
Budget-Constrained Service Allocation
Optimization for Mobile Edge Computing

Yan Ding , Student Member, IEEE, Kenli Li , Senior Member, IEEE, Chubo Liu ,Member, IEEE,

Zhuo Tang , and Keqin Li , Fellow, IEEE

Abstract—The service resource allocation strategy optimization problem has always been a hot issue in mobile edge computing

(MEC). In this article, we formulate the problem as a long-term quality of service (QoS) improvement problem while satisfying the

budget of MEC service provider (MSP). Since it is very unrealistic to accurately obtain the request information of user equipments

(UEs) over a long time, we first transform the original problem into a series of real-time linear programing sub-problems by using

Lyapunov optimization method, and propose a centralized algorithm to determine the resource allocation strategies. However, since the

sub-problems are still NP-hard problems, it is a huge challenge to determine the strategies for all UEs with the centralized algorithm in a

large scale MEC environment. Thus, we then formulate the sub-problem as anN players non-cooperative game, prove that there exists

a Nash equilibrium, and develop two iterative algorithms to find the Nash equilibrium while determining the strategies. Experimental

results show that the algorithms can take into account QoS and budget of MSP at the same time, and perform better compared to five

other common schemes.

Index Terms—Budget-constrained service allocation, lyapunov optimization method, mobile edge computing, non-cooperative game,

nash equilibrium

Ç

1 INTRODUCTION

1.1 Motivation

THERE is a variety of intelligent applications that have
changed the lifestyle of human society, such as autono-

mous driving, virtual reality, augmented reality, and facial
recognition [1]. Driving these changes is the use of various
types of data, such as sound, image, temperature, and
humidity in the real-world. The data is collected by the mil-
lions of user equipments (UEs), such as smart phone, smart
watch, and other Internet of Things (IoT) devices. Then the
data is transmitted to the cloud for processing [2], thus mak-
ing the applications intelligent.

However, as the scale of data continues to increase, it
becomes impractical to transmit all user-side data to the
cloud for analysis. Otherwise, this causes the performance

of the already-congested backbone network to be further
reduced, resulting in the worse quality of experience (QoE)
and quality of service (QoS) [3], [4]. To address the reality
dilemma, in 2014, the European Telecommunications Stand-
ards Institute (ETSI) proposed a computing architecture that
named as mobile edge computing (MEC). In MEC, MEC
service provider (MSP) deploys some servers with limited
resources at the edge of network. This service model
responds to UEs in a timely manner because UEs can lever-
age the high-speed wireless communication technology and
the nearer MEC servers for efficient requesting [5], [6].

With the help of lightweight virtualization technology,
such as virtual machine [7], VirtualBox [8], and Docker [9],
an MSP can quickly deploy the specific service instances of
UEs on its MEC servers. In this paper, the service instance
of a UE can be a basic execution environment responding to
the UE’s request, or various other resources that the UE
needs. Although the MSP can deploy enough MEC servers
for running various service instances to improve QoS, it is
impractical due to the budget constraint of MSP in real-
world. Take video caching in MEC as an example. Video
caching is stored in the MEC servers to provide low-latency
video delivery for UEs. The servers can not store the cache
of all UEs for a long time due to their limited storage space.
Moreover, the MSP pays (such as power charge, equipment
maintenance cost, and employee salary) to keep its servers
running. In general, according to the status of UEs and the
servers, the MSP updates the cache policy every certain
period of time, such as several minutes or tens of minutes
[10]. Hence, the MSP must consider its budget when opti-
mizing its service resource allocation strategy [11].

How to trade-off the requirements of UEs and the practi-
cal needs of MSP is a non-trivial problem. On the one hand,

� Yan Ding, Kenli Li, Chubo Liu, and Zhuo Tang are with the College of
Information Science and Engineering, Hunan University, Changsha,
Hunan 410082, China, and also with the National Supercomputing Cen-
ter, Changsha, Hunan 410082, China. E-mail: {ding, lkl, liuchubo,
ztang}@hnu.edu.cn.

� Keqin Li is with the College of Information Science and Engineering, Hunan
University, Changsha, Hunan 410082, China, and with the National Super-
computing Center in Changsha, Hunan 410082, China, and also with the
Department of Computer Science, State University of New York, New Paltz,
New York, NY 12561 USA. E-mail: lik@newpaltz.edu.

Manuscript received 19 Apr. 2021; revised 21 Sept. 2021; accepted 5 Dec. 2021.
Date of publication 9 Dec. 2021; date of current version 6 Feb. 2023.
This work was supported in part by the National Outstanding Youth Science
Program of National Natural Science Foundation of China under Grant
61625202, in part by the Program of National Natural Science Foundation of
China under Grants 62072165, 61876061, and U19A2058, and in part by the
Open Research Projects of Zhejiang Lab under Grant 2020KE0AB01.
(Corresponding authors: Kenli Li and Keqin Li.)
Digital Object Identifier no. 10.1109/TSC.2021.3133547

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023 147

1939-1374 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:ding@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:ztang@hnu.edu.cn
mailto:lik@newpaltz.edu

the UEs want the MSP to improve QoS and QoE, and the
MSP wants to control its cost when responding to the UEs.
On the other hand, since the resources of the MEC servers
are finite, the service allocation strategy of a UE will signifi-
cantly affect the performance of other UEs’ strategies [12].
Moreover, the UEs and the application types of the UEs are
all heterogeneous. It is difficult for MSP to make a common
resource allocation strategy that satisfies different demands
of UEs.

When involving mobility in MEC, the resource allocation
strategy optimization problem becomes even harder [13],
[14]. MSP should migrate the service instances of UEs to fol-
low the movement of the UEs. If the service allocation strat-
egies are determined based on the current location and
request information of UEs, it will easily lead to frequent
operation and increase the long-term cost of MSP [15]. How-
ever, it is a huge challenge to accurately obtain the informa-
tion of UEs over a long time, especially for the UEs with
random mobility and request. Thus, it is critical to weigh
the respective requirements of UEs and MSP, and optimize
service allocation strategies that are acceptable to both
parties.

1.2 Our Contributions

Based on the above discussions, in this paper, we research
the budget-constrained service allocation strategy optimiza-
tion problem. The problem is to allocate the service resour-
ces (i.e., MEC server and computing resource of the server)
of MSP for UEs with mobility to improve the long-term QoS
with budget constraint consideration. The main contribu-
tions of this paper are presented as follows.

� We formulate the optimization problem as a long-
term QoS improvement problem while satisfying the
budget of MSP, transform the original problem into
a series of real-time linear programing sub-problems
by using Lyapunov optimization method, and
develop a Lyapunov optimization method based
centralized algorithm to determine the resource allo-
cation strategies for all UEs, which addresses the
randomness of the UEs.

� To improve the performance of service allocation
for UEs in a large scale MEC environment, we then
formulate the sub-problem as an N players non-
cooperative game and prove there exists a Nash
equilibrium of the players. Moreover, we develop
two iterative algorithms to find the Nash equilibrium
of UEs and determine the service allocation strate-
gies for each UE in a distributed manner .

� We conduct extensive simulation experiments to
demonstrate the convergence of algorithms, the
effectiveness of algorithms, and the impact of vari-
ous key factors, such as the weight parameter of
latency and the budget of MSP, on the cost and QoS,
respectively.

The remainder of the paper is outlined as follows.
Related work is reviewed in Section 2. The system model
and problem formulations are presented in Section 3. Sec-
tion 4 transforms the original problem into a series of real-
time linear programing sub-problems by using Lyapunov
optimization method. Section 5 formulates the sub-problem

as a non-cooperative game, and develops algorithms to find
the Nash equilibrium in detail. Extensive simulation experi-
ments using the real-world data are conducted in Section 6.
Conclusions and our future work are presented in Section 7.

2 RELATED WORK

Service resource allocation refers to that MSP configures the
service instances of UEs on its servers based on the spatial-
temporal information of UEs, thus enabling the MSP has the
capability to respond to the different requests of the UEs
[16], [17]. The service resource allocation strategy optimiza-
tion problem has always been a hot issue in MEC and has
been extensively studied. For example, Hung et al. [3] opti-
mized live video streaming service by developing two auc-
tion frameworks to decide the backhaul capacity and
caching space allocation of UEs. Kiani et al. [18] designed
the service allocation policy in an auction-based profit maxi-
mization manner. Nguyen et al. [19] presented a decentral-
ized and revised content-centric networking-based MEC
service allocation strategy to save the MEC resource. Chen
et al. [20] studied the collaborative service placement in
dense network. Xiang et al. [21] developed an optimization
method to improve the performance of service deployment.
Deng et al. [22], [23], [24] investigated the resource allocation
optimization problem from the perspectives of performance
optimization, load balancing, and resource pricing, respec-
tively. Although the above work studied the problem from
various perspectives, they all ignored the impact of UE
mobility in real-world.

Unlike the relatively stable service allocation strategy of
the cloud, the mobility of UEs significantly affects the ser-
vice allocation strategy in MEC [25], [26]. Some researches
assumed that the mobility of UEs follows a Markov Deci-
sion Process (MDP) [27], [28]. To deploy the service instan-
ces of UEs in advance to improve QoS and QoE, some work
investigated the problem based on the assumption that the
UEs’ future locations can be predicted [29], [30]. However,
accurately predicting the UE mobility characteristics or
future location is a huge challenge in real-world, especially
the movement and request of UEs are highly random.

Therefore, it is important to explore efficient service allo-
cation strategy without strong (accurate) assumption of UE
mobility. Some work ignored the short-term mobility of
UEs, and instead studied the resource allocation strategy
over a long time [15], [31], [32], [33]. Although the above
work developed the strategy to optimize the cost of MSP
while improving QoS over a long time, the researches [31],
[32], [33] still required the strong prior knowledge to make
the strategy, that is, Wang et al. [31] assumed that the cost of
all possible service allocation strategies are known in
advance and Chen et al. [32], [33] determined the strategy
when the demand patterns of UEs are known. Meanwhile,
the MSP does not allocate its resources without considering
its own budget, but this fact is only considered by [15], [32],
[33]. Moreover, MEC is also known as a distributed cloud,
so the request of a UE can be served by multiple MEC serv-
ers simultaneously. However, except for [19], [20], all of the
above work does not consider the distributed service.

In our paper, the problem is formulated as a long-term
quality of service (QoS) improvement problem while

148 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

satisfying the budget of MEC service provider (MSP). Since
it is very unrealistic to accurately obtain the request infor-
mation of user equipments (UEs) over a long time, we first
transform the original problem into a series of real-time lin-
ear programing sub-problems by using Lyapunov optimiza-
tion method, and propose a centralized algorithm to
determine the resource allocation strategies. However, since
the sub-problems are still NP-hard problems, it is a huge
challenge to decide the strategies with the centralized algo-
rithm in a large scale MEC environment. Thus, we then for-
mulate the sub-problem as an N players non-cooperative
game, prove that there exists a Nash equilibrium, and
develop two iterative algorithms to find the Nash equilib-
rium while determining the strategies. Consequently, the
best strategies for UEs can be determined slot by slot. Table 1
shows the differences between the related work and our
work. The algorithms developed in this paper do not need
to know the mobility characteristics and demand patterns
of UEs in advance, which determine the strategy more uni-
versal in the real-world.

3 SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider an MEC environment in
which a set of MEC serversM , f1; 2; . . . ;Mg serve a set of
UEs N , f1; 2; . . . ; Ng. All MEC servers belong to one MSP.
We use UEi 2 N and MECj 2 M to represent ith UE
(1 � i � N) and jth MEC server (1 � j �M) respectively.

The communication between UEi andMECj is implemented
by the wireless access point (AP). Each AP can serve a set of
UEs and MEC servers within a limited area. UEs request
the MSP to execute their offloaded tasks for the purpose of
minimizing the execution latency of the tasks. The MSP allo-
cates its service resources to the UEs according to the loca-
tion and request information of UEs, its own budget, and
the status of each MEC server. In this paper, the service allo-
cation strategy determines which MEC servers should
respond to the UEs’ requests and how many offloaded tasks
of the UEs these servers should handle. The model that uses
the number of tasks executedby MEC servers as the service
allocation decision has been widely adopted by the existing
work [15], [34]. Table 2 gives a list of the parameters and
their definitions in this paper.

3.1 System Model

A time slot system is considered in this paper. UEs generate
some tasks at each time slot t 2 f0; 1; 2; . . . ; T � 1g. The
actual time interval of two consecutive slots can be either
the same or different, such as at the time scale of second or
minute [10], [31]. Meanwhile, when a UE’s request is not
completed, the UE remains stationary and does not send
new requests [15], [31], [32]. The number of offloaded tasks
generated by UEi at t is denoted by �iðtÞ. Moreover, a UE
generates only one type of task at each time slot, i.e., the
sizes of tasks generated by the UE at t are equal. The MSP
gathers all requests of UEs and determines the optimal ser-
vice resource allocation strategies for each UE. To simplify
the analysis, this paper assumes that the offloaded tasks can
be further divided into some subtasks with any size and
executed by multiple MEC servers simultaneously [35]. A
typical application scenario is video analytics task, in which
a video can be divided into a series of frames and the video
analytics task (e.g., object detection) can be conducted on
each frame separately [36]. Although, in reality, only some
sizes may be accepted in the data partitioning, the solution
in this paper could be served as a performance upper-
bound of realistic resource allocation strategies.

�i;jðtÞ is used to represent the number of offloaded tasks
submitted byUEi toMECj at t. Thus �iðtÞ ¼

PM
j¼1 �i;jðtÞ. The

TABLE 1
The Comparison Between the Related Work and Our Work

Categories Schemes Short-Term or
Long-Term
Optimization

Whether to Need the
Priori Knowledge of
Mobility or Demand?

Whether to Consider
the Budget
of MSP?

Whether to Consider
the Distributed

Service?

Hung et al. [3] Short-Term Yes No No
Kiani et al. [18] Short-Term Yes No No

No Mobility Nguyen et al. [19] Short-Term Yes No Yes
Consideration Chen et al. [20] Short-Term Yes No Yes

Xiang et al. [21] Short-Term Yes No No
Deng et al. [22], [23], [24] Short-Term Yes No No

Ouyang et al. [15] Long-Term No Yes No
Urgaonkar et al. [27] Short-Term Yes No No

With Mobility Zhang et al. [28] Short-Term Yes No No
Consideration Wu et al. [29] Short-Term Yes No No

Zhou et al. [30] Short-Term Yes No No
Wang et al. [31] Long-Term Yes No No
Chen et al. [32] Long-Term Yes No No

Ours Long-Term No Yes Yes

Fig. 1. A scenario example of MEC.

DING ETAL.: BUDGET-CONSTRAINED SERVICE ALLOCATION OPTIMIZATION FOR MOBILE EDGE COMPUTING 149

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

resource allocation strategy of UEi can be represented by a
vector �iðtÞ�iðtÞ ¼

�
�i;1ðtÞ; �i;2ðtÞ; �i;3ðtÞ; . . . ; �i;MðtÞ

�
. The strate-

gies of UEi over a time (0 � t � T � 1) can be denoted by a
matrix LiLi ¼

�
�i�ið0Þ; . . . ; �i�iðtÞ; . . . ; �i�iðT � 1Þ�T . Fig. 2 shows

an example ofMSP responding to the requests of UEs.

The service resource allocation strategy of a UE is not
only affected by the number of offloaded tasks, but also the
data size, the task type, and the location of the UE. Thus, we
use AiðtÞ ,

�
�iðtÞ; aiðtÞ; diðtÞ; liðtÞ

�
to represent a request of

UEi at t, where aiðtÞ (bit) is the data size of the request, diðtÞ

TABLE 2
Summary of Parameters

Parameters Definition

System Model

t a time slot, 0 � t � T � 1
UEi the ith UE, 1 � i � N
MECj the jth MEC server, 1 � j �M
fj the computing resource of MECj, i.e., CPU frequency
fi;jðtÞ the computing resource of MECj allocated to UEi at t
C the budget of MSP
�iðtÞ the number of offloaded tasks generated by UEi at t
�i;jðtÞ the number of offloaded tasks submitted by UEi to MECj at t
�iðtÞ�iðtÞ ¼ ��i;1ðtÞ; �i;2ðtÞ; �i;3ðtÞ; . . . ; �i;MðtÞ

�
, the resource allocation strategy of UEi

LiLi ¼ ��i�ið0Þ; . . . ; �i�iðtÞ; . . . ; �i�iðT � 1Þ�T , the strategies of UEi over a period of time T
LL ¼ L1L1 � . . .� LNLN , the service resource allocation strategies for all UEi over a period of time T
AiðtÞ ,

�
�iðtÞ; aiðtÞ; diðtÞ; liðtÞ

�
, a request of UEi at t

aiðtÞ the data size of AiðtÞ
diðtÞ the processing density of AiðtÞ
liðtÞ ,

�
xiðtÞ; yiðtÞ

�
, the location of UEi at t

QoS Model of UE

ri;jðtÞ the transmission rate from UEi to MECj at t
ti;j;rðtÞ the transmission latency from UEi to MECj

ti;j;mðtÞ the service deployment latency of UEi on MECj

mi;jðtÞ the delay for MECj migrating and activating the service instance of UEi at t
ti;j;pðtÞ the remote execution latency of UEi’s offloaded tasks executed by MECj

QiðtÞ the latency that the MSP responds to UEi’s request

Cost Model of MSP

ci;j;pðtÞ the execution energy required by MECj to execute the offloaded tasks of UEi

Pi;j ¼ bf2i;jðtÞ, the rate at which the offloaded task is performed by MECj

b a constant related to the chip
ci;j;m the deployment energy consumption required by MECj to respond to UEi

ei;j;mðtÞ the energy consumption of MECj for migrating and activating the service instance of UEi

CiðtÞ the energy consumption of MSP executing the tasks of UEi at t
CðtÞ the energy consumption of MSP executing the tasks of all UEs at t

Lyapunov Optimization Method

ZðtÞ the backlog of a discrete time queuing system of MSP defined over time slot t
V a weight parameter
L
�
ZðtÞ� ¼ ZðtÞ2=2, the Lyapunov function

Cmax the maximum energy consumption of MSP for responding to UEs
B ¼ �C2

max þ C
2 þ 2Cmax þ 1

�
=2

Non-Cooperative Game Theory

RM an euclidean space
Ki the all possible strategies of UEi

K ¼ K1 �K2 � . . .�KN , the all possible strategies ofN players
L�iL�i ¼ ð�1�1; . . . ; �i�1�i�1; �iþ1�iþ1; . . . ; �N�NÞT , the strategies of N � 1 players except for UEi

�ið�i�i;L�iL�iÞ the cost function of UEi in a non-cooperative game
�� ¼ ��1ð�1�1;L�1L�1Þ; . . . ; �Nð�N�N;L�NL�NÞ

�
G ¼ ðK;��Þ, a non-cooperative game
L�L� ¼ ð��1��1; . . . ; ��N��NÞT , the Nash equilibrium
H
�
�ið�i�i;L�iL�iÞ

�
the Hessian matrix of �ið�i�i;L�iL�iÞ

si;mi;j;vi;j the Lagrange multipliers
z the number of Lagrange multiplier updates
gi;bi; ki the size of Lagrange multiplier update step
c a constant that controls P3’s solution precise
f the number of game rounds
F the maximum number of game rounds
� the accuracy requirement of Algorithm 3

150 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

is the processing density (cycles/bit) of the request, and liðtÞ
is the location of UEi at t. The number of CPU cycles
required to complete a request is equal to the product of
processing density and data size, i.e., aiðtÞdiðtÞ. We assume
UEi moves on a two-dimensional plane, thus the location of
UEi at t can be denoted by a coordinate point
liðtÞ ,

�
xiðtÞ; yiðtÞ

�
, where xiðtÞ; yiðtÞ are the abscissa and

ordinate respectively. The location of MECj is lj , ðxj; yjÞ,
where xj; yj are the abscissa and ordinate of MECj,
respectively.

3.2 QoS Model

In this paper, QoS is represented by the latency that the MSP
responds to UEs’ requests. The response delay consists of
not only the transmission latency, the service deployment
latency, but also the remote execution latency. The transmis-
sion latency refers to the time consumption of a UE for
uploading its tasks to MEC servers. The deployment latency
is caused by migrating the service instance between the
MEC servers and activating the service instance from the
sleep state. The remote execution latency is the computa-
tional time for the MEC servers to execute the offloaded
tasks. Next, we present QoS model in detail.

3.2.1 Transmission Latency

We use ri;jðtÞ to represent the transmission rate from UEi to
MECj at t. In the paper, the communication channel condition
between UEi and MECj is assumed to be constant [32]. Since
the distance between UEi and MECj affects the transmission
rate, we use r̂i;j to represent the rate function with regard to
the locations of UEi and MECj, i.e., ri;jðtÞ , r̂i;j

�
liðtÞ; lj

�
. The

specific rate function will be introduced in Section 6.1. The
transmission latency (second) fromUEi toMECj is

ti;j;rðtÞ ¼ aiðtÞ
ri;jðtÞ �

�i;jðtÞ
�iðtÞ : (1)

3.2.2 Service Deployment Latency

When UEi leaves the service area of an MEC server, QoS is
reduced due to the longer transmission delay. Therefore,
the service instance migration mechanism is introduced
into the MEC. Consequently, there is an additional latency
for migrating service instances between the MEC servers.
Since idle instances will enter the sleep state, waking up the
instances from sleep state again will cause additional delay.
We use mi;jðtÞ to represent the delay for MECj migrating
and activating the service instance of UEi at t. mi;jðtÞ can be

measured through the long-term experience [36]. Thus, the
service deployment latency (second) of UEi on MECj can be
formulated as

ti;j;mðtÞ ¼ If�i;jðt � 1Þ ¼ 0gIf�i;jðtÞ > 0gmi;jðtÞ; (2)

where Ifog is an indicator function with regard to a boolean
variable o. If o ¼ true, Ifog ¼ 1. Otherwise, Ifog ¼ 0.

3.2.3 Remote Execution Latency

We use fj to represent the computing resource of MECj (i.e.,
CPU frequency, measured by cycles/s). In this paper, we
assume that the MSP adopts the weighted computing
resource allocation model. The computing resource weight
of MECj allocated to UEi at t is the proportion of offloaded
tasks submitted by the UE among all tasks executed by the
server. That is,MECj does not consider the types of tasks sub-
mitted by UEs when allocating its resources, but only focuses
on the number of tasks [37]. To support resource allocation
and other system operationmechanisms, such as fault-recov-
ery [38], MECj reserves part of its computing resource. The
amount of resources occupied by these mechanisms is
assumed to be equal to the amount of resources occupied by
one offloaded task. Hence, the total number of tasks
responded by MECj is

PN
i0¼1 �i0;jðtÞ þ 1, where

PN
i0¼1 �i0;jðtÞ

is the total number of tasks offloaded to MECj by all
UEi0 2 N at t. Therefore, the computing resource of MECj

allocated to UEi at t is fi;jðtÞ ¼ �i;jfjðtÞ=
�PN

i0¼1 �i0;jðtÞ þ 1
�
.

Therefore, the remote execution latency (second) of UEi’s off-
loaded task executed byMECj is

ti;j;pðtÞ ¼ aiðtÞdiðtÞ �i;jðtÞ
�iðtÞfi;jðtÞ

¼ aiðtÞdiðtÞ
�PN

i0¼1 �i0;jðtÞ þ 1
�
fj

�iðtÞ : (3Þ

Based on the above definitions, QoS improvement model
of UEi can be formulated as minimizing the following

QiðtÞ ¼
XM
j¼1
ðti;j;rðtÞ þ ti;j;mðtÞ þ ti;j;pðtÞÞ: (4)

3.3 Cost of MSP

The MSP receives the long-term payment from UEs if the
demands of the UEs are satisfied. However, the MSP not
only wants to improve QoS, but also wants to control its
cost. Thus, the MSP will trade-off the cost and benefit of
responding to the UEs’ requests. The cost types of MSP are
diverse, such as CPU occupancy rate, memory occupancy
rate, energy consumption and time consumption for
responding to UEs. In this paper, however, we consider the
energy consumption (Joule, J) as the cost of MSP. The reason
is that energy consumption has covered all the above cost
types [39]. Moreover, we do not consider fixed energy cost,
such as leakage and static energy consumptions, and focus
on the maintenance energy consumption. The maintenance
energy consumption of MSP consists of the offloading task
execution energy consumption and the service instance
deployment energy consumption. The execution energy
(Joule) required by MECj to execute the offloaded tasks of

Fig. 2. An illustration of MSP responding to UEs’ requests.

DING ETAL.: BUDGET-CONSTRAINED SERVICE ALLOCATION OPTIMIZATION FOR MOBILE EDGE COMPUTING 151

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

UEi can be formulated as

ci;j;pðtÞ ¼ ti;j;pðtÞPi;j; (5)

where power Pi;jðtÞ ¼ bf2i;jðtÞ (Watt) is the rate at which the
offloaded task is performed by MECj, and b ¼ 5� 10�17 is
the constant related to the chip [37], [40], [41].

The deployment energy consumption (Joule) required by
MECj to respond to UEi is

ci;j;m ¼ If�i;jðt � 1Þ ¼ 0gIf�i;jðtÞ > 0gei;j;mðtÞ; (6)

where ei;j;mðtÞ (Joule, J) is the energy consumption of MECj

for migrating and activating the service instance of UEi.
ei;j;mðtÞ is a constant related to the service instance type of
UEi, and can also be obtained by the MSP through the long-
term experience [36].

According to the above formulations of the two energy
consumption types, the cost (Joule) of MSP executing the
tasks of UEi at t is

CiðtÞ ¼
XM
j¼1
ðci;j;pðtÞ þ ci;j;mðtÞÞ: (7)

3.4 Problem Formulation

In the paper, the problem can be described as the MSP finds
the optimal service resources allocation strategies for UEs to
improve the long-term QoS within its energy consumption
budget. Therefore, based on the above definitions, the prob-
lem can be formulated as

P1 :min
LL

lim
T!1

1

T

XT�1
t¼0

XN
i¼1

QiðtÞ

s:t: C1 : lim
T!1

1

T

XT�1
t¼0

XN
i¼1

CiðtÞ � C;

C2 : �iðtÞ ¼
XM
j¼1

�i;jðtÞ; i 2 ½1; N�;

C3 : 0 � �i;jðtÞ � �i; i 2 ½1; N�; j 2 ½1;M�; (8Þ
where LL ¼ L1L1 � . . .� LNLN is the service resource allocation
strategies for all UEi 2 N over a period of time (i.e.,
0 � t � T � 1), and C is the cost constraint of MSP, i.e.,
budget.

4 PROBLEM TRANSFORMATION AND LYAPUNOV

OPTIMIZATION METHOD BASED ALGORITHM

4.1 Background Information

Consider a discrete time queuing system ZðtÞ. The arrivals
and departures of ZðtÞ is affected by a schedule action taken
at each time slot t. To describe the congestion state of sys-
tem, Lyapunov optimization method defines the Lyapunov
function as the sum of squares of backlog in the queue at t,
i.e., L

�
ZðtÞ� ¼ ZðtÞ2=2. The method also defines the Lyapu-

nov drift DðtÞ ¼ L
�
Zðt þ 1Þ�� L

�
ZðtÞ� to describe the

change of Lyapunov function from t to t þ 1. ZðtÞ and DðtÞ
help to ensure the long-term constraint is met. In a queuing
system, if we want to optimize an objective function PðtÞ
while maintaining the system stability, the schedule actions
are decided at each slot t to greedily minimize the drift-

plus-penalty, i.e., DðtÞ þ VPðtÞ, to consistently push ZðtÞ to
a lower congestion state. In the drift-plus-penalty expres-
sion, V is a non-negative control parameter that is chosen as
desired.

Compared with other optimization approaches (such as
convex programming and duality theory), one advantage of
Lyapunov optimization method is that the method can
unify the objective function and the long-term constraint
into an equation (i.e., drift-plus-penalty), and enables the
problem to be solved based on the current information,
without requiring prior knowledge at other times. The
another advantage of the method is that its performance
bound can be demonstrated explicitly. For example, for
each time slot, Theorem 2 shows the gap between the opti-
mal average response delay obtained by solving P2 and the
optimal solution of P1 is bounded by Oð1=V Þ. Moreover, the
average energy consumption of MSP is bounded by OðV Þ.
For a detailed introduction of Lyapunov optimization
method, the reader is referred to reference [42].

P1 is defined as the problem of minimizing the average
response delay under the budget constraint over a long-
term. The optimal solution of P1 can be calculated by con-
tinuously updating to follow the dynamic of UEs over a
long time information (e.g., UEs’ mobility characteristics
and requests, and the computing resource of server). How-
ever, it is unrealistic to accurately obtain these knowledge
over a long time [15]. Fortunately, we can regard the long-
term budget constraint of MSP in P1 (i.e., C1) as a queue sta-
bility control problem, and transform the original long-term
optimization problem into a series of linear programing
sub-problems (i.e., P2) by using the Lyapunov optimization
method. That is, we optimize the drift-plus-penalty (i.e.,
DðtÞ þ VPðtÞ) of the system at every time slot. Thus, the
strategy can be determined based only on the current infor-
mation, and does not require prior knowledge at other
times. Then, we can make the best strategies for UEs slot by
slot. Moreover, it also allows us to make the strategies with-
out considering the specific mobility characteristics and
demand patterns of UEs. Next, we detail the problem trans-
formation process by using the Lyapunov optimization
method.

4.2 Problem Transformation

We define ZðtÞ as the backlog of a discrete time queuing
system, where t 2 f0; 1; 2; . . . ; T � 1g. The next time slot
backlog of the queue Zðt þ 1Þ is derived by the current
energy consumption CðtÞ ¼PN

i¼1 CiðtÞ and the budget C
based on the following dynamic equation:

Zðt þ 1Þ ¼ maxfZðtÞ � C þ CðtÞ; 1g: (9)

The backlog of the queue can be represented by the addi-
tional energy needed to execute tasks. As shown in Equa-
tion (9), we assume that MSP reserves one J of energy in the
queue for some emergency situations. In this paper, the ini-
tial queue backlog is one (i.e., Zð0Þ ¼ 1). In fact, ZðtÞ is
another form of constraint C1. If ZðtÞ can be proven to be
mean rate stable, i.e., the expectation of average queue back-
log limT!1 EfZðtÞ=Tg ¼ 0, the average constraint C1 can be
satisfied [42].

152 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

Based on the above definitions, we transform P1 into a
series of real-time linear programing sub-problems (i.e., P2)
by using Lyapunov optimization method, and have Theo-
rem 1.

Theorem 1. For each time slot, the sub-problem of P1 can be for-
mulated as the following problem:

P2 :min
LL

V
XN
i¼1

QiðtÞ þ ZðtÞ
 XN

i¼1
CiðtÞ þ 1

!
;

s:t: C2; C3; (10Þ

where V > 0 is the trade-off parameter between the cost of
MSP and QoS.

Proof. In this queuing system, the Lyapunov function is
L
�
ZðtÞ�¼ ZðtÞ2=2. Moreover, the Lyapunov drift is

L
�
Zðt þ 1Þ��L�ZðtÞ�¼ �Zðt þ 1Þ2 � ZðtÞ2�=2 � �CðtÞ2þ

C
2 þ 1 þ2CðtÞ�=2� �CðtÞ þ 1

�
C þ ZðtÞ�CðtÞ � C þ 1

�
.

Thus, we have

L
�
Zðt þ 1Þ��L�ZðtÞ�� ZðtÞ�CðtÞ � C þ 1

�þB;
(11)

where B ¼ �C2
max þ C

2 þ 2Cmax þ 1
�
=2, and Cmax is the

maximum energy consumption of MSP for responding
to UEs, which is determined by the MSP. The conditional
Lyapunov drift is

D
�
ZðtÞ� , E

�
L
�
Zðt þ 1Þ��L�ZðtÞ�jZðtÞ�: (12)

According to Equations (11), (12), and the law of iteration
expectation [42], we have

E
�
D
�
ZðtÞ�� ¼ E

�
L
�
Zðt þ 1Þ��L�ZðtÞ��

� Bþ E
�
ZðtÞ��CðtÞ � C þ 1

�
: (13Þ

And then, according to the law of telescoping sums and
Zð0Þ ¼ 1 [42], we get

E
�
L
�
ZðT Þ��� 1

2
� BT þ

XT�1
t¼0

E
�
ZðtÞ��CðtÞ � C þ 1

�
:

(14)

Thus, when T !1, we rearrange the above inequality
as

lim
T!1

1

T

XT�1
t¼0

E
�
ZðtÞ�� lim

T!1
1

T
x ¼ 0; (15)

where x ¼ ðBTþ1=2�E�L�ZðT Þ��Þ=PT�1
t¼0
�
C�CðtÞ þ1�.

Thus ZðtÞ is mean rate stable, that is C1 can be satisfied
over a long time [42].

Accordingly, the Lyapunov drift-plus-penalty func-
tion is DðZðtÞÞ þ V

PN
i¼1 QiðtÞ � ZðtÞE CðtÞ � C þ 1jZ�

ðtÞg þBþ V
PN

i¼1 QiðtÞ. Therefore, we get

D
�
ZðtÞ�þVQðtÞ � ZðtÞ�CðtÞ þ 1

�þBþ VQðtÞ;
(16)

where QðtÞ ¼PN
i¼1 QiðtÞ. Therefore, if we optimize QoS

over a long time while satisfying the energy consumption
budgetofMSP,wecanminimizeD

�
ZðtÞ�þVQðtÞ slotby slot.

Equivalently, we can minimize VQðtÞ þ ZðtÞ�CðtÞ þ 1
�
. So

wehave the theorem. tu

4.3 Performance Analysis and the Algorithm

P2 can be described as that we want to stabilize the queue
ZðtÞ while making the average response delay of all UEs
QðtÞ close to a minimal delay q� 	 0. We assume that the
expectation of QðtÞ is lower bounded by a finite value
qmin 	 0, for all t 2 f0; . . . ; T � 1g, we have

EfQðtÞg 	 qmin: (17)

The following theorem gives the bound of average response
delay performance and energy consumption

�
i.e., the back-

log of ZðtÞ�, i.e., the gap between the solution obtained by
solving P2 and the optimal solution of P1.

Theorem 2. There are constants B 	 0; V > 0; r 	 0, and q� 	
qmin, for all t 2 f0; . . . ; T � 1g. The average response delay of
QðtÞ is bounded by

lim
T!1

sup
1

T

XT�1
t¼0

EfQðtÞg � q� þ B

V
: (18)

The average energy consumption of MSP, i.e., the backlog of
ZðtÞ is bounded by

lim
T!1

sup
1

T

XT�1
t¼0

EfZðtÞg � Bþ V ðq� � qminÞ
rþ 1

: (19)

Proof. We assume that there is a non-negative r to make the
constraint C1 true. Thus we have C � C 	 r. Plugging
this into Equation (14) yields

D
�
ZðtÞ�� B� ðrþ 1ÞEfZðtÞg: (20)

Plugging the inequalities (17) and (20) into the inequality
(16) can yield the following inequality:

D
�
ZðtÞ�þVEfQðtÞg � Bþ Vq� � ðrþ 1ÞEfZðtÞg:

(21)

For the inequality (21), taking expectations of both
sides and using the law of iteration expectations [42], we
have an inequality EfL�Zðt þ 1Þ�g � EfL�ZðtÞ�g þ
VEfQðtÞg � Bþ Vq� � ðrþ 1ÞEfZðtÞg. Then, summing
the inequality over t 2 f0; 1; . . . ; T � 1g for T > 1 and
using the law of telescoping sums [42], we can obtain an
inequality EfL�ZðT Þ�g � EfL�Zð0Þ�g þ V

PT�1
t¼0 EfQðtÞg

� ðBþ Vq�ÞT � ðrþ 1ÞPT�1
t¼0 EfZðtÞg. Plugging Zð0Þ ¼ 1

into the inequality and rearranging the terms of the
inequality, we can easily get the following two inequal-
ities:

1

T

XT�1
t¼0

EfQðtÞg �q� þ B

V
� ðrþ 1ÞPT�1

t¼0 EfZðtÞgg
VT

þ 1=2� EfL�ZðT Þ�
VT

;

(22)

DING ETAL.: BUDGET-CONSTRAINED SERVICE ALLOCATION OPTIMIZATION FOR MOBILE EDGE COMPUTING 153

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

1

T

XT�1
t¼0

EfZðtÞg �Bþ Vq� � VEfQðtÞg
rþ 1

þ 1

2T ðrþ 1Þ �
EfL�ZðT Þ�g
T ðrþ 1Þ

�Bþ V ðq� � qminÞ
rþ 1

þ 1

2T ðrþ 1Þ �
EfL�ZðT Þ�g
T ðrþ 1Þ : (23Þ

Taking limits of the inequalities (22) and (23) as T !1
can prove the theorem. tu
Theorem 1 unifies the average response delay of UEs and

the cost of MSP into an equation, and enables the problem
to be solved based on the current information, without
requiring prior knowledge at other times. Thus, we omit t
of parameters in the following content. Meanwhile, for each
time slot, Theorem 2 shows the gap between the optimal
average response delay obtained by solving P2 and the opti-
mal solution of P1 is bounded by Oð1=V Þ. Moreover, the
average energy consumption of MSP is bounded by OðV Þ.
Based on Theorems 1 and 2, it is easy to know that the solu-
tion of P2 is an approximate optimal solution of P1 in every
time slot.

Algorithm 1. LY: Lyapunov Optimization Method Based
Algorithm for Finding L�L�

Input: AiðtÞ;mi;jðtÞ; ei;j;mðtÞ; fj, for 1 � i � N and 1 � j �M,
C, ZðtÞ, and b.
Output: L�L�.
1: for t 2 f0; 1; . . .g do
2: Obtain the optimal resource allocation strategies through

L�ðtÞL�ðtÞ ¼ argminLLVQðtÞ þ ZðtÞ�CðtÞ þ 1
�
;

3: Update Zðt þ 1Þ by Equation (9);
4: end for
5: return L�L�.

Algorithm 1 shows that the optimal strategies of UEs at
each time slot t can be obtained when solving P2. The algo-
rithm does not need to know the mobility characteristics
and demand patterns of UEs in advance. However, since P2
is an NP-hard problem [15], it is a huge challenge to solve
P2 with a centralized algorithm especially in a large scale
network. Moreover, there is a fact that all UEs want to have
as little latency as possible, which indicates that the MSP
needs to optimize service allocation strategy for each UE.

Fortunately, game theory provides an efficient way to
solve P2 while determining the strategies for UEs. Thus, we
then formulate the sub-problem as an N players non-coop-
erative game, prove that there exists a Nash equilibrium,
and develop two algorithms to find the Nash equilibrium
while determining the strategies. The algorithms are itera-
tive algorithms and determine the best strategy for each UE
in a distributed manner, thereby reducing the time com-
plexity of obtaining the solution of P2. In each iteration,
each UE is greedy and wants MSP to adjust its service
resource allocation strategy to minimize its service latency.
The iteration will continue until a strategy set acceptable to
all UEs is obtained, that is, the strategies of UEs can no

longer continue to be updated to benefit the UEs. According
to Definition 2 proposed in Section 5.1, we can know that
although the Nash equilibrium solution is not the optimal
strategy set of P2, the solution consists of the best strategies
of all UEs [37].

5 NON-COOPERATIVE GAME BASED ALGORITHMS

5.1 The Preliminary of Game

In this section, we first give some definitions about the N
players non-cooperative game. There are N players (i.e., N
UEs) in a game and all players want to minimize their cost
(i.e., improve their QoS). The ith player UEi makes a strat-
egy �i�i ¼ ð�i;1; �i;2; . . . ; �i;MÞ 2 Ki
 RM , where Ki (i.e., the
all possible strategies of UEi) is closed and convex, for all
1 � i � N . K ¼ K1 �K2 � . . .�KN indicates the set of the
all possible strategies of N players. According to the former
definition, LL is the strategy set of all players. We use L�iL�i to
represent the strategies of N � 1 players except for UEi, i.e.,

L�iL�i ¼ ð�1�1; . . . ; �i�1�i�1; �iþ1�iþ1; . . . ; �N�NÞT . Each player has a cost
function �ið�i�i;L�iL�iÞ 2 R. Meanwhile, the cost function �i is
continuously differentiable in LL. Next, we can give the defi-
nition of non-cooperative game.

Definition 1. There is a game with N UEs defined by G ¼
ðK;��Þ, where �� ¼ ��1ð�1�1;L�1L�1Þ; . . . ; �Nð�N�N;L�NL�NÞ

�
. Every

player wants to make a strategy �i�i 2 Ki to minimize its cost
function �ið�i�i;L�iL�iÞ. Based on Theorem 1, when the strategies
of all UEs are given except for UEi, the cost function of UEi

can be formulated as

�ið�i�i;L�iL�iÞ ¼ V

�
Qi þ

XN
k 6¼i

Qk

�
þ Z

�
Ci þ

XN
k6¼i

Ck þ 1

�
:

(24)

The cost minimization problem of UEi can be formulated as

P3 :min
�i�i

�ið�i�i;L�iL�iÞ
s:t: C2; C3: (25Þ

Then, we name the game as an N players non-cooperative
game.

Definition 2. L�L� ¼ ð��1��1; . . . ; ��N��NÞT is the strategy set of N UEs.
If �ið��i��i ;L��iL��iÞ � �ið�i�i;L

�
�iL��iÞ, for all 1 � i � N , L�L� is the Nash

equilibrium of the N players non-cooperative game G ¼ ðK;��Þ.
How do we know whether a game has the Nash equilib-

rium? Thanks to the following theorem, we can get the
answer of the question [37].

Theorem 3. If �ið�i�i;L�iL�iÞ is a convex function with regard to �i�i

when L�iL�i is given, for all 1 � i � N , there is a Nash equilib-
rium of the N players non-cooperative game G ¼ ðK;��Þ.
Hence, we can first prove that �ið�i�i;L�iL�iÞ has the property

of Theorem 3. According to Theorem 4, we can use the non-
cooperative game theory to solve P2.

Theorem 4. The N players non-cooperative game G ¼ ðK;��Þ
has a Nash equilibrium.

Proof. According to Equations (1), (2), (3), and (4) and (24),
we have

154 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

@�i
@�i;j

¼ bZ
aidifjð�2

i;j þ 2�i;j��i;j þ 2�i;jÞ
�ið�i;j þ ��i;j þ 1Þ2

þ V
ai

ri;j�i
þ V

aidi
�ifj

; (26Þ

where ��i;j ¼
PN

i¼1 �i;j � �i;j, and

@2�i
@�2

i;j

¼ 2bZ
aidifjð��i;j þ 1Þ2

�ið�i;j þ ��i;j þ 1Þ3 : (27)

Furthermore, it is easy to know that

@2�i
@�2

i;j

	 0; (28)

and

@2�i
@�i;j@�i;j0

¼ 0; (29)

for all 1 � j; j0 �M, where j0 6¼ j.
Thus, the Hessian matrix

H
�
�ið�i�i;L�iL�iÞ

�¼ � @2�i
@�i;j@�i;j0

	
M�M

(30)

is positive semidefinite on the interior set of K. Thus,
�ið�i�i;L�iL�iÞ is a convex function [43]. Based on Theorem 3,
we have the conclusion. tu

5.2 The Best Resource Allocation Algorithm for UEi

For non-cooperative game, the MSP allocates resource for
one UE under the condition that the strategies of other UEs
are given. Meanwhile, since �ið�i�i;L�iL�iÞ is a convex function,
the best resource allocation for a UE can be obtained
through the convex optimization method, i.e., the Lagrange
multiplier method. The Lagrange function of P3 is

Lið�i�i; si;mimi;viviÞ ¼ �ið�i;L�i�i;L�iÞ þ sigð�i�iÞ
þ mimihð�i�iÞhð�i�iÞ þ vivisð�i�iÞsð�i�iÞ; (31Þ

where gð�i�iÞ ¼ �i;1 þ �i;2þ; . . . ;þ�i;M � �i, hð�i�iÞhð�i�iÞ ¼ ð�i;1 � �i;
. . . ; �i;M � �iÞ, sð�i�iÞsð�i�iÞ ¼ ð��i;1; . . . ;��i;MÞ, mimi ¼ ðmi;1; . . . ;
mi;MÞT , vivi ¼ ðvi;1; . . . ;vi;MÞT , and si, mi;j 	 0;vi;j 	 0 for 1 �
i � N; 1 � j �M are the Lagrange multipliers.

Therefore, we can use the Karush-Kuhn-Tucker (KKT)
conditions to determine the optimal resource allocation
strategy of UEi, i.e., the optimal solution of P3. The KKT
conditions of P3 are

@Lið��i��i ; s�i ;m�im�i ;v�iv�i Þ=@��i;j ¼ 0; (32)

s�i gð��i��i Þ ¼ 0; (33)

m�im
�
i hð��i��i Þhð��i��i Þ ¼ 0; (34)

v�iv
�
i sð��i��i Þsð��i��i Þ ¼ 0: (35)

The optimal resource allocation strategy of MECj for UEi

can be obtained from

@Li

@�i;j
¼ @�i

@�i;j
þ si þ mi;j � vi;j ¼ 0; (36)

where ��i;j can be calculated by using the following theorem.

Theorem 5. ��i;j ¼
�� ni;j þ

ffi
n2i;j � 4ui;jpi;j

q �
=2ui;j, where

ni;j ¼ 2bZaidiri;j��i;jf2
jþ 2Vaið��i;j þ 1Þðfj þ diri;jÞ þ 2�iri;

jfjð��i;j þ 1Þðsi þ mi � vi;jÞ, ui;j ¼ bZaidiri;jf
2
j þ Vaiðfj þ

diri;jÞ þ �ifjri;jðsi þ mi � vi;jÞ, pi;j ¼ bZaidiri;jf
2
j þ Vaiðfjþ

diri;jÞð��i;j þ 1Þ2 þ �iri;jfjðsi þ mi � vi;jÞð��i;j þ 1Þ2 are the
coefficient of first-order term, the coefficient of second-order
term, and constant term of Equation (36), respectively.

Proof. Plugging Equation (26) into Equation (36) and rear-
ranging the terms, we have

bZaidiri;jf
2
j ð�2

i;j þ 2�i;j��i;j þ 1Þ
þ Vaiðfj þ diri;jÞð�i;j þ ��i;j þ 1Þ2

þ �iri;jfjðsi þ mi � vi;jÞð�i;j þ ��i;j þ 1Þ2
¼ 0: (37Þ

Equation (37) is a quadratic equation w.r.t. �i;j when
other parameters are given. Rearranging the terms of
equation, we easily obtain the coefficient of first-order
term ni;j, the coefficient of second-order term ui;j, and
constant term pi;j. Based on Vieta theorem [44] and �i;j 	
0, we have ��i;j ¼

�� ni;j þ
ffi
n2i;j � 4ui;jpi;j

q �
=2ui;j. tu

As shown in Theorem 5, ��i;j is related to the Lagrange
multipliers. Next, based on the Slater’s constraint [43], P3
can be solved by using the dual problem of P3. The dual
problem of P3 can be formulated as

P4 : max
si;mimi;vivi

min
�i�i

Lið�i�i; si;mimi;viviÞ
s:t: C4 : mimi;vivi � 0:

Then the sub-gradient method can be used to update the
Lagrange multipliers while finding ��i;j. The update func-
tions of the Lagrange multipliers are

siðz þ 1Þ ¼ siðzÞ þ gi
@Li

@si
; (39)

mi;jðz þ 1Þ ¼ max mi;jðzÞ þ bi

@Li

@mi;j

; 0

� �
; (40)

vi;jðz þ 1Þ ¼ max vi;jðzÞ þ ki
@Li

@vi;j
; 0

� �
; (41)

where gi;bi; ki 2 ð0; 1Þ are the size of update step. Hence, we
can update the Lagrange multipliers iteratively until a feasi-
ble solution of P3 is obtained.

DING ETAL.: BUDGET-CONSTRAINED SERVICE ALLOCATION OPTIMIZATION FOR MOBILE EDGE COMPUTING 155

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. FL: Search Algorithm for Finding �i�i

Input: si; Ai;mi;j; ei;j;m; fj, C, and mi;j;vi;j, for all 1 � j �M, C,
ZðtÞ, and b.
Output: ��i�

�
i .

1: Initialize �i�i ð0; . . . ; 0ÞM ;
2: while jPN

i¼1 �i;j � �ij > c do
3: Calculate gð�i�iÞ;
4: Update Lagrange multipler, si si þ gigð�i�iÞ;
5: for j 1 toM do
6: while True do
7: Calculate hð�i;jÞ; sð�i;jÞ;
8: Update Lagrange multipler, mi;j max

�
mi;j þ bi

hð�i;jÞ; 0
�
;

9: Update Lagrange multipler, vi;j max
�
vi;j þ kis

ð�i;jÞ; 0
�
;

10: Calculate �i;j based on Theorem 5;
11: if 0 � �i;j � �i then
12: Update �i;j;
13: break;
14: end if
15: end while
16: end for
17: Update strategy of UEi, �i�i ð�i;1; . . . ; �i;MÞ;
18: end while
19: Obtain the optimal strategy of UEi, �

�
i�
�
i �i�i;

20: return ��i�
�
i .

Algorithm 2 shows the FL algorithm of obtaining ��i�
�
i . We

initialize a set of the Lagrange multipliers and get a solution
of P3, and then check whether the solution satisfies the KKT
conditions of P3. If the solution does not satisfy the KKT
conditions, the Lagrange multipliers are updated according
to the Equations (39), (40), and (41) until a feasible solution
is obtained. Then we can easily obtain �i;j according to The-
orem 5, for all 1 � j �M. The time complexity of the sub-
gradient method is Oð1=c2Þ, where c controls P3’s solution
precise [45]. Since Algorithm 2 needs to perform sub-gradi-
ent method M times to find �i�i, we know that the time com-
plexity of the algorithm is OðM=c2Þ.

Algorithm 3.NE:NashEquilibriumCalculatingAlgorithm

Input: si; Ai;mi;j; ei;j;m; fj, C, F, mi;j;vi;j, and b, for all 1 � i �
N , 1 � j �M .
Output: L�L�.
1: Initialize LL ð�1�1; . . . ; �N�NÞ;
2: while kL0L0 � LLk2 > � and f � F do
3: for UEi 2 N do
4: Obtain �i�i through Algorithm 2;
5: Update strategy of UEi, �

0
i�
0
i �i�i;

6: end for
7: Update strategy of UEs, L0L0 ð�01�01; . . . ; �0N�0NÞ;
8: Increase the number of game rounds, f fþ 1;
9: end while
10: Obtain the Nash equilibrium of game, L�L� L0L0;
11: return L�L�.

5.3 The Algorithm for Nash Equilibrium of UEs

In this section, the resource allocation algorithm is devel-
oped to find the Nash equilibrium of N UEs. As shown in
Algorithm 3, for N UEs, we develop an iterative Algorithm

NE and determine the strategy for each UE. In each round,
MSP first allocates its resource to each UE by using Algo-
rithm 2. Then, MSP adjusts the resource allocation strategies
after the game between the UEs. The game between UEs
refers to that, given the strategies of other N � 1 UEs except
for UEi, the MSP attempts to adjust the strategy of UEi to
reduce the service latency of the UE. The game terminates
when the consequences of two successive rounds close
enough or the number of game rounds exceeds the upper
limit game round. Therefore, we regard the final strategy
L�L� ¼ ð��1��1; . . . ; ��N��NÞ as a Nash equilibrium of the game. In the

algorithm, if kL0L0 � LLk2 ¼
ffiPN

i¼1
PM

j¼1 j�0i;j � �i;jj2
q

� �, we

can get the Nash equilibrium of N UEs, which means that
all UEs will accept the fact that their strategies can no longer
be adjusted to benefit themselves. We introduce F as the
maximum number of game rounds to control the complex-
ity of Algorithm 3. Meanwhile, F can be determined by the
termination condition � of the algorithm. Since the number
of times that Algorithm 3 calls Algorithm 2 is FN at most, it
is easy to know that the time complexity of the algorithm is
OðFNM=c2Þ.

6 EXPERIMENTS AND ANALYSIS

6.1 Experimental Setting

Due to the lack of real data of the system model formulated
in this paper, we simulate an environment in which the
parameters used in the experiments are real-world values
obtained from some other different work [36]. Meanwhile,
we additionally introduce a random quantity in the parame-
ters to reflect the heterogeneous characteristics of MEC. We
simulate 1000 time slots for our scenario, and generate N ¼
10 UEs and M ¼ 50 MEC servers. The specific parameters
settings of the UEs and the MEC servers are as follows. fj ¼
ra � 1010 cycles/s [36], �iðtÞ ¼ 3þ 0:1ra, diðtÞ ¼ 1000þ 10ra
cycles/bit [46], aiðtÞ ¼ 10475760þ 100ra bits, fiðtÞ ¼
2:5� 108 þ 10000ra cycles/s [36], mi;jðtÞ ¼ 3:1þ 0:1ra s [47],
and ei;j;mðtÞ ¼ 1þ 0:1ra J [15], where ra is a random integer
variable taken from [1,5]. UEs are assumed to be moving on
a 100� 100 square meters two-dimensional plane, i.e.,
�100 � xiðtÞ; yiðtÞ � 100. The initial locations of UEs are
(0,0). UEi moves along the main diagonal of the plane and
its speed is a random integer variable hi 2 ½3; 5� m/s. All
MEC servers are placed on the diagonal of two-dimensional
plane, and their intervals are 2

ffiffiffi
2
p

m.
The maximum transmission rate of UEi at t is denoted by

ri;maxðtÞ ¼ 100þ 0:1ra Mbps [47]. Meanwhile, the maximum
service distance of an MEC server is 10 m. In other words,
when the distance

�
di;jðtÞ

�
between UEi andMECj is greater

than 10 m, the MSP will not allocate this server to the UE.
Moreover, there is a decay factor ai;jðtÞ ¼ minf10=di;jðtÞ; 1g
of transmission rate related to di;jðtÞ. Thus, the actual trans-
mission rate from UEi to MECj is ri;jðtÞ ¼ ai;jðtÞri;maxðtÞ. To
minimize the energy consumption, MSP will also not allo-
cate MECj to UEi when ai;jðtÞ < a, where a 2 ½0; 1� is a fac-
tor related to a server’s service area set by the MSP. By
setting a, the MSP can improve QoS or reduce its cost. In
addition, we set a ¼ 0:5, C ¼ 20000 J, V ¼ 2000, c ¼ 0:1, � ¼
1, and F ¼ 200.

156 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

6.2 Experiments and Results

6.2.1 The Convergence of Algorithms

Fig. 3 shows that the number of loops required by Algo-
rithm FL to find ��i�

�
i . In the figure, NE1500 represents Algo-

rithm NE with V ¼ 1500, and other similar symbols (i.e.,
NE2000, NE2500, and NE3000) represent similar meaning.
The figure shows that the number of loops increases
roughly linearly with c. Since c controls the precise of
P3’s solution, as the precise improves, the number of
search loops increases. Meanwhile, as shown in Fig. 4,
since � controls the termination precise of Algorithm NE,
thus increasing the number of game rounds as � decreases.
Moreover, we can see that the number of iterations of
Algorithms FL and NE both increase as V becomes larger.
The reason is the algorithms with bigger V pay more atten-
tion to improving QoS, thus increasing the number of
loops to find ��i�

�
i , and the number of game rounds to find

the Nash equilibrium.

6.2.2 The Effectiveness of Algorithm NE

The following five algorithms are regarded as the baselines
to evaluate the effectiveness of Algorithm NE: (1) ES: Each
MEC server receives an equal amount of UEi’s offloaded
tasks, i.e., the tasks of the UE are evenly distributed to the
available MEC servers; (2) RS: Each UE is served by a ran-
dom MEC server; (3) NS: Each UE is served by an MEC
server closest to itself; (4) PS: UEs are served by the most
powerful server of MSP; (5) NoG: The service allocation
strategy of a UE is made by using Algorithm FL, which
means that there is no game between UEs.

In fact, although distributed computing is not necessarily
faster than centralized computing, it can reduce the cost of
servers [48]. As shown in Fig. 5, on the premise that MSP
pays a high cost, Algorithms RS, NS, and PS greatly reduce
the average latency of UEs. However, the energy consump-
tion of RS, NS, and PS has exceeded the budget constraint
of MSP (i.e., C ¼ 20000). Moreover, V indicates the impor-
tance of how much UEs emphasize QoS. As UEs value QoS
(i.e., latency) more and more, the MSP will allocate more
resources to the UEs. Comparing NE1500, NE2000, NE2500
and NE3000, it can be seen that as V increases, the average
latency of UEs decreases while increasing the energy con-
sumption of MSP.

Fig. 6 shows a game between UEs. As shown in the
figure, when V ¼ 2000 and V ¼ 2500, Algorithm 3 focuses
more on reducing the cost of MSP. It can be seen that after
each round of the game, the average latency of UEs gradu-
ally increases, and the cost of MSP gradually decreases.
When V ¼ 3500 and V ¼ 5000, Algorithm 3 focuses more on
optimizing the average latency of UEs. In the second round
of the game, reducing the average latency of UEs increases
the cost of MSP (even exceeding the budget constraint of
MSP). However, the algorithm quickly corrects this trend,
and improves QoS while controlling the cost of MSP. It is
not difficult to see that the optimization of QoS has
increased the cost of MSP.

According to the above discussions, Algorithm NE can
improve the long-term QoS while ensuring that the MSP
budget constraint is met. In addition, MSP can determine
the priority of different requests based on V to provide dif-
ferentiated services. Compared with other methods, the
algorithm proposed in this paper is more flexible and has
better performance.

Fig. 4. The impact of � on the average number of game rounds.

Fig. 5. The comparison between the algorithms.

Fig. 6. The game between UEs.

Fig. 3. The impact of c on the average number of loops required to find
��i�
�
i .

DING ETAL.: BUDGET-CONSTRAINED SERVICE ALLOCATION OPTIMIZATION FOR MOBILE EDGE COMPUTING 157

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

6.2.3 The Stability of Queue ZðtÞ
As shown in Fig. 7, when the MSP’s budget can meet the
UE’s request, the backlog of its queue is always one.
Although the backlog of ZðtÞ is not always one when the
energy consumption for MSP responding to the requests of
UEs exceeds its budget C. However, we know that the back-
log of ZðtÞ is always bounded by OðV Þ according to Theo-
rem 2. Moreover, the curves in the figure shows that the
average backlog gradually becomes stable and follows
limT!1 EfZðtÞ=Tg ¼ 0 under different C. That indicates
that Algorithm NE will satisfy the cost budget of MSP in the
long-term. It can also be seen form Fig. 8 that the average
energy consumption of MSP with different C can always
satisfy its budget in the long-term. Moreover, we see that
the MSP can increase its budget to minimize the average
latency of UEs while improving QoS.

6.2.4 The Impact of N

As shown in Fig. 9, as N increases, the average latency of
UEs and the cost of MSP increases. The reason lies in that
the service resources of the MSP are finite, thus increasing
the average latency and cost when the number of UEs
increasing. Fig. 10 shows the impact of the number of UEs
on the average latency for the UEs to determine the strate-
gies, i.e., the overhead of the proposed algorithms. Since the
algorithms determine the strategies in a distributed manner,
an increase in the number of UEs and MEC servers does not
necessarily increase the average latency to determine the
strategies. Thus, we can conclude that the proposed algo-
rithms are still effective as the scale of data increases. More-
over, as shown in the figure, it can be seen that the average

latency in determining the strategies is less than five sec-
onds. Experimental results show that the algorithms pro-
posed in this paper are not suitable for millisecond services.
However, not all application scenario requires the MSP to
determine the service allocation strategies within millisec-
onds, such as edge caching. In edge caching, the MSP
updates the cache policy every certain period of time, such
as several minutes or tens of minutes [10]. Thus, the devel-
oped algorithms can be applied to decide cache policy in
MEC, as well as the scenario where the delay is not particu-
larly strictly required in the real-world, such as the second-
level service and minute-level service. Moreover, in this
paper, UEi will not initiate a new request when its former
request is not completed. As shown in Figs. 9 and 10, the
latency that MSP responds to UE’s request is typically tens
of seconds, and is longer than the delay in determining a
strategy. Thus, the average latency for UEs to determine a
strategy is acceptable.

6.2.5 The Impact of a

A smaller value of a means that more MEC servers are
involved in responding to the UEs’ requests, and the ser-
vice range of the servers is larger. In the real-world,
MSP can trade-off its cost and QoS by controlling a to
determine the strategies that are acceptable to both par-
ties. As shown in Fig. 11, compared with other cases,
when a ¼ 0:6, the average latency of UEs is less. The rea-
son is that reducing a causes some MEC servers far
away from UEs to execute the UEs’ requests, thereby
increasing the transmission latency and reducing QoS. It

Fig. 8. The impact of budget C on the average latency of UEs and the
cost of MSP.

Fig. 9. The impact of UE amount on the average latency of UEs and the
cost of MSP.

Fig. 10. Average latency for UEs to determine strategies under the differ-
ent scenario (i.e., different number of UEs and MEC servers).

Fig. 7. The backlog of ZðtÞ with different C.

158 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

can also be known that the cost of MSP increases with a

increases. As shown in Fig. 12, this is because the
smaller service range leads to frequent service migra-
tions, which increases the cost of MSP for deploying ser-
vice instances to follow the movement of UEs. Based on
the computing resource allocation model, i.e., Equa-
tion (3), reducing the service range of a server is equiva-
lent to increasing the number of tasks that the server
needs to handle, thus also resulting in an increase in
MSP cost.

7 CONCLUSION AND FUTURE WORK

To study the budget-constrained service allocation opti-
mization problem for MSP, in this work, we formulate
the problem as a long-term QoS improvement problem
while satisfying the MSP’s budget. We first transform the
long-term QoS improvement problem into a set of real-
time sub-problems and develop a Lyapunov optimization
method based algorithm. To improve the performance of
service allocation for UEs in a large scale MEC environ-
ment, we further formulate the sub-problems as a non-
cooperative game, and develop the algorithms to find the
Nash equilibrium and determine the best service alloca-
tion strategies for each UE. Experimental results show
that the algorithms can take into account QoS and budget
of MSP at the same time, and perform better compared to
five other common schemes.

In the paper, we assume that the network condition of
UEs are constant. However, the network environment of
MEC is very complicated in reality. Moreover, as intelligent
applications enter the millisecond era, the demand for the

millisecond service allocation mechanisms is becoming
more and more urgent. The developed algorithms cannot
effectively cope with the situation where UEs upload tasks
multiple times in a very short period of time (such as at the
time scale of millisecond). Thus, in the future, we will inves-
tigate the millisecond service allocation mechanism in a
more complex network environment to develop the service
allocation algorithms that are more suitable for demands of
the real-world.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and
anonymous reviewers for their comments which are very
important to improve the quality of the manuscript.

REFERENCES

[1] T. Bahreini, H. Badri, and D. Grosu, “Mechanisms for resource
allocation and pricing in mobile edge computing systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 667–682,
Mar. 2022.

[2] J. Hu, K. Li, C. Liu, J. Chen, and K. Li, “Coalition formation for
deadline-constrained resource procurement in cloud computing,”
J. Parallel Distrib. Comput., vol. 149, pp. 1–12, 2021.

[3] Y. Hung, C. Wang, and R. Hwang, “Optimizing social welfare of
live video streaming services in mobile edge computing,” IEEE
Trans. Mob. Comput., vol. 19, no. 4, pp. 922–934, Apr. 2020.

[4] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min,
“Energy-efficient offloading for dnn-based smart IoT systems in
cloud-edge environments,” IEEE Trans. Parallel Distrib. Syst., vol.
33, no. 3, pp. 683–697, Mar. 2022.

[5] A. Aissioui, A. Ksentini, A. M. Gu�eroui, and T. Taleb, “On
enabling 5G automotive systems using follow me edge-cloud con-
cept,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5302–5316, Jun.
2018.

[6] S. Chen, L. Jiao, F. Liu, and L. Wang, “EdgeDR: An online mecha-
nism design for demand response in edge clouds,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 2, pp. 343–358, Feb. 2022.

[7] Y. Xu, J. Li, Z. Lu, J. Wu, P. C. K. Hung, and A. Alelaiwi,
“ARVMEC: Adaptive recommendation of virtual machines for
IoT in edge-cloud environment,” J. Parallel Distrib. Comput., vol.
141, pp. 23–34, 2020.

[8] Orcal, “Virtualbox,” 2010. Accessed: Dec. 2021. [Online]. Avail-
able: https://www.virtualbox.org/

[9] N. Zhao et al., “Large-scale analysis of docker images and perfor-
mance implications for container storage systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 4, pp. 918–930, Apr. 2021.

[10] Y. Guan, X. Zhang, and Z. Guo, “Prefcache: Edge cache admission
with user preference learning for video content distribution,”
IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 4, pp. 1618–
1631, Apr. 2021.

[11] L. Chen and J. Xu, “Budget-constrained edge service provisioning
with demand estimation via bandit learning,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2364–2376, Oct. 2019.

[12] J. Hu, K. Li, C. Liu, and K. Li, “Game-based task offloading of
multiple mobile devices with QoS in mobile edge computing sys-
tems of limited computation capacity,” ACM Trans. Embedded
Comput. Syst., vol. 19, no. 4, pp. 29:1–29:21, 2020.

[13] W. Liu and Y. Shoji, “Edge-assisted vehicle mobility prediction to
support V2X communications,” IEEE Trans. Veh. Technol., vol. 68,
no. 10, pp. 10227–10238, Oct. 2019.

[14] Z. Liao, Y. Ma, J. Huang, J. Wang, and J. Wang, “HOTSPOT: A
UAV-assisted dynamic mobility-aware offloading for mobile-
edge computing in 3-D space,” IEEE Internet Things J., vol. 8, no.
13, pp. 10 940–10 952, Jul. 2021.

[15] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobil-
ity-aware dynamic service placement for mobile edge
computing,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–
2345, Oct. 2018.

[16] J. Li, W. Liang, M. Huang, and X. Jia, “Reliability-aware network
service provisioning in mobile edge-cloud networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 7, pp. 1545–1558, Jul. 2020.

Fig. 12. The impact of a on the average number of service migrations.

Fig. 11. The impact of a on the average latency of UEs and the cost of
MSP.

DING ETAL.: BUDGET-CONSTRAINED SERVICE ALLOCATION OPTIMIZATION FOR MOBILE EDGE COMPUTING 159

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

https://www.virtualbox.org/

[17] J. Guo, C. Li, Y. Chen, and Y. Luo, “On-demand resource provision
based on load estimation and service expenditure in edge cloud
environment,” J. Netw. Comput. Appl., vol. 151, pp. 1–14, 2020.

[18] A. Kiani and N. Ansari, “Toward hierarchical mobile edge com-
puting: An auction-based profit maximization approach,” IEEE
Internet Things J., vol. 4, no. 6, pp. 2082–2091, Dec. 2017.

[19] T. D. Nguyen, E. N. Huh, and M. Jo, “Decentralized and revised
content-centric networking-based service deployment and discov-
ery platform in mobile edge computing for IoT devices,” IEEE
Internet Things J., vol. 6, no. 3, pp. 4162–4175, Jun. 2019.

[20] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service place-
ment for edge computing in dense small cell networks,” IEEE
Trans. Mobile Comput., vol. 20, no. 2, pp. 377–390, Feb. 2021.

[21] Z. Xiang, S. Deng, J. Taheri, and A. Y. Zomaya, “Dynamical ser-
vice deployment and replacement in resource-constrained edges,”
Mobile Netw. Appl., vol. 25, no. 2, pp. 674–689, 2020.

[22] S. Deng et al., “Optimal application deployment in resource con-
strained distributed edges,” IEEE Trans. Mobile Comput., vol. 20,
no. 5, pp. 1907–1923, May 2021.

[23] S. Deng, C. Zhang, C. Li, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Burst load evacuation based on dispatching and scheduling in
distributed edge networks,” IEEE Trans. Parallel Distrib. Syst., vol.
32, no. 8, pp. 1918–1932, Aug. 2021.

[24] S. Deng, Y. Chen, G. Chen, S. Ji, J. Yin, and A. Zomaya, “Incentive-
driven proactive application deployment and pricing on distrib-
uted edges,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2021.3096860.

[25] Z. Rejiba, X. Masip-Bruin , and E. Mar�ın-Tordera, “A survey on
mobility-induced service migration in the fog, edge, and related
computing paradigms,” ACM Comput. Surv., vol. 52, no. 5,
pp. 1–33, Sep. 2019.

[26] G. Liu, Z. Xiao, G. Tan, K. Li, and A. T. Chronopoulos, “Game the-
ory-based optimization of distributed idle computing resources in
cloud environments,”Theor. Comput. Sci., vol. 806, pp. 468–488, 2020.

[27] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. S. Chan, and K. K.
Leung, “Dynamic service migration and workload scheduling in
edge-clouds,” Perform. Eval., vol. 91, pp. 205–228, 2015.

[28] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao, and S. Wang, “MDP-
based task offloading for vehicular edge computing under certain
and uncertain transition probabilities,” IEEE Trans. Veh. Technol.,
vol. 69, no. 3, pp. 3296–3309, Mar. 2020.

[29] C. Wu, L. Zhang, Q. Li, Z. Fu, W. Zhu, and Y. Zhang, “Enabling
flexible resource allocation in mobile deep learning systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 2, pp. 346–360,
Feb. 2019.

[30] Z. Zhou, X. Chen, W. Wu, D. Wu, and J. Zhang, “Predictive online
server provisioning for cost-efficient IoT data streaming across
collaborative edges,” in Proc. 20th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., 2019, pp. 321–330.

[31] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with pre-
dicted future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no.
4, pp. 1002–1016, Apr. 2017.

[32] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio-temporal edge service
placement: A bandit learning approach,” IEEE Trans. Wireless
Commun., vol. 17, no. 12, pp. 8388–8401, Dec. 2018.

[33] L. Chen and J. Xu, “Budget-constrained edge service provisioning
with demand estimation via bandit learning,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2364–2376, Oct. 2019.

[34] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[35] O. Mu~noz, A. Pascual-Iserte , and J. Vidal, “Optimization of radio
and computational resources for energy efficiency in latency-con-
strained application offloading,” IEEE Trans. Veh. Technol., vol. 64,
no. 10, pp. 4738–4755, Oct. 2015.

[36] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao,
“Heterogeneous edge offloading with incomplete information: A
minority game approach,” IEEE Trans. Parallel Distrib. Syst., vol.
31, no. 9, pp. 2139–2154, Sep. 2020.

[37] K. Li, “Computation offloading strategy optimizationwith multiple
heterogeneous servers in mobile edge computing,” IEEE Trans.
Sustain. Comput., to be published, doi: 10.1109/TSUSC.2019.2904680.

[38] X. Qiu, Y. Dai, Y. Xiang, and L. Xing, “Correlation modeling
and resource optimization for cloud service with fault recov-
ery,” IEEE Trans. Cloud Comput., vol. 7, no. 3, pp. 693–704,
Jul.–Sep. 2019.

[39] X. Cao, G. Tang, D. Guo, Y. Li, and W. Zhang, “Edge federation:
Towards an integrated service provisioning model,” IEEE/ACM
Trans. Netw., vol. 28, no. 3, pp. 1116–1129, Jun. 2020.

[40] W. Yuan and N. Klara, “Energy-efficient CPU scheduling for mul-
timedia applications,” ACM Trans. Comput. Syst., vol. 24, no. 3,
pp. 292–331, Aug. 2006.

[41] B. Zhai, D. T. Blaauw, D. Sylvester, and K. Flautner, “Theoretical
and practical limits of dynamic voltage scaling,” in Proc. 41th
Des. Autom. Conf., San Diego, CA, USA, S. Malik, L. Fix, and A. B.
Kahng, Eds. 2004, pp. 868–873.

[42] M. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. San Rafael, CA, USA: Morgan
and Claypool, 2010.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[44] G. Gr€atzer, Universal Algebra. Berlin, Germany: Springer, 2008.
[45] A. Nedic, “Subgradient methods for convex minimization,” Ph.D.

dissertation, Massachusetts Inst. Technol., Cambridge, MA, USA,
2002.

[46] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Processor-net-
work speed scaling for energy-delay tradeoff in smartphone
applications,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1647–
1660, Jun. 2016.

[47] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge serv-
ers via docker container migration,” in Proc. 2nd ACM/IEEE Symp.
Edge Comput., San Jose / Silicon Valley, CA, USA, J. Zhang, M.
Chiang, and B. M. Maggs, Eds. 2017, pp. 11:1–11:13.

[48] C. Liu, K. Li, and K. Li, “Minimal cost server configuration
for meeting time-varying resource demands in cloud centers,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 11, pp. 2503–2513,
Nov. 2018.

Yan Ding (Student Member, IEEE) is currently
working toward the doctorate degree with Hunan
University, Changsha, China. He has authored or
coauthored five research papers in international
conferences and journals, including IEEE Trans-
actions on Parallel and Distributed Systems,
IEEE Transactions on Industrial Informatics,
Journal of Parallel and Distributed Computing,
Computers & Security, and IEEE ISPA 2019. His
research interests include parallel computing, fog
computing, mobile edge computing, and artificial

intelligence. He was the recipient of the Outstanding Paper Award in
IEEE ISPA 2019. He is a student member of CCF.

Kenli Li (Senior Member, IEEE) received the
PhD degree in computer science from the
Huazhong University of Science and Technol-
ogy, China, in 2003. From 2004 to 2005, he
was a visiting scholar with the University of Illi-
nois at Urbana-Champaign. He is currently a
full professor of computer science and technol-
ogy with Hunan University, the dean of the
College of Information Sciences and Engineer-
ing of Hunan University, and the director of
National Supercomputing Center, Changsha.

He has authored or coauthored more than 160 research papers in
international conferences and journals, including IEEE Transactions
on Computers, IEEE Transactions on Parallel and Distributed Sys-
tems, Journal of Parallel and Distributed Computing, ICPP, and
ICDCS. His research interests include parallel computing, high-per-
formance computing, and grid and cloud computing. He is currently
on the editorial board of IEEE Transactions on Computers. He is an
outstanding member of CCF.

160 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2021.3096860
http://dx.doi.org/10.1109/TSUSC.2019.2904680

Chubo Liu (Member, IEEE) is currently an asso-
ciate professor of computer science and technol-
ogy with Hunan University. He has authored or
coauthored more than 20 papers in journals
and conferences, including IEEE Transactions on
Parallel and Distributed Systems, IEEE Transac-
tions on Cloud Computing, IEEE Transactions on
Mobile Computing, IEEE Transactions on Indus-
trial Informatics, ICPADS, HPCC, and NPC. His
research interests include game theory, approxi-
mation and randomized algorithms, and cloud

and edge computing. He was the recipient of the Best Paper Award in
IFIP NPC 2019, Outstanding Paper Award in IEEE ISPA 2019, and
the IEEE TCSC Early Career Researcher Award in 2019. He is a
member of CCF.

Zhuo Tang is currently a professor with the Col-
lege of Computer Science and Electronic Engi-
neering, Hunan University. He has authored or
coauthored almost 90 journal articles and book
chapters. His research interests include distrib-
uted computing system, cloud computing, and
parallel processing for Big Data, including distrib-
uted machine learning, security model, parallel
algorithms, and resources scheduling and man-
agement. He is a member of ACM and CCF.

Keqin Li (Fellow, IEEE) is currently a SUNY dis-
tinguished professor of computer science with
the State University of New York and a National
distinguished professor with Hunan University,
China. He has authored or coauthored more than
810 journal articles, book chapters, and refereed
conference papers He holds over 60 patents
announced or authorized by the Chinese National
Intellectual Property Administration. His research
interests include cloud computing, fog computing
and mobile edge computing, energy-efficient

computing and communication, embedded systems and cyber-physical
systems, heterogeneous computing systems, Big Data computing, high-
performance computing, CPU-GPU hybrid and cooperative computing,
computer architectures and systems, computer networking, machine
learning, and intelligent and soft computing. He is among the world’s top
ten most influential scientists in distributed computing based on a com-
posite indicator of Scopus citation database. He has chaired many
international conferences. He is currently an associate editor for ACM
Computing Surveys and CCF Transactions on High Performance Com-
puting. He was on the editorial boards of IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Computers, IEEE
Transactions on Cloud Computing, the IEEE Transactions on Services
Computing, and IEEE Transactions on Sustainable Computing. He was
the recipient of several best paper awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

DING ETAL.: BUDGET-CONSTRAINED SERVICE ALLOCATION OPTIMIZATION FOR MOBILE EDGE COMPUTING 161

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 22,2023 at 05:30:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

