
A Potential Game Theoretic Approach to
Computation Offloading Strategy Optimization in

End-Edge-Cloud Computing
Yan Ding , Student Member, IEEE, Kenli Li , Senior Member, IEEE,

Chubo Liu ,Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Integrating user ends (UEs), edge servers (ESs), and the cloud into end-edge-cloud computing (EECC) can enhance the

utilization of resources and improve quality of experience (QoE). However, the performance of EECC is significantly affected by its

architecture. In this article, we classify EECC into two computing architectures types according to the visibility and accessibility of the

cloud to UEs, i.e., hierarchical end-edge-cloud computing (Hi-EECC) and horizontal end-edge-cloud computing (Ho-EECC). In Hi-

EECC, UEs can offload their tasks only to ESs. When the resources of ESs are exhausted, the ESs request the cloud to provide

resources to UEs. In Ho-EECC, UEs can offload their tasks directly to ESs and the cloud. In this article, we construct a potential game

for the EECC environment, in which each UE selfishly minimizes its payoff, study the computation offloading strategy optimization

problems, and develop two potential game-based algorithms in Hi-EECC and Ho-EECC. Extensive experiments with real-world data

are conducted to demonstrate the performance of the proposed algorithms. Moreover, the scalability and applicability of the two

computing architectures are comprehensively analyzed. The conclusions of our work can provide useful suggestions for choosing

specific computing architectures under different application environments to improve the performance of EECC and QoE.

Index Terms—Computation offloading, end-edge-cloud computing (EECC), hierarchical EECC, horizontal EECC, potential game

Ç

1 INTRODUCTION

1.1 Motivation

THE vigorous development of Internet of Everything (IoE)
and artificial intelligence technologies has given rise to

an intelligence era for human society [1]. For example, Hik-
vision has developed surveillance cameras that no longer
only obtain videos and images as in the past, but have the
ability to recognize and track objects. Mobile phones (e.g.,
Huawei, Apple, and Xiaomi) have also evolved from tradi-
tional communication devices to important carriers running
various applications, such as electronic payment, home

management, virtual reality, and other intelligent applica-
tions. Intelligent applications require the support of power-
ful computing. However, the resources possessed by user
ends (UEs), such as mobile phones and Internet of Things
(IoT) devices cannot run intelligent applications efficiently.

Deploying computing resources near the network edge is
considered a promising solution to the above issue. Edge com-
puting (EC) cannot only provide low-latency services for UEs
but also guarantee the data security of UEs [2]. EC has been
widely studied in many directions, such as computation off-
loading [3], caching [4], resource allocation [5], [6], and privacy
protection [7]. However, the above work ignores an important
fact, that is, edge servers (ESs) do not have the same ability to
handle computation-intensive tasks as the cloud [8].

Although cloud computing (CC) has sufficient resources
to support the requirements of computation-intensive tasks
[9], it cannot solve the issue of long delay caused by data
transmission [10]. Due to the shorter transmission distance
and higher transmission rate between UEs and ESs, EC can
reduce data transmission delay and is suitable for providing
services for handling latency-sensitive tasks. Therefore,
cooperation between EC and CC can better meet various
user demands. Edge-cloud computing has been studied in
various work [11], [12], [13], [14]. However, when the net-
work is unstable or the resource competition between UEs
is tight, it is better for a UE to rely on its own ability to han-
dle some tasks. Therefore, UEs, ESs, and the cloud can be
integrated into end-edge-cloud computing (EECC), which
cannot only enhance the utilization of resources but also
improve quality of experience (QoE) while ensuring quality
of service (QoS).

� Yan Ding, Kenli Li, and Chubo Liu are with the College of Information Sci-
ence and Engineering, Hunan University, Changsha, Hunan 410082, China,
and also with the National Supercomputing Center in Changsha, Changsha,
Hunan 410082, China. E-mail: {ding, lkl, liuchubo}@hnu.edu.cn.

� Keqin Li is with the College of Information Science and Engineering,
Hunan University, and the National Supercomputing Center in Changsha,
Changsha, Hunan 410082, China, and also with the Department of Com-
puter Science, State University of New York, New Paltz, NY 12561 USA.
E-mail: lik@newpaltz.edu.

Manuscript received 6 Feb. 2021; revised 1 July 2021; accepted 10 Sept. 2021.
Date of publication 14 Sept. 2021; date of current version 28 Oct. 2021.
This work was partially supported by the National Outstanding Youth Science
Program of National Natural Science Foundation of China under Grant
61625202, the National Key Research and Development Program of China
under Grant 2018YFB1701403, the Programs of National Natural Science
Foundation of China under Grants 61876061, 62072165, U19A2058, and
61702170, and the Postgraduate Scientific Research Innovation Project of
Hunan Province under Grant CX20200435. This work was also sponsored by
the Open Research Projects of Zhejiang Lab under Grant 2020KE0AB01.
(Corresponding authors: Kenli Li and Keqin Li.)
Recommended for acceptance by R. M. Badia.
Digital Object Identifier no. 10.1109/TPDS.2021.3112604

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022 1503

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:ding@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:lik@newpaltz.edu

Although some work has verified the effectiveness of
EECC [15], [16], [17], its performance is significantly
affected by its architecture, which has not been studied.
Motivated by the above reality, we classify EECC into the
following two types of architectures according to the visibil-
ity and accessibility of the cloud to UEs:

� Hierarchical end-edge-cloud computing (Hi-EECC).
As shown in Fig. 1, Hi-EECC is a three-tier architec-
ture, and the cloud is invisible to UEs. In Hi-EECC,
UEs can offload their tasks only to ESs. When the
resources of ESs are exhausted or the QoS demands
of UEs cannot be satisfied by the ESs, the tasks are
uploaded to the cloud by the ESs. The service pro-
vided by the cloud is transparent for UEs.

� Horizontal end-edge-cloud computing (Ho-EECC).
As shown in Fig. 2, Ho-EECC is a two-tier archi-
tecture. Since the cloud resources are visible and
accessible to UEs, both the cloud and ESs are in
the second layer of Fig. 2, i.e., Edge-Cloud layer.
In Ho-EECC, the cloud does not need to rely on
ESs to provide services to UEs. UEs can request
ESs and the cloud directly according to their own
preferences.

In this paper, we investigate the computation offloading
strategy optimization problems in Hi-EECC and Ho-EECC,
and analyze the impact of the architectures on UEs and ESs.
We comprehensively study the scalability and applicability
of the two computing architectures in terms of the energy
consumption of UEs, time consumption of UEs, resource
utilization rate of ESs, application type, and user scale.

1.2 Our Contributions

To the best of our knowledge, this paper is the first work to
optimize computation offloading strategy for UEs, and
investigate the performance of EECC in different computing
architectures. The contributions are as follows.

� The computation offloading strategy optimization
problems in Hi-EECC and Ho-EECC are investi-
gated, and the impact of the two computing architec-
tures on UEs and ESs is analyzed in detail.

� Considering the selfishness of UEs, we construct a
potential game for the EECC environment, in which
each UE selfishly minimizes its payoff. We also

develop two potential game-based algorithms
according to the characteristics of computing archi-
tectures. The existence of Nash equilibrium, the con-
vergence of the algorithms, and the performance of
the algorithms are theoretically analyzed in detail.

� Extensive experiments with real-world data are con-
ducted to demonstrate the performance of the pro-
posed algorithms. The scalability and applicability
of two computing architectures are comprehensively
analyzed in detail. Three important conclusions are
presented for choosing specific computing architec-
tures in the different application scenario.

The remaining content is outlined as follows. In Section 2,
the related work is reviewed. System models are detailed in
Section 3. The EECC game is formulated in Section 4. The
potential game-based computation offloading algorithms
are described in Section 5. The convergence and perfor-
mance of the algorithms are theoretically demonstrated in
Section 6. We conduct extensive experiments using real-
word data to verify the proposed algorithms and theorems,
and to analyze the two computing architectures in Section 7.
Section 8 provides the conclusions of this paper and our
future work.

2 RELATED WORK

The computation offloading strategy optimization problem
in EC has consistently been a hot research topic in industry
and academia, and has been investigated extensively. Wu
et al. [18] studied the problem in a multi-channel wireless
interference environment, and proposed a distributed algo-
rithm to minimize the total delay of all UEs. You et al. [19]
optimized the offloading strategy by minimizing the
weighted sum of energy consumption of UEs under the con-
straint of computation delay, and they considered the time-
division multi-access and orthogonal frequency-division
multi-access communication modes. Chen et al. [20]
improved the long-term performance of EC by using the
Lyapunov optimization technique, and proposed an online
algorithm without requiring future information about user
demands. Hu et al. [21] proposed a greedy-based pruning
algorithm to select UEs that should offload their tasks to
ESs and developed a non-cooperative game-based iteration
algorithm to determine the final strategy.

However, the computing capacity of EC is limited rela-
tive to the cloud. It is necessary to integrate EC and CC into
a collaborative computing architecture, thus improving the
performance of the architecture and introducing higher lev-
els of flexibility for various demands of UEs. Some work

Fig. 1. Illustration of Hi-EECC.

Fig. 2. Illustration of Ho-EECC.

1504 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

has studied the computation offloading optimization prob-
lem in the edge-cloud computing architecture. For example,
Ren et al. [11] investigated the computation offloading opti-
mization problem in the hierarchical edge-cloud computing
architecture and developed a convex-based algorithm to
decide the task slipping strategy. Shah-Mansouri et al. [12]
developed a potential game-based algorithm to optimize
the strategy in the horizontal edge-cloud computing archi-
tecture. Du et al. [13] considered the communication cost
between co-resident and non-co-resident tasks, and
designed an algorithm to obtain a suboptimal strategy. Fan-
tacci et al. [14] formulated the problem as a queueing system
model and determined the strategy by maximizing the rate
of UEs whose QoS can be satisfied.

It is also necessary for UEs to perform some computa-
tions locally, which copes with wireless network problems,
such as network disconnection and instability. Moreover,
UEs can process real-time tasks (such as emergency stop
and failure recovery) that are very sensitive to delay [22].
Very little work has studied the computation offloading
strategy optimization problem in EECC. For example, Hong
et al. [22] studied the multi-hop computation offloading
strategy optimization problem. Peng et al. [23] optimized
the offloading strategy based on the strength Pareto evolu-
tionary algorithm. Sun et al. [24] developed a hierarchical
heuristic approach to make offloading decisions. Wang et al.
[15] investigated the application of EECC to an underwater
acoustic sensor network.

The effectiveness of EECC in improving the overall per-
formance of the computing architecture has been widely
demonstrated [15], [16], [17]. However, the performance of
different EECC architectures has not been studied. Specifi-
cally, there is no work that investigates the computation
offloading optimization problem under the different com-
puting architectures, and summarizes how to choose a spe-
cific architecture of EECC for the different application
scenario. To fill this research gap, this paper develops
potential game-based algorithms for UE optimizing offload-
ing strategies, provides a performance analysis of the two
types of EECCs under the different application scenario,
and analyzes the impact of various factors on the cost of
UEs and the resource utilization of ESs. The main observa-
tions concluded from the experiments can provide some
useful suggestions for improving the QoE of UEs with vari-
ous requirements. Section 7 explains these interesting obser-
vations in detail.

3 MODELS

3.1 System Model

Fig. 3 depicts the scenario studied in this paper. Table 1 lists
the parameters and their definitions in this paper. We
assume that there is a group of UEsN that can be served by a
group of ESs M. We use UEn (n 2 ½1; jN j�) and ESm
(m 2 ½1; jMj�) to represent the nth UE and mth ES, respec-
tively. Additionally, there is a cloud that can provide com-
puting resources to UEs. However, the visibility and
accessibility of the cloud to the UE is different between Hi-
EECC and Ho-EECC. In this paper, the demand of UEn not
only reduces its cost but also requests the service delay to be
less than the deadline determined by the UE. Because the

resources of ESs are limited, the demands of UEs may not be
satisfiedwhen the requirements exceed the resource capacity
of ESs. As shown in Fig. 1, in Hi-EECC, UEs can offload their
tasks only to ESs to reduce their cost. A task of UEn is off-
loaded to ESm when the cost of UEn being served by the ES is
less than the local execution cost. However, if UEn’s deadline
cannot be guaranteed, the task will be further uploaded to
the cloud by ESm. In other words, the service provided by
the cloud inHi-EECC is transparent for UEs.

As shown in Fig. 2, in Ho-EECC, UEs can offload their
tasks to ESs or the cloud according to their requirements. In
addition, offloading decisions made by a UE should not
only reduce its cost but also ensure that the service delay is
less than its deadline.

By using high-speed wireless communication technology,
continuous service can be provided for UEs with mobility.
However, the distance between communication entities has
become the main factor that affects the data transmission
rate. To reflect this reality, we assume that there is a set of ser-
vice areas I and use i 2 ½1; jIj� to represent the ith service
area. Moreover, if UEn and ESm are in the same service area,
the ES can respond to the request of UEn. As shown in Fig. 3,
there are six service areas in the studied scenario. Since UE1,
UE2, and UE3 are in the 1st service area, they can initiate
requests only to ES1 in Hi-EECC. However, UEs can initiate
requests to the cloud inHo-EECC.

In EECC, the heterogeneous characteristics of UEs and
ESs have always been challenges for optimizing computa-
tion offloading strategies. In this paper, UEn is specified by
fn, gn, an, sn, and s0n, where fn; gn; an; sn, and s0n are the
computing capability of UEn (i.e., CPU frequency, which is
quantified by the number of cycles per second), the resource
allocation weight parameter of UEn, and a task of UEn, the
energy consumption (Joule, J) per second for UEn process-
ing an, and the energy consumption per second for UEn

uploading an, respectively. Since 1 Watt = 1 J/s, sn; s
0
n are

CPU execution and data transmission power of UEn. The
resources of an ES are allocated proportionally to UEs. We
use gn > 0 to denote the proportion of resources that UEn

can obtain from ESm among all UEs that send a request to
the ES, which can be determined by the payment level of

Fig. 3. Illustration of the scenario studied in this paper.

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1505

TABLE 1
Summary of Notations and Definitions

Notations Definition

System Model

UEn the nth UE, 1 � n � jN j
ESm themth ES, 1 � m � jMj
i the serial number of service area, 1 � i � jIj
fn the computing capability of UEn, which is quantified by cycles/s
gn the resource allocation weight parameter of UEn

an , ðdn;vn; zn; dnÞ, a task of UEn

sn the energy consumption for UEn processing an, which is measured by J/s
s0n the energy consumption for UEn uploading an, which is measured by J/s
dn the data size of an, which is measured by the number of bits
vn the number of CPU cycles needed to complete an
zn the location of UEn when an is executed
dn the QoS requirement of an
~fm the computing capability of ESm, which is quantified by cycles/s
~rm the data transmission rate of ESm, which is measured by bits/s
~zm the location of ESm
f̂ the computing capability of the cloud, which is quantified by cycles/s
SNi , fUEnjzn ¼ ig, the set of UEs in the ith service area
SMi , fESmj~zm ¼ ig, the set of ESs in the ith service area
�n an indicator variable indicating whether to execute an locally
~�n;m an indicator variable indicating whether to upload an to ESm
�̂n an indicator variable indicating whether to upload an to the cloud

Cost Model

tn the computation delay of an executed locally
en ¼ sntn, the energy consumption of an executed locally
fn;m the computing resource of ESm allocated to UEn
~tn;m the computation delay of an executed by ESm
t̂n the computation delay of an executed by the cloud
rn;m the data transmission rate of ESm allocated to UEn
~t0n;m the communication delay for UEn uploading an to ESm
~en;m ¼ s0n~t

0
n;m, the energy consumption for UEn uploading an to ESm

t̂0n;hi the communication delay for ESm uploading an to the cloud in Hi-EECC
t̂0n;ho the communication delay for UEn uploading an to the cloud in Ho-EECC
ên ¼ s0nt̂

0
n;ho, the energy consumption for UEn uploading an to the cloud in Ho-EECC

Tn;hi the delay of UEn in Hi-EECC
En;hi the energy consumption of UEn in Hi-EECC
Tn;ho the delay of UEn in Ho-EECC
En;ho the energy consumption of UEn in Ho-EECC
fn the individual preference of UEn between energy consumption and time consumption
Cn;l ¼ fntn þ ð1� fnÞen, the cost of an executed locally
~Cn;m ¼ fnð~tn;m þ ~t0n;mÞ þ ð1� fnÞ~en;m, the cost of an executed by ESm
Cn;hi ¼ fnTn;hi þ ð1� fnÞEn;hi, the cost of UEn in Hi-EECC
Cn;ho ¼ fnTn;ho þ ð1� fnÞEn;ho, the cost of UEn in Ho-EECC
Cm;cðLÞ ¼PjN jn¼1 t̂n

�
1�PjN jm¼1 ~�n;m � �n

�
km, the cost of ESm

km the correlation parameter between t̂n and the cost of ESm
Potential Game Theory

RjMjþ1 an euclidean space

Kn all possible offloading strategies of the nth player (i.e., UEn)
K ¼ K1 �K2 � . . .�KjN j, all possible offloading strategy sets of jN j UEs
�n�n ¼ ð�n; ~�n;1; . . .; ~�n;jMjÞ, the nth player derives a strategy between itself and ESs
L ¼ ð�1�1; �2�2; . . .; �jN j�jN jÞT , the offloading strategy set of jN j UEs
L�n ¼ ð�1�1; . . .; �n�1�n�1; �nþ1�nþ1; . . .; �jN j�jN jÞT , the strategies of jN j � 1 players except for UEn

Cð�n�n;L�nÞ the cost of UEn adopting �n�n when L�n is given in the EECC game
FL�nð�n�nÞ a potential function of �n�n when L�n is given
L� ¼ ð��1��1; ��2��2; . . .; ��jN j��jN jÞT , the Nash equilibrium of the EECC game
Lo ¼ ð�o;1�o;1; �o;2�o;2; . . .; �o;jN j�o;jN jÞT , the best strategy set between local processing and ESs processing for all UEs
�̂̂� ¼ ð�̂1; �̂2; . . .; �̂jN jÞT , the cloud offloading decisions of all UEs
�̂̂�o ¼ ð�̂o;1; �̂o;2; . . .; �̂o;jN jÞT , the best cloud offloading decision set for all UEs
K̂ all possible cloud offloading strategy sets of UEs

1506 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

UEn [25]. Moreover, each UE has a task to be completed.
The task of UEn is further defined as an , ðdn;vn; zn; dnÞ. For
an, dn is the data size of an, which is measured by the num-
ber of bits. vn represents the number of CPU cycles needed
to complete an. zn 2 I is the location of UEn when an is exe-
cuted. dn denotes the maximum service delay that UEn can
tolerate, i.e., the QoS requirement of the UE. ESm is specified
by ~fm, ~rm, and ~zm, where ~fm is the computing capability of
the ES, which is quantified by the number of CPU cycles per
second. ~rm is the data transmission rate of ESm. ~zm 2 I rep-
resents the location of ESm. The computing capability of the
cloud is denoted as f̂ , which is quantified by the number of
CPU cycles per second. We use SNi , fUEnjzn ¼ ig and
SMi , fESmj~zm ¼ ig to denote the set of UEs and the set of
ESs in the ith service area, respectively. Moreover, we
assume that ESs within the same service area are the same,
i.e., ~fm ¼ ~fm0 and ~rm ¼ ~rm0 for all ESm, ESm0 2 SMi [26].
However, ESs in different service areas are heterogeneous.
Furthermore, we use �n 2 f0; 1g, ~�n;m 2 f0; 1g, and �̂n 2
f0; 1g to represent the offloading decision of an. If an is exe-
cuted locally, �n ¼ 1. Otherwise, �n ¼ 0. If an is offloaded to
ESm, ~�n;m ¼ 1. Otherwise, ~�n;m ¼ 0. Similarly, �̂n ¼ 1 means
that an is executed by the cloud. Otherwise, �̂n ¼ 0. In Hi-
EECC, for UEn 2 SNi, since an can be executed by one entity
at a time, we have the following two constraints:

1 ¼ �n þ
XjMj
m¼1

~�n;m ¼ �n þ
X

ESm2SMi

~�n;m: (1)

Accordingly, in Ho-EECC, we have

1 ¼ �n þ
XjMj
m¼1

~�n;m þ �̂n ¼ �n þ
X

ESm2SMi

~�n;m þ �̂n: (2)

3.2 Computation Model

3.2.1 Local Computation Model

The computing capability of UEn is quantified by the num-
ber of CPU cycles per second, i.e., fn. Thus, the local compu-
tation delay of an is

tn ¼ vn

fn
: (3)

The energy consumption for UEn executing an is calculated
by the classic model used in [27], [28], i.e.,

en ¼ sntn; (4)

where sn can be obtained through the measurement
approach [29], [30].

3.2.2 Edge Computation Model

The computing capability (i.e., computing resources) of ESm
is represented by ~fm and will be distributed proportionally
to all UEs that request the ES. In this paper, the computing
resource of ESm allocated to UEn is

fn;m ¼ gnPjN j
v¼1 gv

~�v;m

~fm ¼ gnP
UEv2SNi

gv
~�v;m

~fm; (5)

where v 2 ½1; jN j�, PUEv2SNi
gv

~�v;m is the sum of resource
weight parameters of all UEs that request ESm and
gn=
�P

UEv2SNi
gv

~�v;m

�
is the resource proportion that UEn

can obtain from ESm. According to the above equation, the
computation delay of an executed by ESm is formulated as

~tn;m ¼ vn

fn;m
: (6)

UEn focuses on minimizing its energy consumption and
does not care about the cost of ESs. Therefore, the energy
consumption of UEn is zero when ESm is executing an.

3.2.3 Cloud Computation Model

Compared with ESs, the cloud has sufficient resources to
respond to the requests of UEs. Thus, we assume that the
cloud server can handle an infinite number of tasks in paral-
lel. The computation delay of an executed by the cloud can
be formulated as

t̂n ¼ vn

f̂
: (7)

Similarly, the energy consumption of UEn is zero when the
cloud is processing an.

3.3 Communication Model

3.3.1 Communication Model between UEn and ESm

Similar to the computing resource allocation policy, the
communication resources (i.e., the data transmission rate)
of ESm are distributed proportionally to all UEs that request
the ES. Thus, the data transmission rate of ESm allocated to
UEn is

rn;m ¼ gnPjN j
v¼1 gv

~�v;m

~rm ¼ gnP
UEv2SNi

gv
~�v;m

~rm: (8)

Based on the above equation, the communication delay of
an between UEn and ESm can be formulated as

~t0n;m ¼
dn

rn;m
: (9)

The energy consumption of UEn offloading an to ESm is

~en;m ¼ s0n~t
0
n;m: (10)

where s0n can be obtained by the long-term experience [31].

3.3.2 Communication Model between UEn and the

Cloud

The service mode of the cloud depends on the computing
architecture type of EECC. Therefore, we formulate the
communication models between a UE and the cloud in Hi-
EECC and in Ho-EECC, respectively.

In Hi-EECC, UEn cannot directly request the cloud. ESm
requested by UEn decides whether to offload an to the
cloud. In addition, a high-speed fiber communication link
between ESs and the cloud is a necessary infrastructure in
Hi-EECC. It ensures the flexibility and scalability of ESs,
thereby providing UEs with high-quality services. Thus, we
assume that the data transmission rate between ESs and the

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1507

cloud is the same and is represented by r̂. The communica-
tion delay for ESm offloading an to the cloud can be formu-
lated as

t̂0n;hi ¼
dn

r̂
: (11)

Therefore, the transmission latency between UEn and the
cloud is ~t0n;m þ t̂0n;hi.

In Ho-EECC, UEn can directly request the cloud. More-
over, the communication latency between UEn and the
cloud consists of two parts, i.e., the wireless communication
delay and the wired communication delay [27]. We assume
that the communication resources of the cloud are sufficient,
i.e., the data transmission rate allocated to each UE is the
same. Thus, the communication delay of an between UEn

and the cloud is

t̂0n;ho ¼
dn

r̂01
þ dn

r̂02
; (12)

where r̂01 and r̂02 are the wireless data transmission rate and
wired data transmission rate, respectively. Accordingly, the
energy consumption of UEn offloading a task to the cloud
can be formulated as

ên ¼ s0nt̂
0
n;ho: (13)

3.4 Cost Model

Based on the previous definitions, for UEn 2 SNi, the delay
of an in Hi-EECC can be formulated as

Tn;hi ¼ �ntn þ
X

ESm2SMi

~�n;mð~tn;m þ ~t0n;mÞ

þ �̂nð~t0n;m þ t̂0n;hi þ t̂nÞ:
(14)

The energy consumption of UEn in Hi-EECC is

En;hi ¼ �nen þ
X

ESm2SMi

~�n;m~en;m þ �̂n~en;m: (15)

As shown in the above equation, the energy consumption
for UEn uploading tasks to the cloud is also ~en;m. The reason
is that when ESs upload tasks to the cloud, the UE does not
incur any energy consumption. The delay of an in Ho-EECC
can be formulated as

Tn;ho ¼ �ntn þ
X

ESm2SMi

~�n;mð~tn;m þ ~t0n;mÞ

þ �̂nðt̂n þ t̂0n;hoÞ:
(16)

The energy consumption of UEn in Ho-EECC is

En;ho ¼ �nen þ
X

ESm2SMi

~�n;m~en;m þ �̂nên: (17)

In this paper, the cost of UEn is formulated as a weighted
sum of the energy consumption of UEn and the time con-
sumption of an. Therefore, the cost of UEn in Hi-EECC is

Cn;hi ¼ fnTn;hi þ ð1� fnÞEn;hi; (18)

where 0 � fn � 1 is the weighted parameter of an’s delay,
which can represent the individual preference for energy

consumption and time consumption. Similarly, the cost of
UEn in Ho-EECC is formulated as

Cn;ho ¼ fnTn;ho þ ð1� fnÞEn;ho: (19)

4 A POTENTIAL GAME FORMULATION

Due to the limited resources of ESs, there is a competitive
relationship between UEs. All UEs have their own preferen-
ces and attempt to determine the most beneficial strategy
for themselves. It is a considerable challenge to satisfy all
UEs with a centralized method. Fortunately, game theory
provides an efficient way to resolve the issue. Next, we con-
struct a game for UEs and ESs, in which each UE selfishly
minimizes its energy consumption and time consumption.

In EECC, there are jN j players (i.e., UEs) in a game and
all UEs seek to minimize their cost. The nth player derives a
strategy between itself and ESs, i.e., �n�n ¼ ð�n; ~�n;1; . . .;
~�n;jMjÞ 2 Kn � RjMjþ1, where Kn is all possible offloading
strategies of UEn. We use L to represent the offloading strat-
egy set of all UEs, i.e., L ¼ ð�1�1; �2�2; . . .; �jN j�jN jÞT 2 K ¼
K1 �K2 � . . .�KjN j, where K is all possible offloading
strategy sets of UEs. L�n represents the offloading strategy
set of jN j � 1 UEs except for UEn, i.e., L�n ¼ ð�1�1; . . .; �n�1�n�1;
�nþ1�nþ1; . . .; �jN j�jN jÞT . Each UE has a payoff function Cð�n�n;L�nÞ 2
R in EECC game, where Cð�n�n;L�nÞ represents the cost of
UEn adopting �n�n when L�n is given. The game is called the
EECC game.

Before offloading a task to ESm, UEn should ensure that
its cost can be reduced. That is, UEn should first assess the
feasibility of ESm 2 SMi. The feasibility of ESm for UEn can
be assessed by the following theorem.

Theorem 1. If UEn 2 SNi offloads its task to ESm 2 SMi, that
is, ESm is an available ES for UEn, then

XjN j
v 6¼n

gv
~�v;m ¼

X
UEv2SNi�fUEng

gv
~�v;m � Bn; (20)

where Bn ¼ ðbn � 1Þgn, and

bn ¼
~fm~rmvn

�
fn þ ð1� fnÞsn

�
fnfnðvn~rm þ dn ~fmÞ þ ð1� fnÞdnfn ~fms0n

: (21)

Proof. If UEn offloads its task to ESm, then ~Cn;m � Cn;l,
where

~Cn;m ¼ fnð~tn;m þ ~t0n;mÞ þ ð1� fnÞ~en;m; (22)

and

Cn;l ¼ fntn þ ð1� fnÞen: (23)

Plugging Equations (3), (4), (5), (6), (9), and (10) into
~Cn;m � Cn;l, we have

fn

vn

fn;m
þ dn

rn;m

!
þ ð1� fnÞs0n

dn

rn;m

� fn

vn

fn
þ ð1� fnÞsn

vn

fn
:

(24)

1508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

That is,

fn

vn

PjN j
v¼1 gv

~�v;m

gn
~fm

þ dn
PjN j

v¼1 gv
~�v;m

gn~rm

!

þð1� fnÞs0n
dn
PjN j

v¼1 gv ~�v;m

gn~rm

� fn

vn

fn
þ ð1� fnÞsn

vn

fn
:

(25)

Rearranging the above inequality, we have

PjN j
v¼1 gv

~�v;m

gn

fnvn~rm þ dnfn
~fm þ ð1� fnÞdns0n ~fm
~fm~rm

� fnvn þ ð1� fnÞvnsn

fn
;

(26)

i.e., PjN j
v¼1 gv

~�v;m

gn
� bn; (27)

where

bn ¼
~fm~rmvn

�
fn þ ð1� fnÞsn

�
fnfnðvn~rm þ dn ~fmÞ þ ð1� fnÞdnfn ~fms0n

:

Rearranging the above inequality, we can easily obtain

XjN j
v 6¼n

gv
~�v;m ¼

X
UEv2SNi�fUEng

gv
~�v;m � ðbn � 1Þgn: (28)

Thus, we have the theorem. tu
Next, we provide the definition of the potential game

[32]. Then, we introduce a potential function to transform
the EECC game into a potential game [33].

Definition 1. A game is called a potential game, if there is a
potential function FL�nð�n�nÞ that satisfies

Cð�n�n;L�nÞ < Cð�0n�0n;L�nÞ , FL�nð�n�nÞ < FL�nð�0n�0nÞ;
for UEn 2 N , �n�n 2 Kn, L 2 K, and L�n 2 Pv 6¼nKv.
FL�nð�n�nÞ is a potential function of �n�n when L�n is given.

As shown in Equations (5), (6), (8), (9), (10), and (14)-(19),
when the offloading strategies of jN j � 1 UEs except for
UEn are given, the cost of UEn depends on the ES it chooses
and its gn. Since we assume that ESs within the same service
area are the same, if ~�n;m ¼ 1, the number and types of
requests responded by ESm (i.e.,

PjN j
n¼1 gn

~�n;m) determine
the cost of the UE. Based on Theorem 1, we construct a
potential function for the EECC game in the following
theorem.

Theorem 2. If all ESs in the ith service area are the same, i.e.,
~fm ¼ ~fm0 and ~rm ¼ ~rm0 for all ESm, ESm0 2 SMi, then the
EECC game is a potential game with the following potential
function:

FL�nð�n�nÞ ¼ 1

2

XjN j
n¼1

XjN j
v 6¼n

XjMj
m¼1

gngv
~�n;m

~�v;m

þ
XjN j
n¼1

gnBn�n: (29Þ

Proof. According to the definition of a potential game, we
should prove that the potential function increases or
decreases with an increase or decrease in Cð�n�n;L�nÞ. To
demonstrate the above property of FL�nð�n�nÞ, we consider
the following three cases. Let �n�n ¼ ð�n; ~�n;1; . . .; ~�n;jMjÞ
and �0n�

0
n ¼ ð�0n; ~�0n;1; . . .; ~�0n;jMjÞ be two offloading strategies

of UEn, where �n�n 6¼ �0n�
0
n.

Case 1: Suppose that ~�n;m ¼ 1, ~�0n;m0 ¼ 1, and ~Cn;m0 <
~Cn;m, where m 6¼ m0. We know that the UEs that initiate
requests to the same ES can affect each other. Moreover,
since adjusting the offloading strategy among ESs does
not affect other UEs that perform their tasks locally, we
have

PjN j
n¼1 gnBn�n ¼

PjN j
n¼1 gnBn�

0
n: Based on Equa-

tion (29), since ~�n;m ¼ 1, ~�0n;m0 ¼ 1, and �n þ
PjMj

m¼1 ~�n;m ¼
1, we have

FL�nð�n�nÞ �FL�nð�0n�0nÞ

¼ 1

2
gn

~�n;m

XjN j
v 6¼n

gv
~�v;m þ 1

2
gn

~�n;m

XjN j
v 6¼n

gv
~�v;m

þ 1

2

XjN j
v0 6¼n

gv0 ~�v0;m
XjN j

v 6¼n;v 6¼v0

XjMj
m¼1

gv
~�v;m

� 1

2

XjN j
v0 6¼n

gv0 ~�v0;m0
XjN j

v 6¼n;v 6¼v0

XjMj
m0¼1

gv
~�v;m0

� 1

2
gn

~�0n;m0
XjN j
v 6¼n

gv
~�v;m0 �

1

2
gn

~�0n;m0
XjN j
v 6¼n

gv
~�v;m0

¼ gn

XjN j
v 6¼n

gv
~�v;m � gn

XjN j
v 6¼n

gv
~�v;m0 :

(30)

If ~Cn;m0 < ~Cn;m, based on Equation (22), we have

fnð~tn;m0 þ t0n;m0 Þ þ ð1� fnÞen;m0
< fnð~tn;m þ ~t0n;mÞ þ ð1� fnÞ~en;m: (31)

Plugging Equations (5), (6), and (10) into the above
inequality, we have

fn

vn

fn;m0
þ dn

rn;m0

!
þ ð1� fnÞs0n

dn

rn;m0

< fn

vn

fn;m
þ dn

rn;m

!
þ ð1� fnÞs0n

dn

rn;m
: (32)

Rearranging the above inequality, we have

PjN j
v¼1 gv

~�v;m0

gn

fnvn~rm0 þ dnfn
~fm0 þ ð1� fnÞdns0n ~fm0
~fm0~rm0

<

PjN j
v¼1 gv ~�v;m

gn

fnvn~rm þ dnfn
~fm þ ð1� fnÞdns0n ~fm
~fm~rm

:

(33)

If all ESs in the ith service area are the same, we have
~fm ¼ ~fm0 and ~rm ¼ ~rm0 , i.e.,

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1509

XjN j
v¼1

gv
~�v;m0 <

XjN j
v¼1

gv
~�v;m: (34)

Since gn > 0, it can be easily found that

gn

XjN j
v 6¼n

gv
~�v;m0 < gn

XjN j
v 6¼n

gv
~�v;m: (35)

Therefore, FL�nð�n�nÞ �FL�nð�0n�0nÞ > 0.
Case 2: Suppose that �n ¼ 1, ~�0n;m0 ¼ 1, and ~Cn;m <

Cn;l. Based on Equation (29), we have

FL�nð�n�nÞ �FL�nð�0n�0nÞ ¼ gn
XjN j
v 6¼n

gv
~�0v;m � gnBn�n:

(36)

Based on Theorem 1, we obtain FL�nð�n�nÞ �FL�nð�0n�0nÞ
> 0.

Case 3: Suppose that ~�n;m ¼ 1, �0n ¼ 1, and Cn;l <
~Cn;m0 . Similar to case 2, we can also easily obtain that
FL�nð�n�nÞ increases or decreases with the increase or
decrease in Cð�n�n;L�nÞ. tu

Remark 1. In this paper, we construct a potential function
for the EECC game, but do not formulate specific poten-
tial functions for either Hi-EECC or Ho-EECC. On the
one hand, the design is restricted by the potential game
theory. Potential game theory requires that all servers be
homogeneous [32]. However, although we assume that
ESs within the same service area are the same, ESs in dif-
ferent service areas are heterogeneous. In addition, there
are huge differences between the cloud and ESs.

On the other hand, the design takes into account the
characteristics of Hi-EECC and Ho-EECC. As mentioned
above, the way that the cloud responds to UEs is deter-
mined by the computing architectures. For UEn 2 SNi,
UEn can temporarily ignore the existence of the cloud
and determine a preliminary strategy between itself and
ESs (i.e., all ESm 2 SMi). In Hi-EECC, the deadline unsat-
isfied task of UEn is further uploaded to the cloud by the
ESs, the final best strategy that satisfy its QoS demand
can be obtained. In Ho-EECC, by comparing the prelimi-
nary strategy with the strategy of cloud processing, the
final best strategy with less cost can be derived.

In the EECC game, the nth player derives a strategy
between itself and ESs, i.e., �n�n ¼ ð�n; ~�n;1; . . .; ~�n;jMjÞ.
Since UEs can initiate the requests only to the ESs that in
the same service area as the UEs, and the ESs within the
same service area are the same, we can construct a poten-
tial function, i.e., Equation (29), to transform the EECC
game into a potential game. Thus, regardless of the spe-
cific computing architectures, according to Theorem 2,
we can develop Algorithm 1 to determine the prelimi-
nary strategies of all UEs. Then, based on the characteris-
tics of Hi-EECC and Ho-EECC, we can further develop
different algorithms (i.e., COAHi and COAHo) to read-
just the offloading strategies obtained from Algorithm 1
to obtain the final best strategies for all UEs, so that the
potential game theory can solve the strategy optimization
problem in the heterogeneous scenario.

It should also be noted that a potential game may have
many potential functions. However, for a potential game,
different potential functions do not affect the quality of
the strategy [32], [33]. Therefore, we do not formulate
other potential functions or explore the impact of these
functions on the performance of the proposed algorithms
and two computing architectures.

Since there are competitive relationships between UEs,
the strategy of a UE affects the cost of other UEs. Thus, we
must determine a best strategy set that can be accepted by
all UEs, i.e., Nash equilibrium. We now present the defini-
tion of Nash equilibrium.

Definition 2. A strategy set L� ¼ ð��1��1; ��2��2; . . .; ��jN j��jN jÞT is a Nash
equilibrium of the EECC game, i.e., no UE can unilaterally
change its strategy to further reduce its cost, if

Cð��n��n;L��nÞ � Cð�n�n;L
�
�nÞ; for all �n�n 2 Kn; (37)

holds for all UEn 2 N .

As shown in Definition 2, Nash equilibrium is the state in
which all UEs find the best offloading strategies toward
each other. It should be noted that not every game has a
Nash equilibrium. Fortunately, if a game can be formulated
as a potential game, there is at least one Nash equilibrium
of the game [33]. Moreover, according to the finite improve-
ment property, the Nash equilibrium of the game can be
obtained after a finite number of iterations [32]. This moti-
vates us to develop an iteration algorithm to find the Nash
equilibrium of the EECC game. We present the algorithm in
Section 5.1 and analyze the finite improvement property in
Section 6.1.

5 POTENTIAL GAME-BASED ALGORITHMS IN

HI-EECC AND HO-EECC

5.1 Algorithms in Hi-EECC

According to Theorem 2, we develop an iteration offloading
algorithm, i.e., Algorithm 1, for optimizing the offloading
decisions of UEs between itself and ESs. We first initialize
the strategies of UEs, i.e., �n�n ¼ ð1; 0; . . .; 0ÞjMjþ1, for all
UEn 2 N (Line 1). Then, we can calculate the initial poten-
tial function of each UE (Line 3). Next, we iterate every UE
and make a new offloading decision with less cost (Lines 4-
19). If no UE can unilaterally change its strategy to further
reduce its cost, the game is over, i.e., the final strategy set L�

is regarded as a Nash equilibrium (Lines 21-25). Moreover,
to control the time complexity of the algorithm, we can
define the maximum iteration number P to limit the num-
ber of iterations, thus obtaining an acceptable strategy set of
UEs. In Section 6.1, Theorem 4 analyzes the convergence of
the algorithm in detail.

In Hi-EECC, UEn makes offloading decisions depending
on whether its cost can be reduced. However, if ~�n;m ¼ 1
and the delay served by ESm exceeds dn, the ES will offload
an to the cloud for executing. It incurs the cost of ESm for the
ES uploading tasks to the cloud. In this paper, we define the
cost of ESm as the price paid for the time required by the
cloud to complete the tasks. The cost of ESm is

1510 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Cm;cðLÞ ¼
XjN j
n¼1

vn

f̂

1�

XjN j
m¼1

~�n;m � �n

!
km; (38)

where km is the correlation parameter between the computa-
tion delay for the cloud completing an and ESm’s cost.

Algorithm 1.Nash Equilibrium Calculating Algorithm

Input: gn;vn; zn; dn, dn, sn, s
0
n, and fn, for all UEn 2 N . ~fm, ~rm,

and km for all ESm 2 M. f̂ , r̂, and P.
Output: L�.
1: Initialize L �ð1; 0; . . .; 0Þ; . . .; ð1; 0; . . .; 0Þ�TjN j;
2: while p < P do
3: Calculate FL�nð�n�nÞ for all UEn 2 N based on

Equation (29);
4: for UEn 2 N do
5: �n�n ð1; 0; . . .; 0ÞjMjþ1;
6: i zn;
7: for ESm 2 SMi do
8: if ESm is an available ES for UEn then
9: �0n�

0
n ð0; . . .; 0ÞjMjþ1;

10: �0n;mþ1 1;
11: Calculate FL�nð�0n�0nÞ based on Equation (29);
12: if F0LðnÞ < FLðnÞ then
13: �n�n �0n�

0
n;

14: FL�nð�n�nÞ FL�nð�0n�0nÞ;
15: end if
16: end if
17: end for
18: Update the offloading strategy of UEn between itself and

ESs, i.e., ��n�
�
n �n�n;

19: end for
20: p pþ 1
21: if no UE can unilaterally change its strategy to further

reduce its cost then
22: break;
23: end if
24: end while
25: return L� ¼ ð��1��1; ��2��2; . . .; ��jN j��jN jÞT .

Let us suppose that UEn and UEv request ESm for proc-
essing their tasks. Furthermore, the deadlines of an and av
cannot be satisfied by ESm. Thus, the two tasks could be
uploaded to the cloud. However, while the ES uploads an to
the cloud, the resources originally allocated to UEn will be
released. The released resources can provide service to UEv

and thus may satisfy the QoS demand of UEv. Therefore,
the ES should also optimize the tasks that are uploaded to
the cloud to reduce its cost. The optimization objective of
ESm can be formulated as the following problem:

P1 : min
L

Cm;cðLÞ
s:t: C1 : Tn;hi � dn; for all UEn 2 N ;

C2 :
XjMj
m¼1

~�n;m þ �̂n ¼ 1; where ~�n;m; �̂n 2 f0; 1g;
(39)

where C1 ensures that QoS demands of all UEs should be
satisfied. C2 means that a task can be executed by only one
entity. It is clear that P1 is an NP-hard problem [34].

Remark 2. In Hi-EECC, when an is executed by the cloud,
the cost of UEn is

Ĉn ¼ fnðt̂n þ t̂0n;hi þ ~t0n;mÞ þ ð1� fnÞ~en;m: (40)

Based on Equations (22) and (40), if offloading an to the
cloud, the following inequality should be true:

~Cn;m � Ĉn ¼ fnð~tn;m � t̂n � t̂0n;hiÞ 	 0: (41)

Otherwise, the QoS demand of UEn cannot be met.
Therefore, this paper has an implicit requirement that
the cloud has sufficient resources to meet the demands of
UEs, i.e., f̂
 ~fm. Hence, for an, if ~�n;m ¼ 1 and Tn;hi >
dn, offloading the task to the cloud by ESm should not
increase the cost of UEn.

Moreover, if an is offloaded to the cloud, we have

XjN j
n¼1

gn
~�n;m >

XjN j
v 6¼n

gv
~�v;m: (42)

According to Equations (6), (9), (10), and (18), we can eas-
ily determine that if an is offloaded to the cloud, the cost
of other UEs that request ESm decreases.

Algorithm 2. Deadline Guaranteeing Algorithm

Input: The offloading strategy set L obtained from Algorithm
1. �̂̂� ¼ ð0; . . .; 0ÞTjN j. gn;vn; zn; dn, dn, sn, s0n, and fn, for all
UEn 2 N . ~fm, ~rm, and km for all ESm 2 M. f̂ , r̂.
Output: New offloading strategy set L, �̂̂�, and the cost of ESm
Cm;cðLÞ.
1: R fUEnj for all UEn 2 N ;where ~�n;m ¼ 1 and Tn;hi

> dng;
2: whileR 6¼ ; do
3: UEn argmaxUEn2Rfgng or argminUEn2Rfvng;
4: Update the cloud offloading decision, i.e., �̂n 1;
5: Update the offloading decision of UEn between itself and

ESs, i.e., �n�n;
6: R R� fUEng;
7: Calculate Tn;hi for all UEn 2 R;
8: R0 fUEnj ~�n;m ¼ 1 and Tn;hi � dng;
9: R R�R0;
10: end while
11: Calculate Cm;cðLÞ based on Equation (38);
12: return L; �̂̂�; Cm;cðLÞ.

According to Remark 2, ESs can safely upload tasks to
the cloud. To solve P1, we propose Algorithm 2 based on
the greedy policy. Specifically, the algorithm reschedules
the tasks based on vn or gn. The reason is that uploading
tasks with larger gn will increase the released resources
such that more UEs’ demands can be satisfied. In addition,
uploading tasks with smaller vn will directly help reduce
the cost of ESm. We can obtain two task offloading resched-
uling schemes by using the greedy policy. The scheme with
the lowest cost is regarded as the final strategy. For simplic-
ity, we use �̂̂� to represent the cloud offloading decisions of
all UEs, i.e., �̂̂� ¼ ð�̂1; �̂2; . . .; �̂jN jÞT 2 K̂ � RjN j, where K̂ is
all possible cloud offloading strategy sets of UEs.

Algorithm 2 shows the two rescheduling schemes based
on different greedy policies. We first iterate every ESm 2 M

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1511

and identify the deadline unsatisfied tasks (Line 1), i.e., R.
The task with the maximum gn among all UEv 2 R is off-
loaded to the cloud (Lines 2-6). However, after a task is off-
loaded to the cloud, it is necessary to check whether the
current resources can meet the QoS demands of other origi-
nal deadline unsatisfied tasks. Thus, we update the computa-
tion and communication delay of the remaining tasks in R
(Line 7), and remove theUEswhose demands can be satisfied
fromR (Lines 8-9). The above process is iteratively operated,
until R ¼ ;. Cm;cðLÞ can be obtained after the rescheduling
processing (Line 12). Similarly, we can obtain a rescheduling
scheme based on UEn argminUEn2Rfvng. It is easy to
know that the time complexity of the algorithm isOðjN jÞ.

Algorithm 3. Computation Offloading Algorithm in
Hi-EECC (COAHi)

Input: gn;vn; zn; dn, dn, sn, s
0
n, and fn, for all UEn 2 N . ~fm, ~rm,

and km for all ESm 2 M. f̂ , r̂.
Output: Lo, �̂̂�o.
1: Obtain L through Algorithm 1;
2: Initialize the cloud strategies of UEs �̂̂� ¼ ð0; . . .; 0ÞTjN j;
3: for ESm 2 M do
4: Obtain L1, �̂̂�1, and C1 through Algorithm 2 based on UEn

 argmaxUEn2Rfgng;
5: Obtain L2, �̂̂�2, and C2 through Algorithm 2 based on UEn

 argminUEn2Rfvng;
6: if C1 < C2 then
7: Update L and �̂̂� according to L1 and �̂̂�1, respectively;
8: else if C1 	 C2 then
9: Update L and �̂̂� according to L2 and �̂̂�2, respectively;
10: end if
11: end for
12: Obtain the final strategies of UEs between itself and ESs,

i.e., Lo L;
13: Obtain the final cloud offloading strategies of UEs, i.e.,

�̂̂�o �̂̂�;
14: return Lo, �̂̂�o.

We first develop Algorithm 1 to determine a preliminary
decision set between UEs and ESs. However, Algorithm 1
aims only at minimizing the cost of UEs, and does not con-
sider QoS requirements of the UEs. The decisions obtained
by Algorithm 1 may cause QoS requirements of some tasks
to not be met. Thus, we then develop Algorithm 2 to deter-
mine whether to continue uploading these unsatisfied tasks
to the cloud to meet their demands, that is, to solve P1.
Algorithm 3 is developed based on Algorithms 1 and 2, and
is the algorithm for making offloading strategies in Hi-
EECC, which is named COAHi. The initial decision set
between local processing and offloading to ESs is obtained
from Algorithm 1 (Line 1). Then, we reschedule the tasks
between ESs and the cloud by using Algorithm 2 (Lines 3-
5). Finally, we update L and �̂̂� according to the rescheduling
decision set with less cost and obtain the final offloading
strategies of UEs (Lines 6-14). The time complexity of Algo-
rithm 3 is derived in Corollary 1. It should be noted that
since we readjust the decisions obtained by Algorithm 1, the
original Nash equilibrium of UEs is broken. Based on
Remarks 1 and 2, although the final offloading strategy set
obtained by Algorithm 3 is not a Nash equilibrium of the
EECC game, the set consists of the best strategies of all UEs.

5.2 Algorithms in Ho-EECC

In Ho-EECC, UEs can directly offload their tasks to the
cloud. Thus, UEn can first make an offloading decision by
using Algorithm 1. Then, the cost of the decision is com-
pared with the cost of cloud processing. Therefore, the final
offloading strategy can be obtained. As mentioned above, in
contrast to the decision-making method in Hi-EECC, UEn

directly determines the offloading strategy. Hence, before
making a decision, the UE should not only ensure that its
cost can be reduced, but also ensure that its QoS demand
can be guaranteed. In addition to Theorem 1, the feasibility
of ESm for UEn should be checked using the following
theorem.

Algorithm 4. Computation Offloading Algorithm in
Ho-EECC (COAHo)

Input: gn;vn; zn; dn, dn, sn, s
0
n, and fn, for all UEn 2 N . ~fm, ~rm,

and km for all ESm 2 M. f̂ , r̂1, r̂2, and P.
Output: Lo, �̂̂�o.
1: N 0 N ;
2: Obtain L through Algorithm 1;
3: Initialize the cloud strategies of UEs �̂̂� ¼ ð0; . . .; 0ÞTjN j;
4: for UEn 2 N 0 do
5: Calculate Cn;ho based on L; �̂̂�, and Equation (19);
6: �̂n 1;
7: �0n�

0
n ð0; . . .; 0ÞjMjþ1;

8: Calculate C0n;ho based on L; �̂̂�, and Equation (19);
9: if C0n;ho < Cn;ho then
10: �̂n 1;
11: �n�n �0n�

0
n;

12: N 0 N 0 � fUEng;
13: end if
14: Update �n�n for all UEn 2 N 0 through Algorithm 1, and

obtain new offloading strategy set L;
15: end for
16: Obtain the final strategies of UEs between itself and ESs,

i.e., Lo L;
17: Obtain the final cloud offloading strategies of UEs, i.e.,

�̂̂�o �̂̂�;
18: return Lo, �̂̂�o.

Theorem 3. ESm 2 SMi is an available ES for UEn 2 SNi when
the ES satisfies Theorem 1 and the following inequality:

XjN j
v 6¼n

gv
~�v;m � B0n; (43)

where

B0n ¼
dngn

~fm~rm

vn~rm þ dn ~fm
� gn: (44)

Proof. If an is offloaded to ESm for executing, the computa-
tion and communication delay of an should satisfy the fol-
lowing inequality:

~tn;m þ ~t0n;m � dn: (45)

Plugging Equations (6) and (9) into the above inequality,
we have

1512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

PjN j
n¼1 gn

~�n;m

gn

vn

~fm
þ dn

~rm

!
� dn; (46)

i.e.,

XjN j
v 6¼n

gv
~�v;m � dngn

~fm~rm

vn~rm þ dn ~fm
� gn:

Thus, we reach the conclusion. tu
Algorithm 4 is developed based on Algorithm 1, and

describes the processing for making task offloading strate-
gies for UEs in Ho-EECC, which is named COAHo. It
should be noted that although Algorithms 3 and 4 both call
Algorithm 1, the criteria for checking the availability of ESs
is different. In Algorithm 3, the availability of ESs is checked
by Theorem 1. In Algorithm 4, the availability of ESs is
checked by Theorem 3. The initial strategy set L is obtained
through Algorithm 1 (Line 2). Then, the current cost of UEn

is compared with the cloud execution cost of the UE. If the
cloud execution cost is less than the current decision cost,
UEn will reschedule its task to the cloud (Lines 4-13). As
some UEs are uploaded to the cloud, the resources origi-
nally occupied by these UEs are provided to other UEs.
Therefore, the strategy should be updated again through
Algorithm 1 (Line 14). If none of the UEs can benefit from
the update process, the algorithm ends (Lines 16-18). Simi-
lar to COAHi, since we readjust the decisions obtained by
Algorithm 1, the original Nash equilibrium of UEs is bro-
ken. Moreover, although the final offloading strategy set
obtained by Algorithm 4 is not a Nash equilibrium of the
EECC game, the set consists of the best strategies of all UEs.

6 PERFORMANCE ANALYSIS

6.1 Convergence of Algorithms

The finite improvement property of the potential game
ensures that the game approaches a Nash equilibrium after
the finite iteration [32]. Next, we analyze the convergence of
the proposed algorithms. Let Gmax , maxfgnj for all UEn 2
Ng, Gmin , minfgnj for all UEn 2 Ng, and Bmax ¼
maxfBnj for all UEn 2 Ng. Furthermore, gn and Bn are
assumed to be non-negative integers.

Theorem 4. For Algorithm 1, the maximum number of itera-
tions for UEn determining an offloading strategy is

Pmax � jN j
2G2

max

2Gmin
þ jN jGmaxBmax

Gmin
: (47)

Proof. Based on Equation (29), we have

FL�nð�n�nÞ � 1

2

XjN j
n¼1

XjN j
n¼1

G2
max þ

XjN j
n¼1

GmaxBmax

� 1

2
jN j2G2

max þ jN jGmaxBmax:

(48)

Let �n�n ¼ ð�n; ~�n;1; . . .; ~�n;jMjÞ and �0n�
0
n ¼ ð�0n; ~�0n;1; . . .; ~�0n;jMjÞ

be two offloading strategies of UEn, where �n�n 6¼ �0n�
0
n .

Then we prove that if UEn updates its strategy from �n�n to
�0n�
0
n, we have

FL�nð�n�nÞ �FL�nð�0n�0nÞ 	 Gmin: (49)

Case 1: we suppose that ~�n;m ¼ 1 and ~�0n;m0 ¼ 1, wherem 6
¼ m0. According to Equations (30) and (35), we have

FL�nð�n�nÞ �FL�nð�0n�0nÞ

¼ gn

 XjN j
v 6¼n

gv
~�v;m �

XjN j
v 6¼n

gv
~�v;m0

!
> 0:

(50)

Since gn is assumed to be an integer, we have

XjN j
v 6¼n

gv
~�v;m �

XjN j
v 6¼n

gv
~�v;m0 	 1: (51)

It can be easily obtained that

FL�nð�n�nÞ �FL�nð�0n�0nÞ > Gmin: (52)

Case 2: we suppose that �n ¼ 1 and ~�0n;m ¼ 1. Accord-
ing to Equations (36), we have

FL�nð�n�nÞ �FL�nð�0n�0nÞ ¼ gn
XjN j
v 6¼n

gv
~�v;m � gnBn > 0:

(53)
Similarly, since gn is assumed to be an integer, we obtain

FL�nð�n�nÞ �FL�nð�0n�0nÞ 	 1: (54)

Accordingly, we also obtain FL�nð�n�nÞ �FL�nð�0n�0nÞ 	
Gmin. Based on Equations (48) and (49), we know that the
maximum number of iterations for a UE making an off-
loading strategy by using Algorithm 1 is

Pmax � jN j
2G2

max

2Gmin
þ jN jGmaxBmax

Gmin
:

Based on the above analysis, we have the theorem. tu
According to Theorem 4, we can derive the time com-

plexity of Algorithm 3, and have the following corollary.

Corollary 1. Since Algorithm 3 calls Algorithm 1 once and
Algorithm 2 twice, it can be easily derived that the time com-
plexity of Algorithm 3 is OðjN j2Þ.

Theorem 5. For Algorithm 4, the maximum number of itera-
tions for UEn making an offloading strategy is

Pmax � jN j
3G2

max

2Gmin
þ jN j

2GmaxBmax

Gmin
: (55)

Proof. Compared with Algorithm 1, after obtaining the off-
loading strategies between UEs and ESs, Algorithm 4
then reschedules the tasks between the ESs and the cloud
to obtain the offloading strategies with less cost. Thus, in
Algorithm 4, UEn performs Algorithm 1 no more than
jN j times to make all offloading strategies of UEs. Based
on Theorem 4, we reach the conclusion. tu

6.2 Performance of Algorithms

Although performance evaluation is not the focus of game the-
ory, it is interesting to investigate the performance of potential

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1513

game-based algorithms. To analyze the performance of the
algorithms proposed in this paper, we investigate the price of
anarchy (PoA) in system-wide cost, which quantifies the effi-
ciency ratio of the worst-case Nash equilibrium strategy over
the optimal strategy obtained through the centralized meth-
ods [35]. In this paper, the system-wide cost of UEs is the total
cost of all UEn 2 N , i.e.,

PjN j
n¼1 Cn in Hi-EECC and

PjN j
n¼1 C

0
n in

Ho-EECC. InHi-EECC, PoA is defined as

PoA ¼
PjN j

n¼1 Cnð�n�nÞ
max�n�n

PjN j
n¼1 Cnð��n��nÞ

; (56)

where �n�n is an optimal offloading strategy of UEn obtained
from a centralized algorithm.

Theorem 6. In Hi-EECC, for the EECC game, PoA satisfies

0 � PoA �
PjN j

n¼1 minfCn;l; ~C
min
n;m ; Ĉmin

n gPjN j
n¼1 maxfCn;l; ~Cmax

n;m ; Ĉmax
n g

� 1; (57)

where

~Cmax
n;m ¼

PjN j
n¼1 gn

gn

fn

�
vn

~fm
þ dn

~rm

�
þ ð1� fnÞ

dns
0
n

~rm

!
;

(58)

Ĉmax
n ¼

PjN j
n¼1 gndn

gn~rm

�
fn þ ð1� fnÞs0n

�

þ fn

vn

f̂
þ dn

r̂

!
;

(59)

~Cmin
n;m ¼ fn

vn

~fm
þ dn

~rm

!
þ ð1� fnÞ

dns
0
n

~rm
; (60)

and

Ĉmin
n ¼ fn

vn

f̂
þ dn

~rm
þ dn

r̂

!
þ ð1� fnÞ

dns
0
n

~rm
:

(61)

Proof. Since �n�n is the optimal offloading strategy and ��n�
�
n is

one Nash equilibrium of the game, it is easily found that
0 � PoA � 1.

For UEn, the resources allocated by ESm are satisfied
as follows

gnPjN j
n¼1 gn

~fm � fn;m � gn

~fm
; (62)

gnPjN j
n¼1 gn

~rm � rn;m � gn

~rm
: (63)

Let fmin
n;m ¼ gn

~fm=
PjN j

n¼1 gn, f
max
n;m ¼ ~fm, r

min
n;m ¼ gn~rm=

PjN j
n¼1

gn, and rmax
n;m ¼ ~rm. Based on Equations (6), (9) and (18),

for UEn offloading its task to ESm, the cost of the UE is
satisfied, i.e.,

~Cn;m � fn

vn

fmin
n;m

þ dn

rmin
n;m

!
þ ð1� fnÞ

s0ndn
rmin
n;m

¼
PjN j

n¼1 gn

gn

fn

�
vn

~fm
þ dn

~rm

�
þ ð1� fnÞ

dns
0
n

~rm

!

¼ ~Cmax
n;m ;

(64)

and

~Cn;m 	 fn

vn

fmax
n;m

þ dn

rmax
n;m

!
þ ð1� fnÞ

s0ndn
rmax
n;m

¼ fn

vn

~fm
þ dn

~rm

!
þ ð1� fnÞ

dns
0
n

~rm

¼ ~Cmin
n;m :

(65)

For UEn offloading its task to the cloud, the cost of the UE
is satisfied, i.e.,

Ĉn � fn

vn

f̂
þ dn

rmin
n;m

þ dn

r̂

!
þ ð1� fnÞ

s0ndn
rmin
n;m

¼ fn

vn

f̂
þ dn

r̂

!
þ
PjN j

n gndn

gn~rm

�
fn þ ð1� fnÞs0n

�
¼ Ĉmax

n ;

(66)

and

Ĉn 	 fn

vn

f̂
þ dn

rmax
n;m

þ dn

r̂

!
þ ð1� fnÞ

s0ndn
rmax
n;m

¼ fn

vn

f̂
þ dn

~rm
þ dn

r̂

!
þ ð1� fnÞdns0n

~rm

¼ Ĉmin
n :

(67)

For UEn executing its task locally, the cost of the UE is
certain, i.e., Cn;l ¼ fnvn=fn þ ð1� fnÞsnvn=fn. Based on
the above, we obtain

XjN j
n¼1

Cnð�n�nÞ 	
XjN j
n

minfCn;l; ~C
min
n;m ; Ĉmin

n g; (68)

and

XjN j
n¼1

Cnð��n��nÞ �
XjN j
n

maxfCn;l; ~C
max
n;m ; Ĉmax

n g: (69)

Therefore, we have

PoA �
PjN j

n¼1 minfCn;l; ~C
min
n;m ; Ĉmin

n gPjN j
n¼1 maxfCn;l; ~Cmax

n;m ; Ĉmax
n g

: (70)

Thus, we have the conclusion. tu
In Ho-EECC, PoA is defined as

PoA ¼
PjN j

n¼1 C
0
nð�

0
n�
0
nÞ

max�n�n
PjN j

n¼1 C0nð��n��nÞ
; (71)

1514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

where �
0
n�
0
n is an optimal offloading strategy of UEn obtained

from a centralized algorithm.

Theorem 7. In Ho-EECC, for the EECC game, PoA satisfies

0 � PoA �
PjN j

n¼1 minfCn;l; ~C
min
n;m ; Ĉ0ngPjN j

n¼1 maxfCn;l; ~Cmax
n;m ; Ĉ0ng

� 1: (72)

Proof. Based on Equations (16), (17), and (19), in Ho-EECC,
the cost of an executed in the cloud is

Ĉ0n ¼ fn

vn

f̂
þ dn

r̂01
þ dn

r̂02

!
þ s0nð1� fnÞ

dn

r̂01
þ dn

r̂02

!
:

(73)

As shown in the proof of Theorem 6, we know that the
minimum cost of UEn responded to by ESm is ~Cmin

n;m .
Moreover, the maximum cost of an executed by ESm is
~Cmax
n;m . Therefore, we have

XjN j
n

C0nð�
0
n�
0
nÞ 	

XjN j
n

minfCn;l; ~C
min
n;m ; Ĉ0ng; (74)

and

XjN j
n

C0nð��n��nÞ �
XjN j
n

maxfCn;l; ~C
max
n;m ; Ĉ0ng: (75)

Based on the above inequalities, we obtain

0 � PoA �
PjN j

n minfCn;l; ~C
min
n;m ; Ĉ0ngPjN j

n maxfCn;l; ~Cmax
n;m ; Ĉ0ng

� 1:

Thus, we have the conclusion. tu

7 EXPERIMENTAL EVALUATION

In this section, extensive experiments with real-world data
are conducted to demonstrate the convergence and perfor-
mance of the proposed algorithms. The comparison between
the developed algorithms (i.e., COAHi and COAHo) is actu-
ally the comparison between Hi-EECC and Ho-EECC. The
scalability and applicability of Hi-EECC and Ho-EECC
under the influence of various factors are also comprehen-
sively studied. We present three important conclusions for
choosing specific computing architectures in the different
application scenario through the experimental analysis.

7.1 Parameter Configuration

In the experiments, we assume that there are six service
areas, i.e., jSj ¼ 6. UEs and ESs are randomly located in one
of the service areas. Different numbers of UEs and ESs are
generated to evaluate the proposed algorithms. Most
parameters used in the experiments are real-world values
obtained from other work. Specifically, the computing
capacity of UEn is randomly taken from f0:5; 0:8; 1g GHZ
[29], [36]. The computing power of ESm is randomly
assigned from f5; 6; 8; 9g GHz [37]. Furthermore, the com-
puting resource of the cloud is f̂ ¼ 10 GHz [29]. The com-
munication resource of ESm is ~rm ¼ 9:97R Mbps [38], where
R 2 ½5; 10� is a random integer variable and reflects the het-
erogeneity of different ESs. The communication resource of

the cloud is r̂ ¼ 99:7 Mbps. In Ho-EECC, without loss of
generality, let r̂01 ¼ r̂02 ¼ 1:52 Mbps [27]. In addition, sn, s

0
n,

and fn are randomly taken from f0:1; 0:3; 0:5; 0:7; 0:9g. gn is
randomly assigned from f1; 2; 3; 4; 5g.

To reflect the heterogeneity of UEs, we assume that UEs
can execute three kinds of tasks: facial recognition [39],
video game [40], and video transcoding [41]. Since it is diffi-
cult for us to directly obtain the workload (i.e., vn) of a task,
we introduce the processing density (represented by nn),
which is quantified by the number of cycles per bit [27]. The
number of CPU cycles required to complete a task can be
calculated through vn ¼ dnnn [27]. The processing densities
of the above tasks use the real-world measurement data,
i.e., facial recognition: 2339 cycles/bit [39]; video game :
2640 cycles/bit [40]; and video transcoding: 1000 cycles/bit
[41]. Moreover, the data size of a task is randomly assigned
from f1; 2; 3; 4; 5gMB.

7.2 Experimental Results and Analysis

7.2.1 The convergence of algorithms

Fig. 4 shows the average number of game rounds required
for Algorithm 1 to find a Nash equilibrium, and the average
number of waiting time slots needed for COAHi and
COAHo to determine an offloading strategy in the two com-
puting architectures. During the iteration process, the algo-
rithms allow only one UE to update its strategy at a time,
while other UEs are in a waiting state. In this paper, the
time required for UEn to determine an offloading strategy is
represented by the number of waiting time slots. In reality,
a time slot is very short and at the time scale of microsec-
onds [29]. Therefore, as shown in Figs. 4a and 4b, as the
number of UEs (i.e., N ¼ jN j) increases, the average num-
ber of waiting time slots increases. As shown in Fig. 4a, in
Hi-EECC, because the resources that UEs can obtain from
ESs are very limited, as the number of UEs increases, the
competition between UEs intensifies, so the number of
game rounds and waiting time slots increases rapidly. How-
ever, as shown in Fig. 4b, UEs can obtain sufficient resour-
ces from the cloud to meet their own demands in Ho-EECC.
Therefore, the number of game rounds does not change
with the increase in the number of UEs. Compared with Hi-
EECC, this is the reason why the average number of waiting
time slots in Ho-EECC is less. The explanation is proved
again by Fig. 5a. We can also know from the experiment
that the change in the number of ESs (i.e., M ¼ jMj) does
not affect the convergence of the algorithms, which is con-
sistent with Theorems 4 and 5.

Fig. 4. Average number of game rounds for obtaining a Nash equilibrium,
and average number of waiting time slots needed by UEs to determine
an offloading strategy in two computing architectures. (a) Hi-EECC.
(b) Ho-EECC.

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1515

7.2.2 The impact of N andM

Fig. 5a shows the number of UEs that execute applications
locally (i.e., Local: COAHi and Local: COAHo), upload tasks
to the ESs (i.e., ES: COAHi and ES: COAHo), and responded
by the cloud (i.e., Cloud: COAHi and Cloud: COAHo) in the
two computing architectures. The figure shows that as the
number of UEs increases, increasingly more UEs submit their
tasks to the cloud. In addition, in Hi-EECC, although ESs are
trying their best to satisfy more UEs, increasingly more UEs
still choose to perform tasks locally. Moreover, in Hi-EECC
and Ho-EECC, since the resources of ESs are limited, as the
resources of ESs are exhausted, the number of requests that
the ESs can respond to reaches the upper limit. A comparison
of the resource utilization rate of ESs between the two comput-
ing architectures is depicted in Fig. 5b, i.e., Rate: COAHi and
Rate: COAHo. The resource utilization rate of ESs refers to the
ratio of the number of ESs responding to UEs’ requests to the

total number of ESs, i.e.,
PjMj

m¼1 I
�PjN j

n¼1 ~�n;m 	 1
�
=jMj, where

If�g ¼ f0; 1g is an indicator function. If�g ¼ 1 when the input
parameter of the function is true. Otherwise, If�g ¼ 0. The
resource utilization rate of ESs can help select the appropriate
computing architecture in the different application scenario,
thereby reducing the overhead required to maintain the ESs
running. As shown in Fig. 5b, COAHi performs better when
N � 100, and COAHo performs better when N 	 200. More-
over, as shown in Figs. 6a and 6b, COAHi performs better
when N � 300, and COAHo performs better when N 	 500.
It can be seen from the above figures that low-latency data
transmission offsets the resource shortcomings of ESs.

However, the resources of ESs are unable to cope with the
large-scale user scenario. Based on the above discussions, we
can reach our first important conclusion. In terms of cost,
delay, and energy consumption of UEs, as well as the resource
utilization rate of ESs, Hi-EECC is more suitable for the small-
scale user scenario, while Ho-EECC is more suitable for the
large-scale user scenario.

7.2.3 The performance of algorithms

To evaluate the performance of COAHi, we use the following
five schemes as the baselines. (1) RanHi: UEs randomly deter-
mine an offloading decision. (2) ClHi: All UEs’ tasks are exe-
cuted by the cloud. (3) EsHi: All UEs request ESs to execute
their tasks. (4) LEsHi: UEs determine the offloading decision
between itself and ESs. (5) LClHi: All UEs request ESs to pro-
cess their tasks. The deadline unsatisfied tasks are further
uploaded to the cloud by the ESs. The difference between
EsHi and LClHi is in whether to upload the deadline unsatis-
fied tasks to the cloud. In Ho-EECC, we use the same base-
lines. However, the differences are that UEs must consider
their deadline when making a strategy, and UEs can directly
request the cloud. To distinguish the two computing architec-
tures, the relevant benchmarks are named RanHo, ClHo,
EsHo, LEsHo, and LClHo. It should be noted that when all
UEs can determine offloading decisions only between itself
and ESs, both LEsHi and LEsHo determine the decisions by
using Algorithm 1. Since the Nash equilibrium is not unique,
the strategies of LEsHi and LEsHo have some random differ-
ences in terms of cost, delay, and energy consumption of UEs.
Moreover, as mentioned above, the comparison between the

Fig. 6. Comparison between COAHi and COAHo in terms of cost
(a), and delay and energy consumption (b).

Fig. 5. Comparison between COAHi and COAHo in the number of tasks
executed by different entities (a), and resource utilization rate of ESs (b).

Fig. 7. Comparison between the proposed algorithms and baselines in terms of cost, delay, energy consumption, and the number of deadline
unsatisfied UEs in two computing architectures. (a)-(d) Hi-EECC. (e)-(h) Ho-EECC.

1516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

developed algorithms and the baselines is actually the com-
parison between computing architectures such as Hi-EECC,
Ho-EECC, EC, CC, and edge-cloud computing.

Fig. 7 compares the performance of the algorithms in the
different scenario in detail. As shown in Fig. 7, although algo-
rithms EsHi and ClHo perform better in terms of cost, delay,
and energy consumption, many UEs’ QoS demands cannot be
satisfied. The cost of ESs using different schemes is shown in
Fig. 8. It can be seen from the figures that COAHi and COAHo
perform better than the baselines. Thus, through the above
experiments, we find that the proposed algorithms perform
better in terms of the cost, delay, energy consumption, and
QoS demand of UEs. Moreover, compared with EC and CC,
EECC shows unique advantages. UEs can handle some real-
time tasks based on their own resources. ESs can provide UEs
with low-latency and low energy consumption services for
latency-sensitive tasks. The cloud can provide services for UEs
to process their computation-intensive tasks. The end, edge,
and cloud are complementary to one another and can more
flexibly adapt to various user requirements.

7.2.4 The impact of application type

As shown in Equations (3), (6), and (7), we know that vn

affects the computation delay of tasks. As shown in Equa-
tions (9), (10), and (12), we know that dn affects the communi-
cation delay of tasks. Based on the data size and workload,
we classify the application into communication-intensive
tasks and computation-intensive tasks. To better reflect the
effectiveness of the algorithms, and evaluate the adaptability
of two computing architectures to different application
types, we introduce two multipliers a and b to increase the
data size and workload of tasks, respectively. As shown in
Figs. 9a, 9b, and 9c, if the data size is expanded to a times the
original data size, the performance of COAHi gradually
becomes better than that of COAHo. As mentioned above,
Ho-EECC is more suitable for the large-scale user scenario.
When the user scale is fixed, the increase in the data size
directly prolongs the transmission delay of applications. The
long distance and low transmission rate between UEs and
the cloud weaken the advantage of Ho-EECC. As shown in
Fig. 9d, the UEs that originally initiated requests to the cloud
began to request ESs to perform their tasks. Based on the
above discussions, we can reach our second important con-
clusion. For communication-intensive tasks, the cost of UEs
in Hi-EECC is less than the cost of UEs in Ho-EECC. That is,
whether in the large-scale user scenario or small-scale user
scenario, we can conclude that Hi-EECC is a better choice for
communication-intensive tasks. The reason for this phenom-
enon is that the communication delay dominates the cost of
UEs. Obviously, uploading tasks to ESs closer to UEs is more
in linewith the UEs’ demands.

Fig. 9. Comparison between COAHi and COAHo in terms of cost (a), delay (b), energy consumption (c), and the number of UEs responded to by dif-
ferent entities (d) when a takes different values.

Fig. 8. Comparison of the cost of ESs between different algorithms.

Fig. 10. Comparison between COAHi and COAHo in terms of cost (a), delay (b), energy consumption (c), and the number of UEs responded to by dif-
ferent entities (d) when b takes different values.

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1517

As shown in Figs. 10a, 10b, and 10c, as the workload is
expanded to b times the original workload, we can see that
the performance of COAHi is better than that of COAHo in
the small-scale user scenario. However, as shown in
Figs. 10e, 10f, and 10g, it can be seen that the performance
of COAHo is better than that of COAHi in the large-scale
user scenario. Based on the above discussions, we can reach
our third important conclusion. For computation-intensive
tasks, we can conclude that Hi-EECC is a better choice for
UEs in the small-scale user scenario, and Ho-EECC is a bet-
ter choice for UEs in the large-scale user scenario. As shown
in Figs. 10d and 10h, with an increase in workload, UEs
tend to initiate requests to the cloud regardless of the com-
puting architectures. The reason for this phenomenon is
that computation delay dominates the cost of UEs. The
resources of ESs are unable to meet the demands of large-
scale users. Hence, we can again confirm that EECC can
improve the resource utilization of UEs, ESs, and the cloud
to better serve users with different demands.

8 CONCLUSION AND FUTURE WORK

In this paper, we construct a potential game for the EECC
environment, in which each UE selfishly minimizes its pay-
off, and investigate the computation offloading strategy opti-
mization for UEs in Hi-EECC and Ho-EECC. Accordingly,
we develop two potential game-based algorithms, i.e.,
COAHi and COAHo, to determine the best offloading strate-
gies for all UEs. The scalability and applicability of Hi-EECC
and Ho-EECC under the influence of various factors are also
comprehensively studied. We present three important con-
clusions for choosing specific computing architectures in the
different application scenario through the experimental anal-
ysis. The main conclusions are as follows: (1) In terms of cost,
delay, and energy consumption of UEs, as well as the
resource utilization rate of ESs, Hi-EECC is more suitable for
the small-scale user scenario, while Ho-EECC is more suit-
able for the large-scale user scenario. (2) For communication-
intensive tasks, whether in the large-scale or small-scale user
scenario, the cost of UEs in Hi-EECC is lower than the cost of
UEs in Ho-EECC; that is, Hi-EECC is a better choice for UEs.
(3) For computation-intensive tasks, Hi-EECC is a better
choice for UEs in the small-scale user scenario, andHo-EECC
is a better choice for UEs in the large-scale user scenario.

The assumption that ESs in the same service area are
homogeneous is a limitation of this paper, which is an issue
left for our future research. Moreover, the paper opensmany
research topics in EECC. In our future work, we will first
study the impact of mobility on the cost of UEs and the ser-
vice mode of EECC. The combination of Hi-EECC and Ho-
EECC is also an interesting directionworthy of investigation.

ACKNOWLEDGMENTS

We would like to express our gratitude to the associate edi-
tor and anonymous reviewers for their comments which are
very important to improve the quality of the manuscript.

REFERENCES

[1] C. Liu et al., “Coexe: An efficient co-execution architecture for real-
time neural network services,” in Proc. 57th ACM/IEEE Des. Auto-
mation Conf., 2020, pp. 1–6.

[2] C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud-edge-end in IoT: A blockchain-assisted collective
Q-learning approach,” IEEE Internet Things J., vol. 8, no. 3,
pp. 12694–12704, Aug. 2021.

[3] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian, “Computation off-
loading in multi-access edge computing: A multi-task learning
approach,” IEEE Trans. Mobile Comput., vol. 20, no. 9, pp. 2745–
2762, Sep. 2021.

[4] W. A. Simon, Y. M. Qureshi, M. Rios, A. Levisse, M. Zapater, and D.
Atienza, “BLADE: An in-cache computing architecture for edge
devices,” IEEETrans. Comput., vol. 69, no. 9, pp. 1349–1363, Sep. 2020.

[5] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service place-
ment for edge computing in dense small cell networks,” IEEE
Trans. Mobile Comput., vol. 20, no. 2, pp. 377–390, Feb. 2021.

[6] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo, “Mobility-aware and
delay-sensitive service provisioning in mobile edge-cloud
networks,” IEEE Trans. Mob. Comput., to be published, doi:
10.1109/TMC.2020.3006507.

[7] J. Cui, L. Wei, H. Zhong, J. Zhang, Y. Xu, and L. Liu, “Edge com-
puting in vanets-an efficient and privacy-preserving cooperative
downloading scheme,” IEEE J. Sel. Areas Commun., vol. 38, no. 6,
pp. 1191–1204, Jun. 2020.

[8] J. Hu, K. Li, C. Liu, J. Chen, and K. Li, “Coalition formation for
deadline-constrained resource procurement in cloud computing,”
J. Parallel Distrib. Comput., vol. 149, pp. 1–12, 2021.

[9] G. Liu, Z. Xiao, G. Tan, K. Li, and A. T. Chronopoulos, “Game the-
ory-based optimization of distributed idle computing resources in
cloud environments,” Theor. Comput. Sci., vol. 806, pp. 468–488, 2020.

[10] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-
based real-time video analytics,” in Proc. 39th IEEE Conf. Comput.
Commun., 2020, pp. 257–266.

[11] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol.,
vol. 68, no. 5, pp. 5031–5044, May 2019.

[12] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud
computing for IoT systems: A computation offloading game,”
IEEE Internet Things J., vol. 5, no. 4, pp. 3246–3257, Aug. 2018.

[13] M. Du, Y. Wang, K. Ye, and C. Xu, “Algorithmics of cost-driven
computation offloading in the edge-cloud environment,” IEEE
Trans. Comput., vol. 69, no. 10, pp. 1519–1532, Oct. 2020.

[14] R. Fantacci and B. Picano, “Performance analysis of a delay con-
strained data offloading scheme in an integrated cloud-fog-edge
computing system,” IEEE Trans. Veh. Technol., vol. 69, no. 10,
pp. 12 004–12 014, Oct. 2020.

[15] T. Wang, D. Zhao, S. Cai, W. Jia, and A. Liu, “Bidirectional predic-
tion-based underwater data collection protocol for end-edge-
cloud orchestrated system,” IEEE Trans. Ind. Informat., vol. 16, no.
7, pp. 4791–4799, Jul. 2020.

[16] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architec-
ture for mobile computing,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun., 2016, pp. 1–9.

[17] M. Ejaz, T. Kumar, M. Ylianttila, and E. Harjula, “Performance
and efficiency optimization of multi-layer IoT edge architecture,”
in Proc. 2nd 6G Wireless Summit, 2020, pp. 1–5.

[18] Y. Wu, K. Ni, C. Zhang, L. P. Qian, and D. H. K. Tsang, “Noma-
assisted multi-access mobile edge computing: A joint optimiza-
tion of computation offloading and time allocation,” IEEE Trans.
Veh. Technol., vol. 67, no. 12, pp. 12 244–12 258, Dec. 2018.

[19] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans.
Wirel. Commun., vol. 16, no. 3, pp. 1397–1411,Mar. 2017.

[20] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrainedmobile edge computing in small-cell networks,”
IEEE/ACMTrans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[21] J. Hu, K. Li, C. Liu, and K. Li, “Game-based task offloading of
multiple mobile devices with QoS in mobile edge computing sys-
tems of limited computation capacity,” ACM Trans. Embed. Com-
put. Syst., vol. 19, no. 4, pp. 29:1–29:21, 2020.

[22] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop
cooperative computation offloading for industrial iot-edge-cloud
computing environments,” IEEE Trans. Parallel Distrib. Syst., vol.
30, no. 12, pp. 2759–2774, Dec. 2019.

[23] K. Peng,H.Hualong, S.Wan, andV. Leung, “End-edge-cloud collab-
orative computation offloading for multiple mobile users in hetero-
geneous edge-server environment,” Wireless Netw., pp. 1–12, 2020
[Online]. Available: https://doi.org/10.1007/s11276-020-02385-1.

1518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

http://dx.doi.org/10.1109/TMC.2020.3006507
https://doi.org/10.1007/s11276-020-02385-1

[24] C. Sun et al., “Task offloading for end-edge-cloud orchestrated
computing in mobile networks,” in Proc. IEEE Wireless Commun.
Netw. Conf., 2020, pp. 1–6.

[25] P. Cong, G. Xu, T. Wei, and K. Li, “A survey of profit optimization
techniques for cloud providers,” ACM Comput. Surv., vol. 53,
no. 2, pp. 26:1–26:35, 2020.

[26] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[27] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic
resource and task allocation for energy minimization in mobile
cloud systems,” IEEE J. Sel. Areas Commun., vol. 33, no. 12,
pp. 2510–2523, Dec. 2015.

[28] J. L. D. Neto, S. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and
S. Secci, “ULOOF: A user level online offloading framework for
mobile edge computing,” IEEE Trans. Mob. Comput., vol. 17,
no. 11, pp. 2660–2674, Nov. 2018.

[29] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[30] W. Zhang, Y. Wen, K. Guan, D. C. Kilper, H. Luo, and D. O. Wu,
“Energy-optimal mobile cloud computing under stochastic wire-
less channel,” IEEE Trans. Wirel. Commun., vol. 12, no. 9, pp. 4569–
4581, Sep. 2013.

[31] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao,
“Heterogeneous edge offloading with incomplete information: A
minority game approach,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 9, pp. 2139–2154, Sep. 2020.

[32] D. Monderer and L. S. Shapley, “Potential games,” Games Eco-
nomic Behav., vol. 14, no. 1, pp. 124–143, 1996.

[33] J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control
and potential games,” IEEE Trans. Syst. Man, Cybern. B, vol. 39,
no. 6, pp. 1393–1407, Dec. 2009.

[34] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[35] T. Roughgarden, Selfish Routing and the Price of Anarchy. Cam-
bridge, MA, USA: MIT Press, 2005.

[36] O. Mu~noz, A. Pascual-Iserte , and J. Vidal, “Optimization of radio
and computational resources for energy efficiency in latency-con-
strained application offloading,” IEEE Trans. Veh. Technol., vol. 64,
no. 10, pp. 4738–4755, Oct. 2015.

[37] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. B. Hein-
zelman, “Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture,” in Proc. IEEE Symp.
Comput. Commun., 2012, pp. 59–66.

[38] J. McChesney, N. Wang, A. Tanwer, E. de Lara, and B. Varghese,
“DeFog: Fog computing benchmarks,” in Proc. 4th ACM/IEEE
Symp. Edge Comput., S. Chen, R. Onishi, G. Ananthanarayanan,
and Q. Li, Eds., 2019, pp. 47–58.

[39] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” inProc. IEEE INFOCOM, 2012, pp. 945–953.

[40] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. 8th ACM Int. Conf. Mobile Syst. Appl.
Services, 2010, pp. 49–62.

[41] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Processor-net-
work speed scaling for energy-delay tradeoff in smartphone
applications,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1647–
1660, Jun. 2016.

Yan Ding (Student Member, IEEE) received the
BS degree in software engineering from the North
University of China, in 2014, and the MS degree in
computer application technology from Xinjiang
University, Urumqi, China, in 2018. He is currently
working toward the PhD degree at the Hunan Uni-
versity, China. His research interests include
mobile edge computing, data analysis, machine
learning, and network security. He has published
four papers in journals and conference, including
IEEE Transactions on Industrial Informatics, Jour-

nal of Parallel and Distributed Computing, Computers & Security, and the
17th IEEE International Symposium on Parallel and Distributed Process-
ing with Applications (IEEE ISPA 2019). He obtained the Outstanding
Paper Award in IEEE ISPA 2019. He is a student member of CCF.

Kenli Li (Senior Member, IEEE) received the
PhD degree in computer science from the Huaz-
hong University of Science and Technology,
China, in 2003. He was a visiting scholar with the
University of Illinois at Urbana-Champaign from
2004 to 2005. He is currently a full professor of
computer science and technology with Hunan
University, the dean of the College of Information
Sciences and Engineering, Hunan University, and
the director in the National Supercomputing Cen-
ter in Changsha. His major research interests

include parallel computing, high-performance computing, and grid and
cloud computing. He has published more than 160 research papers in
international conferences and journals such as IEEE Transactions on
Computers, IEEE Transactions on Parallel and Distributed Systems,
Journal of Parallel and Distributed Computing, ICPP, ICDCS, etc. He
serves on the editorial board of the IEEE Transactions on Computers.
He is an outstanding member of CCF.

Chubo Liu (Member, IEEE) received the BS and
PhD degrees in computer science and technol-
ogy from Hunan University, China, in 2011 and
2016, respectively. He is currently an associate
professor of computer science and technology
with Hunan University. His research interests
include game theory, approximation and random-
ized algorithms, cloud and edge computing. He
has published over 20 papers in journals and con-
ferences such as the IEEE Transactions on Par-
allel and Distributed Systems, IEEE Transactions

on Cloud Computing, IEEE Transactions on Mobile Computing, IEEE
Transactions on Industrial Informatics, IEEE Internet of Things Journal,
ACM Transactions on Modeling and Performance Evaluation of Comput-
ing Systems, Theoretical Computer Science, ICPADS, HPCC, and NPC.
He won the Best Paper Award in IFIP NPC 2019 and the IEEE TCSC
Early Career Researcher (ECR) Award in 2019. He is a member of CCF.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Uni-
versity of New York. He is also a national distin-
guished professor with Hunan University, China.
His current research interests include cloud com-
puting, fog computing andmobile edge computing,
energy-efficient computing and communication,
embedded systems and cyber-physical systems,
heterogeneous computing systems, big data com-
puting, high-performance computing, CPU-GPU
hybrid and cooperative computing, computer

architectures and systems, computer networking, machine learning, intel-
ligent and soft computing. He has authored or coauthored nearly 800
journal articles, book chapters, and refereed conference papers, and has
received several best paper awards. He holds more than 60 patents
announced or authorized by the Chinese National Intellectual Property
Administration. He is among the world’s top 10 most influential scientists
in distributed computing based on a composite indicator of Scopus citation
database. He has chaired many international conferences. He is currently
an associate editor of the ACMComputingSurveys andCCF Transactions
on High PerformanceComputing. He has served on the editorial boards of
IEEE Transactions on Parallel and Distributed Systems, IEEE Transac-
tions on Computers, IEEE Transactions on Cloud Computing, IEEE
Transactions on Services Computing, and IEEE Transactions on Sustain-
able Computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

DING ETAL.: POTENTIALGAME THEORETIC APPROACH TO COMPUTATION OFFLOADING STRATEGYOPTIMIZATION IN... 1519

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

