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Reinforcement Learning (RL) has emerged as a promising solution for task offloading due to its adaptability to
dynamic environments and ability to reduce online computational overhead. Thereby, this article explores RL
for optimizing periodic Directed Acyclic Graph (DAG) task offloading in multi-user Mobile Edge Computing
(MEC) systems, aiming to minimize overall costs, including user device energy consumption and server
computational charges. A key contribution of this work is the explicit modeling of user competition for limited
edge resources, where concurrent access leads to dynamic contention, significantly affecting offloading latency
and energy usage. However, this optimization task faces two main challenges: the high dimensionality of task
states and the large action space, both of which increase learning complexity. To address this, we propose
a dynamic and distributed Proximal Policy Optimization (PPO)-based offloading framework. An encoder is
employed to map DAG node features and structural information into a lower-dimensional representation,
reducing computational overhead and improving learning efficiency. Additionally, we incorporate behavioral
cloning to imitate greedy policies as the PPO agent’s initial behavior, effectively narrowing the action space and
accelerating convergence. By combining representation learning and imitation-based initialization, our method
enables the PPO agent to quickly adapt to environmental dynamics, leveraging both prior knowledge and real-
time feedback to make informed offloading decisions. Simulation results confirm that our approach achieves
rapid convergence and outperforms existing baselines in cost reduction, demonstrating its effectiveness
for periodic task offloading in MEC scenarios. The source code and implementation details are available at:
https://github.com/xiaolutihua/GAT/tree/master.
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1 Introduction

The proliferation of Internet of Things (IoT) technologies has led to an exponential growth in
the interconnection of devices to the internet, resulting in the generation of voluminous data.
This surge has precipitated a significant escalation in data volume on user equipment (UE),
consequently amplifying the operational demands on network infrastructures and cloud computing
centers, and concurrently escalating the associated economic costs. Numerous application scenarios,
including autonomous driving, industrial automation, and telemedicine, necessitate extremely
low latency and real-time response capabilities. Consequently, there is a critical need for data
processing to be performed at the site of data generation to mitigate data transmission and augment
processing velocity. However, the limited computational resources and processing capabilities
inherent to edge UE may result in inadequate computational power when tasked with managing
complex computational tasks. This challenge necessitates the exploration of alternative solutions to
enhance computational efficacy at the edge of the network. In response to these challenges, Mobile
Edge Computing (MEC) has emerged as a viable solution, facilitating the decentralization of
computational resources and services toward the network periphery [15]. Within this paradigm,
users are empowered to delegate their computation-intensive tasks to infrastructures rich in
resources, such as MEC servers. Therefore, there has been a burgeoning interest from both the
industrial sector and academic circles in the development of optimal strategies for task offloading.

In the pursuit of augmenting task offloading decisions, an array of optimization methodologies
is under investigation, encompassing heuristic algorithms [11, 24, 26], machine learning models
[28, 29], and game-theoretic approaches [12, 16]. These methodologies are designed to reduce latency,
curtail energy expenditure, and diminish computational costs, whilst concurrently striving to
augment the overall system throughput. A pivotal facet of this realm pertains to the optimization of
periodic Directed Acyclic Graph (DAG) task offloading, wherein computational tasks are migrated
from UE to edge or cloud servers at predetermined intervals. Despite the substantial practical
significance of the behavioral and economic modeling of such task offloading paradigms, research
endeavors that integrate user behavioral decision-making traits encounter considerable challenges.
These challenges arise from the intricate and multifaceted attributes of periodic DAG-structured
tasks within the context of heterogeneous multi-user settings. This article endeavors to confront
these challenges by examining the interplay among user behavioral characteristics, the intricacies
of heterogeneous multi-user environments, and the computational expenses associated with Multi-
Access Edge Computing servers. Unlike prior works that assume independent offloading decisions,
we consider the competitive dynamics of multiple users sharing constrained edge resources. These
interactions introduce substantial variability in task latency and energy consumption, necessitating
competition-aware scheduling strategies. By explicitly modeling such dynamics, our approach aims
to minimize offloading costs in a manner robust to both user contention and system heterogeneity.
This methodology empowers UEs to tailor their offloading strategies in accordance with real-time
conditions and the presence of other users within the network environment.

Reinforcement Learning (RL) emerges as a promising paradigm for orchestrating distributed,
heterogeneous multi-user MEC systems, particularly in addressing the unique computational de-
pendencies inherent in DAG-structured tasks. Its capacity to address multi-user task offloading
challenges through collaborative agent optimization enhances the collective synergistic efficacy
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of the system. In this article, we study an RL algorithm to address the periodic DAG-structured
task offloading problem within multi-user MEC settings. While existing studies have investigated
generic task offloading challenges [18], the structural complexity of DAG-structured tasks intro-
duces two distinctive challenges that have not been sufficiently addressed in multi-user MEC
environments: (1) DAG-Driven State Space Explosion: Unlike conventional linear task models, the
topological ordering and inter-task dependencies in DAG workflows exponentially expand the
state representation dimension. Specifically, the state space must encode not only the conventional
UE-device parameters but also precedence constraints between vertices and dynamic branch execu-
tion probabilities, resulting in a combinatorial state space complexity of O(N Dy where N denotes
concurrent UEs and D represents average DAG depth. (2) The Expansive Action Search Space:
The parallel execution constraints imposed by DAG edges fundamentally alter the action space
characteristics. Each offloading decision must simultaneously satisfy: (a) parent node execution
precedence, (b) branch synchronization requirements, and (c) heterogeneous resource contention
across multi-user edge servers. This creates a cascading action space where local decisions at
one node propagate constraints through the entire DAG graph. With an increasing number of
users generating real-time computation tasks, the endeavor to minimize offloading expenditures
for the collective user base leads to a substantial prolongation of the episode time required for
the optimization of RL algorithms. This augmentation of the environmental action search space
presents a formidable challenge for the training of RL algorithms.

Within the scope of this scholarly endeavor, we conduct an iteration of the Proximal Policy
Optimization, a type of RL algorithm, designated as PPO, aimed at optimizing the offloading of
periodic DAG-structured tasks within a multi-user Mobile MEC environment. The PPO algorithm,
as articulated by Schulman et al. [22], adeptly encapsulates and delineates the intrinsic structural
attributes of tasks amidst a heterogeneous server environment. This approach demonstrates equiva-
lence or superiority in performance when juxtaposed with existing state-of-the-art methodologies,
while concurrently offering a more streamlined implementation and calibration process. To ad-
dress the challenges of high dimensionality and expansive search spaces, this article delineates
the incorporation of Encoding and Behavioral Cloning techniques. Within the framework of the
PPO, the amalgamation of an encoder and behavioral cloning enables the PPO model to efficiently
assimilate and accommodate the nuances of the environment. Furthermore, by incorporating the
energy expenditure of UEs and the computational costs of servers into the task cost functions, the
agent is endowed with the capacity to render judicious decisions regarding task offloading. This
holistic approach ensures a balanced optimization of both energy conservation at the UE level and
economic efficiency in terms of server utilization.

The main contributions of the article are summarized as follows.

— We introduce a dynamic and distributed RL approach, PPO, which is specifically designed for
managing periodic task offloading in multi-user MEC environments. This strategy incorpo-
rates behavioral cloning technology and an encoding mechanism to augment computational
performance, thereby facilitating intelligent decision-making processes that are adept at
minimizing costs while adhering to time and resource constraints.

— To address the issue of high dimensionality in task states, we design a task-specific En-
coder that effectively integrates node-level features and DAG structural dependencies into
a compact, low-dimensional embedding. This customized representation is tailored to our
scheduling environment and enhances the PPO agent’s capacity to make informed decisions
in complex, high-dimensional state spaces.

— To cope with the enlarged action space caused by the presence of numerous users and tasks,
we introduce a behavioral cloning pre-training phase. Instead of merely replicating existing
strategies, we construct a lightweight expert policy based on domain-specific heuristics,
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which guides the initial learning process of the PPO agent. This significantly accelerates
convergence and improves policy quality, particularly in the early stages of training.

— We propose a low-complexity greedy matching algorithm designed to provide an initial
task offloading policy for PPO agents. By harnessing behavioral cloning techniques, this
algorithm not only diminishes the search space but also bolsters the overall efficiency of
the task offloading process, ensuring that the PPO agents can swiftly adapt to the dynamic
requirements of the MEC environment.

The rest of the article is organized as follows. Section 3 describes the system model, execution
models, cost models, and problem formulation. In Section 4, the cost optimal task offloading
algorithm based on PPO learning model for the MEC environments is proposed. We evaluate the
performance of our proposed technique and compare it with state-of-the-art techniques in Section 5.
Section 6 concludes the article.

2 Related Work
2.1 Periodic DAG-Structured Task Offloading in MEC

Several studies [3, 7, 9, 14, 17, 21, 27, 30] have addressed the periodic task offloading problem and
provided insights into efficient strategies and algorithms. Dinh et al. [9] explored task offloading
scenarios involving multiple edge servers for a single user. They proposed linear relaxation and
Semidefinite Relaxation (SDR) techniques to allow users to offload independent tasks to dif-
ferent edge servers while satisfying latency constraints. Pham et al. [21] formulated the periodic
task offloading problem by formulating it as an integer non-linear programming problem. They
introduced a nested genetic algorithm to maximize MEC utilization. However, these methodological
approaches, while ostensibly effective for singular user paradigms, encounter inherent limitations
and formidable challenges when scaled to accommodate the complexities of multi-user interactions.

Optimizing multi-user periodic task offloading aims to improve distribution efficiency, reduce
latency, maximize resource utilization, and enhance overall system performance. Recently, this
problem has received significant research attention [4, 6, 13, 18, 23]. In their work, Josilo et al. [13]
proposed a task offloading and resource allocation algorithm based on game theory for offloading
real-time tasks in heterogeneous communication MEC environments. Shahryari et al. [23] developed
a suboptimal algorithm that combines genetic algorithms and particle swarm optimization to address
the issue of limited battery capacity and task delay sensitivity in UEs.

2.2 RL for DAG-Structured Task Offloading in MEC

Using RL to solve DAG-structured task offloading in MEC, the state space is defined using both the
DAG structure of the application, MEC environment status information, and the corresponding
offloading strategy for its tasks. The action space, on the other hand, determines whether a task
will be executed locally or offloaded to a MEC server. The current research landscape in periodic
task offloading focuses on developing RL strategies to address challenges such as latency, energy
consumption, and network bandwidth constraints [2, 5, 8, 10, 14, 19, 30, 31]. Deng et al. [8] pre-
sented a DAG-structured task offloading and resource allocation algorithm based on the DDPG
model, aiming to reduce task execution delays and enhance service quality in MEC systems. In [10],
Goudarzi et al. proposed an actor-critic-based distributed application placement technique utilizing
importance-weighted Actor-Learner Architectures. This technique efficiently addresses the applica-
tion placement problem of Directed DAG IoT applications in heterogeneous MEC environments,
where edge and cloud servers collaborate. In their work, [20] introduced an attention-driven double
deep Q network (DDQN) aimed at reducing both task completion delay and energy consumption
over the long term.
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Fig. 1. An overview of our system model.

However, it is imperative to acknowledge a substantial limitation inherent in the aforementioned
RL task offloading methodologies. These techniques fail to account for the contention among User
Equipment UE users, which can lead to certain tasks being queued on the server, pending the
completion of other UE tasks, thereby exacerbating the overall execution latency. Consequently, this
article study endeavors to incorporate the rivalry among multiple UEs in its approach to tackling
the offloading of periodic DAG-structured tasks within the ambit of multi-user MEC environments.
This comprehensive consideration is essential to mitigate the delays induced by concurrent task
processing and to enhance the efficacy of task offloading strategies in a shared computing context.

3 Models

In this section, we present the system model, the execution models for both offloaded and non-
offloaded tasks, the cost consumption models for both energy consumption on local users and
computation fees on servers, and the problem formulation. Table 1 gives a summary of notations
and definitions introduced in this article.

3.1 System Models

As shown in Figure 1, we consider a multi-user MEC system consisting of Nlocal UEs, denoted as
{UE,, ... ,UEN}, and M heterogeneous servers, denoted as {MECj, ..., MEC)}. These heterogeneous
servers, including both edge servers and remote cloud servers, offer computation offloading services
for UEs.

Each user UE; has a periodic DAG application represented by G; = (V;, E;), consisting of N;
subtasks. The set of subtasks for DAG G; is defined as V; = {"i,ls s Voo Vi,Ni}a where each node
v j represents the jth subtask in DAG G;. Each subtask v; ; € V; is defined as v; ; = (r; ;, d; j, ram; ;),
where r; j represents the total instructions (in BI) required for the execution of v j, d; ; denotes the
self-data needed (in MB) during the execution of v; ;, and ram; j indicates the minimum memory
required for executing task v ;. The edge set E; C V; x V; represents the dependency relationships
among periodic subtasks in DAG G;. An edge ¢(u, j) € E; indicates that tasks v;, and v; ; have a
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Table 1. Summary of Notations and Definitions

Notation | Definition

N, UE; the number of UEs and the i-th UE

M, MEC,, | the number of servers and the m-th MEC

£ the CPU-cycle frequency of UE;
fimec the CPU-cycle frequency of MEC,,

PG, j) the processor for execution v ;

Jiiad the number of CPU cycles for a instruction on UE;
ec the number of CPU cycles for a instruction on MEC,,

vij» Vi the j-th task and the tasks set of UE;

hij the computation requirement of v; ;

dij the communication requirement of v ;

ram the memory requirement of v, ;

Pit,m The transmission power from UE; to MEC,,

Rim the communication speed from UE; to MEC,,

Tjm the execution time of v; ; on MEG,,

Tjo the execution time of v; ; on UE;

g the real execution time for task v; ;

(,:] m the communication time of v; ; from UE; to MEG,,
Ticj the real communication time for self-data of task v ;
T the start time of task v; ;

T‘Z"d the finish time of task v; ;

Ef the computation energy consumptlon of v jon UE;
Eld; the transmission energy for self-data of v; ;
Elgilay the receive e‘:nergy from parents of v; ;

T i The processing latency of v ;

Ti“’ml the total latency of UE; in a period

TG the communication time of task v ;

TP(u,j) | the communication time from task Viu to vy
Elp (u, j) the transmission energy from v; ,, to v; ;
Cost}’y the total energy consumption on UE; for v;
Cost]"i* the service cost for v; ;

Cost{?ml the total cost consumption 0f v; ;

precedence constraint, meaning task v ; cannot be executed until task v, has finished. The value
associated with ¢;(u, j) indicates the amount of data from v ,, required for the execution of task v;

Each subtask v; ; can be executed locally on UE; ofﬂoaded to an edge server, or further ofﬂoaded
to a cloud server. The UE sends its application ofﬂoadlng requests to the scheduler at the network’s
edge. The scheduler then makes decisions based on period time, energy consumption, computation
fees, and resource constraints, determining whether to execute tasks locally or on a server. This
ensures efficient task allocation, aiming for lower total cost including UE’s energy consumption
and servers’ computation fees.

In our model, we assume that the input DAG has been pre-processed and decomposed into
atomic task nodes. Each node represents a fine-grained subtask that cannot be further partitioned,
either due to data dependencies or granularity constraints. This assumption aligns with common
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practice in DAG-based computing frameworks such as TensorFlow and Apache Spark, where the
DAG structure reflects post-partitioned operations. Consequently, each node is assigned to a single
processor for execution, and our focus lies in optimizing the placement and scheduling of these
subtasks in multi-user edge environments.

3.2 Task Assigned and Execution Models

Task assignment: Each task v; ; can be assigned to a server for remote execution or to the UE for
local execution. Let the binary variable x; ; ,, denote whether task v, ; is scheduled on server MEC,,.
If task v; ; is assigned to server MEG,,, then x;; ,, = 1; otherw1se x, jm = 0. Each task node can
execute on only one processor (UE or server)

Z Xjm=1 Vi€ [1,N].¥je[LN]. (1)

The processor P(i, j) on Wthh task v, j is executed can be defined as

M
P(@i,j) = Z mxx;;m, Vi€ [1,N],Vje[1,N] (2)
m=0
Here, if x; ;o = 1, then P(i, j) = 0 that means the task v; ; is executed on local UE;.
Local execution model: If task v ; is not offloaded and is executed locally on UE;, the computa-

tion time of v; ; on UE; is given by

r; . pHe
Tijo = l]]fle ; (3)
1
where f*¢ represents the CPU-cycle frequency of UE; and 3 is the number of CPU cycles needed
to execute one instruction on UE;.
Offloading execution model: If task v ; is offloaded to server MEC,,, the computation time of

v; - on server MEC,, can be expressed as

L,J

ri,jﬁr’hm
Ljim = e (4)
m

where f' denotes the CPU-cycle frequency of server MEC,, and f7°° is the number of CPU
cycles needed to execute one instruction on server MEC,),.
Therefore, the actual computation time for task v; ; can be obtained by the following equation:

Te = Z i,jmXi,jm- (5)

3.3 Modeling Competition Among Multiple Users

In our system, multiple users share a limited set of edge and cloud resources. When tasks from
different users are offloaded to the same MEC server, resource contention arises, including compe-
tition for CPU cycles and memory capacity. To model this contention, we introduce the following
computation capacity constraint for each MEC server MEC,,;:

' mec
ZZ Xijm® lJ]t‘mr:c <C, Vmel[1,M], (6)
i=1 j= m
where C,,, denotes the maximum available CPU time in each scheduling period at MEC,,. This
constraint ensures that server resources are not oversubscribed and that offloading decisions are
aware of inter-user competition.
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Moreover, when multiple users compete for the same server, tasks may experience queuing delays
and increased waiting times, which directly impact execution latency and energy consumption.
Our scheduling algorithm, introduced in Section 4, addresses this issue by jointly optimizing task
placements while minimizing both UE-side energy usage and server-side computation costs.

3.4 Communication Model

For task v; ;, the communication consists of two parts: the communication for its self-data volume
d; j and the communication for receiving required data from its parent tasks.

Communlcatlon time for the self-data d; ;: If task v, ; is offloaded to server MEG,, for remote
execution, the communication time Ti‘:j’m of its self-data d,-’ jcan be defined as

17, = (7)
Lj,m Ri,m
where R; 'm Tepresents the transmission rate between UE; and MEC,,,. Therefore, the actual commu-
nication time Tc required for the self-data d; ; of task v, ; is defined as

M
T = 2 Tm¥ijm ®)

m=1
Communication time for receiving data from parents- If task v; ,, is a parent of task v, ;,
executing task v ; requires receiving data from task v;,. If both tasks are processed on the same
processor, the communlcatlon time is 0. If the tasks are processed on different processors, the
communication time depends on the amount of data to be accessed and the bandwidth between the
processors. Thus, the communication time Tip (u, j) required to receive data from task v;,, can be

defined as

ei(u, 1)) .
, k#h,e(u,j) €E
TPw.j)=1{ Ren ’ l )

0, k=heuj ek

where k = P(i, j) and h = P(i, u) are the processors for executing task v; j and v; ,, respectively.

3.5 Total Execution Time

The start time Ts of task v; ; depends on the finish time of all its parent tasks. If task v; , is a parent

of task v; 0 then the start tlme TS of task v, j can be calculated by

T$; = max(T5, + Tf, + TP (u, j)). (10)

In the case where a task v; ; has no parent tasks, its start time Tl-sj depends on the time required to
transfer its self-data d; ;, we can define this start time Ts as

1)
Ly =T (11)

By adding the start time and the execution time, we get the finish time of the task. Thus, the finish
time Tlej”d of task v; ; is given by
T"”d T + T3 (12)

Therefore, the total execution time Tl-toml of the DAG G; is the maximum of the finish times of all
tasks in G;, it can be defined as

Titotal — maX(TieJ(zd). (13)
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3.6 Cost Model

There are two components in the cost consumption i.e., energy consumption by local UEs and
computation fees for servers.

Energy consumption by local UEs: Following conventional mobile computing models [25], we
adopt a dynamic CPU power consumption model where the energy consumption of local execution
is defined as

E;= &(f*)? x Tijo % %0, (14)

where ¢ is a device-specific constant representing the effective switched capacitance. If a task
is offloaded to server MEC,,, the energy consumption relates to communication. Let Pltm be the
transmission power of UE; to MEC,,. Then, the energy consumption for transmitting d; ; from UE;
to MEC,, is

M
d _ t c
Ei,j - Z Pi,m x Ti,j,m X Xi.jm- (15)
m=1

Additionally, if task v; ; is executed locally, we must consider the energy consumption of receiving
data from parents processed remotely. Conversely, if executed on a server, the energy consumption
of receiving data from parents processed locally must be considered. Let Elp (u, j) represent the
energy consumption of receiving data from its parent v; ;. It can be defined as

’I;P(u, ]) X Pit,k’ lfxl’J’O = 1, xi’u,o = O,

EP(u,j) = (16)
! Tlp(u, ]) X Pi{h’ if xl‘)j)() = 0, Xi}u’o =1.
Thus, the energy consumption of receiving data from its parents for task v ; is defined as
Elpj = Z Ef(u, ). (17)
e(u.))EE;
Therefore, the total energy consumption for task v; ; on UE; can be defined as
— d P
Costi'f = prx (Ef; + Ef; + E; ), (18)

where prrepresents the price of unit energy consumption on UEs.

Computation fees on servers: The computation fees depend on the computation time of tasks
on servers. Let price,, denote the price of unit computation time on server MEC,,. The computation
fees for each task v; ; on servers can be defined as

M
Cost]} = Z pricey, X T j m X X j m- (19)

m=1

In summary, the total cost consumption for task v ; is defined as
total _ ue mec
Costi’j = Costi’j + Costl.’j . (20)

3.7 Problem Formulation

Assume a multi-user MEC system with N UEs and M servers, including edge and cloud servers. The
computation frequency f“¢ of each UE;, the computation frequency f;'* of each server MEC,,,
the communication power P!, , and the communication speed R; ,,, between processors are known

in advance. The objective is to find a computation offloading strategy for each UE; that minimizes
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episode time

(& /

Fig. 2. The episode time.

total costs while satisfying the periodic tolerance latency T; of each UE;. Thus, the optimization
problem can be formulated as

N N
min Cost = Z Z Costit;?t“l,
Fijm i=1j=1

M
s.t.C1: in,j,mzl’ VIEN,]EM
m=0

(21)
C2: T/ < T, VieN

C3: (6),
M
C4 i ram;; < x50 - um,f T+ Z Xijm Smr]:zree,
m=1
free free . .
whereum;  and smy,  represent the free main memory of UE; and MEC,),, respectively, that can be

allocated for executing tasks. Constraint C3 guarantees that server resources are not over-allocated
and that offloading decisions consider the competition among users. Constraint C4 specifies that
the available memory on the processor serving a task must be at least equal to the memory required

fre

for that task. For a server MEC,,,, the available memory smy, ** fluctuates based on the number of
tasks it handles.

Since each application on a local user UE; has its own period time T}, the number of iterations
executed by each UE varies over time, making it difficult to calculate the total computation cost
for all UEs. Fortunately, we can reformulate the problem to minimize the computation cost over a
specific optimization period. We call this optimization period the “episode time.” To better reflect
the actual scenario, we set this “episode time” to the least common multiple (LCM) of all the UE
cycles T;. For example, as shown in Figure 2, there are three applications A;, A,, and As. Suppose
the periods of these three applications are 4 units, 6 units, and 3 units, respectively. The LCM of
these three periods is the smallest positive integer that is divisible by all three periods. Thus, the
LCM of these three periods is 12 units. Within these 12 units, applications A;, A,, and A3 complete
3 cycles, 2 cycles, and 4 cycles, respectively. To evaluate the minimization of the total computation
cost for these three applications, we only need to calculate the total computation cost within these
12 units. Therefore, the aforementioned objective function can be transformed into:

LCM

N N T l
: _ tota
min Cost = z; Z; Z:l Costi’j)g , (22)
i=1j=1g=
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Behavior Cloning for Initial Policy PPO Interaction with the Environment

Greedy behav_loral PPO Agent .MEC
strategy cloning enviomment

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

collecting
task
states

Fig. 3. The overview of PPO learning model.

where LCM is the episode time, and Costf?tgl represents the cost of task v;; in the gth iteration

within its episode time.

4 PPO Learning Model for Periodic Task Offloading
4.1 The Overview of PPO

This section employs the PPO model to address the optimization challenges of periodic DAG-
structured task offloading within multi-users MEC systems. The algorithm framework as shown in
Figure 3 consists of three critical components: (1) Behavior Cloning (BC) for Initial Policy: The
initial policy for the PPO agent is derived using BC. In this phase, the greedy algorithm’s strategy
is replicated and transferred to the PPO agent. This ensures that the agent starts with a reasonable
policy based on pre-existing knowledge to handle the expansive action search space. (2) Encoder
for Dimensionality Reduction: The Encoder is employed to process the task states, transforming
them into low-dimensional representations. This step is essential for reducing the complexity of the
state space, making it more manageable for the PPO learning model. (3) PPO Interaction with the
Environment: The PPO agent interacts with the environment to learn and refine its policy. Through
these interactions, the agent collects new experiences, which are used to update its policy.

4.2 Markov Decision Process

In our model, we formulate the task offloading process as a Markov Decision Process (MDP),
where each state s; captures the current execution context and the action a; denotes the scheduling
decision. The multi-user learning model is defined by a tuple < S, A, P, R,y >, where S and A are
the state and action spaces, respectively. P denotes the state-action probability, and R stands for the
reward function. The parameter y, ranging from 0 to 1, acts as a discount factor determining the
importance of future rewards. We assume iterations are divided into multiple episodes, denoted
ast € K, with K being the number of episodes. During each episode t, the agent interacts with
the environment, perceives the current state s;, and selects an action a; based on its policy 7(as;),
which maps states to actions. The state transition to s;,; is deterministically defined by task
completion rules, resource constraints, and system timing updates. That is, the environment follows
a deterministic transition function s, = f(s;, a).

Although the transition model is deterministic in simulation, the overall system still exhibits
non-stationary and partially observable behavior due to multi-user interference and dynamic
workloads. Therefore, the learning process remains complex and challenging. This modeling strategy
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is consistent with existing literature on MEC scheduling [8], and facilitates reproducible evaluation
of algorithm performance under controlled dynamics.

State Space: In our task offloading problem, the state represents the agent’s observation within
the MEC environment. Thus, the state in each episode consists of information regarding the statuses
of all tasks and processors. Hence, the system’s state space can be defined as

S = {Stlst _ (Slfa‘gk, Stprocessors)}, (23)

where Stt‘”k and Stp TOCESSOTS are the state sets of tasks and processors, respectively. The set of task
states Sf“k is determined by the output fused by a task encoder, expressed as follows:

Stask = Encoder(Vygsks: Oaay)- (24)

Here, Vta;lw represents the feature matrix of all tasks in the current environment, while Oyy; denotes

the symmetric matrix of all tasks’ adjacency matrices. The formula for expressing Vta/sks is provided
in Equation (25). The attribute vector vj ; for tasks includes: (a) computational workload of the task
d; j; (b) memory size required for task execution ram; j; (c) size of task source codes (e.g., instructions)
r;,j+ (d) tolerance of task delays T;.

Viasks = 1l € [LN1,j € [LN]} (25)

rocessors
For processor states, Stp

represents the state matrix of all assignable computing nodes,
including both local UEs and shared servers. The mathematical representation of Sf rocessors can be
observed in Equation 26. Concerning the feature vector of an individual processor, it incorporates
the following characteristics: (a) the average CPU load of the processors, (b) the processing capability
of the CPU, (c) the remaining memory capacity, and (d) the utilization rate of network bandwidth.

Its formula expression is as follows:
! MEC,
sprocessers — (hlie Nys, - flg € M}, (26)

! MEC
where stU B is the state of local UE;,ands,  * is the state of server MEC,,.
Action space: Actions involve assigning available services to tasks within applications. Therefore,
the action g, in the tth iteration (¢th episode) involves assigning a server MEC,, to the current task

v, j- Considering the placement configuration of each task v, ;, we can define a;’ as

)
@’ = {x; j mlm € [0, M1} = P(i, ). 7

Since P;; = 0 denotes the task being assigned locally for execution, the action space A can be
defined as the set of all available servers and local UE, presented as follows:

A =1{0, MEC,|m € [1, M]}. (28)

Reward function: The goal is to minimize the cost model while meeting the periodic time
constraint. Thus, the reward function consists of two components: survival reward (¥, i) for
satisfying the periodic time constraint and offloading computation cost reward (r,,;). The formula
expression of the reward function is as follows:

R = ropvive + 1 Teosts (29)

where p serves as the balancing coefficient to adjust the relative importance of the two rewards.
The Survival reward aims to encourage the action to ensure that the applications of all local users
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Fig. 4. The Encoder.

do not time out, thereby successfully completing the entire episode. Its formula can be expressed as
C, if Tl < T, vi

(30)
— oo, if Y;total > Ti’ Vi

Tsurvive =
where C represents a normal constant value. For simplicity, in this article, we set C as the LCM.
For each task v, ;, the reward associated with offloading computation costs is adjusted through
an exponential function to account for the cost impact, as shown in Equation (31):

Teost = exp(_COSti{(;ml)- (31)
Yij
By calculating the exponential function of the negative total cost, we ensure that higher cost values
result in a lower adjusted reward. This adjustment facilitates a tradeoff between the potential
benefits and the associated costs of offloading the computation.

The PPO learning process is defined in a multi-agent MEC setting, where agents learn under
shared resource constraints. The state space Stp rOCesSOS includes real-time resource usage of shared
MEC servers, which reflects how tasks from different users compete for limited computational
and memory resources. This competition implicitly influences the action-selection process, as each
user’s agent must learn to avoid resource contention that could result in increased computation
time or task failure.

The impact of this user-level competition is embedded into the reward function. The cost term
costitjml increases if the selected MEC node is congested due to offloading requests from multiple
users. Therefore, the PPO agent is incentivized to learn cooperative strategies that reduce both
task delay and overall energy consumption by considering the current state of shared resources. In
this way, the multi-user competition is indirectly modeled through shared processor states and
reflected in the PPO agents policy learning.

4.3 Encoder
Figure 4 illustrates the unsupervised process pipeline diagram of the Encoder employed in this
model. The Encoder primarily combines the node feature V., with the structural details of the

input tasks to derive the fused tasks feature denoted as %. The task features V., contain the
state information of all current tasks and can be represented as follows:

Viasks = tvjli € [1,N],j € [1 NI}, (32)

vij
Conversely, the Decoder reconstructs the fused data by utilizing V4 and structural information
as inputs. After extracting the feature structural details embedded by the Encoder, it generates the

de-fused outcome denoted as V.

where v ; is a task state vector for task v ;.
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To ensure that the information fused by the task graph encoder possesses robust discrimi-
native capabilities and comprehensively encompasses task graph nodes along with structural
information, we employ the following structural loss function and feature loss function to train the
encoder. -

To enhance the discriminative capabilities of the fused task information V} . and ensure that
the similarity between neighboring tasks is higher than that between non-neighboring tasks,
we introduce a structured loss function called StructureLoss. This function aims to optimize the
similarity among neighboring nodes and reinforce the representation of structural information.
The structured loss function is defined as follows:

StructureLoss = Z Z log —_—
ij len,  1+exp(=v; )

! (33)

where ﬁl\] and v are the node feature vector obtained after fusing task information and structural
information. N;; represents all the neighbors of task v; ;. By optimizing this loss, we reinforce
the representation of structural information in the fused task features, thereby improving the
discriminative capabilities of the model.

To ensure that the feature vector output by the decoder closely matches the feature vec-
tor input to the encoder, an introduced feature loss function called FeatureLoss is employed.
This function aims to minimize the difference between the task features before and after en-
coding, ensuring that the encoder effectively captures and retains the original graph’s node in-
formation and structural characteristics. The formula for the feature loss function is defined as
follows:

N N
— Y . )2
FeatureLoss = Z Z(Vi’j —v )% (34)
i=1 j=1
where W; and v;; are the original feature vector and the feature vector output by the decoder,
respectively. Minimizing this loss encourages the encoder to capture and preserve the important

features of the input tasks during the encoding process.

4.4 Behavior Cloning

BC technology can address challenges caused by large action search spaces in an environment. In
this approach, before training the intelligent agent using the PPO model, the policy of a greedy
algorithm is initially replicated. Although the greedy algorithm may not represent the optimal
allocation strategy, it does possess the ability to generate multiple trajectories that satisfy the
latency constraints imposed on the intelligent agent during its initial training phases. As a result,
this technique significantly reduces the time required for the agent to explore strategies aligned
with these constraints.

The BC technology is shown in Algorithm 1. In this cloning algorithm, the process begins with
the initialization of the Actor network and data buffer (Line 1). Subsequently, interaction with the
task policy obtained from the greedy algorithm occurs within the environment, and the resulting
task state-action pairs (stt“Sk, a;) are recorded (Lines 3-4). These task states stt‘“k are then processed
by the Encoder to generate new state-action pairs (sf, a;), which are saved in the data buffer (Lines
5-6). When the data volume in the buffer reaches the threshold N, . the following operations
are performed. For each episode, Ny, samples are randomly selected from the data buffer to create
mini-batches of data Dy, (Line 9). States S; and actions A; are then extracted from these mini-
batches. The states S; are then passed into the Actor network to obtain a probability distribution
P over each action (Lines 10-11). The probability (p;) of executing actions a; based on a greedy
strategy is calculated by utilizing a gather operation with A; (Line 12). In each episode, the Actor
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ALGORITHM 1: Behavior Cloning

Input: Total training iterations N,
Greedy, Data buffer size Dy, ¢/
Output: Actor network (%)
: Initially set Actor network 7(6) and data D in buffer;
: while |D| < Dy, srdo

Learning rate for the Actor: a,,,,, Batch size N, the strategy from

pisode> ctor>

1
2
3 Get task state s** from environment;

4 Get the actor action a, from Greedy strategy following the task state s/*;
5: Obtain task state s¢ through fusion s/ by Encoder;

6 store (s{, ,) in data buffer;

7: end while

8: fork =1,2,..., N, 00 do

9: Randomly sample N, samples from the data buffer to form a data batch D, ,;
10: Obtain the state set S, and Actor set A, for each sample;

11: Get the set of actions probabilities P, from Actor network based on the input S;
12: Gather P, and A, to obtain the actions probabilities p,;

13: Update Actor network 7(6*) through Equation (35);

14: Optimize gradients using the Adam optimizer;

15: end for

16: Return 6;

network is updated by maximizing the probability p, according to Equation (35). It is worth noting
that we employ the Adam optimizer to perform gradient descent optimization on the gradients in
the cloning algorithm.

1 Nbatch 2
041 = argmin Z log(p;) (35)
0 Noaten \ 5

Greedy matching algorithm: Next, we introduce the low-complexity greedy matching algo-
rithm, depicted in Algorithm 2. This algorithm determines task offloading and resource allocation
for periodic DAG applications on UEs. The greedy matching algorithm consists of two parts. The
first part involves selecting the processor with the lowest cost for executing each task (Lines 1-14).
In this part, if the total cost of offloading to server MEC,, is lower than the current cost, the task is
assigned to the server MEC,, and the cost is updated. After evaluating all servers, the costs El"} are
sorted in ascending order. In the second part (Lines 15-31), for each UE;, tasks are evaluated for delay

Tlde 4 and total cost C ostl-tgt“l, then sorted in descending order based on Tifijelay . If the total delay Tit"t“l
exceeds the threshold T;, we adjust the task allocation. The adjustment method selects the task with
the longest execution time on the critical path for adjustment (Line 22). It incrementally increases
the costs to adjust the machine until the adjusted task time is less than the second-longest task
execution time on the critical path (Lines 23-29). It then chooses a new task for adjustment. Once
the total execution time of the DAG meets the time constraints, the adjustment stops and a greedy
strategy is obtained. Through the greedy strategy, the PPO agent obtains the initial action g; and
state s;.

In the low-complexity greedy matching algorithm, it takes O(Ny- Mlog M) to calculate costs
and to sort them for each task, where Ny is the total number of tasks, i.e., Ny = ). N;. Reassigning
tasks based on delays costs O(Nylog Ny). Therefore, the total time complexity of the algorithm is
O(NT : Mlog M+ NT log NT)
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ALGORITHM 2: Greedy Task Match Strategy

Input: v, f*, [, . i, B
Output: P(, ), X im
1: for each task v;; do

2: calculate Ef i3
3 P(i,j) = 0;
4: cost(i, j) = E; = pr;
5: form=1,2...,Mdo;
6: calculate Efj, and Cost,{je‘;
7: if cost(i, j) > pr * Ef’j + Cost** then
8: P@G,j) =m;
9: cost(i, j) = pr = EY, + Cost"*;
10: end if
11: Store El"} «— prx E["} + Cost{’}“;
12: end for
13: Sort the element E; in ascending order;

14: end for
15: for each UE; do
16: forj=1,2,...N;do

17: calculate Tl-'j-elay , Costfste;

18: end for

19: Sort the element £ « v;; with cp; = 1 in descending order with Tid].elay ;
20: calculate TF°'%;

21: while T/ > T, do

22: select the first task v, from 1% to reassign;

23: select the second task v, from gorder Jet Tmex = Ti,d;flay;
24: while 5/ > T and T/ > T, do

25: k = GetTopItem(E}");

26: P(Gi,h) =k;

27: Calculate Tfhelay and T,

28: RemoveTopItem(E});

29: end while

30: RemoveTopItem(tde");

31: end while

32: end for

33: calculate Cost;

4.5 Periodic DAG-Structured Task Offloading and Resource Allocation

This article proposes a novel PPO model within an actor-critic framework to address the challenges
of offloading periodic DAG applications in diverse MEC environments. In this framework, the policy
is directly parameterized as 7(ayls; 0), where 6 is updated through gradient ascent on the variance
of the expected total future discounted reward and the learned state-value function under policy
V7 (s;). This approach aims to combine the strengths of value-based and policy-based methods while
reducing their respective limitations.

Actor-critic framework: As shown in Figure 5, the PPO learning model consists of an Actor
network and a Critic network. The Actor network generates actions a; for the intelligent agent
to execute, while the Critic network estimates the value function V”(s,) for the current state s;.
By incorporating the immediate reward r; obtained after the agent performs action g, the Critic
network evaluates the current action, thereby improving the stability of training the Actor network.
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Fig. 5. The task offloading network on PPO learning model.

— Critic network update policy: The Critic network estimates the value function V and updates
it using TD-error to avoid positive feedback loops. The general form of the TD-error update
formula in the Critic network is

Agw) = yV(Si11) + 1= V(S), (36)
where A¢,(w) is the TD-error, r; is the immediate reward at iteration ¢, and V(S;) and V(S;1)
are the predicted values of the current and next states, respectively.The Critic network is
updated by minimizing the squared TD-error, adjusting the estimated state values toward
more accurate predictions. The loss function associated with the TD-error in the Critic
network is defined as

Lcritic(g) = Z(A¢t(w))2
t

=Egs [(yV(S1) +1:— V(S))*].

— Actor network update policy: The Actor network is updated using the PPO algorithm to
ensure that the difference between the behavioral policy 8” and the target policy 6 does not
become too large. This is achieved by applying a clip function to restrict the range of gradient
updates. The update formula for the Actor network is as follows:

L) = E,[min(J,(8) - A,, clip(Ju(8), 1 —€,1+€) - A, (38)

where ¢ is the clipping threshold, A; is the advantage of taking action g, in state s;, and J,(6)
is the ratio of the new policy to the old policy. J,(0) is defined as follows:

(37)

Tnew(@ls, 0)

HO Told(aglsy 0) 9
where 7,4(als;, 0) and m,,,,(a;ls;, 0) are probability of taking action g; in state s; under the
old policy and the updated policy, respectively. The clip function constrains J,(6) within the
interval [1 — €, 1 + €], where € is a hyperparameter controlling the extent of clipping.

PPO task offloading strategy: In the periodic DAG-structured task offloading algorithm
for multiple users, as shown in Algorithm 3, PPO agents receive observation data Obs from the
environment. This data includes task observations Sy, and processor states Sy ocessor- Using a fixed
processing mechanism called the Encoder, these observations are combined to produce the task
state SttaSk, which serves as the input S; for the PPO learning model. To begin, the actor and critic
networks, along with the experience replay buffer, are initialized (Lines 1-2). Before interacting
with the environment, the PPO agent clones the greedy strategy (Algorithm 2). For each episode,
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ALGORITHM 3: PPO Task Offloading Strategy

Input: Total iterations N, 4, in PPO, the training time of each episode N,
Qyror Aoriric- €Xploration parameter ¢, replay buffer Dpp,,
Output: Actor network 7(6")
1: Initialize the actor network (") and critic network V(S,)
2: Initialize the experience replay buffer Dpp,

3: Obtain the greedy strategy via Behavior Cloning

learning rates ¢,

rain’ encoder> Xdecoder>

4: fort =110 N, do
5: Execute policy 7 = 7(0") in the environment
6 Perform action g, « {x;;,, | i € [1,N],j € [1, N]],m € [0, M]}
7: Observe s,,,, 1, p;
8 Encode s, to s;,,
9: Store experience [sf, a,,7,, p;, 5%, done] in replay buffer Dyp,
10: for k = 1to N,,;, do
11: Calculate the advantage function A, using V(S,)
12: Update actor network 7(8") via Equation 40
13: Optimize gradients with the Adam optimizer
14: Update critic network V(S,) via Equation 41
15: Optimize gradients with the Adam optimizer
16: end for
17: end for

18: Return the trained actor network 7(6")

the policy 7(6") is executed in the environment, performing actions and observing the next state
s;+1, reward ry, and probability p,. Based on the action ag;, the system transitions to the next state
$t+1 (Lines 6-7). The Encoder processes s, to yield s, ;, and the experience [sf, a;, 13, p;, 5.1, done]
is stored in the replay buffer (Lines 8-9). Training occurs for N,,,;, iterations per episode, where
the advantage function A, is calculated using the critic network V(') (Lines 10-11). During each
training iteration, the Actor and Critic networks are updated using their respective loss functions.
The parameters of the Actor network are updated using Equation 40, and the parameters of the
Critic network are updated using Equation 41 (Lines 11-15).

Oy1 = argmin Z Lelir(p); (40)
0 PPO T€Dppo

1
Y Y@ (41)

PPO TeDpp, i=0

We use the Adam optimizer for stochastic gradient ascent when optimizing the Actor gradients,
and for stochastic gradient descent when optimizing the Critic gradients. During network updates,
the advantage function A; is defined as

A= Qf (s a) — V(s (42)

where Q7 (s;, a;) is the state-action value function, predicting the expected return starting from state
s;, taking action a;, and following policy 7.

Si41 = argmin
w

5 Experiments
5.1 Experimental Setup

This study employs simulation experiments to evaluate the performance of our proposed PPO task
offloading algorithm. In a multi-user MEC environment, there are five UEs, two cloud servers,
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Table 2. Table of Parameters in the MECs Environment

Parameter Value
Number of local users (UEs) 5
memory size of local users 512MB
memory size of edge servers 8GB
frequency of local users 6x10’Hz
Number of edge servers 5
Number of cloud servers 2
Bandwidth between edge servers | 100Mbps
Bandwidth to cloud servers 200Mbps
Cores of each edge server 4
Cores of each local user 1

and five edge servers in the system. Each UE operates independently and generates a DAG-based
application with distinct complexity. The transmission bandwidth of UEs ranges from 5 to 30 Mbps.
The data volume and computational workload of UE tasks are evenly distributed within the ranges
of 0.2-2.0 MB and 3 x 10%-2 x 10° cycles/bit, respectively. Table 2 presents the detailed parameters
in the MEC environment. The experiments were conducted on a Windows 10 system using an AMD
Ryzen R7 7735HS processor running at 3.2 GHz with 16 GB of memory. Python 3.9 and PyTorch
1.2.1 were used for implementation.

Various real-world IoT applications can be represented using DAGs that feature diverse task
counts and dependency structures. Therefore, we created multiple synthetic DAG sets, each with
varying task numbers and dependency patterns, to simulate scenarios where UEs produce heteroge-
neous DAGs with distinct characteristics. The DAG applications of UEs in this study are generated
using the method described in [10], where the shape of the DAG can be adjusted by tuning four
parameters: NodeNum, MaxOutDegree, o, and . Here, NodeNum determines the total number of
tasks in a DAG, MaxOutDegree restricts the maximum outdegree of nodes, o determines the depth
of the DAG, and f§ determines the alignment rate of the DAG. In this study, we set =0.5 and =0.5.
Considering the heterogeneity of tasks on each local user, the number of tasks (NodeNum) and
depth (MaxOutDegree) are set differently for applications on different UEs. To simulate diverse
application scenarios in MEC environments, we construct three types of periodic DAG applications
corresponding to different computational load levels:

— Light-load applications: NodeNum € [10, 15], MaxOutDegree € [2, 3]
— Medium-load applications: NodeNum & [20, 25], MaxOutDegree € [3, 4]
— Heavy-load applications: NodeNum € [30, 40], MaxOutDegree € [4, 5]

As defined in Section 3.5, the total execution time Tl-mml of each DAG application is deter-

mined by the longest dependent path in the task graph after scheduling decisions are applied.
In our experiments, we use the LCM of all users DAG execution times Tl-toml as the unified
episode time. This allows each UE to complete an integer number of DAG execution cycles
within a unified evaluation window. In our experiments, the values of Titoml are computed af-
ter task scheduling decisions are made, based on the execution paths and data dependencies
defined in Section 3.5. This design ensures that the episode window is dynamically aligned with
the actual execution characteristics of each user’s DAG. The resulting episode time typically
ranges between 50 and 200 simulation time units depending on the DAG structure and system
configuration.
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Table 3. The PP0 and Training Hyperparameters

Parameter Value Parameter Value
MLP hidden units 256 Loss Coefficient 0.5
Cross-entropy 0.01 discount Factor y [0.8-0.98]
Truncation constant 0.2 | Policy Learning rate | [1e-6,2e-2]
Balancing coefficient pp | 1.5 | Critic Learning rate | [2e-6,2e-2]

Table 4. The Encoder and Training Hyperparameters

Parameter Value Parameter Value
Dropout 0.2 | hidden layer Dimension 10
GAT layer 3 Dimension of the output 20
heads 5 optimization Method | Adam
Encoder Learning rate | le-3 decoder Learning rate 5e-3

5.2 PPO Hyperparameters

Hyperparameters such as learning rate, truncation coefficient, and discount factor directly impact
the convergence speed of the algorithm. Table 3 provides the hyperparameter settings used for
training the algorithm, including the activation functions and optimizers for the network structure.
In the PPO task offloading model, an Encoder is used to perform dimensionality reduction on the
graph structure and information. The detailed configuration of the network structure and specific
hyperparameters for training the Encoder can be found in Table 4.

5.3 Performance Comparison

To evaluate the effectiveness of our proposed PPO task offloading algorithm (PPO) in this article,
we employed six benchmark offloading strategies for performance comparison. These strategies
include:

— Cloud-only: All computational tasks are completely offloaded to the cloud servers.

— Edge-only: Similar to Cloud-only, all tasks are offloaded to edge servers.

— Greedy Algorithm (Greedy): Utilizes the greedy algorithm strategy to perform tasks.

— DDRL: It is the extended and adapted version of the technique proposed in [10]. We extended
this technique so that it can be used in multi-users MEC to minimize the weighted cost of
energy consumption and computation fees.

— DDPG [1]: Similar the DDRL, we extended this technique so that it can be used in multi-users
MEC to solve DAG-structured task offloading.

—DOQN: DON has been widely used by many researchers to solve task offloading problems
[2, 5, 19]. In our experiment, we implemented the optimized DQN algorithm with an adaptive
exploration for task offloading in multi-users MEC environments. The hyperparameters of
this technique are set based on [19], which is a state-of-the-art DQN-based task offloading
technique for DAG-based IoT applications.

Figure 6 shows the average weighted cost performance of each episode under various strategies
with five UEs and a cycle shrinkage rate £ of 0.6. The figure shows that the strategies of full offloading
to the cloud servers and full offloading to the edge servers result in the highest costs. However,
the costs incurred by RL algorithms are better than those of the traditional greedy algorithm.
Greedy remains constant at 2080, never reducing, and algorithms like DQN and DDRL show more
fluctuations in cost, with DQN dropping rapidly but plateauing higher than PPO. From the figure
we can see that our proposed PPO task offloading (PPO) algorithm initially performs similarly to
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Fig. 6. Cost performance of different algorithms for multi-user on MECs.

the greedy algorithm. Then, the PPO algorithm shows significant cost reduction as the number
of episodes increases. Starting from a cost of 2080 at the first episode, it quickly drops to 1560
at 50 episodes and reaches a low of around 940 from episode 200 onward. Compared to other
RL algorithms like DQN or DDRL, PPO maintains consistently lower costs, especially after 150
episodes, which demonstrates its efficiency and adaptability in reducing costs over time. Therefore,
PPO clearly outperforms other approaches in cost efficiency over a long period, proving its superior
optimization capabilities in this context.

Figure 6 also illustrates the convergence behavior of different algorithms over training episodes.
We observe that both DDRL and DDPG exhibit lower performance than the Greedy baseline
during the early stages (before episode 200). This is primarily due to the high variance and sample
inefficiency inherent in policy gradient methods when applied to sparse and delayed reward settings,
such as DAG-based task offloading. In contrast, the Greedy method-although lacking learning
capability-applies fixed heuristics that produce stable and deterministic behavior from the beginning,
which gives it a temporary advantage in early training. Moreover, we note that DQN achieves better
performance than DDPG across most of the training horizon. This result may seem counterintuitive,
as DDPG is theoretically more powerful. However, the offloading problem in our setting involves
discrete server selections, which are more naturally handled by value-based methods like DQN.
DDPG, originally designed for continuous action spaces, requires action discretization in our
implementation. This introduces approximation errors and leads to suboptimal performance due to
the mismatch between the algorithm’s action representation and the task’s intrinsic discreteness.
Our proposed PPO-based method consistently outperforms all baselines. By combining stable policy
optimization with a task-specific encoder and BC initialization, PPO achieves faster convergence,
better early-stage performance, and higher final reward. This validates the effectiveness of our design
in handling both the structural complexity of DAGs and the competition-aware multi-user offloading
environment.
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Latency and Cost for different algorithms
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Fig. 7. Latency and cost comparison under different RL learning model.

To compare latency across DAG applications of different sizes and topologies, we normalize task
completion times using the DAGs critical path. For each application, we define:
Tf inish _ Tstart
L A

1
Normalized Latency = v Z v (43)
vev

Teritical

where |V| is the number of nodes in the DAG, TJ inish and T519"" are the actual finish and start times
of node v, and Teritical denotes the length of the critical path, i.e., the minimum theoretical time to
complete the DAG without any resource contention or queuing. This metric reflects how efficiently
a scheduling algorithm can handle DAG execution relative to its inherent structural constraint.
In Figure 7, we compare the latency and cost of four RL algorithms, DDPG, DDRL, DQN, and
PPO, across different numbers of UEs. Here, "Cost” represents the total cost for all tasks in a single
episode, while "Latency” is normalization and refers to the time limited to complete one episode.
The results presented in Figure 7 are obtained after training each policy for 300 episodes. This choice
aligns with the convergence patterns observed in Figure 6, where all algorithms reach performance
stability beyond 250 episodes. Using episode 300 ensures a fair and consistent evaluation of the
learned scheduling policies under steady-state behavior. From the figure we can see that the
PPO algorithm consistently demonstrates a clear advantage in terms of latency as the number of
UEs increases. For example, while the latency for other algorithms like DDPG and DDRL rises
significantly and over time constraint (episode time) as the number of UEs grows, PPO maintains
stable performance, keeping latency below 1 episode time across most scenarios. This low latency
is critical in applications where real-time processing is essential. Additionally, PPO also shows
moderate cost efficiency. Although its cost tends to increase with the number of UEs, particularly at
higher scales (e.g., 3200 for 10 UEs), it still remains competitive. This is because our proposed PPO
algorithm takes into account the competition between different UEs. To ensure that all UEs complete
their tasks within the time cycle, the PPO algorithm assigns more tasks to be executed on the cloud
server, which results in higher costs compared to other algorithms. This balance between latency
and cost makes PPO an attractive choice for scenarios where both real-time performance and
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Fig. 8. Comparative analysis of results between greedy and improved PPO.

cost are key factors. Overall, PPO stands out as the most robust and balanced option for handling
varying numbers of UEs, offering lower latency while maintaining reasonable costs compared to
other algorithms.

To more intuitively compare the performance advantages of the proposed algorithm with the
baseline algorithms, this study uses the optimization ratio p as a measure. In this experiment, only
the optimization rate relative to the greedy algorithm is considered. We note that other baseline
algorithms, such as DDPG and DDRL, are not included in Figure 8, due to their poor convergence
and unstable performance under large-scale DAG workloads. Including these methods would not
provide meaningful comparison and may obscure the trends of well-performing algorithms. The
formula for calculating the optimization ratio is as follows:

COStpPO

p=1- ;
Cos tgreed y

where Costppg and Costgyeeqy represent the total cost of PPO task offloading approach and that of
greedy task offloading strategy, respectively.

Figure 8 (a) illustrates the comparison of offloading computation costs among the greedy al-
gorithm, DQN, and our proposed PPO task offloading algorithm as the cycle shrinkage rate &
varies from 0.15 to 0.95 in increments of 0.05. The results show that all algorithms experience a
decrease in offloading computation costs with fluctuations as the cycle shrinkage rate changes.
This behavior is mainly influenced by the adjustment of the cycle shrinkage rate, which affects
the optimization duration (episode time) and consequently changes the total number of tasks
processed by the terminal devices within that duration. Moreover, the figure clearly shows that the
PPO task offloading algorithm proposed in this study consistently exhibits lower offloading costs
compared to the greedy algorithm and DQN offloading across different cycle shrinkage rates. This
is supported by the optimization ratio p consistently surpassing 0, further confirming the efficiency
of the proposed algorithm. Additionally, the optimization ratio decreases as the cycle shrinkage
rate increases. This is because, to meet latency constraints and ensure real-time requirements for
tasks, more tasks need to be offloaded. Consequently, there is a gradual increase in offloading
computation costs, resulting in a reduction of the optimization ratio.

Figure 8 (b) illustrates the performance of the greedy algorithm, DQN, and PPO task offloading
algorithms in terms of offloading computation costs as the number of UEs increases from 3 to 16.
However, it is worth noting that as the number of UEs increases, the optimization ratio p gradually
decreases. This phenomenon occurs because with the increase in the number of UEs, there is also an
increase in reliance on and computational demands for the remote servers. Consequently, offloading
computation costs rise, leading to a decrease in the optimization ratio.
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Ablation Experiments For Encoder
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Fig. 9. The impact of Encoder on PPO at different cycle reduce rate.

Figure 8 (c) shows the changes in offloading computation costs for the greedy, DQN, and our
proposed PPO algorithms as the transmission bandwidth increases from 5 to 30 Mbps in increments
of 5 Mbps. Additionally, the cost reduction is more significant for the improved PPO algorithm.
Consequently, the optimization ratio slightly increases with the improvement in transmission

bandwidth.

5.4 The Impact of Encoder

To evaluate the specific impact of Encoder on the PPO algorithm’s performance, we compared the
performance changes of the PPO algorithm before and after integrating the Encoder. In this set
of experiments, there were six UEs, and the network transmission bandwidth was 20 Mbps. The
experimental results are shown in Figure 9. In the figure, “disable encoder” and “enable encoder”
respectively represent models without and with the integrated Encoder. From the figure, it is evident
that the model integrated with the task graph encoder consistently showed higher optimization
rates, denoted by p, under various cycle reduction conditions compared to the model without
integration of the Encoder. This is primarily attributed to the task graph encoder’s capability to
effectively integrate global node and structural information of tasks, enabling the PPO algorithm
to approach task allocation strategies from a broader perspective, resulting in lower-cost task
assignments.

5.5 Ablation Study on Behavior Cloning

To investigate the contribution of the BC module in our PPO-based offloading framework, we
conduct an ablation study by comparing the performance of the full method with a variant that
excludes the BC component. We design the ablation under the same MEC environment as described
in Section 5.1, using five UEs and heterogeneous periodic DAG applications. We compare two
versions: PPO (with BC): the complete model incorporating both the encoder and BC; PPO w/o
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Fig. 10. Convergence comparison with and without BC.

Table 5. Comparison of Task Offloading Performance with and without BC

Method Total Offloading Cost | Avg Task Completion Avg UE
Cost Time (unit) Energy (m])

PPO (with BC) 2374 11.6 42.8

PPO w/o BC 259.7 13.1 47.9

BC: a reduced version where the PPO agent is trained from scratch without BC. Figure 10 shows
the convergence trends of both methods across 800 training episodes. PPO with BC converges
within approximately 400 episodes, while PPO w/o BC requires over 700 episodes to reach a similar
cost level. This validates that BC effectively guides the agent toward a good initial policy, reducing
exploration inefficiency.

This highlights the critical role of BC in reducing the search space during early training and
accelerating convergence, especially under high-dimensional and multi-agent MEC environments.
The quantitative results are summarized in Table 5. The results confirm that BC provides a good warm
start policy to the PPO agent, guiding it away from inefficient random exploration and enabling
better early-stage decisions. This improvement in training efficiency is particularly beneficial in
large-scale multi-user MEC systems with complex task structures.

5.6 Scalability Evaluation on Larger-Scale MEC Settings

To further evaluate the scalability of our approach, we conducted additional experiments with the
number of UEs ranging from 5 to 50. Each UE generates a periodic DAG-based application with
medium computational load. The MEC infrastructure includes 10 edge servers and 3 cloud servers.
We compare our method (PPO) with two baselines: the greedy algorithm and the GA+PSO hybrid
method.

Table 6 shows the total offloading cost and the average cost per UE as the number of users
increases. While the overall system cost naturally grows with more users, the average cost per UE
with PPO remains relatively stable and lower than heuristic methods when the number of users
exceeds 20. This suggests that our model learns to distribute tasks more effectively under resource
contention. Our PPO-based framework is inherently distributed and can be parallelized across agents
representing different UEs. Moreover, once trained, the PPO agent’s inference step is lightweight
and suitable for online decision-making. For MEC systems with hundreds of users, we envision
deploying the proposed method in a hierarchical manner, where edge domains manage subgroups of
users with localized PPO models. Future work will explore federated RL and cluster-based training
to further enhance large-scale deployability.
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Table 6. Total and Average Offloading Cost under Different

Numbers of UEs
UE Count | Method | Total Cost | Avg Cost per UE
10 PPO 489.2 48.9
20 PPO 957.3 47.9
30 PPO 1442.1 48.1
40 PPO 1967.8 49.2
50 PPO 2520.3 50.4
50 Greedy 2782.6 55.6
50 GA+PSO 2643.1 52.9

6 Conclusion and Further Work

This article focuses on addressing challenges related to optimizing periodic DAG-structured tasks
for multiple UEs in MEC environments. The study aims to minimize costs associated with UE energy
consumption and server computation fees across multiple UEs by utilizing the PPO task offloading
algorithm. To streamline the search process for numerous UEs, a BC algorithm is integrated into
PPO, improving overall efficiency by initially cloning a greedy strategy. Additionally, an encoder
is introduced to transform and reduce the dimensionality of high-dimensional task statuses for
multiple users. Experimental results demonstrate the effectiveness of this algorithm in optimizing
joint periodic task offloading for multiple UEs in MEC environments, highlighting improvements
in task management efficiency.

As part of future work, we plan to extend our proposed weighted cost model to consider other
aspects such as dynamic changes in transmission power, monetary cost, and the total system cost.
Moreover, we will consider the bandwidth placement strategy and battery constraints of local UEs
when extending our proposed PPO model.
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