
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3762993
.

.

RESEARCH-ARTICLE

Cost-Optimized Periodic DAG-Structured Task
Offloading in Multi-User MEC Systems Using
Reinforcement Learning

YAN WANG, Guangzhou University, Guangzhou, Guangdong, China
.

YUBIN HE, Guangzhou University, Guangzhou, Guangdong, China
.

GANG LIU, University of Electronic Science and Technology of China,
Chengdu, Sichuan, China
.

KEQIN LI, SUNY New Paltz, New Paltz, NY, United States
.

.

.

Open Access Support provided by:
.

Guangzhou University
.

SUNY New Paltz
.

University of Electronic Science and Technology of China
.

PDF Download
3762993.pdf
15 January 2026
Total Citations: 0
Total Downloads: 178
.

.

Published: 14 January 2026
Online AM: 26 August 2025
Accepted: 07 August 2025
Revised: 03 July 2025
Received: 02 November 2024
.

.

Citation in BibTeX format
.

.

ACM Transactions on Internet Technology, Volume 26, Issue 1 (February 2026)
hps://doi.org/10.1145/3762993

EISSN: 1557-6051

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3762993
https://dl.acm.org/doi/10.1145/3762993
https://dl.acm.org/doi/10.1145/contrib-81555948356
https://dl.acm.org/doi/10.1145/institution-60025345
https://dl.acm.org/doi/10.1145/contrib-99661680877
https://dl.acm.org/doi/10.1145/institution-60025345
https://dl.acm.org/doi/10.1145/contrib-99660381553
https://dl.acm.org/doi/10.1145/institution-60005465
https://dl.acm.org/doi/10.1145/institution-60005465
https://dl.acm.org/doi/10.1145/contrib-81452603817
https://dl.acm.org/doi/10.1145/institution-60011073
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60025345
https://dl.acm.org/doi/10.1145/institution-60011073
https://dl.acm.org/doi/10.1145/institution-60005465
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3762993&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3762993&domain=pdf&date_stamp=2026-01-14

Cost-Optimized Periodic DAG-Structured Task Offloading in
Multi-User MEC Systems Using Reinforcement Learning

YAN WANG, The school of Computer science, Guangzhou University, Guangzhou, China
YUBIN HE, Guangzhou University, Guangzhou, China
GANG LIU, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of
China, Shenzhen, China
KEQIN LI, State University of New York, New Paltz, United States

Reinforcement Learning (RL) has emerged as a promising solution for task offloading due to its adaptability to
dynamic environments and ability to reduce online computational overhead. Thereby, this article explores RL
for optimizing periodic Directed Acyclic Graph (DAG) task offloading in multi-user Mobile Edge Computing
(MEC) systems, aiming to minimize overall costs, including user device energy consumption and server
computational charges. A key contribution of this work is the explicit modeling of user competition for limited
edge resources, where concurrent access leads to dynamic contention, significantly affecting offloading latency
and energy usage. However, this optimization task faces two main challenges: the high dimensionality of task
states and the large action space, both of which increase learning complexity. To address this, we propose
a dynamic and distributed Proximal Policy Optimization (PPO)-based offloading framework. An encoder is
employed to map DAG node features and structural information into a lower-dimensional representation,
reducing computational overhead and improving learning efficiency. Additionally, we incorporate behavioral
cloning to imitate greedy policies as the PPO agent’s initial behavior, effectively narrowing the action space and
accelerating convergence. By combining representation learning and imitation-based initialization, our method
enables the PPO agent to quickly adapt to environmental dynamics, leveraging both prior knowledge and real-
time feedback to make informed offloading decisions. Simulation results confirm that our approach achieves
rapid convergence and outperforms existing baselines in cost reduction, demonstrating its effectiveness
for periodic task offloading in MEC scenarios. The source code and implementation details are available at:
https://github.com/xiaolutihua/GAT/tree/master.

CCS Concepts: • Computing methodologies→ Distributed computing methodologies;

Additional Key Words and Phrases: Cost efficient, MEC, periodic DAG-based application, task offloading
optimization

Keqin Li Fellow, IEEE.
Authors’ Contact Information: Yan Wang, The school of Computer science, Guangzhou University, Guangzhou, China;
e-mail: bessie11@yeah.net; Yubin He, Guangzhou University, Guangzhou, China; e-mail: yubinghe111@163.com; Gang
Liu (corresponding author), Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of
China, Shenzhen, China; e-mail: liug@hnu.edu.cn; Keqin Li, State University of New York, New Paltz, United States; e-mail:
lik@newpaltz.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1533-5399/2026/01-ART2
https://doi.org/10.1145/3762993

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

https://orcid.org/0000-0002-9462-3983
https://orcid.org/0009-0009-3508-4965
https://orcid.org/0000-0003-1330-0945
https://orcid.org/0000-0001-5224-4048
https://github.com/xiaolutihua/GAT/tree/master
mailto:permissions@acm.org
https://doi.org/10.1145/3762993

2:2 Y. Wang et al.

ACM Reference Format:
Yan Wang, Yubin He, Gang Liu, and Keqin Li. 2026. Cost-Optimized Periodic DAG-Structured Task Offloading
in Multi-User MEC Systems Using Reinforcement Learning. ACM Trans. Internet Technol. 26, 1, Article 2
(January 2026), 27 pages. https://doi.org/10.1145/3762993

1 Introduction
The proliferation of Internet of Things (IoT) technologies has led to an exponential growth in
the interconnection of devices to the internet, resulting in the generation of voluminous data.
This surge has precipitated a significant escalation in data volume on user equipment (UE),
consequently amplifying the operational demands on network infrastructures and cloud computing
centers, and concurrently escalating the associated economic costs. Numerous application scenarios,
including autonomous driving, industrial automation, and telemedicine, necessitate extremely
low latency and real-time response capabilities. Consequently, there is a critical need for data
processing to be performed at the site of data generation to mitigate data transmission and augment
processing velocity. However, the limited computational resources and processing capabilities
inherent to edge UE may result in inadequate computational power when tasked with managing
complex computational tasks. This challenge necessitates the exploration of alternative solutions to
enhance computational efficacy at the edge of the network. In response to these challenges,Mobile
Edge Computing (MEC) has emerged as a viable solution, facilitating the decentralization of
computational resources and services toward the network periphery [15]. Within this paradigm,
users are empowered to delegate their computation-intensive tasks to infrastructures rich in
resources, such as MEC servers. Therefore, there has been a burgeoning interest from both the
industrial sector and academic circles in the development of optimal strategies for task offloading.

In the pursuit of augmenting task offloading decisions, an array of optimization methodologies
is under investigation, encompassing heuristic algorithms [11, 24, 26], machine learning models
[28, 29], and game-theoretic approaches [12, 16].Thesemethodologies are designed to reduce latency,
curtail energy expenditure, and diminish computational costs, whilst concurrently striving to
augment the overall system throughput. A pivotal facet of this realm pertains to the optimization of
periodicDirected Acyclic Graph (DAG) task offloading, wherein computational tasks are migrated
from UE to edge or cloud servers at predetermined intervals. Despite the substantial practical
significance of the behavioral and economic modeling of such task offloading paradigms, research
endeavors that integrate user behavioral decision-making traits encounter considerable challenges.
These challenges arise from the intricate and multifaceted attributes of periodic DAG-structured
tasks within the context of heterogeneous multi-user settings. This article endeavors to confront
these challenges by examining the interplay among user behavioral characteristics, the intricacies
of heterogeneous multi-user environments, and the computational expenses associated with Multi-
Access Edge Computing servers. Unlike prior works that assume independent offloading decisions,
we consider the competitive dynamics of multiple users sharing constrained edge resources. These
interactions introduce substantial variability in task latency and energy consumption, necessitating
competition-aware scheduling strategies. By explicitly modeling such dynamics, our approach aims
to minimize offloading costs in a manner robust to both user contention and system heterogeneity.
This methodology empowers UEs to tailor their offloading strategies in accordance with real-time
conditions and the presence of other users within the network environment.

Reinforcement Learning (RL) emerges as a promising paradigm for orchestrating distributed,
heterogeneous multi-user MEC systems, particularly in addressing the unique computational de-
pendencies inherent in DAG-structured tasks. Its capacity to address multi-user task offloading
challenges through collaborative agent optimization enhances the collective synergistic efficacy

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

https://doi.org/10.1145/3762993

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:3

of the system. In this article, we study an RL algorithm to address the periodic DAG-structured
task offloading problem within multi-user MEC settings. While existing studies have investigated
generic task offloading challenges [18], the structural complexity of DAG-structured tasks intro-
duces two distinctive challenges that have not been sufficiently addressed in multi-user MEC
environments: (1) DAG-Driven State Space Explosion: Unlike conventional linear task models, the
topological ordering and inter-task dependencies in DAG workflows exponentially expand the
state representation dimension. Specifically, the state space must encode not only the conventional
UE-device parameters but also precedence constraints between vertices and dynamic branch execu-
tion probabilities, resulting in a combinatorial state space complexity of 𝑂(𝑁𝐷) where 𝑁 denotes
concurrent UEs and 𝐷 represents average DAG depth. (2) The Expansive Action Search Space:
The parallel execution constraints imposed by DAG edges fundamentally alter the action space
characteristics. Each offloading decision must simultaneously satisfy: (a) parent node execution
precedence, (b) branch synchronization requirements, and (c) heterogeneous resource contention
across multi-user edge servers. This creates a cascading action space where local decisions at
one node propagate constraints through the entire DAG graph. With an increasing number of
users generating real-time computation tasks, the endeavor to minimize offloading expenditures
for the collective user base leads to a substantial prolongation of the episode time required for
the optimization of RL algorithms. This augmentation of the environmental action search space
presents a formidable challenge for the training of RL algorithms.
Within the scope of this scholarly endeavor, we conduct an iteration of the Proximal Policy

Optimization, a type of RL algorithm, designated as PPO, aimed at optimizing the offloading of
periodic DAG-structured tasks within a multi-user Mobile MEC environment. The PPO algorithm,
as articulated by Schulman et al. [22], adeptly encapsulates and delineates the intrinsic structural
attributes of tasks amidst a heterogeneous server environment. This approach demonstrates equiva-
lence or superiority in performance when juxtaposed with existing state-of-the-art methodologies,
while concurrently offering a more streamlined implementation and calibration process. To ad-
dress the challenges of high dimensionality and expansive search spaces, this article delineates
the incorporation of Encoding and Behavioral Cloning techniques. Within the framework of the
PPO, the amalgamation of an encoder and behavioral cloning enables the PPO model to efficiently
assimilate and accommodate the nuances of the environment. Furthermore, by incorporating the
energy expenditure of UEs and the computational costs of servers into the task cost functions, the
agent is endowed with the capacity to render judicious decisions regarding task offloading. This
holistic approach ensures a balanced optimization of both energy conservation at the UE level and
economic efficiency in terms of server utilization.
The main contributions of the article are summarized as follows.
—We introduce a dynamic and distributed RL approach, PPO, which is specifically designed for
managing periodic task offloading in multi-user MEC environments. This strategy incorpo-
rates behavioral cloning technology and an encoding mechanism to augment computational
performance, thereby facilitating intelligent decision-making processes that are adept at
minimizing costs while adhering to time and resource constraints.

— To address the issue of high dimensionality in task states, we design a task-specific En-
coder that effectively integrates node-level features and DAG structural dependencies into
a compact, low-dimensional embedding. This customized representation is tailored to our
scheduling environment and enhances the PPO agent’s capacity to make informed decisions
in complex, high-dimensional state spaces.

— To cope with the enlarged action space caused by the presence of numerous users and tasks,
we introduce a behavioral cloning pre-training phase. Instead of merely replicating existing
strategies, we construct a lightweight expert policy based on domain-specific heuristics,

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:4 Y. Wang et al.

which guides the initial learning process of the PPO agent. This significantly accelerates
convergence and improves policy quality, particularly in the early stages of training.

—We propose a low-complexity greedy matching algorithm designed to provide an initial
task offloading policy for PPO agents. By harnessing behavioral cloning techniques, this
algorithm not only diminishes the search space but also bolsters the overall efficiency of
the task offloading process, ensuring that the PPO agents can swiftly adapt to the dynamic
requirements of the MEC environment.

The rest of the article is organized as follows. Section 3 describes the system model, execution
models, cost models, and problem formulation. In Section 4, the cost optimal task offloading
algorithm based on PPO learning model for the MEC environments is proposed. We evaluate the
performance of our proposed technique and compare it with state-of-the-art techniques in Section 5.
Section 6 concludes the article.

2 Related Work
2.1 Periodic DAG-Structured Task Offloading in MEC
Several studies [3, 7, 9, 14, 17, 21, 27, 30] have addressed the periodic task offloading problem and
provided insights into efficient strategies and algorithms. Dinh et al. [9] explored task offloading
scenarios involving multiple edge servers for a single user. They proposed linear relaxation and
Semidefinite Relaxation (SDR) techniques to allow users to offload independent tasks to dif-
ferent edge servers while satisfying latency constraints. Pham et al. [21] formulated the periodic
task offloading problem by formulating it as an integer non-linear programming problem. They
introduced a nested genetic algorithm to maximize MEC utilization. However, these methodological
approaches, while ostensibly effective for singular user paradigms, encounter inherent limitations
and formidable challenges when scaled to accommodate the complexities of multi-user interactions.
Optimizing multi-user periodic task offloading aims to improve distribution efficiency, reduce

latency, maximize resource utilization, and enhance overall system performance. Recently, this
problem has received significant research attention [4, 6, 13, 18, 23]. In their work, Josilo et al. [13]
proposed a task offloading and resource allocation algorithm based on game theory for offloading
real-time tasks in heterogeneous communicationMEC environments. Shahryari et al. [23] developed
a suboptimal algorithm that combines genetic algorithms and particle swarm optimization to address
the issue of limited battery capacity and task delay sensitivity in UEs.

2.2 RL for DAG-Structured Task Offloading in MEC
Using RL to solve DAG-structured task offloading in MEC, the state space is defined using both the
DAG structure of the application, MEC environment status information, and the corresponding
offloading strategy for its tasks. The action space, on the other hand, determines whether a task
will be executed locally or offloaded to a MEC server. The current research landscape in periodic
task offloading focuses on developing RL strategies to address challenges such as latency, energy
consumption, and network bandwidth constraints [2, 5, 8, 10, 14, 19, 30, 31]. Deng et al. [8] pre-
sented a DAG-structured task offloading and resource allocation algorithm based on the DDPG
model, aiming to reduce task execution delays and enhance service quality in MEC systems. In [10],
Goudarzi et al. proposed an actor-critic-based distributed application placement technique utilizing
importance-weighted Actor-Learner Architectures. This technique efficiently addresses the applica-
tion placement problem of Directed DAG IoT applications in heterogeneous MEC environments,
where edge and cloud servers collaborate. In their work, [20] introduced an attention-driven double
deep Q network (DDQN) aimed at reducing both task completion delay and energy consumption
over the long term.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:5

���

����

������

��	�
���

�	�
��

�

������������	��
���	�����
���

��
��

�����������

Fig. 1. An overview of our system model.

However, it is imperative to acknowledge a substantial limitation inherent in the aforementioned
RL task offloading methodologies. These techniques fail to account for the contention among User
Equipment UE users, which can lead to certain tasks being queued on the server, pending the
completion of other UE tasks, thereby exacerbating the overall execution latency. Consequently, this
article study endeavors to incorporate the rivalry among multiple UEs in its approach to tackling
the offloading of periodic DAG-structured tasks within the ambit of multi-user MEC environments.
This comprehensive consideration is essential to mitigate the delays induced by concurrent task
processing and to enhance the efficacy of task offloading strategies in a shared computing context.

3 Models
In this section, we present the system model, the execution models for both offloaded and non-
offloaded tasks, the cost consumption models for both energy consumption on local users and
computation fees on servers, and the problem formulation. Table 1 gives a summary of notations
and definitions introduced in this article.

3.1 System Models
As shown in Figure 1, we consider a multi-user MEC system consisting of 𝑁 local UEs, denoted as
{𝑈 𝐸1, … , 𝑈𝐸𝑁}, and𝑀 heterogeneous servers, denoted as {𝑀𝐸𝐶1, … ,𝑀𝐸𝐶𝑀}. These heterogeneous
servers, including both edge servers and remote cloud servers, offer computation offloading services
for UEs.
Each user 𝑈𝐸𝑖 has a periodic DAG application represented by 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), consisting of 𝑁𝑖

subtasks. The set of subtasks for DAG 𝐺𝑖 is defined as 𝑉𝑖 = {𝑣𝑖,1, … , 𝑣𝑖,𝑗, … , 𝑣𝑖,𝑁𝑖
}, where each node

𝑣𝑖,𝑗 represents the jth subtask in DAG 𝐺𝑖. Each subtask 𝑣𝑖,𝑗 ∈ 𝑉𝑖 is defined as 𝑣𝑖,𝑗 = (𝑟𝑖,𝑗, 𝑑𝑖,𝑗, 𝑟𝑎𝑚𝑖,𝑗),
where 𝑟𝑖,𝑗 represents the total instructions (in BI) required for the execution of 𝑣𝑖,𝑗, 𝑑𝑖,𝑗 denotes the
self-data needed (in MB) during the execution of 𝑣𝑖,𝑗, and 𝑟𝑎𝑚𝑖,𝑗 indicates the minimum memory
required for executing task 𝑣𝑖,𝑗. The edge set 𝐸𝑖 ⊆ 𝑉𝑖 × 𝑉𝑖 represents the dependency relationships
among periodic subtasks in DAG 𝐺𝑖. An edge 𝑒𝑖(𝑢, 𝑗) ∈ 𝐸𝑖 indicates that tasks 𝑣𝑖,𝑢 and 𝑣𝑖,𝑗 have a

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:6 Y. Wang et al.

Table 1. Summary of Notations and Definitions

Notation Definition
𝑁, 𝑈𝐸𝑖 the number of UEs and the i-th UE
𝑀,𝑀𝐸𝐶𝑚 the number of servers and the m-th MEC
𝑓 𝑢𝑒𝑖 the CPU-cycle frequency of 𝑈𝐸𝑖
𝑓 𝑚𝑒𝑐𝑚 the CPU-cycle frequency of𝑀𝐸𝐶𝑚
𝑃(𝑖, 𝑗) the processor for execution 𝑣𝑖,𝑗
𝛽𝑢𝑒𝑖 the number of CPU cycles for a instruction on 𝑈𝐸𝑖
𝛽𝑚𝑒𝑐𝑚 the number of CPU cycles for a instruction on𝑀𝐸𝐶𝑚
𝑣𝑖,𝑗, 𝑉𝑖 the j-th task and the tasks set of 𝑈𝐸𝑖
𝑟𝑖,𝑗 the computation requirement of 𝑣𝑖,𝑗
𝑑𝑖,𝑗 the communication requirement of 𝑣𝑖,𝑗
𝑟𝑎𝑚𝑖,𝑗 the memory requirement of 𝑣𝑖,𝑗
𝑃 𝑡𝑖,𝑚 The transmission power from 𝑈𝐸𝑖 to𝑀𝐸𝐶𝑚
𝑅𝑖,𝑚 the communication speed from 𝑈𝐸𝑖 to𝑀𝐸𝐶𝑚
𝑇𝑖,𝑗,𝑚 the execution time of 𝑣𝑖,𝑗 on𝑀𝐸𝐶𝑚
𝑇𝑖,𝑗,0 the execution time of 𝑣𝑖,𝑗 on 𝑈𝐸𝑖
𝑇 𝑒𝑖,𝑗 the real execution time for task 𝑣𝑖,𝑗
𝑇 𝑐𝑖,𝑗,𝑚 the communication time of 𝑣𝑖,𝑗 from 𝑈𝐸𝑖 to𝑀𝐸𝐶𝑚
𝑇 𝑐𝑖,𝑗 the real communication time for self-data of task 𝑣𝑖,𝑗
𝑇 𝑠𝑖,𝑗 the start time of task 𝑣𝑖,𝑗
𝑇 𝑒𝑛𝑑𝑖,𝑗 the finish time of task 𝑣𝑖,𝑗
𝐸𝑒𝑖,𝑗 the computation energy consumption of 𝑣𝑖,𝑗 on 𝑈𝐸𝑖
𝐸𝑑𝑖,𝑗 the transmission energy for self-data of 𝑣𝑖,𝑗
𝐸𝑝𝑖,𝑗 the receive energy from parents of 𝑣𝑖,𝑗
𝑇 𝑑𝑒𝑙𝑎𝑦𝑖,𝑗 The processing latency of 𝑣𝑖,𝑗
𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 the total latency of 𝑈𝐸𝑖 in a period
𝑇𝐶𝑖,𝑗 the communication time of task 𝑣𝑖,𝑗
𝑇 𝑝𝑖 (𝑢, 𝑗) the communication time from task 𝑣𝑖,𝑢 to 𝑣𝑖,𝑗
𝐸𝑝𝑖 (𝑢, 𝑗) the transmission energy from 𝑣𝑖,𝑢 to 𝑣𝑖,𝑗
𝐶𝑜𝑠𝑡𝑢𝑒𝑖,𝑗 the total energy consumption on 𝑈𝐸𝑖 for 𝑣𝑖,𝑗
𝐶𝑜𝑠𝑡𝑚𝑒𝑐𝑖,𝑗 the service cost for 𝑣𝑖,𝑗
𝐶𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗 the total cost consumption 0f 𝑣𝑖,𝑗

precedence constraint, meaning task 𝑣𝑖,𝑗 cannot be executed until task 𝑣𝑖,𝑢 has finished. The value
associated with 𝑒𝑖(𝑢, 𝑗) indicates the amount of data from 𝑣𝑖,𝑢 required for the execution of task 𝑣𝑖,𝑗.

Each subtask 𝑣𝑖,𝑗 can be executed locally on 𝑈𝐸𝑖, offloaded to an edge server, or further offloaded
to a cloud server. The UE sends its application offloading requests to the scheduler at the network’s
edge. The scheduler then makes decisions based on period time, energy consumption, computation
fees, and resource constraints, determining whether to execute tasks locally or on a server. This
ensures efficient task allocation, aiming for lower total cost including UE’s energy consumption
and servers’ computation fees.
In our model, we assume that the input DAG has been pre-processed and decomposed into

atomic task nodes. Each node represents a fine-grained subtask that cannot be further partitioned,
either due to data dependencies or granularity constraints. This assumption aligns with common

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:7

practice in DAG-based computing frameworks such as TensorFlow and Apache Spark, where the
DAG structure reflects post-partitioned operations. Consequently, each node is assigned to a single
processor for execution, and our focus lies in optimizing the placement and scheduling of these
subtasks in multi-user edge environments.

3.2 Task Assigned and Execution Models
Task assignment: Each task 𝑣𝑖,𝑗 can be assigned to a server for remote execution or to the UE for
local execution. Let the binary variable 𝑥𝑖,𝑗,𝑚 denote whether task 𝑣𝑖,𝑗 is scheduled on server𝑀𝐸𝐶𝑚.
If task 𝑣𝑖,𝑗 is assigned to server 𝑀𝐸𝐶𝑚, then 𝑥𝑖,𝑗,𝑚 = 1; otherwise, 𝑥𝑖,𝑗,𝑚 = 0. Each task node can
execute on only one processor (UE or server):

𝑀
∑
𝑚=0

𝑥𝑖,𝑗,𝑚 = 1, ∀𝑖 ∈ [1, 𝑁], ∀𝑗 ∈ [1, 𝑁𝑖]. (1)

The processor 𝑃(𝑖, 𝑗) on which task 𝑣𝑖,𝑗 is executed can be defined as

𝑃(𝑖, 𝑗) =
𝑀
∑
𝑚=0

𝑚 × 𝑥𝑖,𝑗,𝑚, ∀𝑖 ∈ [1, 𝑁], ∀𝑗 ∈ [1, 𝑁𝑖]. (2)

Here, if 𝑥𝑖,𝑗,0 = 1, then 𝑃(𝑖, 𝑗) = 0 that means the task 𝑣𝑖,𝑗 is executed on local 𝑈𝐸𝑖.
Local execution model: If task 𝑣𝑖,𝑗 is not offloaded and is executed locally on 𝑈𝐸𝑖, the computa-

tion time of 𝑣𝑖,𝑗 on 𝑈𝐸𝑖 is given by

𝑇𝑖,𝑗,0 =
𝑟𝑖,𝑗𝛽𝑢𝑒𝑖
𝑓 𝑢𝑒𝑖

, (3)

where 𝑓 𝑢𝑒𝑖 represents the CPU-cycle frequency of 𝑈𝐸𝑖 and 𝛽𝑢𝑒𝑖 is the number of CPU cycles needed
to execute one instruction on 𝑈𝐸𝑖.

Offloading execution model: If task 𝑣𝑖,𝑗 is offloaded to server𝑀𝐸𝐶𝑚, the computation time of
𝑣𝑖,𝑗 on server𝑀𝐸𝐶𝑚 can be expressed as

𝑇𝑖,𝑗,𝑚 =
𝑟𝑖,𝑗𝛽𝑚𝑒𝑐𝑚
𝑓 𝑚𝑒𝑐𝑚

, (4)

where 𝑓 𝑚𝑒𝑐𝑚 denotes the CPU-cycle frequency of server 𝑀𝐸𝐶𝑚 and 𝛽𝑚𝑒𝑐𝑚 is the number of CPU
cycles needed to execute one instruction on server𝑀𝐸𝐶𝑚.
Therefore, the actual computation time for task 𝑣𝑖,𝑗 can be obtained by the following equation:

𝑇 𝑒𝑖,𝑗 =
𝑀
∑
𝑚=0

𝑇𝑖,𝑗,𝑚𝑥𝑖,𝑗,𝑚. (5)

3.3 Modeling Competition Among Multiple Users
In our system, multiple users share a limited set of edge and cloud resources. When tasks from
different users are offloaded to the same MEC server, resource contention arises, including compe-
tition for CPU cycles and memory capacity. To model this contention, we introduce the following
computation capacity constraint for each MEC server𝑀𝐸𝐶𝑚:

𝑁
∑
𝑖=1

𝑁𝑖

∑
𝑗=1

𝑥𝑖,𝑗,𝑚 ⋅
𝑟𝑖,𝑗𝛽𝑚𝑒𝑐𝑚
𝑓 𝑚𝑒𝑐𝑚

≤ 𝐶𝑚, ∀𝑚 ∈ [1,𝑀], (6)

where 𝐶𝑚 denotes the maximum available CPU time in each scheduling period at 𝑀𝐸𝐶𝑚. This
constraint ensures that server resources are not oversubscribed and that offloading decisions are
aware of inter-user competition.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:8 Y. Wang et al.

Moreover, when multiple users compete for the same server, tasks may experience queuing delays
and increased waiting times, which directly impact execution latency and energy consumption.
Our scheduling algorithm, introduced in Section 4, addresses this issue by jointly optimizing task
placements while minimizing both UE-side energy usage and server-side computation costs.

3.4 Communication Model
For task 𝑣𝑖,𝑗, the communication consists of two parts: the communication for its self-data volume
𝑑𝑖,𝑗 and the communication for receiving required data from its parent tasks.

Communication time for the self-data 𝑑𝑖,𝑗: If task 𝑣𝑖,𝑗 is offloaded to server𝑀𝐸𝐶𝑚 for remote
execution, the communication time 𝑇 𝑐𝑖,𝑗,𝑚 of its self-data 𝑑𝑖,𝑗 can be defined as

𝑇 𝑐𝑖,𝑗,𝑚 =
𝑑𝑖,𝑗
𝑅𝑖,𝑚

, (7)

where 𝑅𝑖,𝑚 represents the transmission rate between 𝑈𝐸𝑖 and𝑀𝐸𝐶𝑚. Therefore, the actual commu-
nication time 𝑇 𝑐𝑖,𝑗 required for the self-data 𝑑𝑖,𝑗 of task 𝑣𝑖,𝑗 is defined as

𝑇 𝑐𝑖,𝑗 =
𝑀
∑
𝑚=1

𝑇 𝑐𝑖,𝑗,𝑚𝑥𝑖,𝑗,𝑚. (8)

Communication time for receiving data from parents: If task 𝑣𝑖,𝑢 is a parent of task 𝑣𝑖,𝑗,
executing task 𝑣𝑖,𝑗 requires receiving data from task 𝑣𝑖,𝑢. If both tasks are processed on the same
processor, the communication time is 0. If the tasks are processed on different processors, the
communication time depends on the amount of data to be accessed and the bandwidth between the
processors. Thus, the communication time 𝑇 𝑝𝑖 (𝑢, 𝑗) required to receive data from task 𝑣𝑖,𝑢 can be
defined as

𝑇 𝑝𝑖 (𝑢, 𝑗) = {
𝑒𝑖(𝑢, 𝑗)
𝑅𝑘,ℎ

, 𝑘 ≠ ℎ, 𝑒𝑖(𝑢, 𝑗) ∈ 𝐸𝑖

0, 𝑘 = ℎ, 𝑒𝑖(𝑢, 𝑗) ∈ 𝐸𝑖
(9)

where 𝑘 = 𝑃(𝑖, 𝑗) and ℎ = 𝑃(𝑖, 𝑢) are the processors for executing task 𝑣𝑖,𝑗 and 𝑣𝑖,𝑢, respectively.

3.5 Total Execution Time
The start time 𝑇 𝑠𝑖,𝑗 of task 𝑣𝑖,𝑗 depends on the finish time of all its parent tasks. If task 𝑣𝑖,𝑢 is a parent
of task 𝑣𝑖,𝑗, then the start time 𝑇 𝑠𝑖,𝑗 of task 𝑣𝑖,𝑗 can be calculated by

𝑇 𝑠𝑖,𝑗 = max(𝑇 𝑠𝑖,𝑢 + 𝑇 𝑒𝑖,𝑢 + 𝑇 𝑝𝑖 (𝑢, 𝑗)). (10)

In the case where a task 𝑣𝑖,𝑗 has no parent tasks, its start time 𝑇 𝑠𝑖,𝑗 depends on the time required to
transfer its self-data 𝑑𝑖,𝑗, we can define this start time 𝑇 𝑠𝑖,𝑗 as

𝑇 𝑠𝑖,𝑗 = 𝑇 𝑐𝑖,𝑗. (11)

By adding the start time and the execution time, we get the finish time of the task. Thus, the finish
time 𝑇 𝑒𝑛𝑑𝑖,𝑗 of task 𝑣𝑖,𝑗 is given by

𝑇 𝑒𝑛𝑑𝑖,𝑗 = 𝑇 𝑒𝑖,𝑗 + 𝑇 𝑠𝑖,𝑗. (12)

Therefore, the total execution time 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 of the DAG 𝐺𝑖 is the maximum of the finish times of all
tasks in 𝐺𝑖, it can be defined as

𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 = max(𝑇 𝑒𝑛𝑑𝑖,𝑗). (13)

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:9

3.6 Cost Model
There are two components in the cost consumption i.e., energy consumption by local UEs and
computation fees for servers.

Energy consumption by local UEs: Following conventional mobile computing models [25], we
adopt a dynamic CPU power consumption model where the energy consumption of local execution
is defined as

𝐸𝑒𝑖,𝑗 = 𝜉𝑖(𝑓 𝑢𝑒𝑖)2 × 𝑇𝑖,𝑗,0 × 𝑥𝑖,𝑗,0, (14)

where 𝜉𝑖 is a device-specific constant representing the effective switched capacitance. If a task
is offloaded to server 𝑀𝐸𝐶𝑚, the energy consumption relates to communication. Let 𝑃 𝑡𝑖,𝑚 be the
transmission power of 𝑈𝐸𝑖 to𝑀𝐸𝐶𝑚. Then, the energy consumption for transmitting 𝑑𝑖,𝑗 from 𝑈𝐸𝑖
to𝑀𝐸𝐶𝑚 is

𝐸𝑑𝑖,𝑗 =
𝑀
∑
𝑚=1

𝑃 𝑡𝑖,𝑚 × 𝑇 𝑐𝑖,𝑗,𝑚 × 𝑥𝑖,𝑗,𝑚. (15)

Additionally, if task 𝑣𝑖,𝑗 is executed locally, we must consider the energy consumption of receiving
data from parents processed remotely. Conversely, if executed on a server, the energy consumption
of receiving data from parents processed locally must be considered. Let 𝐸𝑝𝑖 (𝑢, 𝑗) represent the
energy consumption of receiving data from its parent 𝑣𝑖,𝑢. It can be defined as

𝐸𝑝𝑖 (𝑢, 𝑗) = {
𝑇 𝑝𝑖 (𝑢, 𝑗) × 𝑃

𝑡
𝑖,𝑘, if 𝑥𝑖,𝑗,0 = 1, 𝑥𝑖,𝑢,0 = 0,

𝑇 𝑝𝑖 (𝑢, 𝑗) × 𝑃
𝑡
𝑖,ℎ, if 𝑥𝑖,𝑗,0 = 0, 𝑥𝑖,𝑢,0 = 1.

(16)

Thus, the energy consumption of receiving data from its parents for task 𝑣𝑖,𝑗 is defined as

𝐸𝑝𝑖,𝑗 = ∑
𝑒𝑖(𝑢,𝑗)∈𝐸𝑖

𝐸𝑝𝑖 (𝑢, 𝑗). (17)

Therefore, the total energy consumption for task 𝑣𝑖,𝑗 on 𝑈𝐸𝑖 can be defined as

𝐶𝑜𝑠𝑡𝑢𝑒𝑖,𝑗 = 𝑝𝑟 × (𝐸𝑒𝑖,𝑗 + 𝐸𝑑𝑖,𝑗 + 𝐸𝑝𝑖,𝑗), (18)

where 𝑝𝑟 represents the price of unit energy consumption on UEs.
Computation fees on servers: The computation fees depend on the computation time of tasks

on servers. Let 𝑝𝑟𝑖𝑐𝑒𝑚 denote the price of unit computation time on server𝑀𝐸𝐶𝑚. The computation
fees for each task 𝑣𝑖,𝑗 on servers can be defined as

𝐶𝑜𝑠𝑡𝑚𝑒𝑐𝑖,𝑗 =
𝑀
∑
𝑚=1

𝑝𝑟𝑖𝑐𝑒𝑚 × 𝑇𝑖,𝑗,𝑚 × 𝑥𝑖,𝑗,𝑚. (19)

In summary, the total cost consumption for task 𝑣𝑖,𝑗 is defined as

𝐶𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗 = 𝐶𝑜𝑠𝑡𝑢𝑒𝑖,𝑗 + 𝐶𝑜𝑠𝑡𝑚𝑒𝑐𝑖,𝑗 . (20)

3.7 Problem Formulation
Assume a multi-user MEC system with 𝑁 UEs and𝑀 servers, including edge and cloud servers. The
computation frequency 𝑓 𝑢𝑒𝑖 of each 𝑈𝐸𝑖, the computation frequency 𝑓 𝑚𝑒𝑐𝑚 of each server 𝑀𝐸𝐶𝑚,
the communication power 𝑃 𝑡𝑖,𝑚, and the communication speed 𝑅𝑖,𝑚 between processors are known
in advance. The objective is to find a computation offloading strategy for each 𝑈𝐸𝑖 that minimizes

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:10 Y. Wang et al.

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

����������	�

Fig. 2. The episode time.

total costs while satisfying the periodic tolerance latency 𝑇𝑖 of each 𝑈𝐸𝑖. Thus, the optimization
problem can be formulated as

min
𝑥𝑖,𝑗,𝑚

𝐶𝑜𝑠𝑡 =
𝑁
∑
𝑖=1

𝑁𝑖

∑
𝑗=1

𝐶𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗 ,

𝑠.𝑡 . 𝐶1 ∶
𝑀
∑
𝑚=0

𝑥𝑖,𝑗,𝑚 = 1, ∀𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁𝑖

𝐶2 ∶ 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 ≤ 𝑇𝑖, ∀𝑖 ∈ 𝑁
𝐶3 ∶ (6),

𝐶4 ∶ 𝑟𝑎𝑚𝑖,𝑗 ≤ 𝑥𝑖,𝑗,0 ⋅ 𝑢𝑚
𝑓 𝑟𝑒𝑒
𝑖 +

𝑀
∑
𝑚=1

𝑥𝑖,𝑗,𝑚 ⋅ 𝑠𝑚𝑓 𝑟𝑒𝑒
𝑚 ,

(21)

where 𝑢𝑚𝑓 𝑟𝑒𝑒
𝑖 and 𝑠𝑚𝑓 𝑟𝑒𝑒

𝑚 represent the freemainmemory of 𝑈𝐸𝑖 and𝑀𝐸𝐶𝑚, respectively, that can be
allocated for executing tasks. Constraint 𝐶3 guarantees that server resources are not over-allocated
and that offloading decisions consider the competition among users. Constraint 𝐶4 specifies that
the available memory on the processor serving a task must be at least equal to the memory required
for that task. For a server𝑀𝐸𝐶𝑚, the available memory 𝑠𝑚𝑓 𝑟𝑒𝑒

𝑚 fluctuates based on the number of
tasks it handles.
Since each application on a local user 𝑈𝐸𝑖 has its own period time 𝑇𝑖, the number of iterations

executed by each UE varies over time, making it difficult to calculate the total computation cost
for all UEs. Fortunately, we can reformulate the problem to minimize the computation cost over a
specific optimization period. We call this optimization period the “episode time.” To better reflect
the actual scenario, we set this “episode time” to the least common multiple (LCM) of all the UE
cycles 𝑇𝑖. For example, as shown in Figure 2, there are three applications 𝐴1, 𝐴2, and 𝐴3. Suppose
the periods of these three applications are 4 units, 6 units, and 3 units, respectively. The LCM of
these three periods is the smallest positive integer that is divisible by all three periods. Thus, the
LCM of these three periods is 12 units. Within these 12 units, applications 𝐴1, 𝐴2, and 𝐴3 complete
3 cycles, 2 cycles, and 4 cycles, respectively. To evaluate the minimization of the total computation
cost for these three applications, we only need to calculate the total computation cost within these
12 units. Therefore, the aforementioned objective function can be transformed into:

min
𝑥

𝐶𝑜𝑠𝑡 =
𝑁
∑
𝑖=1

𝑁𝑖

∑
𝑗=1

𝐿𝐶𝑀
𝑇𝑖

∑
𝑔=1

𝐶𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗,𝑔 , (22)

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:11

Fig. 3. The overview of PPO learning model.

where 𝐿𝐶𝑀 is the episode time, and 𝐶𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗,𝑔 represents the cost of task 𝑣𝑖,𝑗 in the gth iteration
within its episode time.

4 PPO Learning Model for Periodic Task Offloading
4.1 The Overview of PPO
This section employs the PPO model to address the optimization challenges of periodic DAG-
structured task offloading within multi-users MEC systems. The algorithm framework as shown in
Figure 3 consists of three critical components: (1) Behavior Cloning (BC) for Initial Policy: The
initial policy for the PPO agent is derived using BC. In this phase, the greedy algorithm’s strategy
is replicated and transferred to the PPO agent. This ensures that the agent starts with a reasonable
policy based on pre-existing knowledge to handle the expansive action search space. (2) Encoder
for Dimensionality Reduction: The Encoder is employed to process the task states, transforming
them into low-dimensional representations. This step is essential for reducing the complexity of the
state space, making it more manageable for the PPO learning model. (3) PPO Interaction with the
Environment: The PPO agent interacts with the environment to learn and refine its policy. Through
these interactions, the agent collects new experiences, which are used to update its policy.

4.2 Markov Decision Process
In our model, we formulate the task offloading process as aMarkov Decision Process (MDP),
where each state 𝑠𝑡 captures the current execution context and the action 𝑎𝑡 denotes the scheduling
decision. The multi-user learning model is defined by a tuple < 𝑆,𝐴, 𝑃, 𝑅, 𝛾 >, where 𝑆 and 𝐴 are
the state and action spaces, respectively. 𝑃 denotes the state-action probability, and 𝑅 stands for the
reward function. The parameter 𝛾, ranging from 0 to 1, acts as a discount factor determining the
importance of future rewards. We assume iterations are divided into multiple episodes, denoted
as 𝑡 ∈ 𝐾, with 𝐾 being the number of episodes. During each episode 𝑡, the agent interacts with
the environment, perceives the current state 𝑠𝑡, and selects an action 𝑎𝑡 based on its policy 𝜋(𝑎𝑡|𝑠𝑡),
which maps states to actions. The state transition to 𝑠𝑡+1 is deterministically defined by task
completion rules, resource constraints, and system timing updates. That is, the environment follows
a deterministic transition function 𝑠𝑡+1 = 𝑓 (𝑠𝑡, 𝑎𝑡).
Although the transition model is deterministic in simulation, the overall system still exhibits

non-stationary and partially observable behavior due to multi-user interference and dynamic
workloads.Therefore, the learning process remains complex and challenging.This modeling strategy

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:12 Y. Wang et al.

is consistent with existing literature on MEC scheduling [8], and facilitates reproducible evaluation
of algorithm performance under controlled dynamics.

State Space: In our task offloading problem, the state represents the agent’s observation within
the MEC environment. Thus, the state in each episode consists of information regarding the statuses
of all tasks and processors. Hence, the system’s state space can be defined as

𝑆 = {𝑆𝑡|𝑆𝑡 = (𝑆 𝑡𝑎𝑠𝑘𝑡 , 𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑡)}, (23)

where 𝑆 𝑡𝑎𝑠𝑘𝑡 and 𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑡 are the state sets of tasks and processors, respectively. The set of task
states 𝑆 𝑡𝑎𝑠𝑘𝑡 is determined by the output fused by a task encoder, expressed as follows:

𝑆 𝑡𝑎𝑠𝑘𝑡 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(́𝑉𝑡𝑎𝑠𝑘𝑠, 𝑂𝑎𝑑𝑗). (24)

Here, ́𝑉𝑡𝑎𝑠𝑘𝑠 represents the feature matrix of all tasks in the current environment, while 𝑂𝑎𝑑𝑗 denotes
the symmetric matrix of all tasks’ adjacency matrices. The formula for expressing ́𝑉𝑡𝑎𝑠𝑘𝑠 is provided
in Equation (25). The attribute vector ́𝑣𝑖,𝑗 for tasks includes: (a) computational workload of the task
𝑑𝑖,𝑗; (b) memory size required for task execution 𝑟𝑎𝑚𝑖,𝑗; (c) size of task source codes (e.g., instructions)
𝑟𝑖,𝑗; (d) tolerance of task delays 𝑇𝑖.

́𝑉𝑡𝑎𝑠𝑘𝑠 = { ́𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑁], 𝑗 ∈ [1, 𝑁𝑖]} (25)

For processor states, 𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑡 represents the state matrix of all assignable computing nodes,
including both local UEs and shared servers. The mathematical representation of 𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑡 can be
observed in Equation 26. Concerning the feature vector of an individual processor, it incorporates
the following characteristics: (a) the average CPU load of the processors, (b) the processing capability
of the CPU, (c) the remaining memory capacity, and (d) the utilization rate of network bandwidth.
Its formula expression is as follows:

𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑡 = {𝑠𝑈𝐸𝑖𝑡 |𝑖 ∈ 𝑁 , 𝑠
𝑀𝐸𝐶𝑔
𝑡 |𝑔 ∈ 𝑀}, (26)

where 𝑠𝑈𝐸𝑖𝑡 is the state of local 𝑈𝐸𝑖, and 𝑠
𝑀𝐸𝐶𝑔
𝑡 is the state of server𝑀𝐸𝐶𝑚.

Action space:Actions involve assigning available services to tasks within applications.Therefore,
the action 𝑎𝑡 in the tth iteration (tth episode) involves assigning a server𝑀𝐸𝐶𝑚 to the current task
𝑣𝑖,𝑗. Considering the placement configuration of each task 𝑣𝑖,𝑗, we can define 𝑎𝑖,𝑗𝑡 as

𝑎𝑖,𝑗𝑡 = {𝑥𝑖,𝑗,𝑚|𝑚 ∈ [0,𝑀]} = 𝑃(𝑖, 𝑗). (27)

Since 𝑃𝑖,𝑗 = 0 denotes the task being assigned locally for execution, the action space 𝐴 can be
defined as the set of all available servers and local UE, presented as follows:

𝐴 = {0,𝑀𝐸𝐶𝑚|𝑚 ∈ [1,𝑀]}. (28)

Reward function: The goal is to minimize the cost model while meeting the periodic time
constraint. Thus, the reward function consists of two components: survival reward (𝑟𝑠𝑢𝑟𝑣 𝑖𝑣𝑒) for
satisfying the periodic time constraint and offloading computation cost reward (𝑟𝑐𝑜𝑠𝑡). The formula
expression of the reward function is as follows:

𝑅 = 𝑟𝑠𝑢𝑟𝑣 𝑖𝑣𝑒 + 𝜇 ⋅ 𝑟𝑐𝑜𝑠𝑡, (29)

where 𝜇 serves as the balancing coefficient to adjust the relative importance of the two rewards.
The Survival reward aims to encourage the action to ensure that the applications of all local users

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:13

Fig. 4. The Encoder.

do not time out, thereby successfully completing the entire episode. Its formula can be expressed as

𝑟𝑠𝑢𝑟𝑣 𝑖𝑣𝑒 = {
𝐶, if 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 < 𝑇𝑖, ∀𝑖

− ∞. if 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 > 𝑇𝑖, ∀𝑖
(30)

where 𝐶 represents a normal constant value. For simplicity, in this article, we set 𝐶 as the 𝐿𝐶𝑀.
For each task 𝑣𝑖,𝑗, the reward associated with offloading computation costs is adjusted through

an exponential function to account for the cost impact, as shown in Equation (31):

𝑟𝑐𝑜𝑠𝑡 = ∑
𝑣𝑖,𝑗

exp(−𝑐𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗). (31)

By calculating the exponential function of the negative total cost, we ensure that higher cost values
result in a lower adjusted reward. This adjustment facilitates a tradeoff between the potential
benefits and the associated costs of offloading the computation.
The PPO learning process is defined in a multi-agent MEC setting, where agents learn under

shared resource constraints. The state space 𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑡 includes real-time resource usage of shared
MEC servers, which reflects how tasks from different users compete for limited computational
and memory resources. This competition implicitly influences the action-selection process, as each
user’s agent must learn to avoid resource contention that could result in increased computation
time or task failure.
The impact of this user-level competition is embedded into the reward function. The cost term

𝑐𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗 increases if the selected MEC node is congested due to offloading requests from multiple
users. Therefore, the PPO agent is incentivized to learn cooperative strategies that reduce both
task delay and overall energy consumption by considering the current state of shared resources. In
this way, the multi-user competition is indirectly modeled through shared processor states and
reflected in the PPO agents policy learning.

4.3 Encoder
Figure 4 illustrates the unsupervised process pipeline diagram of the Encoder employed in this
model. The Encoder primarily combines the node feature 𝑉𝑡𝑎𝑠𝑘𝑠 with the structural details of the
input tasks to derive the fused tasks feature denoted as 𝑉𝑡𝑎𝑠𝑘𝑠. The task features 𝑉𝑡𝑎𝑠𝑘𝑠 contain the
state information of all current tasks and can be represented as follows:

𝑉𝑡𝑎𝑠𝑘𝑠 = {⃖⃖⃗𝑣𝑖,𝑗|𝑖 ∈ [1, 𝑁], 𝑗 ∈ [1, 𝑁𝑖]}, (32)

where ⃖⃖⃗𝑣𝑖,𝑗 is a task state vector for task 𝑣𝑖,𝑗.
Conversely, the Decoder reconstructs the fused data by utilizing 𝑉𝑡𝑎𝑠𝑘𝑠 and structural information

as inputs. After extracting the feature structural details embedded by the Encoder, it generates the
de-fused outcome denoted as ́𝑉𝑡𝑎𝑠𝑘𝑠.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:14 Y. Wang et al.

To ensure that the information fused by the task graph encoder possesses robust discrimi-
native capabilities and comprehensively encompasses task graph nodes along with structural
information, we employ the following structural loss function and feature loss function to train the
encoder.
To enhance the discriminative capabilities of the fused task information 𝑉𝑡𝑎𝑠𝑘𝑠 and ensure that

the similarity between neighboring tasks is higher than that between non-neighboring tasks,
we introduce a structured loss function called StructureLoss. This function aims to optimize the
similarity among neighboring nodes and reinforce the representation of structural information.
The structured loss function is defined as follows:

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐿𝑜𝑠𝑠 = ∑
𝑖,𝑗

∑
𝑙∈𝑁𝑖,𝑗

log
1

1 + exp(−𝑣𝑖,𝑗
𝑇𝑣𝑙)

, (33)

where 𝑣𝑖,𝑗 and 𝑣𝑙 are the node feature vector obtained after fusing task information and structural
information. 𝑁𝑖,𝑗 represents all the neighbors of task 𝑣𝑖,𝑗. By optimizing this loss, we reinforce
the representation of structural information in the fused task features, thereby improving the
discriminative capabilities of the model.
To ensure that the feature vector output by the decoder closely matches the feature vec-

tor input to the encoder, an introduced feature loss function called FeatureLoss is employed.
This function aims to minimize the difference between the task features before and after en-
coding, ensuring that the encoder effectively captures and retains the original graph’s node in-
formation and structural characteristics. The formula for the feature loss function is defined as
follows:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐿𝑜𝑠𝑠 =
𝑁
∑
𝑖=1

𝑁𝑖

∑
𝑗=1

(⃖⃖⃗𝑣𝑖,𝑗 − ́𝑣𝑖,𝑗)2, (34)

where ⃖⃖⃗𝑣𝑖,𝑗 and ́𝑣𝑖,𝑗 are the original feature vector and the feature vector output by the decoder,
respectively. Minimizing this loss encourages the encoder to capture and preserve the important
features of the input tasks during the encoding process.

4.4 Behavior Cloning
BC technology can address challenges caused by large action search spaces in an environment. In
this approach, before training the intelligent agent using the PPO model, the policy of a greedy
algorithm is initially replicated. Although the greedy algorithm may not represent the optimal
allocation strategy, it does possess the ability to generate multiple trajectories that satisfy the
latency constraints imposed on the intelligent agent during its initial training phases. As a result,
this technique significantly reduces the time required for the agent to explore strategies aligned
with these constraints.

The BC technology is shown in Algorithm 1. In this cloning algorithm, the process begins with
the initialization of the Actor network and data buffer (Line 1). Subsequently, interaction with the
task policy obtained from the greedy algorithm occurs within the environment, and the resulting
task state-action pairs (𝑠𝑡𝑎𝑠𝑘𝑡 , 𝑎𝑡) are recorded (Lines 3–4). These task states 𝑠𝑡𝑎𝑠𝑘𝑡 are then processed
by the Encoder to generate new state-action pairs (𝑠𝑒𝑡 , 𝑎𝑡), which are saved in the data buffer (Lines
5–6). When the data volume in the buffer reaches the threshold 𝑁𝑏𝑢𝑓 𝑓 𝑒𝑟, the following operations
are performed. For each episode,𝑁𝑏𝑎𝑡𝑐ℎ samples are randomly selected from the data buffer to create
mini-batches of data 𝐷𝑏𝑎𝑡𝑐ℎ (Line 9). States 𝑆𝑡 and actions 𝐴𝑡 are then extracted from these mini-
batches. The states 𝑆𝑡 are then passed into the Actor network to obtain a probability distribution
𝑃 over each action (Lines 10–11). The probability (𝑝𝑡) of executing actions 𝑎𝑡 based on a greedy
strategy is calculated by utilizing a gather operation with 𝐴𝑡 (Line 12). In each episode, the Actor

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:15

ALGORITHM 1: Behavior Cloning
Input: Total training iterations 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒, Learning rate for the Actor: 𝛼𝑎𝑐𝑡𝑜𝑟, Batch size 𝑁𝑏𝑎𝑡𝑐ℎ, the strategy from

Greedy, Data buffer size 𝐷𝑏𝑢𝑓 𝑓

Output: Actor network 𝜋(𝜃𝑘)
1: Initially set Actor network 𝜋(𝜃𝑘) and data 𝐷 in buffer;
2: while |𝐷| < 𝐷𝑏𝑢𝑓 𝑓 do
3: Get task state 𝑠𝑡𝑎𝑠𝑘𝑡 from environment;
4: Get the actor action 𝑎𝑡 from Greedy strategy following the task state 𝑠𝑡𝑎𝑠𝑘𝑡 ;
5: Obtain task state 𝑠𝑒𝑡 through fusion 𝑠𝑡𝑎𝑠𝑘𝑡 by Encoder;
6: store (𝑠𝑒𝑡 , 𝑎𝑡) in data buffer;
7: end while
8: for 𝑘 = 1, 2, … , 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
9: Randomly sample 𝑁𝑏𝑎𝑡𝑐ℎ samples from the data buffer to form a data batch 𝐷𝑏𝑎𝑡𝑐ℎ;
10: Obtain the state set 𝑆𝑡 and Actor set 𝐴𝑡 for each sample;
11: Get the set of actions probabilities 𝑃𝑡 from Actor network based on the input 𝑆𝑡;
12: Gather 𝑃𝑡 and 𝐴𝑡 to obtain the actions probabilities 𝑝𝑡;
13: Update Actor network 𝜋(𝜃𝑘) through Equation (35);
14: Optimize gradients using the Adam optimizer;
15: end for
16: Return 𝜃;

network is updated by maximizing the probability 𝑝𝑡 according to Equation (35). It is worth noting
that we employ the Adam optimizer to perform gradient descent optimization on the gradients in
the cloning algorithm.

𝜃𝑘+1 = argmin
𝜃

1
𝑁𝑏𝑎𝑡𝑐ℎ

(
𝑁𝑏𝑎𝑡𝑐ℎ

∑
𝑖=1

log(𝑝𝑡))
2

(35)

Greedy matching algorithm: Next, we introduce the low-complexity greedy matching algo-
rithm, depicted in Algorithm 2. This algorithm determines task offloading and resource allocation
for periodic DAG applications on UEs. The greedy matching algorithm consists of two parts. The
first part involves selecting the processor with the lowest cost for executing each task (Lines 1–14).
In this part, if the total cost of offloading to server𝑀𝐸𝐶𝑚 is lower than the current cost, the task is
assigned to the server𝑀𝐸𝐶𝑚 and the cost is updated. After evaluating all servers, the costs 𝐸𝑚𝑖,𝑗 are
sorted in ascending order. In the second part (Lines 15–31), for each 𝑈𝐸𝑖, tasks are evaluated for delay
𝑇 𝑑𝑒𝑙𝑎𝑦𝑖,𝑗 and total cost 𝐶𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗 , then sorted in descending order based on 𝑇 𝑑𝑒𝑙𝑎𝑦𝑖,𝑗 . If the total delay 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖
exceeds the threshold 𝑇𝑖, we adjust the task allocation. The adjustment method selects the task with
the longest execution time on the critical path for adjustment (Line 22). It incrementally increases
the costs to adjust the machine until the adjusted task time is less than the second-longest task
execution time on the critical path (Lines 23–29). It then chooses a new task for adjustment. Once
the total execution time of the DAG meets the time constraints, the adjustment stops and a greedy
strategy is obtained. Through the greedy strategy, the PPO agent obtains the initial action 𝑎𝑡 and
state 𝑠𝑡.
In the low-complexity greedy matching algorithm, it takes 𝑂(𝑁𝑇 ⋅ 𝑀 log𝑀) to calculate costs

and to sort them for each task, where 𝑁𝑇 is the total number of tasks, i.e., 𝑁𝑇 = ∑𝑖 𝑁𝑖. Reassigning
tasks based on delays costs 𝑂(𝑁𝑇 log𝑁𝑇). Therefore, the total time complexity of the algorithm is
𝑂(𝑁𝑇 ⋅ 𝑀 log𝑀 + 𝑁𝑇 log𝑁𝑇).

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:16 Y. Wang et al.

ALGORITHM 2: Greedy Task Match Strategy
Input: 𝑣𝑖,𝑗, 𝑓 𝑢𝑒, 𝑓 𝑚𝑒𝑐

𝑚 , 𝛽𝑢𝑒, 𝛽𝑚𝑒𝑐
𝑚 , 𝑃 𝑡

𝑖,𝑚
Output: 𝑃(𝑖, 𝑗), 𝑥𝑖,𝑗,𝑚
1: for each task 𝑣𝑖,𝑗 do
2: calculate 𝐸𝑒

𝑖,𝑗;
3: 𝑃(𝑖, 𝑗) = 0;
4: 𝑐𝑜𝑠𝑡(𝑖, 𝑗) = 𝐸𝑒

𝑖,𝑗 ∗ 𝑝𝑟;
5: for 𝑚 = 1, 2… ,𝑀 do;
6: calculate 𝐸𝑑

𝑖,𝑗, and 𝐶𝑜𝑠𝑡𝑚𝑒𝑐𝑖,𝑗 ;
7: if 𝑐𝑜𝑠𝑡(𝑖, 𝑗) > 𝑝𝑟 ∗ 𝐸𝑑

𝑖,𝑗 + 𝐶𝑜𝑠𝑡𝑚𝑒𝑐𝑖,𝑗 then
8: 𝑃(𝑖, 𝑗) = 𝑚;
9: 𝑐𝑜𝑠𝑡(𝑖, 𝑗) = 𝑝𝑟 ∗ 𝐸𝑑

𝑖,𝑗 + 𝐶𝑜𝑠𝑡𝑚𝑒𝑐𝑖,𝑗 ;
10: end if
11: Store 𝐸𝑚

𝑖,𝑗 ← 𝑝𝑟 ∗ 𝐸𝑑
𝑖,𝑗 + 𝐶𝑜𝑠𝑡𝑚𝑒𝑐𝑖,𝑗 ;

12: end for
13: Sort the element 𝐸𝑚

𝑖,𝑗 in ascending order;
14: end for
15: for each 𝑈𝐸𝑖 do
16: for 𝑗 = 1, 2, …𝑁𝑖 do
17: calculate 𝑇 𝑑𝑒𝑙𝑎𝑦

𝑖,𝑗 , 𝐶𝑜𝑠𝑡 𝑡𝑜𝑡𝑎𝑙𝑖,𝑗 ;
18: end for
19: Sort the element 𝑡𝑜𝑟𝑑𝑒𝑟𝑖 ← 𝑣𝑖,𝑗 with 𝑐𝑝𝑖 = 1 in descending order with 𝑇 𝑑𝑒𝑙𝑎𝑦

𝑖,𝑗 ;
20: calculate 𝑇 𝑡𝑜𝑡𝑎𝑙

𝑖 ;
21: while 𝑇 𝑡𝑜𝑡𝑎𝑙

𝑖 > 𝑇𝑖 do
22: select the first task 𝑣𝑖,ℎ from 𝑡𝑜𝑟𝑑𝑒𝑟𝑖 to reassign;
23: select the second task 𝑣𝑖,𝑢 from 𝑡𝑜𝑟𝑑𝑒𝑟𝑖 , let 𝑇𝑚𝑎𝑥

𝑖 = 𝑇 𝑑𝑒𝑙𝑎𝑦
𝑖,𝑢 ;

24: while 𝑇 𝑑𝑒𝑙𝑎𝑦
𝑖,ℎ > 𝑇𝑚𝑎𝑥

𝑖 and 𝑇 𝑡𝑜𝑡𝑎𝑙
𝑖 > 𝑇𝑖 do

25: 𝑘 = 𝐺𝑒𝑡𝑇 𝑜𝑝𝐼 𝑡𝑒𝑚(𝐸𝑚
𝑖,𝑗);

26: 𝑃(𝑖, ℎ) = 𝑘;
27: Calculate 𝑇 𝑑𝑒𝑙𝑎𝑦

𝑖,ℎ and 𝑇 𝑡𝑜𝑡𝑎𝑙
𝑖 ;

28: 𝑅𝑒𝑚𝑜𝑣𝑒𝑇 𝑜𝑝𝐼 𝑡𝑒𝑚(𝐸𝑚
𝑖,𝑗);

29: end while
30: 𝑅𝑒𝑚𝑜𝑣𝑒𝑇 𝑜𝑝𝐼 𝑡𝑒𝑚(𝑡𝑜𝑟𝑑𝑒𝑟𝑖);
31: end while
32: end for
33: calculate 𝐶𝑜𝑠𝑡;

4.5 Periodic DAG-Structured Task Offloading and Resource Allocation
This article proposes a novel PPO model within an actor-critic framework to address the challenges
of offloading periodic DAG applications in diverse MEC environments. In this framework, the policy
is directly parameterized as 𝜋(𝑎𝑡|𝑠𝑡; 𝜃), where 𝜃 is updated through gradient ascent on the variance
of the expected total future discounted reward and the learned state-value function under policy
𝑉 𝜋(𝑠𝑡). This approach aims to combine the strengths of value-based and policy-based methods while
reducing their respective limitations.
Actor-critic framework: As shown in Figure 5, the PPO learning model consists of an Actor

network and a Critic network. The Actor network generates actions 𝑎𝑡 for the intelligent agent
to execute, while the Critic network estimates the value function 𝑉 𝜋(𝑠𝑡) for the current state 𝑠𝑡.
By incorporating the immediate reward 𝑟𝑡 obtained after the agent performs action 𝑎𝑡, the Critic
network evaluates the current action, thereby improving the stability of training the Actor network.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:17

���

�
����

�
����	��

�

�

�

�

� �
�

���
�

�

��	
	�

��

�

�

���
���

������

���	�

����
��

Fig. 5. The task offloading network on PPO learning model.

—Critic network update policy: The Critic network estimates the value function 𝑉 and updates
it using TD-error to avoid positive feedback loops. The general form of the TD-error update
formula in the Critic network is

Δ𝜙𝑡(𝜔) = 𝛾𝑉 (𝑆𝑡+1) + 𝑟𝑡 − 𝑉 (𝑆𝑡), (36)

where Δ𝜙𝑡(𝜔) is the TD-error, 𝑟𝑡 is the immediate reward at iteration 𝑡, and 𝑉 (𝑆𝑡) and 𝑉 (𝑆𝑡+1)
are the predicted values of the current and next states, respectively.The Critic network is
updated by minimizing the squared TD-error, adjusting the estimated state values toward
more accurate predictions. The loss function associated with the TD-error in the Critic
network is defined as

𝐿𝑐𝑟 𝑖𝑡 𝑖𝑐(𝜃) = ∑
𝑡
(Δ𝜙𝑡(𝜔))2

= 𝔼𝑆1[(𝛾𝑉 (𝑆𝑡+1) + 𝑟𝑡 − 𝑉 (𝑆𝑡))2].
(37)

—Actor network update policy: The Actor network is updated using the PPO algorithm to
ensure that the difference between the behavioral policy 𝜃′ and the target policy 𝜃 does not
become too large. This is achieved by applying a clip function to restrict the range of gradient
updates. The update formula for the Actor network is as follows:

𝐿𝑐𝑙𝑖𝑝(𝜃) = 𝔼𝑡[min(𝐽𝑡(𝜃) ⋅ 𝐴𝑡, clip(𝐽𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) ⋅ 𝐴𝑡)], (38)

where 𝜀 is the clipping threshold, 𝐴𝑡 is the advantage of taking action 𝑎𝑡 in state 𝑠𝑡, and 𝐽𝑡(𝜃)
is the ratio of the new policy to the old policy. 𝐽𝑡(𝜃) is defined as follows:

𝐽𝑡(𝜃) =
𝜋𝑛𝑒𝑤(𝑎𝑡|𝑠𝑡, 𝜃)
𝜋𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡, 𝜃)

, (39)

where 𝜋𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡, 𝜃) and 𝜋𝑛𝑒𝑤(𝑎𝑡|𝑠𝑡, 𝜃) are probability of taking action 𝑎𝑡 in state 𝑠𝑡 under the
old policy and the updated policy, respectively. The clip function constrains 𝐽𝑡(𝜃) within the
interval [1 − 𝜖, 1 + 𝜖], where 𝜖 is a hyperparameter controlling the extent of clipping.

PPO task offloading strategy: In the periodic DAG-structured task offloading algorithm
for multiple users, as shown in Algorithm 3, PPO agents receive observation data 𝑂𝑏𝑠 from the
environment. This data includes task observations 𝑆𝑡𝑎𝑠𝑘 and processor states 𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟. Using a fixed
processing mechanism called the Encoder, these observations are combined to produce the task
state 𝑆 𝑡𝑎𝑠𝑘𝑡 , which serves as the input 𝑆𝑡 for the PPO learning model. To begin, the actor and critic
networks, along with the experience replay buffer, are initialized (Lines 1–2). Before interacting
with the environment, the PPO agent clones the greedy strategy (Algorithm 2). For each episode,

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:18 Y. Wang et al.

ALGORITHM 3: PPO Task Offloading Strategy
Input: Total iterations 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒 in PPO, the training time of each episode 𝑁𝑡𝑟𝑎𝑖𝑛, learning rates 𝛼𝑒𝑛𝑐𝑜𝑑𝑒𝑟, 𝛼𝑑𝑒𝑐𝑜𝑑𝑒𝑟,

𝛼𝑎𝑐𝑡𝑜𝑟, 𝛼𝑐𝑟 𝑖𝑡 𝑖𝑐, exploration parameter 𝜀, replay buffer 𝐷𝑃𝑃𝑂
Output: Actor network 𝜋(𝜃 𝑡)
1: Initialize the actor network 𝜋(𝜃 𝑡) and critic network 𝑉 (𝑆𝑡)
2: Initialize the experience replay buffer 𝐷𝑃𝑃𝑂
3: Obtain the greedy strategy via Behavior Cloning
4: for 𝑡 = 1 to 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
5: Execute policy 𝜋 = 𝜋(𝜃 𝑡) in the environment
6: Perform action 𝑎𝑡 ← {𝑥𝑖,𝑗,𝑚 ∣ 𝑖 ∈ [1, 𝑁], 𝑗 ∈ [1, 𝑁𝑖], 𝑚 ∈ [0,𝑀]}
7: Observe 𝑠𝑡+1, 𝑟𝑡, 𝑝𝑡
8: Encode 𝑠𝑡+1 to 𝑠𝑒𝑡+1
9: Store experience [𝑠𝑒𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑝𝑡, 𝑠𝑒𝑡+1, 𝑑𝑜𝑛𝑒] in replay buffer 𝐷𝑃𝑃𝑂
10: for 𝑘 = 1 to 𝑁𝑡𝑟𝑎𝑖𝑛 do
11: Calculate the advantage function 𝐴𝑡 using 𝑉 (𝑆𝑡)
12: Update actor network 𝜋(𝜃 𝑡) via Equation 40
13: Optimize gradients with the Adam optimizer
14: Update critic network 𝑉 (𝑆𝑡) via Equation 41
15: Optimize gradients with the Adam optimizer
16: end for
17: end for
18: Return the trained actor network 𝜋(𝜃 𝑡)

the policy 𝜋(𝜃 𝑡) is executed in the environment, performing actions and observing the next state
𝑠𝑡+1, reward 𝑟𝑡, and probability 𝑝𝑡. Based on the action 𝑎𝑡, the system transitions to the next state
𝑠𝑡+1 (Lines 6–7). The Encoder processes 𝑠𝑡+1 to yield 𝑠𝑒𝑡+1, and the experience [𝑠

𝑒
𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑝𝑡, 𝑠𝑒𝑡+1, 𝑑𝑜𝑛𝑒]

is stored in the replay buffer (Lines 8–9). Training occurs for 𝑁𝑡𝑟𝑎𝑖𝑛 iterations per episode, where
the advantage function 𝐴𝑡 is calculated using the critic network 𝑉 (𝑆 𝑡) (Lines 10–11). During each
training iteration, the Actor and Critic networks are updated using their respective loss functions.
The parameters of the Actor network are updated using Equation 40, and the parameters of the
Critic network are updated using Equation 41 (Lines 11–15).

𝜃𝑘+1 = argmin
𝜃

1
𝐷𝑃𝑃𝑂

∑
𝑇∈𝐷𝑃𝑃𝑂

𝐿𝑐𝑙𝑖𝑝(𝜃); (40)

𝑆𝑡+1 = argmin
𝜔

1
𝐷𝑃𝑃𝑂

∑
𝑇∈𝐷𝑃𝑃𝑂

𝐼
∑
𝑖=0

(Δ𝜙𝑡(𝜔))2. (41)

We use the Adam optimizer for stochastic gradient ascent when optimizing the Actor gradients,
and for stochastic gradient descent when optimizing the Critic gradients. During network updates,
the advantage function 𝐴𝑡 is defined as

𝐴𝑡 = 𝑄𝜋
𝑡 (𝑠𝑡, 𝑎𝑡) − 𝑉 𝜋

𝑡 (𝑠𝑡), (42)

where 𝑄𝜋
𝑡 (𝑠𝑡, 𝑎𝑡) is the state-action value function, predicting the expected return starting from state

𝑠𝑡, taking action 𝑎𝑡, and following policy 𝜋.

5 Experiments
5.1 Experimental Setup
This study employs simulation experiments to evaluate the performance of our proposed PPO task
offloading algorithm. In a multi-user MEC environment, there are five UEs, two cloud servers,

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:19

Table 2. Table of Parameters in the MECs Environment

Parameter Value
Number of local users (UEs) 5
memory size of local users 512MB
memory size of edge servers 8GB
frequency of local users 6 × 107𝐻𝑧
Number of edge servers 5
Number of cloud servers 2
Bandwidth between edge servers 100Mbps
Bandwidth to cloud servers 200Mbps
Cores of each edge server 4
Cores of each local user 1

and five edge servers in the system. Each UE operates independently and generates a DAG-based
application with distinct complexity. The transmission bandwidth of UEs ranges from 5 to 30 Mbps.
The data volume and computational workload of UE tasks are evenly distributed within the ranges
of 0.2–2.0 MB and 3 × 104-2 × 106 cycles/bit, respectively. Table 2 presents the detailed parameters
in the MEC environment. The experiments were conducted on a Windows 10 system using an AMD
Ryzen R7 7735HS processor running at 3.2 GHz with 16 GB of memory. Python 3.9 and PyTorch
1.2.1 were used for implementation.

Various real-world IoT applications can be represented using DAGs that feature diverse task
counts and dependency structures. Therefore, we created multiple synthetic DAG sets, each with
varying task numbers and dependency patterns, to simulate scenarios where UEs produce heteroge-
neous DAGs with distinct characteristics. The DAG applications of UEs in this study are generated
using the method described in [10], where the shape of the DAG can be adjusted by tuning four
parameters: 𝑁𝑜𝑑𝑒𝑁𝑢𝑚,𝑀𝑎𝑥𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒, 𝛼, and 𝛽. Here, 𝑁𝑜𝑑𝑒𝑁𝑢𝑚 determines the total number of
tasks in a DAG,𝑀𝑎𝑥𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 restricts the maximum outdegree of nodes, 𝛼 determines the depth
of the DAG, and 𝛽 determines the alignment rate of the DAG. In this study, we set 𝛼=0.5 and 𝛽=0.5.
Considering the heterogeneity of tasks on each local user, the number of tasks (𝑁𝑜𝑑𝑒𝑁𝑢𝑚) and
depth (𝑀𝑎𝑥𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒) are set differently for applications on different UEs. To simulate diverse
application scenarios in MEC environments, we construct three types of periodic DAG applications
corresponding to different computational load levels:

— Light-load applications: 𝑁𝑜𝑑𝑒𝑁𝑢𝑚 ∈ [10, 15],𝑀𝑎𝑥𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 ∈ [2, 3]
—Medium-load applications: 𝑁𝑜𝑑𝑒𝑁𝑢𝑚 ∈ [20, 25],𝑀𝑎𝑥𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 ∈ [3, 4]
— Heavy-load applications: 𝑁𝑜𝑑𝑒𝑁𝑢𝑚 ∈ [30, 40],𝑀𝑎𝑥𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 ∈ [4, 5]

As defined in Section 3.5, the total execution time 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 of each DAG application is deter-
mined by the longest dependent path in the task graph after scheduling decisions are applied.
In our experiments, we use the LCM of all users DAG execution times 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 as the unified
episode time. This allows each UE to complete an integer number of DAG execution cycles
within a unified evaluation window. In our experiments, the values of 𝑇 𝑡𝑜𝑡𝑎𝑙𝑖 are computed af-
ter task scheduling decisions are made, based on the execution paths and data dependencies
defined in Section 3.5. This design ensures that the episode window is dynamically aligned with
the actual execution characteristics of each user’s DAG. The resulting episode time typically
ranges between 50 and 200 simulation time units depending on the DAG structure and system
configuration.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:20 Y. Wang et al.

Table 3. The PP0 and Training Hyperparameters

Parameter Value Parameter Value
MLP hidden units 256 Loss Coefficient 0.5
Cross-entropy 0.01 discount Factor 𝛾 [0.8-0.98]
Truncation constant 0.2 Policy Learning rate [1e-6,2e-2]
Balancing coefficient 𝜇 1.5 Critic Learning rate [2e-6,2e-2]

Table 4. The Encoder and Training Hyperparameters

Parameter Value Parameter Value
Dropout 0.2 hidden layer Dimension 10
GAT layer 3 Dimension of the output 20
heads 5 optimization Method Adam
Encoder Learning rate 1e-3 decoder Learning rate 5e-3

5.2 PPO Hyperparameters
Hyperparameters such as learning rate, truncation coefficient, and discount factor directly impact
the convergence speed of the algorithm. Table 3 provides the hyperparameter settings used for
training the algorithm, including the activation functions and optimizers for the network structure.
In the PPO task offloading model, an Encoder is used to perform dimensionality reduction on the
graph structure and information. The detailed configuration of the network structure and specific
hyperparameters for training the Encoder can be found in Table 4.

5.3 Performance Comparison
To evaluate the effectiveness of our proposed PPO task offloading algorithm (PPO) in this article,
we employed six benchmark offloading strategies for performance comparison. These strategies
include:

— Cloud-only: All computational tasks are completely offloaded to the cloud servers.
— Edge-only: Similar to Cloud-only, all tasks are offloaded to edge servers.
— Greedy Algorithm (Greedy): Utilizes the greedy algorithm strategy to perform tasks.
— DDRL: It is the extended and adapted version of the technique proposed in [10]. We extended
this technique so that it can be used in multi-users MEC to minimize the weighted cost of
energy consumption and computation fees.

— DDPG [1]: Similar the DDRL, we extended this technique so that it can be used in multi-users
MEC to solve DAG-structured task offloading.

— DQN: DQN has been widely used by many researchers to solve task offloading problems
[2, 5, 19]. In our experiment, we implemented the optimized DQN algorithm with an adaptive
exploration for task offloading in multi-users MEC environments. The hyperparameters of
this technique are set based on [19], which is a state-of-the-art DQN-based task offloading
technique for DAG-based IoT applications.

Figure 6 shows the average weighted cost performance of each episode under various strategies
with five UEs and a cycle shrinkage rate 𝜉 of 0.6.The figure shows that the strategies of full offloading
to the cloud servers and full offloading to the edge servers result in the highest costs. However,
the costs incurred by RL algorithms are better than those of the traditional greedy algorithm.
Greedy remains constant at 2080, never reducing, and algorithms like DQN and DDRL show more
fluctuations in cost, with DQN dropping rapidly but plateauing higher than PPO. From the figure
we can see that our proposed PPO task offloading (PPO) algorithm initially performs similarly to

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:21

Fig. 6. Cost performance of different algorithms for multi-user on MECs.

the greedy algorithm. Then, the PPO algorithm shows significant cost reduction as the number
of episodes increases. Starting from a cost of 2080 at the first episode, it quickly drops to 1560
at 50 episodes and reaches a low of around 940 from episode 200 onward. Compared to other
RL algorithms like DQN or DDRL, PPO maintains consistently lower costs, especially after 150
episodes, which demonstrates its efficiency and adaptability in reducing costs over time. Therefore,
PPO clearly outperforms other approaches in cost efficiency over a long period, proving its superior
optimization capabilities in this context.

Figure 6 also illustrates the convergence behavior of different algorithms over training episodes.
We observe that both DDRL and DDPG exhibit lower performance than the Greedy baseline
during the early stages (before episode 200). This is primarily due to the high variance and sample
inefficiency inherent in policy gradient methods when applied to sparse and delayed reward settings,
such as DAG-based task offloading. In contrast, the Greedy method-although lacking learning
capability-applies fixed heuristics that produce stable and deterministic behavior from the beginning,
which gives it a temporary advantage in early training. Moreover, we note that DQN achieves better
performance than DDPG across most of the training horizon. This result may seem counterintuitive,
as DDPG is theoretically more powerful. However, the offloading problem in our setting involves
discrete server selections, which are more naturally handled by value-based methods like DQN.
DDPG, originally designed for continuous action spaces, requires action discretization in our
implementation. This introduces approximation errors and leads to suboptimal performance due to
the mismatch between the algorithm’s action representation and the task’s intrinsic discreteness.
Our proposed PPO-based method consistently outperforms all baselines. By combining stable policy
optimization with a task-specific encoder and BC initialization, PPO achieves faster convergence,
better early-stage performance, and higher final reward.This validates the effectiveness of our design
in handling both the structural complexity of DAGs and the competition-awaremulti-user offloading
environment.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:22 Y. Wang et al.

Fig. 7. Latency and cost comparison under different RL learning model.

To compare latency across DAG applications of different sizes and topologies, we normalize task
completion times using the DAGs critical path. For each application, we define:

Normalized Latency =
1
|𝑉 |

∑
𝑣∈𝑉

𝑇 𝑓 𝑖𝑛𝑖𝑠ℎ𝑣 − 𝑇 𝑠𝑡𝑎𝑟 𝑡𝑣
𝑇 𝑐𝑟 𝑖𝑡 𝑖𝑐𝑎𝑙

(43)

where |𝑉 | is the number of nodes in the DAG, 𝑇 𝑓 𝑖𝑛𝑖𝑠ℎ𝑣 and 𝑇 𝑠𝑡𝑎𝑟 𝑡𝑣 are the actual finish and start times
of node 𝑣, and 𝑇 𝑐𝑟 𝑖𝑡 𝑖𝑐𝑎𝑙 denotes the length of the critical path, i.e., the minimum theoretical time to
complete the DAG without any resource contention or queuing. This metric reflects how efficiently
a scheduling algorithm can handle DAG execution relative to its inherent structural constraint.
In Figure 7, we compare the latency and cost of four RL algorithms, DDPG, DDRL, DQN, and

PPO, across different numbers of UEs. Here, ”Cost” represents the total cost for all tasks in a single
episode, while ”Latency” is normalization and refers to the time limited to complete one episode.
The results presented in Figure 7 are obtained after training each policy for 300 episodes. This choice
aligns with the convergence patterns observed in Figure 6, where all algorithms reach performance
stability beyond 250 episodes. Using episode 300 ensures a fair and consistent evaluation of the
learned scheduling policies under steady-state behavior. From the figure we can see that the
PPO algorithm consistently demonstrates a clear advantage in terms of latency as the number of
UEs increases. For example, while the latency for other algorithms like DDPG and DDRL rises
significantly and over time constraint (episode time) as the number of UEs grows, PPO maintains
stable performance, keeping latency below 1 episode time across most scenarios. This low latency
is critical in applications where real-time processing is essential. Additionally, PPO also shows
moderate cost efficiency. Although its cost tends to increase with the number of UEs, particularly at
higher scales (e.g., 3200 for 10 UEs), it still remains competitive. This is because our proposed PPO
algorithm takes into account the competition between different UEs. To ensure that all UEs complete
their tasks within the time cycle, the PPO algorithm assigns more tasks to be executed on the cloud
server, which results in higher costs compared to other algorithms. This balance between latency
and cost makes PPO an attractive choice for scenarios where both real-time performance and

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:23

0.2 0.4 0.6 0.8
Cycle Reduce Rate

0

250

500

750

1000

1250

1500

1750

Co
st

PPO
Greedy
DQN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Op
tim

al
 R
at
e

Multi-User Diff Cycle Reduce Rate

Optimization rate

(a)

4 6 8 10 12 14 16
Device Num

0

500

1000

1500

2000

Co
st

PPO
Greedy
DQN

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Op
tim

al
 R

at
e

Multi-User Diff Device Num
Optimization rate

(b)

1300

1400 PPO
Greedy
DQN

5 10 15 20 25 30
Bandwidth

600

620

640

660

680

700

Co
st

0.0

0.2

0.4

0.6

0.8

1.0

Op
tim

iza
tio

n
ra
te

Optimization rate

Multi-User Diff Bandwidth

(c)

Fig. 8. Comparative analysis of results between greedy and improved PPO.

cost are key factors. Overall, PPO stands out as the most robust and balanced option for handling
varying numbers of UEs, offering lower latency while maintaining reasonable costs compared to
other algorithms.
To more intuitively compare the performance advantages of the proposed algorithm with the

baseline algorithms, this study uses the optimization ratio 𝜌 as a measure. In this experiment, only
the optimization rate relative to the greedy algorithm is considered. We note that other baseline
algorithms, such as DDPG and DDRL, are not included in Figure 8, due to their poor convergence
and unstable performance under large-scale DAG workloads. Including these methods would not
provide meaningful comparison and may obscure the trends of well-performing algorithms. The
formula for calculating the optimization ratio is as follows:

𝜌 = 1 −
𝐶𝑜𝑠𝑡𝑃𝑃𝑂
𝐶𝑜𝑠𝑡𝑔𝑟𝑒𝑒𝑑𝑦

,

where 𝐶𝑜𝑠𝑡𝑃𝑃𝑂 and 𝐶𝑜𝑠𝑡𝑔𝑟𝑒𝑒𝑑𝑦 represent the total cost of PPO task offloading approach and that of
greedy task offloading strategy, respectively.
Figure 8 (a) illustrates the comparison of offloading computation costs among the greedy al-

gorithm, DQN, and our proposed PPO task offloading algorithm as the cycle shrinkage rate 𝜉
varies from 0.15 to 0.95 in increments of 0.05. The results show that all algorithms experience a
decrease in offloading computation costs with fluctuations as the cycle shrinkage rate changes.
This behavior is mainly influenced by the adjustment of the cycle shrinkage rate, which affects
the optimization duration (episode time) and consequently changes the total number of tasks
processed by the terminal devices within that duration. Moreover, the figure clearly shows that the
PPO task offloading algorithm proposed in this study consistently exhibits lower offloading costs
compared to the greedy algorithm and DQN offloading across different cycle shrinkage rates. This
is supported by the optimization ratio 𝜌 consistently surpassing 0, further confirming the efficiency
of the proposed algorithm. Additionally, the optimization ratio decreases as the cycle shrinkage
rate increases. This is because, to meet latency constraints and ensure real-time requirements for
tasks, more tasks need to be offloaded. Consequently, there is a gradual increase in offloading
computation costs, resulting in a reduction of the optimization ratio.

Figure 8 (b) illustrates the performance of the greedy algorithm, DQN, and PPO task offloading
algorithms in terms of offloading computation costs as the number of UEs increases from 3 to 16.
However, it is worth noting that as the number of UEs increases, the optimization ratio 𝜌 gradually
decreases. This phenomenon occurs because with the increase in the number of UEs, there is also an
increase in reliance on and computational demands for the remote servers. Consequently, offloading
computation costs rise, leading to a decrease in the optimization ratio.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:24 Y. Wang et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cycle Reduce Rate

0.3

0.4

0.5

0.6

0.7

Op
tim

al
 R
at
e

Ablation Experiments For Encoder
disable_encoder
enable_encoder

Fig. 9. The impact of Encoder on PPO at different cycle reduce rate.

Figure 8 (c) shows the changes in offloading computation costs for the greedy, DQN, and our
proposed PPO algorithms as the transmission bandwidth increases from 5 to 30 Mbps in increments
of 5 Mbps. Additionally, the cost reduction is more significant for the improved PPO algorithm.
Consequently, the optimization ratio slightly increases with the improvement in transmission
bandwidth.

5.4 The Impact of Encoder
To evaluate the specific impact of Encoder on the PPO algorithm’s performance, we compared the
performance changes of the PPO algorithm before and after integrating the Encoder. In this set
of experiments, there were six UEs, and the network transmission bandwidth was 20 Mbps. The
experimental results are shown in Figure 9. In the figure, ”disable encoder” and ”enable encoder”
respectively represent models without and with the integrated Encoder. From the figure, it is evident
that the model integrated with the task graph encoder consistently showed higher optimization
rates, denoted by 𝜌, under various cycle reduction conditions compared to the model without
integration of the Encoder. This is primarily attributed to the task graph encoder’s capability to
effectively integrate global node and structural information of tasks, enabling the PPO algorithm
to approach task allocation strategies from a broader perspective, resulting in lower-cost task
assignments.

5.5 Ablation Study on Behavior Cloning
To investigate the contribution of the BC module in our PPO-based offloading framework, we
conduct an ablation study by comparing the performance of the full method with a variant that
excludes the BC component. We design the ablation under the same MEC environment as described
in Section 5.1, using five UEs and heterogeneous periodic DAG applications. We compare two
versions: PPO (with BC): the complete model incorporating both the encoder and BC; PPO w/o

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:25

Fig. 10. Convergence comparison with and without BC.

Table 5. Comparison of Task Offloading Performance with and without BC

Method Total Offloading Cost Avg Task Completion Avg UE
Cost Time (unit) Energy (mJ)

PPO (with BC) 237.4 11.6 42.8
PPO w/o BC 259.7 13.1 47.9

BC: a reduced version where the PPO agent is trained from scratch without BC. Figure 10 shows
the convergence trends of both methods across 800 training episodes. PPO with BC converges
within approximately 400 episodes, while PPO w/o BC requires over 700 episodes to reach a similar
cost level. This validates that BC effectively guides the agent toward a good initial policy, reducing
exploration inefficiency.
This highlights the critical role of BC in reducing the search space during early training and

accelerating convergence, especially under high-dimensional and multi-agent MEC environments.
The quantitative results are summarized in Table 5.The results confirm that BC provides a goodwarm
start policy to the PPO agent, guiding it away from inefficient random exploration and enabling
better early-stage decisions. This improvement in training efficiency is particularly beneficial in
large-scale multi-user MEC systems with complex task structures.

5.6 Scalability Evaluation on Larger-Scale MEC Settings
To further evaluate the scalability of our approach, we conducted additional experiments with the
number of UEs ranging from 5 to 50. Each UE generates a periodic DAG-based application with
medium computational load. The MEC infrastructure includes 10 edge servers and 3 cloud servers.
We compare our method (PPO) with two baselines: the greedy algorithm and the GA+PSO hybrid
method.
Table 6 shows the total offloading cost and the average cost per UE as the number of users

increases. While the overall system cost naturally grows with more users, the average cost per UE
with PPO remains relatively stable and lower than heuristic methods when the number of users
exceeds 20. This suggests that our model learns to distribute tasks more effectively under resource
contention. Our PPO-based framework is inherently distributed and can be parallelized across agents
representing different UEs. Moreover, once trained, the PPO agent’s inference step is lightweight
and suitable for online decision-making. For MEC systems with hundreds of users, we envision
deploying the proposed method in a hierarchical manner, where edge domains manage subgroups of
users with localized PPO models. Future work will explore federated RL and cluster-based training
to further enhance large-scale deployability.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

2:26 Y. Wang et al.

Table 6. Total and Average Offloading Cost under Different
Numbers of UEs

UE Count Method Total Cost Avg Cost per UE
10 PPO 489.2 48.9
20 PPO 957.3 47.9
30 PPO 1442.1 48.1
40 PPO 1967.8 49.2
50 PPO 2520.3 50.4
50 Greedy 2782.6 55.6
50 GA+PSO 2643.1 52.9

6 Conclusion and Further Work
This article focuses on addressing challenges related to optimizing periodic DAG-structured tasks
for multiple UEs in MEC environments. The study aims to minimize costs associated with UE energy
consumption and server computation fees across multiple UEs by utilizing the PPO task offloading
algorithm. To streamline the search process for numerous UEs, a BC algorithm is integrated into
PPO, improving overall efficiency by initially cloning a greedy strategy. Additionally, an encoder
is introduced to transform and reduce the dimensionality of high-dimensional task statuses for
multiple users. Experimental results demonstrate the effectiveness of this algorithm in optimizing
joint periodic task offloading for multiple UEs in MEC environments, highlighting improvements
in task management efficiency.
As part of future work, we plan to extend our proposed weighted cost model to consider other

aspects such as dynamic changes in transmission power, monetary cost, and the total system cost.
Moreover, we will consider the bandwidth placement strategy and battery constraints of local UEs
when extending our proposed PPO model.

References
[1] Laha Ale, Scott A. King, Ning Zhang, Abdul Rahman Sattar, and Janahan Skandaraniyam. 2022. D3PG: Dirichlet DDPG

for task partitioning and offloading with constrained hybrid action space in mobile-edge computing. IEEE Internet of
Things Journal 9, 19 (2022), 19260–19272.

[2] Laha Ale, Ning Zhang, Xiaojie Fang, Xianfu Chen, and Longzhuang Li. 2021. Delay-aware and energy-efficient
computation offloading in mobile edge computing using deep reinforcement learning. IEEE Transactions on Cognitive
Communications and Networking 7, 3 (2021), 881–892.

[3] Yuwei Bian, Yang Sun, Mengdi Zhai, Wenjun Wu, Zhuwei Wang, and Junjie Zeng. 2023. Dependency-aware task
scheduling and offloading scheme based on graph neural network for MEC-assisted network. In Proceedings of the 2023
IEEE/CIC International Conference on Communications in China (ICCC Workshops). 1–6.

[4] Weiwei Chen, Dong Wang, and Keqin Li. 2019. Multi-user multi-task computation offloading in green mobile edge
cloud computing. IEEE Transactions on Services Computing 12, 5 (2019), 726–738.

[5] Xiangchun Chen, Jiannong Cao, Yuvraj Sahni, Shan Jiang, and Zhixuan Liang. 2024. Dynamic task offloading in edge
computing based on dependency-aware reinforcement learning. IEEE Transactions on Cloud Computing 12, 2 (2024),
594–608.

[6] Ziya Chen, Qian Ma, Lin Gao, and Xu Chen. 2024. Price competition in multi-server edge computing networks under
SAA and SIQ models. IEEE Transactions on Mobile Computing 23, 1 (2024), 754–768.

[7] Yuya Cui, Degan Zhang, Ting Zhang, Peng Yang, and Haoli Zhu. 2021. A new approach on task offloading scheduling
for application of mobile edge computing. In Proceedings of the 2021 IEEE Wireless Communications and Networking
Conference (WCNC). 1–6.

[8] Xiaoheng Deng, Jian Yin, Peiyuan Guan, Neal N. Xiong, Lan Zhang, and Shahid Mumtaz. 2023. Intelligent delay-aware
partial computing task offloading for multiuser industrial internet of things through edge computing. IEEE Internet of
Things Journal 10, 4 (2023), 2954–2966.

[9] ThinhQuang Dinh, Jianhua Tang, Quang Duy La, and Tony Q. S. Quek. 2017. Offloading in mobile edge computing:
Task allocation and computational frequency scaling. IEEE Transactions on Communications 65, 8 (2017), 3571–3584.

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

Cost-Optimized Periodic DAG-Structured Task Offloading in Multi-User MEC Systems 2:27

[10] Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya. 2023. A distributed deep reinforcement learning
technique for application placement in edge and fog computing environments. IEEE Transactions on Mobile Computing
22, 5 (2023), 2491–2505.

[11] Qiangqiang Jiang, Xu Xin, Libo Yao, and Bo Chen. 2024. METSM: Multiobjective energy-efficient task scheduling model
for an edge heterogeneous multiprocessor system. Future Generations Computer Systems: FGCS 152 (2024), 207–223.

[12] Qinting Jiang, Xiaolong Xu, Qiang He, Xuyun Zhang, Fei Dai, Lianyong Qi, and Wanchun Dou. 2021. Game theory-
based task offloading and resource allocation for vehicular networks in edge-cloud computing. 2021 IEEE International
Conference on Web Services (ICWS). Chicago, IL, USA, 2021, 341–346.

[13] JoiloSlaana and DnGyrgy. 2020. Computation offloading scheduling for periodic tasks in mobile edge computing.
IEEE/ACM Transactions on Networking 28, 2 (2020), 667–680.

[14] Xiang Ju, Shengchao Su, Chaojie Xu, and Haoxuan Wang. 2023. Computation offloading and tasks scheduling for the
internet of vehicles in edge computing: A deep reinforcement learning-based pointer network approach. Computer
Networks 223 (2023), 109572.

[15] Xiangjie Kong, Yuhan Wu, Hui Wang, and Feng Xia. 2022. Edge computing for internet of everything: A survey. IEEE
Internet of Things Journal 9, 23 (2022), 23472–23485.

[16] Keqin Li. 2022. Distributed and individualized computation offloading optimization in a fog computing environment.
Journal of Parallel and Distributed Computing 159 (2022), 24–34.

[17] Qing Li, Shangguang Wang, Ao Zhou, Xiao Ma, Fangchun Yang, and Alex X. Liu. 2020. QoS driven task offloading
with statistical guarantee in mobile edge computing. IEEE Transactions on Mobile Computing 21, 1 (2020), 278–290.

[18] Shaoran Li, Chengzhang Li, Yan Huang, Brian A. Jalaian, Y. Thomas Hou, and Wenjing Lou. 2021. Task offloading with
uncertain processing cycles. In Proceedings of the 22nd International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing .

[19] Wang Li, Xin Chen, Libo Jiao, and Yijie Wang. 2023. Deep reinforcement learning-based intelligent task offloading
and dynamic resource allocation in 6G smart city. In Proceedings of the 2023 IEEE Symposium on Computers and
Communications (ISCC) . 575–581.

[20] Tong Liu, Yameng Zhang, Yanmin Zhu, Weiqin Tong, and Yuanyuan Yang. 2021. Online computation offloading and
resource scheduling in mobile-edge computing. IEEE Internet of Things Journal 8, 8 (2021), 6649–6664.

[21] T. D. Nguyen, X. Q. Pham, and V. Nguyen. 2021. Joint service caching and task offloading in multi-access edge
computing: A QoE-based utility optimization approach. IEEE Communications Letters 25, 3 (2021), 965–969.

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization
algorithms. CoRR abs/1707.06347 (2017).

[23] Om Kolsoom Shahryari, Hossein Pedram, Vahid Khajehvand, and Mehdi Dehghan Takhtfooladi. 2021. Energy and task
completion time trade-off for task offloading in fog-enabled IoT networks. Pervasive and Mobile Computing 74, 2021
(2021), 101395.

[24] Zhengyu Song, Yuanwei Liu, and Xin Sun. 2021. Joint task offloading and resource allocation for NOMA-enabled
multi-access mobile edge computing. IEEE Transactions on Communications 69, 3 (2021), 1548–1564.

[25] Tuyen X. Tran and Dario Pompili. 2019. Joint task offloading and resource allocation for multi-server mobile-edge
computing networks. IEEE Transactions on Vehicular Technology 68, 1 (2019), 856–868.

[26] Jiayin Wang, Yafeng Wang, Peng Cheng, Kan Yu, and Wei Xiang. 2023. DDPG-based joint resource management for
latency minimization in NOMA-MEC networks. IEEE Communications Letters 27, 7 (2023), 1814–1818.

[27] Zhonglun Wang, Peifeng Li, Shuai Shen, and Kun Yang. 2021. Task offloading scheduling in mobile edge computing
networks. Procedia Computer Science 184 (2021), 322–329.

[28] Zhiyuan Wang and Qi Zhu. 2020. Partial task offloading strategy based on deep reinforcement learning. In Proceedings
of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC). 1516–1521.

[29] Yalan Wu, Jigang Wu, Long Chen, Bosheng Liu, Mianyang Yao, and Siew Kei Lam. 2024. Share-aware joint model
deployment and task offloading for multi-task inference. IEEE Transactions on Intelligent Transportation Systems 25, 6
(2024), 5674–5687.

[30] Zeinab Zabihi, Amir Masoud Eftekhari Moghadam, and Mohammad Hossein Rezvani. 2023. Reinforcement learning
methods for computation offloading: A systematic review. 56, 1, Article No. 17 (2023), 1–41.

[31] Zhiwei Zhang, Zehan Chen, Yulong Shen, Xuewen Dong, and Ning Xi. 2024. A dynamic task offloading scheme
based on location forecasting for mobile intelligent vehicles. IEEE Transactions on Vehicular Technology 73, 6 (2024),
7532–7546.

Received 2 November 2024; revised 3 July 2025; accepted 7 August 2025

ACM Trans. Internet Technol., Vol. 26, No. 1, Article 2. Publication date: January 2026.

	1 Introduction
	2 Related Work
	2.1 Periodic DAG-Structured Task Offloading in MEC
	2.2 RL for DAG-Structured Task Offloading in MEC

	3 Models
	3.1 System Models
	3.2 Task Assigned and Execution Models
	3.3 Modeling Competition Among Multiple Users
	3.4 Communication Model
	3.5 Total Execution Time
	3.6 Cost Model
	3.7 Problem Formulation

	4 PPO Learning Model for Periodic Task Offloading
	4.1 The Overview of PPO
	4.2 Markov Decision Process
	4.3 Encoder
	4.4 Behavior Cloning
	4.5 Periodic DAG-Structured Task Offloading and Resource Allocation

	5 Experiments
	5.1 Experimental Setup
	5.2 PPO Hyperparameters
	5.3 Performance Comparison
	5.4 The Impact of Encoder
	5.5 Ablation Study on Behavior Cloning
	5.6 Scalability Evaluation on Larger-Scale MEC Settings

	6 Conclusion and Further Work
	References

