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a b s t r a c t

Task offloading strategy optimization in mobile edge computing (MEC) has always been a hot issue.
However, the mobility of a user equipment (UE) seriously affects the UE’s cost and performance.
This paper proposes three mobility types depending on whether the mobility characteristic of a UE
is known, and formulates an energy minimization problem and a latency minimization problem to
optimize the cost and performance, respectively. We first develop greedy strategy based task offloading
algorithms for UEs according to their mobility characteristics. However, accurately obtaining the
mobility characteristics of the UEs over a long time in practice is a huge challenge, especially in a highly
random environment like the MEC. To address the issue, we use a Lyapunov optimization method
to develop the algorithms that do not require any prior knowledge of the mobility characteristics to
minimize the long-term energy and latency of UEs. Experimental results show that the greedy strategy
based algorithms can optimize the cost and performance of UEs by using their mobility characteristics,
and perform better than the Lyapunov optimization based algorithms in a short-term. However, the
Lyapunov optimization based algorithms perform better than the greedy strategy based algorithms
over a long-term.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

The rapid development of the mobile internet and related
ardware has helped the advent of Internet of Things (IoT) era.
ith these new technologies, some complex applications, such

s image recognition, virtual reality, augmented reality, and path
avigation [1], can be executed by user equipments (UEs), such
s mobile phone and other IoT devices. However, due to the
imitations of the computing power, storage capacity, and bat-
ery life of UEs, these applications are sometimes not efficiently
xecuted by the UEs, thus degrading the quality of experience
QoE) [19]. Mobile edge computing (MEC) is expected to emerge
s a promising technology to mitigate these conflicts.
MEC is an architecture that provides limited resources, such

s computing power, to UEs at the edge of network, thus im-
roving the quality of service (QoS) and QoE. High-speed wireless
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K. Li).
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network technologies implement the instant communication be-
tween UEs and MEC servers, reducing the communication delay
and reliving the network jitter. The heavy tasks of UEs are up-
loaded to MEC servers for processing to optimize their cost and
performance, i.e., minimize energy and latency (computational
time) [2]. A lot of researchers worked on the task offloading
strategy optimization problem in MEC [3,5–7,11–13,29,33,34].
However, the above work ignored the impact of UE mobility
on the strategy [30]. Moreover, ignoring the UE mobility is not
suitable for the real-world scenario [27]. UEs are not always fixed
at a certain location, and may be moving [1]. Meanwhile, the
mobility of UEs seriously affects the strategy’s cost and perfor-
mance [10]. The long distance between the UEs and MEC servers
will significantly reduce QoS and QoE.

However, the optimization problem becomes even harder
when it involves the mobility. To provide seamless service for
UEs with mobility, the services of the UEs will be migrated among
MEC servers to follow their movement. In this paper, the service
of a UE refers to the fundamental environment for processing
offloaded tasks of the UE, such as Docker [16] and virtual ma-
chine [15]. Thus, the process of making an offloading strategy
will be more complicated. Intuitively, for service deployment, a
service provider of MEC can deploy enough servers to improve

QoS and QoE. However, it is impractical in the real world due to
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he budget constraint of a service provider. Meanwhile, for saving
nergy, a UE’s service in a server that does not respond to the UE
ill enter the sleep state. Therefore, after migrating the service,

t needs additional waiting time for activating the service from
he sleep state to serve the UE. Obviously, this is not suitable for
any latency-sensitive tasks. Thus, if the mobility characteristics
f UEs can be known in advance, we can deploy service to a UE
ccordingly in advance, thus improving QoS and QoE.
In addition, the UE mobility types are also diverse. Meanwhile,

tilizing the mobility characteristics to optimize the cost and
erformance of UEs is only feasible in a short time. Accurately
btaining the mobility characteristics of the UEs over a long time
n practice is a huge challenge, especially in a highly random
nvironment like the MEC. In this paper, the short- and long-term
re relative concepts, and represent the number of task offloading
trategies made by UEs.
According to the above discussions, in this work, we investi-

ate the following questions: (1) How to make the task offloading
trategy to optimize the cost and performance of UEs with mo-
ility? (2) How to optimize the offloading strategy by using the
hort-term mobility characteristics of UEs? (3) How to optimize
he long-term offloading strategy without prior knowledge of
obility characteristics?

.2. Our contribution

To address the above issues, we study the problems and op-
imize the short- and long-term cost and performance of UEs
espectively. The main contributions of our work are as follows.

• We first formulate the long-term cost and performance opti-
mization problems, respectively. To deal with the challenge
of acquiring UEs’ mobility characteristics over a long time,
we then use a Lyapunov optimization method to decouple
the original problems into two series of real-time optimiza-
tion subproblems. Thus, the cost and performance of UEs can
be optimized based on their current states.
• We develop the algorithms based on the Lyapunov opti-

mization method, which do not require any prior knowledge
of the mobility characteristics to optimize the long-term
cost and performance of UEs. Meanwhile, the algorithms
proposed in this paper not only make the offloading de-
cision, but also decide the resource allocation and service
migration strategies.
• Extensive simulation experiments are conducted to evalu-

ate the effectiveness of the algorithms in the short- and
long-term. Moreover, we explore the impact of various key
parameters on the cost and performance of UEs through the
experiments.

The rest of the paper is outlined as follows. Section 2 briefly
eviews the related research of task offloading strategy optimiza-
ion, and highlights the characteristics of this paper. Section 3
emonstrates the system model and problem formulations. Sec-
ion 4 studies the energy minimization problem and develops
he algorithms to optimize the cost of UEs. Section 5 studies the
atency minimization problem and develops the algorithms to
ptimize the performance of UEs. Section 6 conducts the exper-
ments to evaluate the effectiveness of the algorithms. Section 7
oncludes this paper.

. Related work

According to the optimization objective, the research of task
ffloading optimization can be divided into three categories,
.e., energy-optimal (EO), latency-optimal (LO), and others. EO
ocuses on the energy consumption or harvesting optimization
70
problems [11], and has been extensively studied. For example,
Li [13] formulated UEs and MEC servers as queueing models, and
developed algorithms by using the Lagrange multiplier method
to minimize the energy consumption of UEs. Chen et al. [7]
developed an approach to determining how much energy should
be harvested at UEs. Cao et al. [5] maximized the saving en-
ergy of UEs while satisfying the UEs’ latency requirements. Tout
et al. [29] proposed a centralized selective and multi-objective
algorithm to optimize the energy consumption of UEs. LO in-
vestigates the latency minimization problems [13]. For example,
Yang et al. [33] minimized the average computation time of
UEs through a heuristic algorithm. Li [12] developed a non-
cooperative game theoretic algorithm to optimize the latency of
UEs. The third category studies the optimization of other objec-
tives. For example, Chen et al. [6] minimized the weighted sum
of the energy consumption and computational time for multiple
users with multiple wireless channels. Bhattacharya et al. [3]
studied QoE improvement from four aspects, including comple-
tion time, energy consumption, monetary cost, and security. Yang
et al. [34] compressed the transferred data size to reduce the
transmission cost during the task offloading process.

Although the above work studied the computation offloading
strategy optimization problem from different optimization goals,
they assumed that UEs remain stationary and ignored the impact
of mobility on the cost and performance of UEs. Moreover, except
for [13], the other work only determined whether to offload the
tasks of UEs to MEC servers, but did not decide the resources
(i.e., CPU frequency and transmission power) allocation strategy
for the UEs.

Several researchers have addressed the issue of UE mobility
in the short-term. According to the mobility characteristic, we
classify existing research into the following three categories:
(1) For UE with random mobility, we know anything about the
UE’s movement regularity, and can only make the strategy based
on the current location of the UE. For example, Taleb et al. [28]
proposed a Markov decision process based algorithm to optimize
the strategy. (2) For UE with predictable mobility, we can predict
some future locations of the UE, and make the strategy by using
the current and future locations of the UE. For example, Wu
et al. [32] and Plachy et al. [23] developed the location prediction
method respectively. (3) For UEs with fully known mobility, we
know everything about the UE’s movement regularity and its all
future locations in advance. Therefore, we can make the strategy
based on the whole movement path of the UE. For example, Wang
et al. [31] optimized the cost of UEs based on their mobility reg-
ularities. Under the assumption that the task has been uploaded
to the servers, the above work studied the impact of UE mobility
on the task offloading optimization. Although Yu et al. [35] made
the task offloading decision, but the resource allocation strategies
are not considered in their work. Moreover, all the above work
did not consider the impact of different mobility characteristics
on the cost and performance of UEs.

Also, there is work that optimized the offloading strategy
over a long time. Shen et al. [24] minimized the total energy
consumption over a long time by reducing the number of service
migrations. Sun et al. [26] minimized the average delay over
multiple tasks of a UE while satisfying the energy consumption
constraint. Ouyang et al. [22] investigated the cost-performance
tradeoff of UEs in the long-term. Although the above work inves-
tigated the long-term cost and performance optimization prob-
lem, their assumption that all UEs stay in a certain area for a
long time is too strong. Meanwhile, these work not only failed to
study the impact of different mobility characteristics on the task
offloading strategy, but also ignored the advantages of optimizing
the strategy of UEs staying in a certain area for a short time by
using their mobility characteristics. In addition, the above work
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Fig. 1. An example scenario investigated in this paper.

Fig. 2. An example of service migration.

did not involve the development of resource allocation strategies
for UEs.

To address the above limitations, in our preliminary work [9],
we analyzed different characteristics of UE mobility, and devel-
oped several greedy strategy based task offloading algorithms to
optimize the strategy in a short-term based on these mobility
characteristics. However, it is a huge challenge to obtain the
mobility characteristics of UEs over a long time. Therefore, it
is necessary and meaningful to investigate the long-term of-
floading strategy optimization problem, which solves the issue
of UE mobility. This work significantly extends our preliminary
work [9]. In this paper, we formulate the long-term cost and
performance optimization problems respectively, and use a Lya-
punov optimization method to decouple the original problems
into two series of real-time optimization subproblems. Then,
we develop the algorithms based on the Lyapunov optimiza-
tion method, which do not require any prior knowledge of the
mobility characteristics to optimize the long-term cost and per-
formance of UEs. The algorithms proposed in this paper not only
make the offloading decision, but also decide the resource alloca-
tion and service migration strategies. Moreover, we explore the
impact of various key parameters on the cost and performance of
UEs through extensive experiments.

3. System model and problem formulation

3.1. System model

The scenario studied in this paper is a time slot system. UEs
move on a two-dimensional plane and execute a task at each
time slot τ ∈ {0, 1, 2, . . .} [23,31,32]. We assume that the time
interval between the two successive time slots is long enough
to complete a task. UEi represents ith UE, where 1 ≤ i ≤ N .
he service of UEi is represented by ith virtual machine (VM),
.e., VMi. The location of UEi is

(
xi(τ ), yi(τ )

)
, where xi(τ ), yi(τ )

re the abscissa and ordinate of UEi at τ . As shown in Fig. 1,
e use some dots to represent the locations of UEs. Moreover,
71
UEs have their own mobility characteristics. In the figure, UE1 has
no dot, which means that it moves in a random manner and we
know nothing about its mobility regularity except for its current
location. UE2 has one dot, which means that it moves in a certain
regularity and its location at τ + 1 can be predicted at τ . UE3 has
a set of dots, which means that it moves in a given route and we
know everything about its mobility regularity and its locations at
all time slots in advance. ai(τ ) represents an offloadable task of
UEi at τ . The number of CPU clock cycles required to complete
ai(τ ) is denoted by wi(τ ) (cycles). The data size per CPU clock
cycle of ai(τ ) is denoted by δi(τ ) (bits per cycle).

MECj indicates an MEC server, where 1 ≤ j ≤ M . We assume
hat high-speed data transmission between the MEC servers is
mplemented through the backbone network. (xj, yj) represents
ECj’s location, where xj, yj are the abscissa and ordinate of the
erver. The deployment location of VMi at τ is denoted by Ii(τ ) =
. The binary variable λi,j(τ ) ∈ {0, 1} represents whether ai(τ ) is
uploaded to MECj. If ai(τ ) is executed by MECj, then λi,j(τ ) = 1,
therwise λi,j(τ ) = 0. λi,0(τ ) = 1 indicates that ai(τ ) will be
xecuted by UEi itself. Because ai(τ ) can only be processed by one
ntity, thus

∑M
j=0 λi,j(τ ) = 1. We use vi,j′,j(τ ) ∈ {0, 1} to represent

hether to migrate the service of UEi form MECj′ to MECj at τ . If
i,j′,j(τ ) = 1, then VMi will be migrated from MECj′ to MECj. We
et vi,j,j(τ ) = 0. Meanwhile, we assume that there is only one
erver that can deploy VMi at τ , thus

∑M
j=1 vi,j′,j(τ ) ≤ 1.

It can be seen from Fig. 2 that if VM3 is deployed in MEC1
t time slot τ , the increase in distance between UE3 and the
EC server leads to the increase in transmission delay, thus
egrading QoE and QoS. Thus, as shown in the figure, to provide
eamless service for UE3, VM3 should be migrated among the
EC servers to follow the UE’s movement. However, as shown in
ig. 1, when UE3 moves back and forth between two locations,
f VM3 follows the UE to move back and forth between the
wo MEC servers, it will cause frequent service migration. The
requent service migration can also lead to an increase in energy
onsumption and latency. As shown in Figs. 1 and 2, when UE3
oves back and forth between MEC3 and MEC4, because we know

he mobility characteristic of UE3, we can keep VM3 at MEC3,
hereby reducing the number of unnecessary service migrations
nd improving QoE. This paper studies the offloading strategy
ptimization problem with different mobility characteristics, and
evelops algorithms based on these characteristics to improve
oE and QoS.

.2. Communication model

We use pi,max Watt (W) to represent the maximum trans-
ission power of UEi. According to Shannon’s theorem [21], in

he channel interfered by Gaussian white noise, the maximum
ransmission rate is determined by Wi log2 (1+ Υ ), where Wi
s the transmission channel bandwidth and Υ is the signal-to-
oise ratio of the channel. Following the signal-to-noise ratio
sed in [5,6,11], we adopt the Rayleigh fading channel model [25].
herefore, the signal-to-noise ratio is Υ = pi,j(τ )h2

i /
(
dωi
i,j (τ )Ni

)
,

here pi,j(τ ), hi, di,j(τ ) =
√(

xi(τ )− xj
)2
+
(
yi(τ )− yj

)2, ωi,Ni
re the transmission power of UEi to upload ai(τ ) to MECj, the
ransmission channel fading coefficient, the distance between UEi
nd MECj at τ , the channel path loss exponent, and the channel
hite Gaussian noise, respectively. Moreover, we also overlook
he receiving latency of task result. Thus, the transmission rate of
i(τ ) from UEi to MECj can be formulated as

i,j(τ ) = Wi log2

(
1+

pi,j(τ )h2
i

dωi
i,j (τ )Ni

)
. (1)
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.3. Computation model

.3.1. Local computation model
The maximum CPU frequency of UEi is denoted by fi,max (cycles

per second). Moreover, we assume that the UE can adjust its CPU
frequency according to its demands. fi(τ ) ∈ [0, fi,max] represents
the actual CPU frequency of UEi when ai(τ ) is executed by the UE.
The local computational time of ai(τ ) is

t li (τ ) =
wi(τ )
fi(τ )

. (2)

Based on [36], then we have the local energy consumption of
ai(τ ), i.e.,

eli(τ ) = κiwi(τ )f 2i (τ ), (3)

where κi is the coefficient factor of UEi’s chip architecture.

3.3.2. MEC server computation model
We use fj (cycles per second) to denote the computing power

of MECj. Thus, the computational time of ai(τ ) executed by MECj
is

t ji (τ ) = ti,j,t (τ )+ ti,j,e(τ )+ ti,j,w(τ )+ vi,j′,j(τ )ti,j,m(τ ), (4)

where ti,j,t (τ ) = wi(τ )δi(τ )/Ri,j(τ ), ti,j,e(τ ) = wi(τ )/fj, ti,j,w(τ ),
ti,j,m(τ ) = mi are the transmission delay of ai(τ ), the computa-
tional time of ai(τ ) executed by MECj, the average waiting delay
of ai(τ ) in MECj, the migration delay of VMi, respectively. In this
paper, without loss of generality, we assume that the migration
delay mi is a constant related to task type of UEi. Accordingly,
the UEi’s energy consumption of ai(τ ) executed by MECj can be
formulated as

eji(τ ) = pi,0
(
ti,j,e(τ )+ ti,j,w(τ )+ vi,j′,j(τ )mi

)
+ pi,j(τ )ti,j,t (τ ), (5)

where pi,0 (W) is the static power of UEi. Based on the above
definitions, the latency of ai(τ ) can be formulated as

ti(τ ) =

((
1−

M∑
j=1

λi,j(τ )
)
t li (τ )+

M∑
j=1

λi,j(τ )t
j
i (τ )

)
. (6)

The energy consumption of ai(τ ) can be formulated as

ei(τ ) =

((
1−

M∑
j=1

λi,j(τ )
)
eli(τ )+

M∑
j=1

λi,j(τ )e
j
i(τ )

)
. (7)

3.4. Problem formulation

3.4.1. Energy minimization problem
According to the above definitions, we can formulate the en-

ergy consumption minimization problem of UEi as the following:

P1 : min
Vi,Λi,Pi,Fi

lim
T→∞

1
T

T−1∑
τ=0

ei(τ ), (8)

s.t. C1 : 0 ≤ fi(τ ) ≤ fi,max,

C2 : 0 ≤ pi,j(τ ) ≤ pi,max,

C3 :

M∑
j=0

λi,j(τ ) = 1, λi,j(τ ) ∈ {0, 1},

C4 :

M∑
j̸=j′

vi,j′,j(τ ) ≤ 1, vi,j′,j(τ ) ∈ {0, 1},

C5 : ti(τ ) ≤ t i,max,

here t i,max is the maximum average time latency of UEi’s task.
, Λ , P , F are the service migration strategies, the offloading
i i i i

72
ecisions, the transmission power strategies, and the CPU fre-
uency strategies of UEi at all τ ∈ [0, T − 1]. In P1, C1, C2
re the constraints of CPU frequency and transmission power,
espectively. C3 represents that ai(τ ) can only be processed by
ne entity at τ . C4 represents that VMi can only be deployed at
ne MEC server at τ . C5 is the latency constraint of a task.

.4.2. Latency minimization problem
The latency minimization problem of UEi can be formulated as

he following:

2 : min
Vi,Λi,Pi,Fi

lim
T→∞

1
T

T−1∑
τ=0

ti(τ ), (9)

s.t. C1, C2, C3, C4,

C6 : ei(τ ) ≤ ei,max,

where ei,max is the maximum average time energy consumption
of UEi’s task. C6 is the energy constraint of a task.

It is easy to know that P1 and P2 are not only the long-
term optimization problems, but also mixed integer program-
ming problems and NP-hard problems [17].

4. Energy minimization problem

4.1. Greedy strategy based algorithms

It is easy to know that the optimal solutions of P1 and P2
cannot be obtained at one time, but needs to be continuously
adjusted to accommodate the dynamics of UEs based on the
long-term knowledge. Therefore, to solve the mixed integer pro-
gramming and NP-hard problems, we can use the greedy strategy,
i.e., making offloading strategy with minimum cost at each time
slot. Then, we can solve the problems task by task. Meanwhile,
we can also use the following theorem to transform the original
multiple-dimensional optimization problem into 1-dimensional
optimization problem [4].

Theorem 1. infβ,σ f (β, σ ) = infσ f̃ (σ ), where f̃ (σ ) = infβ f (β, σ ).

If we know the deployment location of VMi, i.e., Eq. (6) can be
ransformed to

i(τ ) = t li (τ )+ λi,j(τ )
(
t ji (τ )− t li (τ )

)
, (10)

nd Eq. (7) can be transformed to

i(τ ) = eli(τ )+ λi,j(τ )
(
eji(τ )− eli(τ )

)
. (11)

oreover, if λi,j(τ ) can be relaxed to be a continuous variable,
.e., 0 ≤ λi,j(τ ) ≤ 1, P1 and P2 can be transformed to the standard
inear programming problems. Next, we first assume that Ii(τ ) = j
nd decouple P1 into a subproblem of ai(τ ). Thus, the subproblem
f P1 is

3 : min
si(τ)

ei(τ ), (12)

s.t. C1, C2, C5,

C7 : λi,j(τ ) ∈ [0, 1].

In P3, we use si(τ) ≜
(
λi,j(τ ), fi(τ ), pi,j(τ )

)
to represent a

ask offloading strategy set consists of offloading decision, CPU
requency, and transmission power. Thus, we can decompose
ubproblem P3 into two subproblems based on the offloading
ecision, i.e., λi,j(τ ).
Based on Theorem 1, we can obtain the optimal task offload-

ng decision, CPU frequency, transmission power, and service
igration strategies according to the following theorem.
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heorem 2. For energy minimization problem, the optimal strate-
ies of ai(τ ) can be obtained from the following equations:
∗

i (τ ) = min{fi,max, f̃i(τ )}, (13)
∗

i,j(τ ) = min{pi,max, pi,j,min(τ )}, (14)
∗

i,j∗ (τ ) = Φ{e
l∗
i (τ ) > ej

∗

i (τ )}, (15)

v∗i,j,j∗ (τ ) = Φ{e
j
i(τ ) > ej

∗

i (τ )}, (16)

where f̃i(τ ) = wi(τ )/t i,max, and Φ{o} ∈ {0, 1} is a boolean function.
f o is true, then Φ{o} = 1. Otherwise, Φ{o} = 0. pi,j,min(τ ) =
2bi,j(τ ) − 1)/ψi,j(τ ) where ψi,j(τ ) = h2

i /(d
ωi
i,j (τ )Ni) and bi,j(τ ) =

i(τ )δi(τ )/Wi
(
ti,r (τ )− ti,j,e(τ )− ti,j,w(τ )− vi,j′,j(τ )mi

)
.

roof. If ai(τ ) is executed by UEi itself, then λi,0(τ ) = 1. Plugging
q. (2) into C5 : ti(τ ) ≤ t i,max, we have fi(τ ) ≥ wi(τ )/t i,max.

Let f̃i(τ ) = wi(τ )/t i,max. Thus we have fi(τ ) ≥ f̃i(τ ). That is,
there is a minimal CPU frequency f̃i(τ ) that can satisfy the latency
constraint C5. According to C1 : fi(τ ) ∈ [0, fi,max], we can
easily obtain the optimal CPU frequency strategy from f ∗i (τ ) =
in{fi,max, f̃i(τ )}.
If ai(τ ) is executed by MECj, then λi,j(τ ) = 1. Plugging

i,j,t (τ ) = wi(τ )δi(τ )/Ri,j(τ ) into C5 : ti(τ ) ≤ t i,max, we have
an inequality wi(τ )δi(τ )/Ri,j(τ ) ≤ t i,max. Then, plugging Eq. (1)
nto the inequality, we have pi,j(τ ) ≥ (2bi,j(τ ) − 1)/ψi,j(τ ), where
i,j(τ ) = h2

i /(d
ωi
i,j (τ )Ni) and bi,j(τ ) = wi(τ )δi(τ )/Wi

(
ti,r (τ ) −

i,j,e(τ )− ti,j,w(τ )− vi,j′,j(τ )mi
)
. Thus, there is a minimal transmis-

ion power pi,j,min(τ ) = (2bi,j(τ )−1)/ψi,j(τ ) between UEi and MECj
n order to satisfy the latency constraint C5. According to C2 :

i,j(τ ) ∈ [0, pi,max], we can easily obtain the optimal transmission
ower strategy from p∗i,j(τ ) = min{pi,max, pi,j,min(τ )}.
Since ei(τ ) is a linear function w.r.t. λi,j(τ ), we can obtain the

ffloading decision from λ∗i,j(τ ) = Φ{el
∗

i (τ ) > ej
∗

i (τ )}, where
ECj∗ represents the optimal server.
When the cost of service migration is less than the benefit

f service migration, the service migration operation is triggered.
e can iterate all MEC servers and calculate the energy consump-

ion of UEi. Then, we can obtain the service migration strategy
rom vi,j,j′ (τ ) = Φ{eji(τ ) > ej

′

i (τ )}. Moreover, if we regard MECj∗

ith minimal cost as the optimal server, we can obtain the
ptimal service migration strategy from v∗i,j,j∗ (τ ) = Φ{eji(τ ) >
j∗
i (τ )}. □

According to Theorem 2, we have a corollary, i.e.,

orollary 1. For ai(τ ) and MECj, MECj is an available server for
Ei when pi,j,min(τ ) ≤ pi,max.

roof. It is easy to know that if ai(τ ) can be completed within the
atency constraint, the minimal transmission power must satisfy
i,j,min(τ ) ≤ pi,max. Otherwise, the delay of the task executed by
ECj violates the constraint C5. □

In fact, we can use Corollary 1 to check the feasibility of
an MEC server for executing ai(τ ). Thus, we can determine an
vailable MEC server set of ai(τ ) in advance, i.e., Mi(τ ), to reduce

the server scale that needed to be searched. Then, we can get the
optimal transmission power strategies for UEi transmitting ai(τ )
o each MEC server (MECj ∈ Mi(τ)). Next, the corresponding cost
or MECj executing the task can be calculated based on Eq. (5).
eanwhile, we regard MECj∗ with minimal cost as the optimal
erver. The optimal CPU frequency and corresponding cost can be
asily obtained from Eqs. (3) and (13), respectively. By comparing
he optimal cost of local execution and server execution, we get
he optimal offloading decision λ∗ (τ ). If λ∗ (τ ) = 1, the service
i,j i,j
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igration is triggered when Ii(τ ) ̸= j∗. Hence, we obtain the
ptimal offloading strategy of ai(τ ).

emark 1. In this paper, although the CPU frequency is assumed
o be a continuous variable, the algorithms proposed in the paper
an be easily adapted to discrete CPU frequencies. For instance,
et us consider CPU frequency fi(τ ) ∈ CPU ≜ {fi,1, fi,2, . . . , fi,max},
here fi,1 < fi,2 < · · · < fi,max are the possible CPU frequency
alues of UEi. For given ai(τ ) and t i,max, the optimal CPU fre-

quency is determined. For the short-term energy-minimization
problem, to meet the latency constraint of ai(τ ), the minimal CPU
frequency is fi,min(τ ) = wi(τ )/t i,max. If fi,min(τ ) > fi,max, we can
conclude that UEi is not capable to complete the task ai(τ ) within
the latency constraint. That is, the task should be offloaded to the
MEC servers for processing. If fi,min(τ ) ≤ fi,max, the task can be
executed locally. Moreover, if fi,min(τ ) ∈ CPU , then fi,min(τ ) is the
optimal CPU frequency strategy, i.e., f ∗i (τ ) = fi,min(τ ). If fi,min(τ ) /∈
PU and fi,min(τ ) < fi,max, although we cannot obtain the optimal
PU frequency strategy directly, it can be confirmed that the
uboptimal CPU frequency f ∗i (τ ) should satisfy f ∗i (τ ) ≥ fi,min(τ ).
ence, the suboptimal CPU frequency is the smallest element in
PU that is greater than fi,min(τ ), i.e., f ∗i (τ ) = min{fi(τ )|fi(τ ) ≥

fi,min(τ ), fi(τ ) ∈ CPU}.
It should be noted that f ∗i (τ ) may be a suboptimal solution of

P3. However, f ∗i (τ ) is the best CPU frequency strategy that UEi
can really adopt.

It is feasible to obtain the mobile characteristics of UEs in
a short-term. Thus, we can use the mobility characteristics to
optimize the strategies of the UEs. Next, we detail the three task
offloading algorithms based on different mobility characteristics.

Algorithm 1 EO-RM: energy-optimal algorithm for UEi with
random mobility.
Input: t i,max, fi,max, pi,max, Ii(0) = j, Wi, hi, Ni, ωi, wi, and δi, for all
τ ∈ [0, T − 1].
Output: Λ∗i , F

∗

i , P
∗

i , V
∗

i , and I∗i .

1: while τ < T do
2: Obtain Mi(τ ) from Corollary 1;
3: Calculate f ∗i (τ ), pi,j(τ ), e

l
i(τ ) and eji(τ );

4: Record the current minimal energy consumption emi ←
eji(τ );

5: for MECj′ ∈ Mi(τ ) do
6: Calculate pi,j′ (τ ) and ej

′

i (τ );
7: if ej

′

i (τ ) < emi (τ ) then
8: Update migration strategy v∗i,Ii(τ−1),j′ (τ )← 1;
9: Update service location I∗i (τ )← j′;
0: Update energy consumption emi ← ej

′

i (τ );
1: end if
2: end for
3: Update optimal offloading decision λ∗i,Ii(τ )(τ ) and transmis-

sion power p∗i,Ii(τ )(τ );
4: τ ← τ + 1;
5: end while
6: return Λ∗i , F

∗

i , P
∗

i , V
∗

i , and I∗i .

4.1.1. The algorithm for UEs with random mobility
For UEi with random mobility, we make the strategy based on

the UE’s current informations, i.e., location and task informations.
For the energy minimization problem, Algorithm 1 shows an
energy-optimal algorithm to decide task offloading strategies for
UE with random mobility. The algorithm is named EO-RM. When
i
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i(τ ) and MECj are given, fi(τ ), pi,j(τ ), eli(τ ), and eji(τ ) can be
btained accordingly. Then, UEi iterates Mi(τ ) to try to find MECj∗

hile making the service migration strategy. That is, UEi finds an
ptimal MEC server with minimum execution energy consump-
ion among MECj ∈ Mi(τ ) at each time slot. The complexity of
he algorithm is O

(∑T−1
τ=0 |Mi(τ )|

)
, where |Mi(τ )| is the number

f MEC servers in this set.

Algorithm 2 EO-PM: energy-optimal algorithm for UEi with
predictable mobility.
Input: t i,max, fi,max, pi,max, Ii(0) = j, Wi, hi, Ni, ωi, wi, and δi, for all
τ ∈ [0, T − 1].
Output: Λ∗i , F

∗

i , P
∗

i , V
∗

i , and I∗i .

1: while τ < T do
2: Obtain Mi(τ ) and Mi(τ + 1) from Corollary 1;
3: Obtain si(τ ), si(τ + 1), Ii(τ ) = jτ , and Ii(τ + 1) = jτ+1 from

Algorithm 1;
4: if λi,jτ (τ ) = λi,jτ+1 (τ + 1) = 1 and jτ ̸= jτ+1 then
5: for MECj ∈ Mi(τ ) ∩Mi(τ ) do
6: if eji(τ )+eji(τ+1) < ejτi (τ )+ejτ+1i (τ+1), t ji (τ ) ≤ t i,max(τ )

and t ji (τ + 1) ≤ t i,max then
7: Update service location at τ , i.e., Ii(τ )← j;
8: Update service location at τ + 1, i.e., Ii(τ + 1)← j;
9: Update offloading decision, CPU frequency, transmis-

sion power, and service migration strategies at two
successive time slots, i.e., si(τ ), si(τ +1), vi,Ii(τ−1),j(τ ),
and vi,jτ ,j(τ + 1);

10: end if
11: end for
12: end if
13: Obtain s∗

i (τ ), s
∗

i (τ + 1), v∗i,Ii(τ−1),j∗ (τ ), and v
∗

i,Ii(τ ),j∗
(τ + 1);

14: τ ← τ + 2;
15: end while
16: return Λ∗i , F

∗

i , P
∗

i , V
∗

i and I∗i .

4.1.2. The algorithm for UEs with predictable mobility
For UEi with predictable mobility, we can predict some future

locations of the UE, and make the strategy by using the UE’s
current and future locations. We assume that the UE’s location
at τ + 1 can be predicted exactly at τ [35]. Therefore, we can
reformulate the subproblem of P1 as

P4 : min
si(τ ),si(τ+1)

ei(τ )+ ei(τ + 1), (17)

s.t. C1, C2, C4, C5, C7.

Let Ii(τ ) = jτ and Ii(τ + 1) = jτ+1 be the VM deployment
policies for ai(τ ) and ai(τ + 1), which are gotten from Algorithm
1. Moreover, there is a common MEC server executing the two
successive tasks, which may further reduce the cost of UEi. The
ational of the assumption revealed by the following theorem.

heorem 3. If jτ ̸= jτ+1 and λi,jτ (τ ) = λi,jτ+1 (τ + 1) = 1, there
may be a new optimal strategy for two tasks, i.e., I ′i (τ ) = I ′i (τ+1) =
∗ and λi,j∗ (τ ) = λi,j∗ (τ +1) = 1, where MECj∗ ∈ Mi(τ )∩Mi(τ +1).
therwise, the original strategies are the optimal strategies for ai(τ )
nd ai(τ + 1).

roof. If Ii(τ ) ̸= Ii(τ + 1), λi,jτ (τ ) = λi,jτ+1 (τ + 1) = 1, and
here is a new optimal strategy for the two tasks, i.e., λi,I ′i (τ )(τ ) =

i,I ′i (τ+1)
(τ + 1) = 1, where I ′i (τ ) = j′τ , I

′

i (τ + 1) = j′τ+1, and
′
τ ̸= j′τ+1. Then, we have an inequality, i.e., ejτi (τ )+ ejτ+1i (τ +1) >
j′τ (τ )+e

j′
τ+1 (τ+1), where MEC ′ ∈ M (τ ) and MEC ′ ∈ M (τ+1).
i i jτ i j

τ+1 i
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Algorithm 3 EO-KM: energy-optimal algorithm for UEi with fully
nown mobility.

Input:t i,max, fi,max, pi,max, Si(0) = j, Wi, hi, Ni, ωi, wi, δi, ϵi, and Γi,
for all τ ∈ [0, T − 1].
Output: Λ∗i , F

∗

i , P
∗

i , V
∗

i , and I∗i .

1: Obtain Λi, Fi, Pi, Vi, and Ii through Algorithm 2;
2: Σt ← 0;
3: γ ← 0;
4: while

∑T−1
k=1 ei(k)−Σt > ϵi and γ < Γi do

5: φ← Ii(0);
6: ρ ← 1;
7: γ ← γ + 1;
8: for ak ∈ Ai do
9: if Ii,ak ̸= φ and k+ 1− ρ > 0 then

10: k′ ← k− 1;
11: while ρ < k′ do
12: if MECIi,ak

∈ Mi,ak′ then

13: if e
Ii,ak
i (k′) +

∑k
ξ=k′+1 ei(ξ ) <

∑k
ξ=k′ ei(ξ ) and

t
Ii,ak
i (k′) ≤ t i,max then

14: Update service location Ii,ak′ ← Ii,ak ;
15: Update offloading decision, CPU frequency and

transmission power strategies, i.e., si,ak , and
service migration strategy vi,j′,j,ak ;

16: end if
17: end if
18: k′ ← k′ − 1;
19: end while
20: φ← Ii,ak′+1 ;
21: ρ ← k′ + 1;
22: end if
23: end for
24: Σt ←

∑T−1
k=1 ei(k);

25: end while
26: for ak ∈ Ai do
27: if Ii,ak ̸= Ii,ak+1 and Ii,ak = Ii,ak+2 and MECIi,ak

∈ Mi(k + 1)
then

28: if e
Ii,ak
i (k) + e

Ii,ak
i (k + 1) + e

Ii,ak
i (k + 2) <

∑k+2
k′=k ei(k

′) and

t
Ii,ak
i (k+ 1) < t i,max then

29: Update service location Ii,ak+1 ← Ii,ak ;
30: Update offloading decision, CPU frequency and trans-

mission power strategies, i.e., si,ak+1 , and service
migration strategy vi,j′,j,ak ;

31: end if
32: end if
33: end for
34: return Λ∗i , F

∗

i , P
∗

i , V
∗

i , and I∗i .

However, we know that ejτi (τ ) ≤ ej
′
τ
i and ejτ+1i (τ+1) ≤ e

j′
τ+1
i (τ+1),

which contradicts with the premise. Thus, j′τ = j′τ+1 = j∗ should
e true (i.e., the two tasks are executed at a common MEC server
ECj∗ ) when there is a new strategy for the two tasks. Moreover,

f MECj∗ /∈ Mi(τ ) ∩ Mi(τ + 1), which means that one of the
asks violates the latency constraint. Therefore, if jτ = jτ+1 and
i,jτ (τ ) = λi,jτ+1 (τ + 1) = 1, then MECjτ is the optimal execution
ocation for the two tasks.

If λi,jτ (τ ) ̸= λi,jτ+1 (τ + 1), we assume that λi,0(τ ) = 1 and
i,jτ+1 (τ + 1) = 1, we have inequalities eli(τ ) ≤ eji(τ )

(
∀MECj ∈

i(τ )
)
and ejτ+1i (τ + 1) ≤ eji(τ + 1)

(
∀MECj ∈ Mi(τ + 1)

)
. Thus,

f we have el(τ ) + ejτ+1 (τ + 1) > ej
′
τ (τ ) + e

j′
τ+1 (τ + 1), which
i i i i
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Fig. 3. An illustration process of Algorithm 3.

contradicts with the premise. Based on the above, we have the
conclusion. □

For the energy minimization problem, Algorithm 2 shows an
energy-optimal algorithm to decide task offloading strategies for
UEi with predicted mobility. The algorithm is named EO-PM. We
can first obtain the optimal strategies of ai(τ ) and ai(τ + 1)
rom Algorithm 1, respectively. The services of two successive
asks are rescheduled in MECj ∈ Mi(τ ) ∩ Mi(τ + 1) according to
heorem 3. Meanwhile, the task offloading strategies of the two
asks are updated accordingly. The complexity of the algorithm is(∑T−1

τ=0 |Mi(τ )|
)
.

.1.3. The algorithm for UEs with fully known mobility
For UEi with fully known mobility, we know everything about

he UE’s movement regularity and its all future locations in ad-
ance. For the energy minimization problem, Algorithm 3 shows
n energy-optimal algorithm to decide task offloading strategies
or UEi with fully known mobility. The algorithm is named EO-
M. An example process of Algorithm 3 is illustrated in Fig. 3.
he initial Λi, Fi, Pi, Vi, and Ii are obtained from Algorithm 2. As
hown in the figure, we use Si(0) to represent the initial locations
f UEi’s service. Since the whole movement and task informations
f UEi is know, to avoid confusion with the former two real-time
lgorithms, we use k instead of τ to represent the subscript of
arameters. We iterate ak ∈ Ai to update the task strategies of UEi,
here ak (k ∈ [1, T ]) is kth time slot task of UEi and Ai represents
he task set of the UE at all time slots (i.e., |Ai| = T ). Ii,ak ∈ [1,M]
denotes the service location of ak ∈ Ai. si,ak is an offloading
trategy (including offloading decision, CPU frequency strategy,
nd transmission power strategy) of ak. Mi,ak is the available MEC
erver set of ak. vi,j′,j,ak ∈ {0, 1} is the service migration strategy
f ak.
There are two iterations for updating the strategies of UEi

n Algorithm 3. The first iteration (Lines 4–25) is migrating the
ervice of the UE in advance. Let Ii,aρ = j, we use aρ (ρ ∈
1, T ]) and ak to represent the first task and the last task among
he successive tasks executed by MECj, respectively. Thus, the
umber of the successive tasks executed by MECj is k + 1 − ρ.
f k+ 1− ρ > 0, we try to migrate VMi ahead to reduce the UE’s
ost. As shown in Fig. 3, if we migrate VMi from MEC1 to MEC2
hen a2 is executed, and the cost of k+1−ρ tasks can be reduced,
e will adjust VMi’s location and UEi’s task offloading strategies
ccordingly. Hence, we obtain Si(1). If the reduced cost is less
han ϵi or the iteration amount exceeds the maximum number of
terations Γi, the early migration process is terminated. Therefore,
e have Si(2).
The second iteration (Lines 26–33) is avoiding migrating the

ervice of the UE. If Ii,ak ̸= Ii,ak+1 , Ii,ak = Ii,ak+2 and MECIi,ak+1
∈

i,ak , we try not to migrate VMi when ak+1 is executed. As
hown in Si(2), if a2 is executed by MEC1, the UEi’s cost can be
educed. We can adjust VM ’s deployment strategy and UE ’s task
i i
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ffloading strategies accordingly. Finally, we obtain the optimal
trategies. The complexity of the algorithm is O

(∑T−1
τ=0 |Mi(τ )| +

ΓiT 2
)
.

4.2. Lyapunov optimization based algorithm

4.2.1. The background of Lyapunov optimization method
Lyapunov optimization is a method of using a Lyapunov func-

tion to optimal a dynamic system, and has low computational
complexity and quantifiable worst-case performance [18]. The
method has been widely used for task scheduling in queueing
networks [14,20]. In this section, we present the background of
the Lyapunov optimization method.

Consider a queueing system that operates in discrete time
with unit time slots τ ∈ {1, 2, 3, . . .}, and let q(τ ) be the workload
f a new arrival task at τ . The workload q(τ ) will be stored in a
ueue Q (τ ) to be scheduled. Meanwhile, the system is described
y the queue backlog of Q (τ ). A schedule action is taken at
very time slot τ , which affects the arrivals and departures of
(τ ). The method defines a function L

(
Q (τ )

)
as the square of

acklog multiplied by 1/2, i.e., L
(
Q (τ )

)
= Q (τ )2/2. The function

s named the Lyapunov function, and can be used to measure the
ystem congestion. Next, the method defines the Lyapunov drift
(τ ) = L

(
Q (τ + 1)

)
− L

(
Q (τ )

)
as the difference in the Lyapunov

unction between two successive time slots. If schedule actions
re made at every time slot to greedily minimize ∆(τ ), then
(τ ) is consistently pushed towards a lower congestion state,
hich intuitively maintains system stability. It should be noted
hat the specific meaning of system stability varies according
o different problem definitions. For example, in this paper, the
ystem stability means that the energy consumption and latency
f UEs remain at a certain level.
For a schedule system, we want to minimize an objective func-

ion F
(
q(τ )

)
while ensuring the system stability. Instead of taking

ctions to minimize ∆(τ ), the actions are taken to minimize the
rift-plus-penalty function at every time slot τ . The drift-plus-
enalty function is formulated as ∆(τ )+ VF

(
q(τ )

)
, where V is a

on-negative weight parameter that indicates the importance of
ow much we emphasize the optimization objective.
It can be known that the Lyapunov optimization method only

equires the knowledge of current information. Therefore, we
an use the Lyapunov optimization method to transform P1 and
2 into two series of online minimization subproblems respec-
ively, which addresses the challenge of acquiring UE’s mobility
haracteristics over a long time.

.2.2. The algorithm

The greedy strategy based algorithms require that the mobil-
ty type of UEs is known in advance. However, it is unrealistic
o obtain the mobility characteristics of UEs over a long time.
ortunately, the long-term constraints (i.e., C5, C6) in the prob-
ems can be regarded as the queue stability control problem
espectively [20]. The Lyapunov optimization method provides
n efficient approach to decouple the long-term optimization
roblem. Next, we detail the transform process.
Let Qi(τ ) represent a virtual discrete time queueing system of

Ei defined over time slot τ . In the paper, Qi(0) = 0. The future
tate of the queue is derived by the current computational time
i(τ ) and the average latency constraint t i,max according to the
dynamic equation

Qi(τ + 1) = max{Qi(τ )− t i,max + ti(τ ), 0}. (18)

he virtual queue Qi(τ ) is the backlog at τ and can be represented
he additional time required to process the tasks. Thus, Qi(τ ) is
sed to enforce the strategies meet the constraint C5. We use
yapunov optimization method to transform P1, then have the
ollowing theorem.
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Algorithm 4 EO-LY: energy-optimal algorithm for UEi based on
he Lyapunov optimization method.
Input: t i,max, fi,max, pi,max, Ii(0), Wi, hi, Ni, ωi, wi, and δi, for all
∈ [0, T − 1].
utput: Λ∗i , F

∗

i , P
∗

i , V
∗

i , and I∗i .

1: while τ < T do
2: Calculate f ∗i (τ ) and el∗i (τ );
3: emi ←+∞;
4: for j ∈ [1,M] do
5: Calculate p∗i,j(τ ) and ej∗i (τ );
6: if eji(τ ) < emi (τ ) then
7: Update service migration strategy v∗i,Ii(τ−1),j(τ )← 1;
8: Update service location I∗i (τ )← j;
9: Update energy consumption emi ← ej

′

i (τ );
10: end if
11: end for
12: Update offloading decision λ∗i,Ii(τ )(τ ) and transmission

power p∗i,Ii(τ )(τ );
13: τ ← τ + 1;
14: end while
15: return Λ∗i , F

∗

i , P
∗

i , V
∗

i , and I∗i .

Theorem 4. P1 is equivalent to the following problem

P5 : min
si(τ )

Ziei(τ )+ Qi(τ )ti(τ ), (19)

s.t. C1, C2, C4, C7, (20)

here Zi > 0 is the weight parameter that indicates the importance
f how much we emphasize energy consumption of UEi.

roof. Based on the definition of virtual queue, the Lyapunov
unction is L

(
Q (τ )

)
= Qi(τ )2/2. The change in Lyapunov function

rom one slot to the next slot is(
Qi(τ + 1)

)
− L

(
Qi(τ )

)
=

1
2

(
Qi(τ + 1)2 − Qi(τ )2

)
≤

1
2

(
ti(τ )2 + t2i,max

)
+Qi(τ )

(
ti(τ )− t i,max

)
− ti(τ )t i,max

≤ B+ Qi(τ )ti(τ )− Qi(τ )t i,max, (21)

here B =
(
t2i,max+ t2i,max

)
/2 and ti,max is the maximum latency of

ask.
The conditional Lyapunov drift is(
Qi(τ )

)
≜ E

{
L
(
Qi(τ + 1)

)
− L

(
Qi(τ )

)
|Qi(τ )

}
, (22)

here E represents the expectation. According to Eqs. (21), (22),
nd the law of iteration expectation [20], we have{
∆
(
Qi(τ )

)}
= E

{
L
(
Qi(τ + 1)

)
− L

(
Qi(τ )

)}
≤ B+ E

{
Qi(τ )

}(
ti(τ )− t i,max

)
. (23)

nd then, according to the law of telescoping sums [20] and
i(0) = 0, we have

E
{
L
(
Qi(T )

)}
≤ BT +

T−1∑
τ=0

E
{
Qi(τ )

}(
ti(τ )− t i,max

)
. (24)

ence, when T →∞, the above equation can be rearranged as

lim
T→∞

1
T

T−1∑
E
{
Qi(τ )

}
≤ lim

T→∞

1
T

BT − E
{
L
(
Qi(T )

)}∑T−1( ) = 0. (25)

τ=0 τ=0 t i,max − ti(τ )

76
Based on Eqs. (24) and (25), Z(τ ) is mean rate stable, that is
the energy consumption constraint of MSP can be satisfied [20].

The Lyapunov drift-plus-penalty function is

∆
(
Qi(τ )

)
+ Ziei(τ ) ≤ Qi(τ )E

{
ti(τ )− t i,max|Qi(τ )

}
+ B+ Ziei(τ )

≤ B+ Qi(τ )ti(τ )+ Ziei(τ ). (26)

herefore, if we want to minimize the long-term energy con-
umption while satisfying the latency constraint C5, we can min-
mize ∆

(
Qi(τ )

)
+ Ziei(τ ). Equivalently, we can minimize Ziei(τ )+

i(τ )ti(τ ) and have the theorem. □

Theorem 4 unifies the energy consumption of UEi and the
atency constraint of UEi into an equation. As shown in P5, the
olution of P5 is an approximate optimal solution of P1. Mean-
hile, the average time energy consumption deviates by at most
(1/Zi) from the optimal solution of P1, with the average queue
acklog bounded of O(Zi) [20]. The optimal solutions λ∗i,j∗ (τ ),
∗

i (τ ), p
∗

i,j(τ ), and v
∗

i,j′,j∗ (τ ) of P5 can be easily obtained according
o the following theorem.

heorem 5. For MECj and UEi, the optimal strategies of P5 can be
btained from the following equations:
∗

i (τ ) = min{fi,max, f̂i(τ )}, (27)
∗

i,j(τ ) = min{pi,max, p̂i,j(τ )}, (28)
∗

i,j∗ (τ ) = Φ{e
l∗
i (τ ) > ej

∗

i (τ )}, (29)
∗

i,j′,j∗ (τ ) = Φ{e
j′
i (τ − 1) > ej

∗

i (τ )}, (30)

here f̂i(τ ) = 3
√
Qi(τ )/(2Ziκi), and p̂i,j(τ ) is obtained from the

ollowing equation:(
p̂i,j(τ )

)
= Zi

( (
1+ p̂i,j(τ )ψi,j(τ )

)
ln
(
1+ p̂i,j(τ )ψi,j(τ )

)
− p̂i,j(τ )ψi,j(τ )

)
−Qi(τ )ψi,j(τ ) = 0. (31)

roof. Let ξi(τ ) = Ziei(τ ) + Qi(τ )ti(τ ). Plugging Eqs. (10) and
11) into ξi(τ ), we can get ∂2ξi(τ )/∂ f 2i (τ ) = 2Qi(τ )wi(τ )/f 3i (τ ) +
iκiwi(τ ) > 0. It is easy to know that ξi(τ ) is a convex func-
ion w.r.t. fi(τ ). Thus, we can get the optimal solution through
ξi(τ )/∂ f̂i(τ ) = 0 and obtain f̂i(τ ) = 3

√
Qi(τ )/(2Ziκi).

Let ri,j(τ ) = log2
(
1+ pi,j(τ )ψi,j(τ )

)
. We have

∂ξi(τ )
∂ri,j(τ )

=
−Qi(τ )wi(τ )δi(τ )

Wiri,j(τ )2
+

Ziwi(τ )δi(τ )
Wiψi,j(τ )

×
2ri,j(τ )

(
ln 2ri,j(τ )− 1

)
+ 1

ri,j(τ )2
, (32)

∂2ξi(τ )
∂ri,j(τ )2

=
2Qi(τ )wi(τ )δi(τ )

Wiri,j(τ )3
+

Ziwi(τ )δi(τ )
Wiψi,j(τ )

×
2ri,j(τ )

(
ln2 2ri,j(τ )2 − 2 ln 2ri,j(τ )+ 2

)
− 2

ri,j(τ )3
. (33)

et ζi
(
ri,j(τ )

)
= 2ri,j(τ )

(
ln2 2ri,j(τ )2− 2 ln 2ri,j(τ )+ 2

)
− 2. We have

∂ζi
(
ri,j(τ )

)
∂ri,j(τ )

= 2ri,j(τ ) ln3 2ri,j(τ )3 ≥ 0. (34)

ence, we know that ζi
(
ri,j(τ )

)
≥ ζi(0) = 0. Accordingly, we

asily know that ∂2ξi(τ )/∂ri,j(τ )2 > 0. Therefore, ξi(τ ) is a convex
unction w.r.t. ri,j(τ ). Then, we can get the optimal value r∗i,j(τ )
hrough ∂ξi(τ )/∂ri,j(τ ) = 0. Plugging p̂i,j(τ ) = (2r∗i,j(τ ) − 1)/ψi,j(τ )
nto Eq. (32), we can obtain Eq. (31). Thus, the optimal value p̂i,j(τ )
s the solution of h

(
p̂i,j(τ )

)
= 0 and can be obtained by using

inary search method [4]. Based on the above optimal solutions,
, and C , we get the theorem. □
1 2
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emark 2. As mentioned in Section 4.2.1, if the schedule actions
are made at every time slot to greedily minimize the drift-plus-
penalty function ∆(τ ) + VF

(
q(τ )

)
, then Q (τ ) is consistently

pushed towards a lower congestion state, which intuitively main-
tains system stability. As shown in Theorem 5, the CPU frequency
strategy satisfies f̂i(τ ) = 3

√
Qi(τ )/(2Ziκi), where Zi and κi are

constants. It can be easily known that f̂i(τ ),Qi(τ ) increase and
decrease at the same time. Therefore, for the long-term energy
minimization problem, if we use the discrete CPU model, we can
first get the minimal CPU frequency through ∂ξi(τ )/∂ f̂i(τ ) = 0,
.e., fi,min(τ ) = 3

√
Qi(τ )/(2Ziκi). Unlike the short-term energy min-

imization problem, if fi,min(τ ) > fi,max, we set the suboptimal CPU
frequency is f ∗i (τ ) = fi,max. This is because the Lyapunov optimiza-
tion method focuses on the long-term optimization. Meanwhile,
the method tolerates that the latency of strategy is greater than
the latency constraint t i,max in a certain range. If fi,min(τ ) ∈ CPU ,
then fi,min(τ ) is the optimal CPU frequency strategy, i.e., f ∗i (τ ) =
fi,min(τ ). If fi,min(τ ) /∈ CPU and fi,min(τ ) < fi,max, not only to main-
tain the same increase and decrease between Qi(τ ) and fi(τ ), but
also to maintain system stability, the suboptimal CPU frequency
f ∗i (τ ) must satisfy f ∗i (τ ) ≥ fi,min(τ ). Hence, the suboptimal CPU
frequency is the smallest element in CPU that is greater than
fi,min(τ ), i.e., f ∗i (τ ) = min{fi(τ )|fi(τ ) ≥ fi,min(τ ), fi(τ ) ∈ CPU}.

Similarly, although f ∗i (τ ) may be a suboptimal solution of P5,
f ∗i (τ ) is the best CPU frequency strategy that UEi can really adopt.

Based on Theorems 4 and 5, we develop the long-term energy-
optimal algorithm for UEi based on the Lyapunov optimization
method. The algorithm is named EO-LY. As shown in Algorithm 4,
it does not require any prior knowledge of the mobility character-
istics to minimize the long-term energy consumption of UEs. The
complexity of the algorithm is O(TMK), where K is the maximum
number of binary search iterations for obtaining p̂i,j(τ ).

5. Latency minimization problem

5.1. Greedy strategy based algorithms

Similar to P1, if Ii(τ ) = j, the subproblem of ai(τ ) is

P6 : min
si(τ )

ti(τ ), (35)

s.t. C1, C2, C6, C7.

5.1.1. The optimal solution of the latency minimization problem
For latency minimization problem, we can also obtain the

optimal task offloading decision, CPU frequency, transmission
power, and service migration strategies based on Theorem 1.
The optimal strategies of ai(τ ) can be gotten according to the
following theorem.

Theorem 6. For latency minimization problem, the optimal strate-
gies of ai(τ ) can be obtained from the following equations:

f ∗i (τ ) = min{fi,max, f̃ ′i (τ )}, (36)

p∗i,j(τ ) = min{pi,max, p̃′i,j(τ )}, (37)

λ∗i,j∗ (τ ) = Φ{t
l∗
i (τ ) > t j

∗

i (τ )}, (38)

v∗i,j,j∗ (τ ) = Φ{t
j
i (τ ) > t j

∗

i (τ )}, (39)

where f̃ ′i (τ ) =
√
ei,max/

(
κiwi(τ )

)
, and p̃′i,j(τ ) is the solution of the

following equation:

g
(
p̃′i,j(τ )

)
= πi,j(τ ) log2

(
1+ p̃′i,j(τ )ψi,j(τ )

)
− p̃′i,j(τ ) = 0. (40)
77
Proof. If λi,0(τ ) = 1, ai(τ ) is executed by UEi. Plugging Eq. (3)

into C6 : ei(τ ) ≤ ei,max, we have fi(τ ) ≤
√
ei,max/

(
κiwi(τ )

)
. Let

f̃ ′i (τ ) =
√
ei,max/

(
κiwi(τ )

)
. Thus, we know that there is a maxi-

mum CPU frequency f̃ ′i (τ ) that can satisfy the energy constraint
C6. According to C1 : fi(τ ) ∈ [0, fi,max], we can easily obtain the
optimal CPU frequency strategy from f ∗i (τ ) = min{fi,max, f̃ ′i (τ )}.

If λi,j(τ ) = 1, ai(τ ) is executed by MECj. Plugging Eq. (5) into
C6, we have the following inequality

i,j(τ ) log2
(
1+ pi,j(τ )ψi,j(τ )

)
≥ pi,j(τ ), (41)

here πi,j(τ ) = Wi

(
ei,max−pi,0

(
ti,j,e(τ )+ti,j,w(τ )+vi,j′,j(τ )ti,j,m(τ )

))
/wi(τ )δi(τ ). We then introduce(

pi,j(τ )
)
= g1

(
pi,j(τ )

)
− g2

(
pi,j(τ )

)
, (42)

here g1
(
pi,j(τ )

)
= πi,j(τ ) log2

(
1+ pi,j(τ )ψi,j(τ )

)
and g2

(
pi,j(τ )

)
pi,j(τ ). As can be seen in Fig. 4, if g1(pi,max) > g2(pi,max),

∗

i,j(τ ) = pi,max. Otherwise, p∗i,j(τ ) = p̃′i,j(τ ), where p̃′i,j(τ ) is
he solution of g

(
pi,j(τ )

)
= 0. Moreover, because g ′

(
pi,j(τ )

)
=

i,j(τ )ψi,j(τ )/
(
ln 2

(
1 + pi,j(τ )ψi,j(τ )

))
− 1, then g ′

(
pi,j(τ )

)
≤ 0

nd g
(
pi,j(τ )

)
is a monotonic non-increasing function w.r.t. pi,j(τ )

hen pi,j(τ ) ≥
(
πi,j(τ )ψi,j(τ )/ln 2 − 1

)
/ψi,j(τ ). Therefore, we can

btain p̃′i,j(τ ) by using binary search method [4]. According to
2 : pi,j(τ ) ∈ [0, pi,max], we get the optimal transmission power
trategy from p∗i,j(τ ) = min{p̃′i,j(τ ), pi,max}.
Since ti(τ ) is a linear function w.r.t. λi,j(τ ), we can obtain the

ffloading decision from λ∗i,j(τ ) = Φ{t
l∗
i (τ ) > t j

∗

i (τ )}.
When the cost of service migration is less than the benefit

f service migration, the service migration operation is triggered.
e can iterate all MEC servers and find the optimal MEC server
ith minimal latency MECj∗ . Then, we can obtain the optimal
ervice migration strategy from v∗i,j,j∗ (τ ) = Φ{t

j
i (τ ) > t j

∗

i (τ )}. □

emark 3. Similar to the short-term energy minimization prob-
em, if we use discrete CPU frequencies, for the short-term latency
inimization problem, we can first obtain the maximal CPU fre-
uency from f̃ ′i,max(τ ) =

√
ei,max/

(
κiwi(τ )

)
. If f̃ ′i,max(τ ) > fi,max, we

an conclude that fi,max will not exceed the energy consumption
constraint. Thus, we have the suboptimal CPU frequency f ∗i (τ ) =
i,max(τ ). Moreover, if f̃ ′i,max(τ ) ∈ CPU , then f̃ ′i,max(τ ) is the optimal
PU frequency strategy, i.e., f ∗i (τ ) = f̃ ′i,max(τ ). If f̃

′

i,max(τ ) /∈ CPU
nd f̃ ′i,max(τ ) < fi,max, although we cannot obtain the optimal CPU

frequency strategy directly, it can be confirmed that the subopti-
mal CPU frequency f ∗i (τ ) should satisfy f ∗i (τ ) ≤ f̃ ′i,max(τ ). Hence,
the suboptimal CPU frequency strategy is the largest element in
CPU that is less than f̃ ′i,max(τ ), i.e., f

∗

i (τ ) = max{fi(τ )|fi(τ ) ≤
f̃ ′i,max(τ ), fi(τ ) ∈ CPU}.

Similarly, although f ∗i (τ ) may be a suboptimal solution of P6,
f ∗i (τ ) is the best CPU frequency strategy that UEi can really adopt.

5.1.2. The algorithms for UEs with different mobility characteristics
Similarity, we can use the mobility characteristics to optimize

the strategy of UE. We can adopt Algorithms 1, 2, and 3 to
optimize the latency based on the UE’s mobility characteristics.
However, in the algorithms, we replace the energy ei(τ ) with la-
tency ti(τ ). Moreover, we name the algorithms as LO-RM, LO-PM,
and LO-KM, respectively.

5.2. Lyapunov optimization based algorithm

Same as P1, we introduce virtual queue Q ′i (τ+1) = max{Q ′i (τ )
−ei,max+ei(τ ), 0}. We also assume that Q ′i (0) = 0. Then, we have
the following theorem.
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heorem 7. P2 is equivalent to the following problem

P7 : min
si(τ )

Z ′i ti(τ )+ Q ′i (τ )ei(τ ), (43)

s.t. C1, C2, C4, C7, (44)

here Z ′i > 0 is the weight parameter that indicates the importance
f how much we emphasize latency of UEi.

roof. Similar to Theorem 4, we first obtain Lyapunov function,
onditional Lyapunov drift, and Lyapunov drift-plus-penalty func-
ion of P2. Then, we can get the conclusion with the help of the
aw of telescoping sums. Due to the space of paper, the detailed
roof is omitted. □

The solution of P7 is an approximate optimal solution of P2.
eanwhile, the average time service latency deviates by at most
(1/Z ′i ) from the optimal solution of P2, with the average queue
acklog bounded of O(Z ′i ) [20]. The optimal solutions λ∗i,j∗ (τ ),
∗

i (τ ), p
∗

i,j(τ ), and v
∗

i,j′,j∗ (τ ) of P7 can be obtained according to the
following theorem.

Theorem 8. For MECj and UEi, the optimal strategies of P7 can be
btained from the following equations:
∗

i (τ ) = min{fi,max, f̂ ′i (τ )}, (45)
∗

i,j(τ ) = min{pi,max, p̂′i,j(τ )}, (46)
∗

i,j∗ (τ ) = Φ{t
l∗
i (τ ) > t j

∗

i (τ )}, (47)
∗

i,j′,j∗ (τ ) = Φ{t
j′
i (τ − 1) > t j

∗

i (τ )}, (48)

where f̂ ′i (τ ) =
3
√
Q ′i (τ )/(2Z

′

i κi), and p̂′i,j(τ ) is obtained from the
following equation:

h
(
p̂′i,j(τ )

)
= Z ′i

( (
1+ p̂′i,j(τ )ψi,j(τ )

)
ln
(
1+ p̂′i,j(τ )ψi,j(τ )

)
− p̂′i,j(τ )ψi,j(τ )

)
−Q ′i (τ )ψi,j(τ ) = 0. (49)

roof. Compared with Theorem 4, we can easily find that the
ultipliers of ei(τ ) and ti(τ ) are reversed actually. We replace the

task latency with task energy consumption as the backlog of the
virtual queue that we want to make stable. Moreover, the above
operations do not change the convex property of P7. Therefore,
we can adjust the place of related parameters

(
i.e., Z ′i and Q ′i (τ )

)
of f̂ ′i (τ ) and h

(
p̂′i,j(τ )

)
, thus obtaining the optimal solutions of P7.

Therefore, we get the theorem. □

Similarity, we can replace energy consumption used in Algo-
rithms 4 with latency as the optimization objective to make the
strategy for UEs. The algorithm is named as LO-LY accordingly.
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Remark 4. Similar to the long-term energy minimization prob-
lem, if we use discrete CPU frequencies, for the long-term la-
tency minimization problem, we can first get the minimal CPU
frequency from Theorem 8, i.e., fi,min(τ ) = 3

√
Q ′i (τ )/(2Z

′

i κi). If
fi,min(τ ) > fi,max, we set the suboptimal CPU frequency is f ∗i (τ ) =
i,max. If fi,min(τ ) ∈ CPU , then fi,min(τ ) is the optimal CPU frequency
trategy, i.e., f ∗i (τ ) = fi,min(τ ). If fi,min(τ ) /∈ CPU and fi,min(τ ) <
i,max, the suboptimal CPU frequency is the smallest element in
PU that is greater than fi,min(τ ), i.e., f ∗i (τ ) = min{fi(τ )|fi(τ ) ≥
i,min(τ ), fi(τ ) ∈ CPU}.

Similarly, although f ∗i (τ ) may be a suboptimal solution of P7,
∗

i (τ ) is the best CPU frequency strategy that UEi can really adopt.

. Simulation experiments and results analysis

.1. Experiment setting

In the experiment, referring to [12], we generate N = 3 UEs
nd M = 200 MEC servers according to the following parameters:
i,max = 3 W, pi,0 = 0.01 W, fi,max = 5× 108 cycles/s, t i,max = 1 s,

ei,max = 1 J, wi(τ ) is a random value taken from {10, 20, 30, 40},
δi(τ ) = 1048576 bits/cycle, κi = 10−10, Wi = 1011 Hz, hi = 10−3,
ωi = 2, Ni = 10−9, mi = 10−6 s, xi(0) = yi(0) = 0. The computing
power of MECj is given as fj = 109 cycles/s. Without loss of
generality, we set ti,j,w(τ ) = 0. UEs move on a 400 × 400 square
meters two-dimensional plane and −200 ≤ xi(τ ), yi(τ ) ≤ 200. To
simulate the movement of UEs, we introduce a random variable
u(τ ) ∈ {−1, 0, 1} to indicate UE remains stationary, or moves 1
meters (m) forward or backward. The three UEs adopt the differ-
ent transportation means, including walk, bike, and motorcycle.
The horizontal and vertical speeds (i.e., vi,x and vi,y) of UEs are as
follows: v1,x = v1,y = 1 m/s, v2,x = v2,y = 3 m/s, and v3,x =
v3,y = 5 m/s. The location of UEi at τ + 1 is

(
xi(τ + 1), yi(τ + 1)

)
,

where xi(τ + 1) = max
{
min{xi(τ − 1) + vi,xu(τ ), 200},−200

}
and yi(τ + 1) = max

{
min{yi(τ − 1) + vi,yu(τ ), 200},−200

}
. The

MEC servers are located on the diagonal of the plane, and their
horizontal and vertical coordinate intervals are the multiple of 4
m. In addition, due to different magnitude of energy and latency.
For energy minimization problem, we simulate T = 105 time
slots. For latency minimization problem, we simulate T = 109

time slots.
We use the following four task offloading schemes as base-

lines: (1) LM: UEi executes all tasks locally by using fi,max. (2) LR:
UEi executes all tasks locally by using the CPU strategies proposed
in this paper. (3) MM: All tasks will be offloaded to the MEC
servers with pi,max. (4) MR: All tasks will be offloaded to the MEC
servers for executing by using the transmission power strategies

proposed in this paper.
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Table 1
The average number of iterations comparison of UEi using different algorithms.
Algorithms Energy minimization (T = 105) Latency minimization (T = 109)

UE1 UE2 UE3 UE1 UE2 UE3

EO/LO-RM 200 200 200 200 200 200
EO/LO-PM 205 211 218 212 233 221
EO/LO-KM 314 257 239 319 367 254
EO/LO-LY4 10,875 11,234 10,341 12,503 12,503 12,233
EO/LO-LY6 11,884 11,406 11,188 12,232 12,232 12,504
EO/LO-LY8 13,063 11,651 11,582 11,501 11,501 11,503
Table 2
The cost and performance comparison of UEi using different algorithms.
Algorithms Energy/cost (J, T = 105) Latency/performance (s, T = 109)

UE1 UE2 UE3 UE1 UE2 UE3

LM 1E+09 1E+09 1E+09 8E−08 8E−08 8E−08
LR 1.587E−03 1.587E−03 1.587E−03 6.35E−02 6.35E−02 6.35E−02
MM 1.145E−04 1.145E−05 1.14E−05 4.852E−06 4.852E−06 4.836E−06
MR 4.053E−07 4.031E−07 3.917E−07 4.208E−06 4.271E−06 4.384E−06
EO/LO-RM 3.945E−07 3.93E−07 3.819E−07 4.208E−06 4.271E−06 4.384E−06
EO/LO-PM 3.943E−07 3.925E−07 3.814E−07 4.188E−06 4.249E−06 4.384E−06
EO/LO-KM 3.941E−07 3.925E−07 3.814E−07 4.181E−06 4.249E−06 4.384E−06
EO/LO-LY4 3.182E−06 1.527E−06 4.258E−06 8.178E−05 8.168E−05 8.062E−05
EO/LO-LY8 3.995E−07 9.073E−07 9.139E−07 1.032E−05 1.053E−05 1.034E−05
EO/LO-LY12 8.569E−08 8.66E−08 8.642E−08 4.208E−06 4.271E−06 4.324E−06
F
i
m
t
t
t

6.2. The convergence of the algorithms

Table 1 shows the average number of iterations required for
Ei using different algorithms to obtain its optimal strategy. The
umber of iterations refers to the number of loops required to
earch λ∗i,j(τ ), f

∗

i (τ ), p
∗

i,j(τ ), and v
∗

i,j′,j(τ ). In the table, EO-LY4 rep-
resents EO-LY (Zi = 104) and LO-LY4 is LO-LY (Z ′i = 104). Other
imilar symbols indicate similar meanings. As shown in the table,
or LO-RM/PM/KM, since the transmission power is obtained by
sing binary search method, the average number of iterations
s more than what EO-RM/PM/KM needs. LO/EO-LY needs more
terations than LO/EO-RM/PM/KM. The reason lies in that LO/EO-
Y does not determine the available MEC servers set in advance
nd should iterate all servers at each time slot. Meanwhile, the
alue of h

(
p̂i,j(τ )

)
or h′

(
p̂′i,j(τ )

)
is larger than g

(
pi,j(τ )

)
, so LO/EO-

Y takes more iterations to make transmission power strategy
hen using the binary search method. Therefore, we can also find
hat the value of Zi or Z ′i affects the number of iterations. For LO-
Y, h′

(
p̂′i,j(τ )

)
decreases as Z ′i increases, thus the algorithm with

maller Z ′i requires less iterations. However, for EO-LY, increasing
he value of Zi has opposite effects on the number of iterations.

.3. The effectiveness of algorithms in the long-term

As shown in Table 2, although LM achieves the minimal la-
ency among all the algorithms, the energy consumption of LM
xceeds the energy consumption constraint of UEs. It can be seen
rom the table that compared with the four baselines, the four
lgorithms proposed in this paper perform better. Moreover, if
he future location of the UE can be known in advance, the service
igration strategy can be pre-determined to further minimize the
ost. Thus, compared with EO/LO-RM, EO/LO-PM/KM can further
educe the energy and latency of UEs by using their mobility
haracteristics.
Zi and Z ′i are the weight parameter that indicates the impor-

ance of how much we emphasize the energy and latency of UEi,
espectively. Thus, we can see that the energy and latency of UEi
ecreases as Zi and Z ′i increases. Moreover, as shown in Fig. 5, it
an be seen that the number of service migrations decreases as
i or Z ′i increases, thus reducing the service migration amount,
nergy, and latency of UEs.
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Next, we analyze the impact of t i,max and ei,max on the energy
and latency, respectively. Let us take UE3 as an example. From
the perspective of the curves in Fig. 6, as the constraints tighten,
the energy and latency gradually increase. However, EO/LO-LY
performs better than EO/LO-RM/PM/KM.

It is well known that the short-term and long-term are relative
concepts. Thus, in this paper, energy minimization problem is
a long-term optimization problem when T ≥ 105, and latency
minimization problem is a long-term optimization problem when
T ≥ 109. Based on the above, we can conclude that EO/LO-LY
performs better than EO/LO-RM/PM/KM in the long-term.

In addition, as shown in the above tables and figures, we
find that the transportation means affects the velocity, result-
ing in different movement distance and Mi(τ ). Therefore, the
transportation mean affects the effectiveness of the algorithms.

6.4. The effectiveness of algorithms in the short-term

As can be seen from Fig. 7(a), the energy consumption of
UEi using EO-RM/PM/KM increases as T increases. In addition, in
ig. 7(b), the latency of UEi increases as T increases. The reason
s that the movement of UEi increases the number of service
igrations, thereby increasing the energy and latency. Let us

ake UE3 as an example. For EO-LY, the energy consumption of
he UE decreases as T increases. However, as shown in Fig. 8(a),
he latency of UE3 exceeds the t3,max when T < 105. Thus,
EO-RM/PM/KM performs better than EO-LY in the short-term
(i.e., T ≤ 105). Since the energy consumption constraint, it can
also be seen from Figs. 7(b) and 8(b) that LO-RM/PM/KM performs
better than LO-LY in the short-term (i.e., T ≤ 109).

6.5. The impact of other variables

6.5.1. The impact of δi
The data size per CPU clock cycle of ai(τ ) is denoted by δi(τ )

(bits per cycle). This means that the increase of δi(τ ) directly
affects the latency and energy consumption during the data trans-
mission process. It can be seen from Figs. 9(a) and 9(b) that as
the increasing of δi, the average energy consumption and average
latency per time slot are also increasing. Therefore, the optimal
execution location for UE’s task with high δi is not always in MEC
servers, but sometimes in local.
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Fig. 5. (a) The impact of Zi on the number of service migrations. (b) The impact of Z ′i on the number of service migrations.

Fig. 6. (a) The impact of t3,max on the energy consumption. (b) The impact of e3,max on the latency.

Fig. 7. (a) The impact of T on the energy consumption. (b) The impact of T on the latency.

Fig. 8. (a) The impact of T on the average backlog of Q3(τ ). (b) The impact of T on the average backlog of Q ′3(τ ).
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Fig. 9. (a) The impact of δi on the energy consumption. (b) The impact of δi on the latency.
Fig. 10. (a) The impact of ωi on the energy consumption. (b) The impact of ωi on the latency.
.5.2. The impact of ωi
As shown in Eq. (1), ωi represents the communication channel

path loss between UEi and MECj. In addition, with the increase
of ωi, the transmission rate between the UE and the server de-
creases, thus increasing the transmission delay for the UE up-
loading its tasks. It can be seen from Figs. 10(a) and 10(b) that
the increase of ωi causes an increase in energy consumption and
latency of UEs. It can also be known from the figures that the
stable and high-speed wireless communication greatly reduce the
energy and latency for UEs performing various applications, thus
improving QoS and QoE.

6.5.3. The impact of mi
mi represents the migration delay of VMi and directly affects

he quality of seamless service providing to UEs with mobility. We
an see from Figs. 11(a) and 11(b) that the decrease of mi causes
he decrease in energy consumption and latency of UEs. The
ightweight virtualization technology adopted by MEC, such as
irtual network function [8], can make the fast service migration
reality.

.5.4. The impact of M
In MEC, the servers with limited resources are deployed prox-

mity to UEs to save energy or latency of the UEs. Intuitively,
n increase in the number of MEC servers within an area can
mprove QoE. The reason is that increasing the number of servers
ill allow a UE to choose servers closer to itself, thereby reducing
he latency and energy consumption for transmitting task. It can
e seen from Figs. 12(a) and 12(b) that as M increases, the energy
onsumption and latency of UEs decrease, which is consistent
ith the real world.

.5.5. The impact of N
Although the paper assumes that there are no resource compe-

itions between UEs, it is meaningful to explore the effectiveness
f the proposed algorithms in a multiple UEs scenario. In this
xperiment, we create more UEs randomly based on the former
81
parameter generation equations. As shown in Fig. 13, due to the
different workload and moving speed of UEs, it seems that the
change in the number of UEs causes the change in the average
energy consumption and latency of the UEs. It should be noted
that the increase of N does not necessarily mean an increase in
average energy consumption or a decrease in average latency. The
reason lies in that there is no competition of MEC server resources
between UEs, that is, a UE’s strategy is not affected by other UEs
in this paper. However, constrained by the maximum energy or
latency of UEs, it can be confirmed again from Figs. 13(a) and
13(b) that EO/LO-RM/PM/KM performs better than EO/LO-LY in
the short-term. Moreover, it can also be known that EO/LO-LY
performs better than EO/LO-RM/PM/KM in the long-term.

7. Conclusions

In this paper, we formulate an energy minimization and a
latency minimization problems respectively, and develop algo-
rithms to optimize the UE’s cost and performance in the short-
and long-term. We propose three mobility types depending on
whether the mobility characteristics of UEs are known, and de-
velop the greedy strategy based task offloading algorithms for the
UEs to optimize their cost and performance in a short-term by
using their mobility characteristics. To deal with the challenge of
acquiring UE’s mobility characteristics over a long time, we then
use a Lyapunov optimization method to develop the algorithms
that do not require any prior knowledge of the mobility charac-
teristics to optimize the long-term cost and performance of UEs.
Experimental results show that the greedy strategy based algo-
rithms perform better than the Lyapunov optimization method
based algorithms in the short-term. However, the Lyapunov op-
timization method based algorithms perform better than the
greedy strategy based algorithms over the long-term, especially
when the mobility characteristics of UE cannot be known in
advance.

Deploying the algorithms on actual MEC system involves many
challenging issues, such as caching, virtualization technology,
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Fig. 11. (a) The impact of mi on the energy consumption. (b) The impact of mi on the latency.
Fig. 12. (a) The impact of M on the energy consumption. (b) The impact of M on the latency.
Fig. 13. (a) The impact of N on the energy consumption. (b) The impact of N on the latency.
reating interactive protocols between the different entities, and
nsuring the stability of communication channel. Since the study
f the above issues is beyond the scope of our work, we evaluate
he algorithms through simulation experiments. Moreover, this
aper only investigates three simple mobility types. Thus, more
omplicated mobility characteristics should be further investi-
ated in the future. Furthermore, the above issues should be
onsidered in the system model, thus developing algorithms that
an be deployed in the real world.
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