm iterates at
most O(V ) times, as each task is executed only once. Thus,
if P and M are treated as constants, the time complexity of
Algorithm 2 is O(V |D|2| + |VD|).

FIGURE 5. The migration path.

C. MIGRATION PATH AND OVERHEAD
In this subsection, we illustrate the migration path of the data.
For simplicity and convenience, all of the available migration
paths of one data instance are modeled as a data migration
path graph (DMPG). A DMPG is a node-weighted directed
graph that is represented by G′ = (DM ,E,MC), where DM
is a set of data assignment nodes and dm(h,Mi) represents
data h allocated in memory Mi. E ⊆ DM × DM is a set of
edges. An edge(dm(u,Mi), dm(v,Mj)) describes that data u
will be migrated from memoryMi toMj. Data u and v are the
same, which means that memory Mj has sufficient space to
hold data u. In contrast, if data u and v are two different data,
we must migrate data v from memoryMj to another memory
before migrating data u to memory Mj. This arrangement
occurs because the target memoryMj does not have sufficient
space to store data u. For example, as shown in Figure 5,
edge(dm(a,M1), dm(b,M2)) indicates that data b must be
migrated to another memory, such as M3, to release space
for memory M2 to hold data a. MC , the weight of the edges,
is a migration cost function, and MC(dm(u,Mi), dm(v,Mj))
shows the migration cost of migrating data u from
memory Mi to Mj.
For each available migration path MPi, we can calculate

the total migration cost as follows:

Tmc(MPi) =
∑

edge∈mpi

MC(dm(u,Mi), dm(v,Mj))

= move_cost + overhead_cost (5)

To obtain the migration path with the minimum total
migration cost, we add a node as a leaf node and add the

corresponding edges from the original leaf nodes to the node.
To ensure that the total migration cost of each path does not
change, we set the weight MC of each added edge as 0.
Therefore, the problem to search a migration path with the
minimum total migration cost for the data can be translated
into a shortest path problem. In this paper, we use the Dijkstra
algorithm to solve the problem.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
In our experiments, we evaluate the proposed algorithms
when they are applied to our target architecture. In this
experiment, we chose a PCM as a part of an NVM-based
hybrid SPM. This choice was made because the PCM is
one of the most promising NVM technologies due to its
access latency and lifetime. We employed a PCM-supporting
variant of the CACTI tool NVsim simulator [2] to obtain the
execution and access costs for a given size of PCM memory.
We also used NVsim to obtain the execution and access costs
for a given size of SRAM memory. NVsim simulator is a
circuit-level model for NVM performance, energy, and area
estimation that supports various NVM technologies, includ-
ing STT-RAM, PCM, ReRAM, and legacy NAND Flash.
To be more specific and more efficient, we developed a
custom simulator with a hybrid SPM based on NVsim to
conduct the experiments. The simulator is composed of a
multicore with hybrid PCM+SRAM SPMs, a DRAM main
memory, and a memory trace processing unit that is readily
adapted for similar studies. Table 3 shows the specification of
the target architectural model used for our experiments.

TABLE 3. Target system specification.

To evaluate the effectiveness of our proposed algorithm,
we conduct a series of experiments, and the benchmark
programs are selected from DSPstone [33], which consists
of IIR filter (IIR), all-pole filter (allpole), 4-stage lattice
filter (4-lattice), elliptic filter (elliptic), diff filter (diff), and
C-sehwa. We use GCC to compile each benchmark and gen-
erate the read/write data sets accompanied by the task graphs.
Then, the task graphs and data sets and obtained parameters
from NVsim are integrated into our simulator. To ensure
that our experimental results are convincing, we tested each
benchmark as follows:We tested the same benchmark repeat-
edly, but for each test, the same benchmark may be equipped
with different data volumes.
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FIGURE 6. The execution cost of benchmarks under different methods when change the number of data. (a) iir, (b) allpole, (c) diff, (d) elliptic,
(e) C-sehwa, (f) 4_lattice.

In this paper, we measure the execution cost of our pro-
posed algorithms. We compare the proposed algorithm with
the HA algorithm presented in [25] and the AGADA algo-
rithm presented in [23]. The HA algorithm is a classical algo-
rithm for solving the dynamic data allocation problem, and
the AGADA algorithm is recently published and employed
for data allocation problems for minimizing the total cost
of hybrid memories with NVM. Therefore, the HA and
AGADA algorithms are the two most related and remarkable
candidates for comparison. In this experiment, the HA and
AGADA algorithms have been adjusted such that they are
suited for the target architecture model to work out a solution
to the CODATS problem. Tomake a fair comparison, we con-
ducted all three algorithms, including DGDATS, AGADA,
andHA, in the same allocation framework. In addition, we ran
the AGADA approach 50 times and took an average as the
final result for each benchmark, since the AGADA approach
is an adaptive genetic algorithm. In this manner, we can
ensure that the performance disadvantage of the AGADA and
HA algorithms is not due to fundamental limitations of the
implementations.

B. RESULTS AND ANALYSIS
In this section, we performed experiments on three algo-
rithms to show the effectiveness of our proposed algorithm.
We collected the on-chip memory access cost and task exe-
cution cost for each algorithm. Note that the execution cost
of our experiments refers to the power cost. The results
of the execution cost are illustrated by the comparison and
statistics of different methods when changing the amount
of data. Figure 6 shows the results. As can be observed,
the execution costs of all three approaches increase with the
increasing number of data points. For all of the benchmarks,
the execution cost of the DGDATS is less than that of the HA

and AGADA algorithms. Additionally, the execution cost of
the AGADA algorithm is the maximum of the three different
approaches. Compared with the HA and AGADA algorithms,
the DGDATS algorithm can reduce the execution cost by
an average of 22.18% and 51.37%, respectively. Although
the execution cost of the HA algorithm is less than that of
the DGDATS algorithm in several cases, the HA algorithm
does not take into account data-dependency, which will cause
many overhead write operations on the main memory.

The number of write operations on the NVM has a consid-
erable effect on the lifespan of the NVM. Table 4 shows the
comparison and statistical results of all three algorithms for
benchmarks about write operations on the PCM based on the
target architecture. In Table 4, the sixth and twelfth columns
represent the percentage of write operations on the NVM
that the proposed algorithm DGDATS eliminates compared
to the HA algorithm under different benchmarks. There are
the fewest write operations on the NVM when using the
AGADA algorithm, and our proposed algorithm can achieve
a more significant reduction in write operations than the HA
algorithm. The number of write operations on theNVMof our
proposed DGADTS algorithm is more than that of AGADA
algorithm, but there are considerably fewer write operations
on the main memory and a lower execution cost. Our pro-
posed algorithm can reduce the number of write operations
on the NVM by an average of 19.82% compared to the
HA algorithm. The lifespan percentage improvement of the
NVM of our proposed DGDATS algorithm compared with
that of the HA algorithm can be calculated by (M/W ′−M/W )

M/W ,
where M is the write endurance of the NVM, W is the write
operation counts on the NVM when using the HA algorithm,
and W ′ is the write operation counts on the NVM when
employing the presented algorithm. A 19.82% reduction in
the number of write operations is equivalent to a 115.89%
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TABLE 4. The number of writes on PRAM.

FIGURE 7. The overhead cost of benchmarks under different approaches when change the number of data. (a) iir, (b) allpole, (c) diff, (d) elliptic,
(e) C-sehwa, (f) 4_lattice.

increase in the lifetime on the NVM. This finding illustrates
that our proposed algorithm can prolong the lifespan of the
NVM by over three years.

Figure 7 shows the overhead cost of the three algorithms.
The overhead cost flows from the cost of calculating data
dependencies, the scheduling cost, the cost of additional data
migration and read/write operations, and other logistics costs.
Figure 7 shows that the overhead cost of the AGADA algo-
rithm is less than that of theHA algorithm andDGDATS algo-
rithm, and the overhead cost of the HA algorithm is more than
that of the DGDATS algorithm. The AGADA algorithm has
a lower overhead cost than our proposed algorithm because
the overhead cost of the proposed algorithm is dependent on
not only the number of data but also the product of the num-
ber of data, data dependency, and the number of memories,
whereas that of the AGADA algorithm grows linearly with
the growth of data. However, even in this case, the total net
execution cost of the DGDATS algorithm is less than that of
AGADA because the AGADA algorithm causes more data to

be allocated in themainmemory, resulting in a high execution
cost. Therefore, the benefits that we acquire by our proposed
algorithms outweigh the additional overhead.

In conclusion, when data dependency applications run in a
CMPwith hybrid SPMs composed of anNVMand an SRAM,
our proposed algorithm can output a high-efficiency dynamic
data and task allocation approach such that the total exe-
cution cost is minimized with only slight degradations in
the endurance and performance of the NVM. Our proposed
algorithm is also evaluated with a simulation experiment, and
the results show that our proposed algorithm can achieve a
better approach in terms of the execution cost and the number
of write operations on the NVM compared with the HA
algorithm.

VII. CONCLUSION
An NVM-based SPM is a practical approach to reducing
the execution cost of CMP systems. In this paper, we pro-
pose a novel dynamic data allocation and task scheduling
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algorithm to fully utilize the potential of the NVM. With
the NVM-based hybrid SPM architecture, the data and task
management code is executed to dynamically obtain a data
assignment that is suited to the corresponding task and to
generate a reasonable task mapping. The total execution cost
can be reduced with little performance degradation caused by
the disadvantages of NVM. According to the experimental
results, based on CMP systems with hybrid SPMs, our pro-
posed algorithm achieves noticeable average reduction rates
in the total execution cost, and the number of write operations
on the NVM can be reduced compared with the HA and
AGADA algorithms.
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