
Task Offloading and Service Migration Strategies
for User Equipments with Mobility Consideration in

Mobile Edge Computing

Yan Ding∗†, Chubo Liu∗†, Kenli Li∗†, Zhuo Tang∗† and Keqin Li∗†‡
∗College of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China.

†National Supercomputing Center in Changsha, Hunan 410082, China.
‡Department of Computer Science, State University of New York, New Paltz, New York 12561, USA.

Email: {ding, liuchubo, lkl, ztang}@hnu.edu.cn and lik@newpaltz.edu

Abstract—Recently, a great number of works have focused on
task offloading optimization in mobile edge computing (MEC).
However, rare works involve user equipment (UE) mobility.
When involving mobility in MEC, the problem becomes even
harder. Even a slight movement of UE can significantly affect
the strategy and overhead of the UE. Usually, the types of
UE mobility can be categorized as random mobility, short-term
predictable mobility, and fully known mobility, depending on
whether the future location of the UE is known. In this paper,
we aim to optimize task offloading and service migration for
UEs with different mobility considerations. Specifically, we try to
find appropriate task offloading and service migration strategies
to optimize energy consumption or latency of UEs according
to the characteristics of different mobility types. We conduct
extensive experiments using the real world data which records
the movement trajectory of UEs. Experimental results show that
our methods perform better compared to six other common
strategies and can further reduce the overhead of UEs by using
their mobility characteristics.

Index Terms—Mobile edge computing, service migration, task
offloading strategy, user equipment with mobility.

I. INTRODUCTION

A. Motivation

MEC is proposed by European Telecommunications Stan-

dards Institute (ETSI) in 2014. It is an architecture that pro-

vides computing resource to UEs at the edge of the network,

aiming to improve the quality of service (QoS) and the quality

of experience (QoE) [1]. MEC utilizes high-speed wireless

network technologies such as 5G to implement communication

between UEs and MEC servers, reducing the data transmission

delay [2]. UEs offload their heavy tasks to MEC servers for

executing to reduce the overhead (e.g., energy consumption

and latency) of the UEs [3].

Although a great number of works have studied on task

offloading optimization in MEC [4], [5], [6], [7], [8], [9], [10],

it is still an open issue to investigate the optimization problem

[2]. This is because the above works do not consider the UE

mobility, and ignore the impact of the movement of UEs on

task offloading strategy [11]. If UEs move far away from the

MEC server that is responding to their request, this could

result in significant QoS and QoE degradation, and service

interruption due to long transmission latency of the offloaded

task [2], [3].

However, when involving mobility in MEC, the problem

becomes even harder. The reason lies in that the service

(the basic environment for executing the task of UEs, e.g.,

virtual machine and docker) migration is introduced into the

process of task offloading optimization [11], [12], [13]. To

our knowledge, rare works involve UE mobility. Based on

the mobility type, the research can be classified into three

categories: i) For UEs with random mobility, Taleb et al. [13]

proposed a Markov decision process based algorithm and Sun

et al. [14] studied the problem under long-term cost budget

constraint; ii) For UEs with short-term predictable mobility,

Wu et al. [15] and Plachy et al. [16] respectively proposed

a location prediction method; iii) For UEs with fully known

mobility, Wang et al. [17] minimized the overhead by consid-

ering the task properties and mobility of UEs jointly. Although

the above works propose some methods to make the service

migration strategy and minimize the overhead caused by UE

mobility, they assume that the offloading decision has been

made ahead. Yu et al. [18] introduced the service migration

decision in the process of making offloading strategy, but

they did not make the resource allocation strategy of UE.

Meanwhile, all the above works study only one mobility type

of service migration and do not investigate the impact of

different mobility types on the service migration strategy and

overhead of UE.

B. Our Contributions

In order to address the above limitations, in this paper, we

study the task offloading and service migration strategies for

UEs with different mobility types, and propose several meth-

ods accordingly. The methods we propose not only determine

the offloading decision, but also allocate the resources of the

UEs and decide whether to perform the service migration.

Based on the above discussions, in this work, we involve

the following three questions: i) How to make the task

offloading strategy for UEs with mobility? ii) How to reduce

the overhead of UEs by jointly considering the task offloading

and service migration strategies? iii) How to determine the

176

2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-1-7281-4328-6/19/$31.00 ©2019 IEEE
DOI 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00035



strategies to further minimize the overhead for UEs based on

the characteristics of mobility types?

In order to address the above issues, the problem is to

schedule the offloaded tasks of UEs with mobility on a set

of MEC servers as well as to allocate the CPU frequency

and transmission power of the UEs, while making service

migration decision, such that the overhead of the UEs is

minimized. The main contributions of our work are as follows.

• We formulate two overhead optimization problems, i.e.,

the energy minimization problem with resource and la-

tency constraints, and the latency minimization problem

with resource and energy constraints. Meanwhile, we

prove that there are optimal solutions to the problems

when the service deployment strategy is given.

• We propose three appropriate task offloading and service

migration strategies to optimize energy consumption or

latency of UEs according to the characteristics of different

mobility types.

• We conduct the extensive experiments using the real

world data which records the movement trajectory of

UEs. The convergence of algorithms, the effectiveness

of algorithms to reduce the overhead of UEs, and the

impact of mobility types and various key parameters

on the strategy and overhead are demonstrated by the

experiments.

To the best of our knowledge, this is the first paper

that jointly investigates task offloading and service migration

strategies optimization for UEs with different mobility types.

The scenario is closer to the real-world.

The rest paper is outlined as follows. Section 2 presents the

system model and formulations of the problems studied in this

paper. Section 3 develops the algorithms in detail. Section 4

describes the simulation experiments and evaluates the perfor-

mance of the algorithms. Section 5 gives our conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a scenario as shown in Fig. 1. We use UEi

to represent a UE and VMi to represent the service instance

of UEi, where 1 ≤ i ≤ N . Each UE has an application that

contains a set of tasks. The task set of UEi is represented by

Ai. ak ∈ Ai represents a task of UEi, where |Ai| ≥ k ≥ 1. a0
indicates that the task that can only be executed locally. wi,ak

represents the workload of ak, which indicates the number

of CPU clock cycles required to complete the task. δi,ak

represents the processing density of ak (bits per cycle). The

location of UEi is (xi,ak
, yi,ak

), where xi,ak
, yi,ak

are the

longitude and latitude of UEi when ak ∈ Ai is executed. We

consider a discrete moving process that a task is executed each

time UEi arrives at a new location [15], [16], [17]. As shown

in the figure, the dot on the movement trajectory is the task

execution location. When a task is completed, the UE moves to

the next location. Meanwhile, UEs have their own movement

feature. For example, UE1 moves randomly, which means that

we do not know anything about the future location of the UE.

Fig. 1. An illustration of the scenario studied in this paper.

UE2 moves in a certain regularity, and we can predict the next

location of the UE. UE3 moves in a given route, which means

that we can know all future locations of the UE.

We use MECj to represent an MEC server, where 1 ≤
j ≤M . MEC servers are connected to the backbone network,

so high-speed data transmission between the MEC servers is

possible. MEC servers are stationary and the location of the

servers can be represented by (xj , yj), where xj , yj are the

longitude and latitude of the server. We use Ii,ak
= j to

represent the deployment location of VMi when ak ∈ Ai

is executed. For example, VM3 is deployed at MEC5, thus

I3,ak
= 5. We use a binary variable λi,j,ak

∈ {0, 1} to

indicate whether ak is executed at MECj . If ak is offloaded

to MECj , then λi,j,ak
= 1, otherwise λi,j,ak

= 0. λi,0,ak
= 1

indicates ak is executed locally. Because a task can only be

executed at one location at a time, there is constraint, i.e.,∑M
j=0 λi,j,ak

= 1. Service migration is an operation that the

service instance of UEs running at the current MEC server is

migrated to the another MEC server, and provides seamless

service for UEs. vi,j′ ,j,ak
∈ {0, 1} represents the service

migration decision, where j
′
= Ii,ak−1

. If vi,j′ ,j,ak
= 1, then

VMi will be migrated from MECj′ to MECj . It should be

noted that vi,j,j,ak
= 0. VMi can only be deployed at an

MEC server at a time, thus
∑M

j=1 vi,j′ ,j,ak
≤ 1.

In the scenario, we assume that all service instances can

execute the task immediately after the migration. Meanwhile,

we ignore the situation of service migration failure, i.e., service

migration is always successful.

B. Communication Model

The maximum transmission power of UEi is pi,max

Watt (W). In this paper, we use the Rayleigh fad-

ing channel model [19] and ignore the overhead of re-

sult data receiving. The rate of UEi to transmit ak to

MECj is Ri,j,ak
= Wi log2 (1 + pi,j,ak

h2
i /d

ωi
i,j,ak

Ni), where

Wi, pi,j,ak
, hi, di,j,ak

, ωi, Ni are the transmission channel

bandwidth, the transmission power of UEi to upload ak
to MECj , the transmission channel fading coefficient, the

distance between UEi and MECj when ak is executed, the

channel path loss exponent, and the channel white Guassian

noise, respectively.

177



C. Computation Model

1) Local computation model: We assume that UEi has

a maximum CPU frequency represented by fi,max (cycles

per second) and the CPU is equipped with the technique of

dynamic voltage and frequency scaling (DVFS) such that can

adjust the frequency of CPU. We use 0 ≤ fi,ak
≤ fi,max

to represent the actual CPU frequency of UEi when the UE

executes ak. The local computational time of ak is T l
i,ak

=
wi,ak

/fi,ak
. According to [20], the local energy consumption

of ak is El
i,ak

= wi,ak
κif

2
i,ak

, where κi is the coefficient factor

of UEi’s chip architecture.

2) MEC server computation model: The computing power

of an MEC server is denoted as fj (cycles per second).

The computational time of ak ∈ Ai executed at MECj

is T j
i,ak

= ti,j,t,ak
+ ti,j,e,ak

+ ti,j,w,ak
+ vi,j′ ,j,ak

ti,j,m,ak
,

where ti,j,e,ak
= wi,ak

/fj , ti,j,t,ak
= wi,ak

δi,ak
/Ri,j,ak

,

ti,j,m,ak
= αi

∑|Ai|
k=1 wi,ak

δi,ak
, ti,j,w,ak

are the computational

time of ak executed by MECj , the transmission delay of ak,

the migration delay of VMi, the average waiting delay if ak
is executed by MECj , respectively. It should be noted that

αi is the migration delay impact factor of the workload and

processing density for UEi’s application, and can be gotten

from [21]. As shown in the equation, the service migration

overhead is introduced when vi,j′ ,j,ak
= 1. Accordingly, the

energy consumption of ak executed by MECj is Ej
i,ak

=
pi,0(ti,j,e,ak

+ ti,j,w,ak
+ vi,j′ ,j,ak

ti,j,m,ak
) + pi,j,ak

ti,j,t,ak
,

where pi,0 (W) is the idle power of UEi.

D. Problem Formulation

1) Energy Minimization Problem: Based on the above

definitions, the energy consumption of UEi is formulated as

Ei =

|Ai|∑
k=1

(
M∑
j=1

λi,j,ak
Ej

i,ak
+
(
1−

M∑
j=1

λi,j,ak

)
El

i,ak

)
. (1)

The energy minimization problem of UEi is formulated as

P1 : min
Vi,Λi,Pi,Fi

Ei, (2)

s.t. C1 : 0 ≤ fi,ak
≤ fi,max,

C2 : 0 ≤ pi,j,ak
≤ pi,max,

C3 :
M∑
j=0

λi,j,ak
= 1, λi,j,ak

∈ {0, 1},

C4 :
M∑

j �=j′
vi,j′ ,j,ak

≤ 1, vi,j′ ,j,ak
∈ {0, 1},

C5 : Ti ≤ Ti,max,

where Vi, Λi, Pi, Fi are the service migration decision set

of Ai, offloading decision set of Ai, the transmission power

strategy set of Ai, and the CPU frequency strategy set of Ai.

In P1, C1, C2 are the maximum CPU frequency constraint

and maximum transmission power constraint, respectively. C3

indicates that a task can only be executed at one location at

a time. C4 indicates that VMi can only be migrated to one

MEC server at a time. C5 is the computational time constraint

of the application.
2) Latency Minimization Problem: The latency of an ap-

plication generated by UEi is formulated as

Ti =

|Vi|∑
k=1

(
M∑
j=1

λi,j,ak
T j
i,ak

+
(
1−

M∑
j=1

λi,j,ak

)
T l
i,ak

)
. (3)

The latency minimization problem of UEi is formulated as

P2 : min
Vi,Λi,Pi,Fi

Ti, (4)

s.t. C1, C2, C3, C4,

C6 : Ei ≤ Ei,max.

In P2, C6 is the energy constraint of the application. As shown

in P1 and P2, we can know that the two problems are mixed

integer programming problems and NP-hard problems [2].

III. TASK OFFLOADING, RESOURCE ALLOCATION, AND

SERVICE MIGRATION ALGORITHM

A. Energy Minimization

When the deployment policy of VMi is determined in

advance, we can relax λi,j,ak
to be a continuous variable, i.e.,

0 ≤ λi,j,ak
≤ 1 , so that the original problems will be trans-

formed to standard linear programming problems. Therefore,

we can solve the two problems by transforming them to 1-

dimensional optimization problems. The basis theorem of the

method is as follows [22].

Theorem 1 inf
β,σ

f(β, σ) = inf
σ

f̃(σ), where f̃(σ) =

inf
β

f(β, σ).

For a task, if Ii,ak
= j, the subproblem of P1 can be

formulated as

P3 : min
si,ak

Ei,ak
, (5)

s.t. C1, C2,

C7 :
M∑
j=0

λi,j,ak
= 1, λi,j,ak

∈ [0, 1],

C8 : Ti,ak
≤ ti,r,ak

, (6)

where Ei,ak
= El

i,ak
+ λi,j,ak

(Ej
i,ak

− El
i,ak

),

Ti,ak
= λi,j,ak

T j
i,ak

+ (1 − λi,j,ak
)T l

i,ak
, and

ti,r,ak
= wi,ak

Ti,max/
∑|Ai|

k=1 wi,ak
is the maximum latency

time of ak. In P3, si,ak represents a task offloading strategy,

including offloading decision λi,j,ak
, CPU frequency fi,ak

,

and transmission power pi,j,ak
. C8 is the computational time

constraint of the task. The subproblem P3 can be further

decomposed into two subproblems based on λi,j,ak
. With the

help of Theorem 1, we can first make a decision to decide

the execution location of a task.
1) Offloading decision: It is easy to know that Ei,ak

is a

linear function w.r.t. λi,j,ak
. The offloading decision can be

obtained from λi,j,ak
= Φ(El

i,ak
> Ej

i,ak
), where Φ(o) ∈

{0, 1} is a boolean function. If o is true, then Φ(o) = 1.

Otherwise, Φ(o) = 0.

178



2) CPU frequency strategy: If λi,0,ak
= 1, the task is

executed locally. According to C8, we have fi,ak
≥ f̃i,ak

,

where f̃i,ak
=
∑|Ai|

k=1 wi,ak
/Ti,max. And according to C1,

the optimal CPU frequency can be obtained from f∗
i,va

=

min{fi,max, f̃i,ak
}.

3) Transmission power strategy: If λi,j,ak
= 1, the task

is executed remotely. According to C8, we have pi,j,ak
≥

(2τi,j,ak − 1)/zi,j,ak
, where τi,j,ak

= wi,ak
δi,ak

/Wi(ti,r,ak
−

ti,j,e,ak
− ti,j,w,ak

− vi,j′ ,j,ak
ti,j,m,ak

), and zi,j,ak
=

h2
i /(d

ωi
i,j,ak

Ni). Thus, pi,j,min,ak
= (2τi,j,ak − 1)/zi,j,ak

is

the minimal transmission power for transmitting ak within the

limited delay. Based on C2, the optimal transmission power

of ak is p∗i,j,ak
= min{pi,max, pi,j,min,ak

}. Accordingly, we

have the following corollary.

Corollary 1 For ak ∈ Ai and MECj , if pi,j,min,ak
≤ pi,max,

then the server is an available server for UEi.

Proof. If pi,j,min,ak
> pi,max, then the server can not

complete the task within the limited delay. �
Corollary 1 checks the feasibility of an MEC server to

execute a task. Thus, for ak ∈ Ai, UEi can first determine a set

of available MEC servers (Mi,ak ) to reduce the complexity

of making strategy.
4) Service migration decision: Service migration intro-

duces additional overhead for UEs. But if migration gain is

bigger than migration cost, the migration can be initiated.

Thus, the service migration decision can be obtained from

vi,j′ ,j,ak
= Φ(Ej

′

i,ak
> Ej

i,ak
).

Algorithm 1 EO-RM

Input: Ai, Ti,max, fi,max, pi,max,Wi, hi, Ni, ωi, wi, δi, Ii,a0
.

Output: Λ∗
i , F ∗

i , P ∗
i , V ∗

i , and I∗i .

1: for ak ∈ Ai do
2: Obtain Mi,ak from Corollary 1;

3: Calculate f∗
i,ak

, pi,j′ ,ak
, El

i,ak
and Ej

i,ak
;

4: Em
i,ak

← Ej
i,ak

;

5: for MECj ∈Mi,ak do
6: Calculate pi,j,ak

and Ej
i,ak

;

7: if Ej
i,ak

< Em
i,ak

then
8: v∗i,Ii,ak−1

,j,ak
← 1;

9: I∗i,ak
← j;

10: Em
i,ak

← Ej
i,ak

;

11: end if
12: end for
13: Update λ∗

i,Ii,ak
,ak

and p∗i,Ii,ak
,ak

;

14: end for
15: return Λ∗

i , F ∗
i , P ∗

i , V ∗
i , and I∗i .

Based on the above, we can get the task offloading strategy

and the corresponding overhead for executing the task at each

MEC server (MECj ∈Mi,ak ). Then, the server MECj∗ with

minimal overhead is the optimal server. If Ii,ak
�= j∗, the

service migration is triggered. Since the mobility type of UE

affects the task offloading and service migration strategies, we

can further to minimize the overhead according to the mobility

characteristics. Next, we detail the task offloading and service

migration algorithms for UEs with different mobility types.
5) The algorithm for UEs with random mobility: For UEi

with random mobility, the strategy can only be made based

on the current state of the UE. Algorithm 1 shows the process

of making energy-optimal offloading and service migration

strategies for UEi with random mobility. For given ak and

MECj′ , fi,ak
, pi,j′ ,ak

, El
i,ak

, and Ej
i,ak

can be obtained ac-

cordingly. Then, UEi iterates Mi,ak to try to find the optimal

MEC server MECj∗ while making the service migration deci-

sion. The complexity of the algorithm is O
(∑|Ai|

k=1 |Mi,ak |
)
.

Algorithm 2 EO-PM

Input: Ai, Ti,max, fi,max, pi,max,Wi, hi, Ni, ωi, wi, δi, Ii,a0 .

Output: Λ∗
i , F ∗

i , P ∗
i , V ∗

i , and I∗i .

1: for ak, ak+1 ∈ Ai do
2: Obtain Mi,ak and Mi,ak+1

from Corollary 1;

3: Obtain si,ak , si,ak+1
, Ii,ak

= jk, and Ii,ak+1
= jk+1

from Algorithm 1;

4: if λi,jk,ak
= λi,jk+1,ak+1

= 1 and jk �= jk+1 then
5: for MECj ∈Mi,ak ∩Mi,ak+1

do
6: if Ej

i,ak
+Ej

i,ak+1
< Ejk

i,ak
+E

jk+1

i,ak
, T j

i,ak
≤ ti,r,ak

and T j
i,ak+1

≤ ti,r,ak+1
then

7: Ii,ak
← j;

8: Ii,ak+1
← j;

9: Update si,ak , si,ak+1
, vi,j′ ,j,ak

, and

vi,jk,jk+1,ak+1
;

10: end if
11: end for
12: end if
13: Obtain s∗i,ak

, s∗i,ak+1
, v∗

i,j′ ,j,ak
, and v∗i,jk,jk+1,ak+1

;

14: k ← k + 2;

15: end for
16: return Λ∗

i , F ∗
i , P ∗

i , V ∗
i and I∗i .

6) The algorithm for UEs with short-term predictable mo-
bility: For UEi with short-term predictable mobility, the

strategy should be made not only based on the current location

of UEi, but also the future location of the UE. In this paper,

we assume that we can predict the location of ak+1 when ak
is executed [18]. Thus, the problem can be formulated as

P4 : min
si,ak

,si,ak+1

Ei,ak
+ Ei,ak+1

, (7)

s.t. C1, C2, C7, C8.

Let Ii,ak
= jk and Ii,ak+1

= jk+1 be the VM deployment po-

lices for ak and ak+1 obtained from Algorithm 1 respectively.

And then, we try to find a common MEC server to execute

ak and ak+1, and adjust the joint strategy for the two tasks,

with the rational revealed by the following theorem.

Theorem 2 If jk �= jk+1 and λi,jk,ak
= λi,jk+1,ak+1

= 1,
there may be a new optimal strategy for two tasks, i.e., I

′
i,ak

=

179



Fig. 2. An illustration process of Algorithm 3.

I
′
i,ak+1

= j∗ and λi,j∗,ak
= λi,j∗,ak+1

= 1, where MECj∗ ∈
Mi,ak ∩Mi,ak+1

. Otherwise, the original strategies are the
optimal strategies for ak and ak+1.

Proof. If Ii,ak
�= Ii,ak+1

, λi,jk,ak
= λi,jk+1,ak+1

= 1,

and there is a new optimal strategy for the two tasks, i.e.,

λi,I
′
i,ak

,ak
= λi,I

′
i,ak+1

,ak+1
= 1, where I

′
i,ak

�= I
′
i,ak+1

, we

have an inequality, i.e., Ejk
i,ak

+ E
jk+1

i,ak+1
> E

j
′
k

i,ak
+ E

j
′
k+1

i,ak+1
,

where MECj
′
k
∈Mi,ak and MECj

′
k+1

∈Mi,ak+1
. However,

we know that Ejk
i,ak

≤ E
j
′
k

i,ak
and E

jk+1

i,ak+1
≤ E

j
′
k+1

i,ak+1
, which

contradicts with the premise. Therefore, if there is a new

strategy for the 2 tasks, I
′
i,ak

= I
′
i,ak+1

= j∗ should be

true (i.e., the two tasks are executed at a common MEC

server MECj∗ ). Moreover, if MECj∗ /∈ Mi,ak ∩Mi,ak+1
,

which means that one of the tasks can not be completed

within the limited delay. Therefore, if Ii,ak
= Ii,ak+1

and

λi,jk,ak
= λi,jk+1,ak+1

= 1, then MECIi,ak
is the optimal

execution location for two tasks.

If λi,jk,ak
�= λi,jk+1,ak+1

, we assume that λi,0,ak
= 1

and λi,jk+1,ak+1
= 1, we have inequalities El

i,ak
≤ Ej

i,ak

(∀MECj ∈ Mi,ak) and E
jk+1

i,ak
≤ Ej

i,ak
(∀MECj ∈

Mi,ak+1
). Thus, there must be no MEC server that can

further reduce the overhead of the 2 tasks. Otherwise, we have

El
i,ak

+E
jk+1

i,ak
> E

I
′
i,ak

i,ak
+E

I
′
i,ak+1

i,ak
, which contradicts with the

premise. Therefore, we have the conclusion. �
Algorithm 2 shows the process of making energy-optimal

offloading and service migration strategies for UEi with short-

term predictable mobility. The optimal strategies of ak and

ak+1 can be obtained from Algorithm 1, respectively. Then,

the service is rescheduled in MECj ∈ Mi,ak ∩ Mi,ak+1

according to Theorem 2. The complexity of the algorithm is

O
(
(
∑|Ai|

k=1 |Mi,ak |+ |Mi,ak+1
|)/2 + |Mi,ak ∩Mi,ak+1

|).
7) The algorithm for UEs with fully known mobility: For

UEi with fully known mobility, we can make the strategy

based on the whole process of the application execution.

Algorithm 3 shows the process of making energy-optimal

offloading and service migration strategies for UEi with fully

known mobility. Figure 2 illustrates an example process of

Algorithm 3. We first obtain initial Λi, Fi, Pi, Vi, and Ii
through Algorithm 2. As shown in Figure 2, Ii(0) represents

the initial service deployment strategy of UEi.

Algorithm 3 has two iteration processes for updating service

migration strategy. In the first iteration process (lines 4-25), we

readjust the strategy with an early service migration strategy,

that is we attempt toward reduce the energy consumption

Algorithm 3 EO-FM

Input: Ai, Ti,max, fi,max, pi,max,Wi, hi, Ni, ωi, wi, δi, Ii,a0
,

εi,Γi.

Output: Λ∗
i , F ∗

i , P ∗
i , V ∗

i , and I∗i .

1: Obtain Λi, Fi, Pi, Vi, and Ii through Algorithm 2;

2: Σt ← 0;

3: γ ← 0;

4: while
∑|Ai|

k=1 Ei,k − Σt > εi and γ < Γi do
5: φ← Ii,a1 ;

6: ρ← 1;

7: γ ← γ + 1;

8: for ak ∈ Ai do
9: if Ii,ak

�= φ and k − ρ > 1 then
10: k

′ ← k − 1;

11: while ρ < k
′

do
12: if MECIi,ak

∈Mi,a
k
′ then

13: if E
Ii,ak
i,a

k
′ +

∑k
ξ=k′+1 Ei,ξ <

∑k
ξ=k′ Ei,ξ and

T
Ii,ak
i,a

k
′ ≤ ti,r,a

k
′ then

14: Ii,a
k
′ ← Ii,ak

;

15: Update si,ak and vi,j′ ,j,ak

16: end if
17: end if
18: k

′ ← k
′ − 1;

19: end while
20: φ← Ii,a

k
′
+1

;

21: ρ← k
′
+ 1;

22: end if
23: end for
24: Σt ←

∑|Ai|
k=1 Ei,k;

25: end while
26: for ak ∈ Ai do
27: if Ii,ak

�= Ii,ak+1
and Ii,ak

= Ii,ak+2
and MECIi,ak

∈
Mi,ak+1

then
28: if E

Ii,ak
i,ak

+ E
Ii,ak
i,ak+1

+ E
Ii,ak
i,ak+2

<
∑k+2

k′=k
Ei,k′ and

T
Ii,ak
i,ak+1

< ti,r,ak+1
then

29: Ii,ak+1
← Ii,ak

;

30: Update si,ak+1
and service migration strategy;

31: end if
32: end if
33: end for
34: return Λ∗

i , F ∗
i , P ∗

i , V ∗
i , and I∗i .

by migrating service ahead. In the algorithm, k − ρ − 1
represents the number of tasks between aρ and ak, where

aρ is the first task executed by VMi when the service is

deployed at MECIi,aρ
, and ak is the first task executed by

VMi after the first VMi migration in the execution process

of aρ’s successor tasks. If k − ρ− 1 > 0, the update process

will be initiated. As shown in Figure 2, if VMi is migrated

to MEC2 in advance, we can update the strategy when the

new energy consumption summation
∑3

ξ=1 Ei,ξ is less than

the original energy consumption summation. Then, we get

180



Ii(1). The iteration will be repeated until the reduced energy

consumption is less than εi or the number of iterations exceeds

Γi. Then, we get Ii(2).

In the second iteration process, we reduce the overhead by

avoiding service migration (lines 26-33). If Ii,ak
�= Ii,ak+1

,

Ii,ak
= Ii,ak+2

and MECIi,ak
∈Mi,ak+1

, we consider reduc-

ing
∑k+2

k′=k
Ei,k′ by avoiding service migration when ak+1

is executed. If the new energy consumption summation is less

than the original, we can update the task offloading and service

migration strategies. It should be noted that the constraint of

delay must be satisfied during the update process. Finally, the

optimal strategy Ii(3) can be obtained. The complexity of the

algorithm is O
(
(
∑|Ai|

k=1 |Mi,ak | + |Mi,ak+1
|)/2 + |Mi,ak ∩

Mi,ak+1
|+ Γi|Ai|2

)
.

B. Latency Minimization

For a task, if Ii,ak
= j, the subproblem of P2 can be

formulated as

P5 : min
si,ak

Ti,ak
, (8)

s.t. C1, C2, C7,

C9 : Ei,ak
≤ ei,r,ak

,

where ei,r,ak
= wi,ak

Ei,max/
∑|Ai|

k=1 wi,ak
is the maximum

energy consumption of ak. Similar to P3, P5 can also be

further decomposed into two subproblems based on λi,j,ak
.

1) The optimal solution of the latency minimization prob-
lem: The offloading decision of P5 can be made by λi,j,ak

=
Φ(T l

i,ak
> T j

i,ak
). If λi,0,ak

= 1, since f2
i,ak

κiwi,ak
≤ ei,r,ak

must be satisfied for local execution, the optimal CPU fre-

quency is f∗
i,va

= min
(
fi,max,

√
Ei/

∑|Ai|
k=1 wi,ak

κi

)
.

Accordingly, if λi,j,ak
= 1, the transmission power opti-

mization must be satisfied to πi,j,ak
log2 (1 + pi,j,ak

zi,j,ak
) ≥

pi,j,ak
, where πi,j,ak

= Wi

(
ei,r,ak

− pi,0(ti,j,e,ak
+

ti,j,w,ak
+ vi,j′ ,j,ak

ti,j,m,ak
)
)
/wi,ak

δi,ak
. Moreover, we intro-

duce g(pi,j,ak
) = g1(pi,j,ak

)−g2(pi,j,ak
), where g1(pi,j,ak

) =
πi,j,ak

log2 (1 + pi,j,ak
zi,j,ak

) and g2(pi,j,ak
) = pi,j,ak

. The

optimal transmission power is illustrated in Figure 3. If

g1(pi,max) > g2(pi,max), p∗i,j,ak
= pi,max. Otherwise,

p∗i,j,ak
= p̃i,j,ak

, where p̃i,j,ak
is the solution of g(pi,j,ak

) = 0.

p̃i,j,ak
can be obtained with the help of the following theorem.

Theorem 3 g(pi,j,ak
) is a monotonic non-increasing function

w.r.t. pi,j,ak
≥ (πi,j,ak

zi,j,ak
/ ln 2− 1)/zi,j,ak

.

Proof. Because g
′
(pi,j,ak

) = πi,j,ak
zi,j,ak

/
(
ln 2(1 +

pi,j,ak
zi,j,ak

)
) − 1, thus if pi,j,ak

≥ (πi,j,ak
zi,j,ak

/ ln 2 −
1)/zi,j,ak

, then g
′
(pi,j,ak

) ≤ 0 and g(pi,j,ak
) is a monotonic

non-increasing function w.r.t. pi,j,ak
. �

Theorem 3 reveals that we can use binary search method to

find p̃i,j,ak
[22]. And the optimal transmission power can be

obtained from p∗i,j,ak
= min{p̃i,j,ak

, pi,max}. Due to the space

limitation, the binary search algorithm is omitted. It is easy

to know that the complexity of the binary search algorithm is

O(Ui,ak
), where Ui,ak

is the maximal number of iterations.

(a) p̃i,j,ak
≤ pi,max. (b) p̃i,j,ak

> pi,max.

Fig. 3. The illustrations of p∗i,j,ak
.

Similarity, the service migration decision can be obtained

from vi,j′ ,j,ak
= Φ(T j

′

i,ak
> T j

i,ak
).

2) The algorithms for UEs with different mobility types: For

UEs with different mobility types, we can use Algorithms 1,

2, and 3 to make the strategy. However, since the UE regards

the latency as the optimization objective, the overhead used

in original algorithms (i.e., Ei,ak
) should be replaced with

Ti,ak
. The algorithms are called LO-RM, LO-PM, and LO-

FM, respectively.

IV. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

A. Experiment Setting

In the experiment, there are N = 4 UEs and M = 24 MEC

servers. Referring to [7], the parameters of UEi are given as

follows: pi,max = 5 W, pi,0 = 0.01 W, fi,max = 8 × 107,

Ti,max = 0.5 s, Ei,max = 10−5 J, δi,ak
= 1 KB/cycle, κi =

10−14, Wi = 1011 HZ, hi = 10−3, ωi = 1.5, Ni = 10−9,

and αi = 10−8. The computing power of MECj is given

as fj = 5 + 0.1j × 1010+0.1j . Without loss of generality,

we set ti,j,w,ak
= 0. We also assume that UEi has a task

set, such as Ai={10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32,

34, 36, 18, 20, 22, 10, 12, 14, 16}, where the element of

Ai indicates the workload of a task. In addition, we use the

GPS trajectory dataset Geolife [23] to represent the movement

trajectory of UE. In the dataset, the movement trajectory of UE

is represented by a sequence of time-stamped points (2 seconds

apart), each of which contains the latitude and longitude of

the UE. We select four movement trajectories with different

means of transportation (i.e., walk, bike, bus, and subway) for

the four UEs on the same road in Beijing. We assume that the

MEC servers have been deployed on the road. Each movement

trajectory of UEs contains 20 location points.

B. The Convergence of the Algorithms

As shown in Fig. 4(a), for energy-optimal algorithm, the

average number of iterations of task is less than 40. since

the transmission power is obtained from the binary search

algorithm, the average number of iterations of task is more

than what the energy-optimal algorithm needs. As shown in

Fig. 4(b), for latency-optimal algorithm, the average number

of iterations of task is less than 870. As shown in the figures,

for different mobility types and transportation means, the

algorithms can converge.

181



TABLE I
THE OVERHEAD COMPARISON OF UEi USING DIFFERENT SCHEMES/ALGORITHMS

Schemes Energy consumption (J) Latency time (s)
/Algorithms UE1 (Walk) UE2 (Bike) UE3 (Bus) UE4 (Subway) UE1 (Walk) UE2 (Bike) UE3 (Bus) UE4 (Subway)

MM 2.56E-06 2.42E-06 2.59E-06 2.29E-06 5.09E-07 1.32E-06 1.37E-06 1.25E-06
MR 1.94E-07 1.38E-07 1.43E-07 1.97E-07 5.09E-07 1.32E-06 1.31E-06 1.25E-06
MP 2.53E-06 2.32E-06 6.79E-06 4.07E-06 4.00E-06 3.94E-06 1.08E-05 5.30E-06
NM 1.94E-07 1.39E-07 1.43E-07 1.97E-07 5.09E-07 2.80E-06 2.71E-06 2.77E-06
LM 25,984 25,984 25,984 25,984 \ \ \ \
LR 2.68E-06 2.68E-06 2.68E-06 2.68E-06 0.26 0.26 0.26 0.26

EO/LO-RM 1.94E-07 1.38E-07 1.43E-07 1.97E-07 5.09E-07 1.32E-06 1.31E-06 1.25E-06
EO/LO-PM 1.33E-07 1.07E-07 1.25E-07 1.51E-07 5.09E-07 1.25E-06 1.26E-06 1.15E-06
EO/LO-FM 1.26E-07 1.07E-07 1.17E-07 1.48E-07 5.09E-07 9.79E-07 1.16E-06 1.00E-06

(a) Energy-optimal algorithms. (b) Latency-optimal algorithms.

Fig. 4. The average number of iterations per task for UEs with differen
transportation means.

C. The Effectiveness of the Algorithms

We use the following six task offloading and service mi-

gration schemes as baselines to evaluate the effectiveness of

the algorithms proposed in this paper: i) All tasks will be

executed locally while using fi,max. The scheme is marked as

LM; ii) All tasks will be executed locally while using DVFS

technology to adjust the CPU frequency. We mark this scheme

as LR; iii) All tasks will be offloaded to the MEC server for

executing. However, UEi uploads its task using pi,max. We

mark this scheme as MM; iv) All tasks will be offloaded

to the MEC server for executing. However, UEi can adjust

its transmission power. We mark this scheme as MR; v) All

tasks can be executed locally or remotely. However, UEi sends

requests only to the most powerful servers among all available

MEC servers. The scheme is marked as MP; vi) All tasks can

be executed locally or remotely. However, UEi sends requests

only to the server closest to itself among all available MEC

servers. The scheme is marked as NM.

Since the energy consumption of the task executed by

fi,max exceeds the maximum energy constraint of the latency

minimization problem, the result of LM is omitted in Table I.

Choosing different transportation means will result in different

movement distances and available server sets, thus affecting

task offloading and service migration strategies, and the over-

head of UE. Therefore, the effectiveness of the algorithms are

different. As shown in the tables, if the future location of the

UE can be known in advance, the service migration decision

can be pre-determined to further minimize the overhead of

UE. Thus, the overhead of the EO/LO-FM algorithms is

minimal. Experimental results show that compared with the

(a) (b)

Fig. 5. (a) The impact of δ on the local execution. (b) The impact of δ on
the energy consumption.

(a) (b)

Fig. 6. (a) The impact of δ on the local execution. (b) The impact of δ on
the latency time.

six other strategy schemes, the algorithms proposed in this

paper performs better and can further reduce the overhead of

UE by using the characteristics of mobility.

D. The Impact of Other Parameters

In the next, we analyze the impact of δ, Ti,max, and Ei,max

on the strategies and overhead of UE3.
1) The impact of δ: As can be seen from Figures 5(a) and

6(a), as δ increases, the overhead of UE increases and the

UE is more and more inclined to execute the task locally. It

should be noted that since some schemes cannot complete the

application within the limited energy or latency, the schemes

are omitted in the figures. As shown in Fig. 5(b), as δ in-

creases, the three curves (EO-RM/PM/FM) gradually coincide.

This is because the increasing of δ reduces the number of

service migration operations, and the algorithms EO/LO-PM

and EO/LO-FM reduce the overhead of UE by rescheduling

the service instance deployment policy, thus affecting the

effectiveness of the algorithms. In Fig. 6(b), the three curves

(LO-RM/PM/FM) almost coincide. The reason lies in that we

assume the high-speed data transmission between the MEC

182



(a) (b)

Fig. 7. (a) The impact of Ti,max on the energy consumption. (b) The impact
of Ei,max on the latency time.

servers. Therefore, the effectiveness of LO-PM/FM to reduce

the overhead is affected.

2) The impact of Ti,max and Ei,max: In Fig. 7(a), we see

that the overhead of UE3 when Ti,max = 0.0005 s is less than

the overhead of the UE when Ti,max = 0.005 s. According

to Corollary 1, we know that the Ti,max affects Mi,ak , thus

also affecting the strategy and overhead of UE. Therefore, the

situation is reasonable. From the perspective of the curves in

Figures 7(a) and 7(b), as the constraints tighten, the overhead

gradually increases.

V. CONCLUSION

In order to study the execution overhead minimization

problems of UE with mobility in MEC, we jointly optimize

the task offloading strategy and service migration strategy. We

first formulate energy minimization and latency minimization

problems respectively and propose three task offloading and

service migration strategy algorithms for UEs with different

mobility types. Then, we conduct the simulation experiments

using the real world data which records the movement trajec-

tory of UE. The convergence of algorithms, the effectiveness

of algorithms to reduce the overhead of UEs, and the impact of

various key parameters are demonstrated by the experiments.

In the paper, we consider a discrete moving scenario, and

study the impact of three simple mobility type on task offload-

ing and VM migration strategies. However, there are many

applications need to be executed in continuous time, and more

complicated mobility types. Therefore, for the application and

mobility type, we should further study the task offloading and

service migration strategies optimization to bring the scenario

closer to the real world.

ACKNOWLEDGMENTS

We would like to express our gratitude to the three anony-

mous reviewers for their comments on improving the quality

of the manuscript. This work was partially supported by

the National Outstanding Youth Science Program of National

Natural Science Foundation of China (Grant No. 61625202),

and the Program of National Natural Science Foundation of

China (Grant Nos. 61876061, 61572176).

REFERENCES

[1] ETSI, “New white paper: Etsi’s mobile edge computing initiative ex-
plained,” ETSI, Report, 2015.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, thirdquarter 2017.

[3] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing
for iot: Review, enabling technologies, and research opportunities,”
Future Generation Computer Systems, vol. 87, pp. 278 – 289, 2018.

[4] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques to
minimize state transfer costs for dynamic execution offloading in mobile
cloud computing,” IEEE Transactions on Mobile Computing, vol. 13,
no. 11, pp. 2648–2660, 2014.

[5] C. You and K. Huang, “Exploiting non-causal cpu-state information for
energy-efficient mobile cooperative computing,” IEEE Transactions on
Wireless Communications, vol. 17, no. 6, pp. 4104–4117, June 2018.

[6] X. Chen, W. Li, S. Lu, Z. Zhou, and X. Fu, “Efficient resource allocation
for on-demand mobile-edge cloud computing,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 9, pp. 8769–8780, Sep. 2018.

[7] K. Li, “A game theoretic approach to computation offloading strategy
optimization for non-cooperative users in mobile edge computing,” IEEE
Transactions on Sustainable Computing, pp. 1–10, 2018.

[8] C. Liu, K. Li, J. Liang, and K. Li, “Cooper-match: Job offloading with
a cooperative game for guaranteeing strict deadlines in mec,” IEEE
Transactions on Mobile Computing, pp. 1–1, 2019.

[9] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation offloading
for mobile cloud computing: A stochastic game-theoretic approach,”
IEEE Transactions on Mobile Computing, vol. 18, no. 4, pp. 771–786,
April 2019.

[10] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Learning
driven computation offloading for asymmetrically informed edge com-
puting,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 8, pp. 1802–1815, Aug 2019.

[11] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp.
1002–1016, 2017.

[12] S. Secci, P. Raad, and P. Gallard, “Linking virtual machine mobility to
user mobility,” IEEE Transactions on Network and Service Management,
vol. 13, no. 4, pp. 927–940, Dec 2016.

[13] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When
cloud services follow mobile users,” IEEE Transactions on Cloud
Computing, vol. 7, no. 2, pp. 369–382, April 2019.

[14] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, Oct 2018.

[15] Q. Wu, X. Chen, Z. Zhou, and L. Chen, “Mobile social data learning for
user-centric location prediction with application in mobile edge service
migration,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[16] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allocation
exploiting mobility prediction in mobile edge computing,” in IEEE
International Symposium on Personal, 2016.

[17] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang, “User
mobility aware task assignment for mobile edge computing,” Future
Generation Computer Systems, vol. 85, pp. 1 – 8, 2018.

[18] F. Yu, H. Chen, and J. Xu, “Dmpo: Dynamic mobility-aware partial
offloading in mobile edge computing,” Future Generation Computer
Systems, vol. 89, pp. 722 – 735, 2018.

[19] B. Sklar, “Rayleigh fading channels in mobile digital communication
systems. i. characterization,” IEEE Communications Magazine, vol. 35,
no. 9, pp. 136–146, Sep. 1997.

[20] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, Sep. 2013.

[21] A. Anand, J. Lakshmi, and S. K. Nandy, “Virtual machine placement
optimization supporting performance slas,” in 2013 IEEE 5th Interna-
tional Conference on Cloud Computing Technology and Science, vol. 1,
Dec 2013, pp. 298–305.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge University Press, 2004.

[23] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative so-
cial networking service among user, location and trajectory,” IEEE
Data(base) Engineering Bulletin, June 2010. [Online]. Available: https://
www.microsoft.com/en-us/research/publication/geolife-a-collaborative -
social-networking-service-among-user-location-and-trajectory/

183


