
Liquid: A Scalable Deduplication File System
for Virtual Machine Images

Xun Zhao, Yang Zhang, Yongwei Wu, Member, IEEE, Kang Chen, Jinlei Jiang, Member, IEEE,
and Keqin Li, Senior Member, IEEE

Abstract—A virtual machine (VM) has been serving as a crucial component in cloud computing with its rich set of convenient
features. The high overhead of a VM has been well addressed by hardware support such as Intel virtualization technology (VT),
and by improvement in recent hypervisor implementation such as Xen, KVM, etc. However, the high demand on VM image storage
remains a challenging problem. Existing systems have made efforts to reduce VM image storage consumption by means of
deduplication within a storage area network (SAN) cluster. Nevertheless, an SAN cannot satisfy the increasing demand of large-scale
VM hosting for cloud computing because of its cost limitation. In this paper, we propose Liquid, a scalable deduplication file system that
has been particularly designed for large-scale VM deployment. Its design provides fast VM deployment with peer-to-peer (P2P) data
transfer and low storage consumption by means of deduplication on VM images. It also provides a comprehensive set of storage
features including instant cloning for VM images, on-demand fetching through a network, and caching with local disks by copy-on-read
techniques. Experiments show that Liquid’s features perform well and introduce minor performance overhead.
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1 INTRODUCTION

CLOUD computing is widely considered as potentially
the next dominant technology in IT industry. It offers

simplified system maintenance and scalable resource
management with Virtual Machines (VMs) [15]. As a
fundamental technology of cloud computing, VM has
been a hot research topic in recent years. The high overhead
of virtualization has been well addressed by hardware
advancement in CPU industry, and by software imple-
mentation improvement in hypervisors themselves.

Typically in cloud computing platforms, new VMs are
created based on template images. In most cases, only a
limited number of combinations of OS and software
applications will be used. Preparing template images for
such combinations would be enough for most users’ needs,
which is a common practice adopted by cloud computing
pioneers like Amazon EC2 [1].

The growing number of VMs being deployed leads to
increased burden on the underlying storage systems. To
ensure that advanced VM features like migration and high
availability could work fluently, VM images need to be
accessible from more than one host machine. This leads to
the common practice of storing VM images on shared
network storage such as network-attached storage (NAS) and

SAN, while the host machine’s direct-attached storage (DAS)
is only used for ephemeral storage. The problem of such an
approach is that network storage systems usually cost several
times more than DAS, and they have high demand on
network IO performance. Moreover, the critical need to store
thousands of VM images would be an extremely challenging
problem for network storage systems because of the signifi-
cant scale of storage consumption.

Studies have shown that the storage consumption issue
brought by a large number of VM images could be
addressed by deduplication techniques [17], [20], which
have been extensively used in archival systems [32].
Existing systems have made efforts to address this issue
on a SAN cluster by deduplication [10]. It is operated in a
decentralized fashion, such that deduplication is done at
the host machines running VMs, and unique data blocks
are then stored on the SAN cluster. However, SANs are
very expensive, and thus difficult to satisfy the ever-
growing need of VM image storage in the future.

In this paper, we have proposed Liquid, which is a
distributed file system particularly designed to simulta-
neously address the above problems faced in large-scale
VM deployment. Its client side breaks VM images into
small data blocks, references them by their fingerprints
(calculated during a deduplication process), and uses
deduplication techniques to avoid storing redundant data
blocks. The deduplicated data blocks are then saved to a
group of data servers, and the set of fingerprints is saved to
a meta server. When a VM image is to be accessed, a Liquid
client downloads its set of fingerprints from the meta
server, fetches data blocks from data servers and peer
clients in a P2P fashion, and exports an integrated VM
image layout to hypervisors. Liquid’s P2P data block
transfer protocol reduces requests directly issued to data
servers, uses DAS on each host machine more effectively,
and guarantees high scalability of the whole system.
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In order to support fast VM deployment, Liquid provides
features such as fast VM image cloning and on-demand data
block fetching. This allows creating a new VM from template
image in a few milliseconds, and reduce network IO by only
fetching data blocks when necessary. The copy-on-read
technique is used to reduce network IO by caching previously
accessed data blocks on DAS. This also results in the benefit of
high availability of data blocks for P2P transfer.

The main contributions of this paper are summarized
as follows.

1. We propose a deduplication file system with low
storage consumption and high-performance IO,
which satisfies the requirements of VM hosting.

2. We provide a P2P data block sharing scheme, which
is highly scalable for large-scale deployment of VM
images.

3. We develop additional techniques for reducing
network IO and expediting VM creation, including
fast VM image cloning, on-demand data block
fetching, and copy-on-read, together with fault toler-
ance techniques for high availability.

Therefore, Liquid is a file system which achieves good
performance in handling multiple challenges of VM
creation.

The rest of this paper is organized as follows. Section 2
provides background information. Section 3 presents the
design and implementation of Liquid. Section 4 evaluates
the performance of Liquid. Section 5 reviews related work.
Section 6 concludes the paper.

2 BACKGROUND

2.1 VM Image Formats
There are two basic formats for VM images. The raw image
format is simply a byte-by-byte copying of physical disk’s
content into a regular file (or a set of regular files). The
benefit of raw format images is that they have better IO
performance because their byte-by-byte mapping is
straightforward. However, raw format images are gener-
ally very large in size, since they contain all contents in the
physical disks, even including those blocks which never
really get used.

The other one is the sparse image format. Instead of simply
doing a byte-by-byte copy, the sparse image format
constructs a complex mapping between blocks in physical
disks and data blocks in VM images. For special blocks,
such as those containing only zero bytes, a special mark is
added on the block mapping, so that the blocks do not need
to be stored, since their content could be easily regenerated
when necessary. This will help reduce the size of newly
created VM images, since most blocks inside the images
would never be used, which only contain zero bytes, and
hence, do not need to be stored. Manipulations on the block
mapping and a VM image bring advanced features such as
snapshotting, copy-on-write images [22], etc. However, the
block mapping in sparse format also results in worse
performance of IO compared with raw images. Interpreting
the block mapping introduces additional overhead, and it
generally breaks sequential IO issued by hypervisors

into random IO on VM images, which significantly impairs
IO performance.

Both formats are widely used in hypervisors such as
Xen, KVM, VirtualBox, etc. All these hypervisors support
raw format natively. Xen and KVM support the qcow2
sparse format, which has two levels of block mapping and a
block size of 256 KB. VirtualBox supports the vdi sparse
format, which has one level of block mapping and a coarser
granularity of data block size at 1 MB.

2.2 Deduplication Techniques
Data deduplication is a specialized data compression tech-
nique for eliminating duplicate copies of repeating data [8].
It aims at improving storage utilization. In the process of
deduplication, unique blocks of data are usually identified
by an analyzed fingerprint from their content. Whenever
the fingerprint of a data block is calculated, it is compared
with a stored fingerprint database to check for a match. This
data block will be defined as a redundant data block, if an
identical fingerprint is found. A redundant data block is
replaced with a reference to the stored data block, instead
of storing the same content multiple times. This technique
will be highly effective when the original data set is
redundant. For archival systems, research has shown that
deduplication could be more effective than conventional
compression tools [20].

The basic unit for deduplication could be a whole file,
or sections inside a file. For the latter case, there are two
methods to break a file into sections, namely, fixed size
chunking and variable size chunking [32]. The fixed size
chunking method splits the original file into blocks of the
same size (except the last block). The variable size chunking
method adopts a more complicated scheme, by calculating
Rabin fingerprint [5] of a sliding window on file content,
and detects more natural boundaries inside the file.
Compared with variable size chunking, fixed size chunk-
ing will have better read performance, but it cannot
handle non-aligned insertion in files effectively. Variable
size chunking has been widely applied in archival
systems, which deals with data that are rarely accessed
[32]. For VM images, research has shown that fixed size
chunking is good enough in measure of deduplication
ratio [17], [20].

3 DESIGN AND IMPLEMENTATION

3.1 Assumptions
Here are a few assumptions for the VM images and their
usage when Liquid is designed.

1. A disk image will only be attached to at most one
running VM at any given time.

2. The disk images are mainly used to store OS and
application files. User generated data could be
stored directly into the disk image, but it is
suggested that large pieces of user data should be
stored into other storage systems, such as SAN.
Temporary data could be saved into ephemeral disk
images on DAS.
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Assumption 1 is straightforward, as in physical world,
one hard drive cannot be attached to multiple machines at
the same time. Assumption 2 is aimed at achieving higher
deduplication ratio and better IO performance for tempo-
rary data [30].

3.2 System Architecture
Liquid consists of three components, i.e., a single meta
server with hot backup, multiple data servers, and
multiple clients (see Fig. 1). Each of these components is
typically a commodity Linux machine running a user-level
service process.

VM images are split into fixed size data blocks. Each
data block is identified by its unique fingerprint, which is
calculated during deduplication process. Liquid represents
a VM image via a sequence of fingerprints which refer to
the data blocks inside the VM image.

The meta server maintains information of file system
layout. This includes file system namespace, fingerprint
of data blocks in VM images, mapping from fingerprints
to data servers, and reference count for each data block.
To ensure high availability, the meta server is mirrored to
a hot backup shadow meta server.

The data servers are in charge of managing data blocks
in VM images. They are organized in a distributed hash
table (DHT) [29] fashion, and governed by the meta server.
Each data server is assigned a range in the fingerprint space
by the meta server. The meta server periodically checks the
health of data servers, and issues data migration or
replication instructions to them when necessary.

A Liquid client provides a POSIX compatible file system
interface via the FUSE [4] toolkit. It acts as a transparent
layer between hypervisors and the deduplicated data
blocks stored in Liquid. The client is a crucial component,
because it is responsible for providing deduplication on
VM images, P2P sharing of data blocks, and features like
fast cloning. When starting a new VM, client side of Liquid
file system fetches VM image meta info and data blocks
from the meta server, data servers and peer clients, and
provides image content to hypervisors. After the shutting
down of VMs, the client side uploads modified metadata

to meta server, and pushes new data blocks to data servers,
to make sure that the other client nodes can access the latest
version of image files.

Liquid offers fault tolerance by mirroring the meta
server, and by replication on stored data blocks. When the
meta server crashes, the backup meta server will take over
and ensure functionality of the whole system. Replicas of
data blocks are stored across data servers, thus crashing a
few data servers will not impair the whole system.

3.3 Deduplication in Liquid

3.3.1 Fixed Size Chunking
Liquid chooses fixed size chunking instead of variable size
chunking. This decision is made based on the observation
that most x86 OS use a block size of 4 KB for file systems on
hard disks. Fixed size chunking applies well to this
situation since all files stored in VM images will be aligned
on disk block boundaries. Moreover, since OS and software
application data are mostly read-only, they will not be
modified once written into a VM image.

The main advantage of fixed size chunking is its
simplicity. Storing data blocks would be easy if they have
the same size, because mapping from file offset to data
block could be done with simple calculations. Previous
study [17] has shown that fixed size chunking for VM
images performs well in measure of deduplication ratio.

3.3.2 Block Size Choice
Block size is a balancing factor which is very hard to
choose, since it has great impact on both deduplication
ratio and IO performance. Choosing a smaller block size
will lead to higher deduplication ratio, because modifica-
tions on the VM images will result in smaller amount of
additional data to be stored. On the other hand, smaller
block size leads to more data blocks to be analyzed. When
block size is too small, the sheer number of data blocks will
incur significant management overhead, which impairs IO
performance greatly. Moreover, smaller block size will
result in more random seeks when accessing a VM image,
which is also not tolerable.

Choosing block size smaller than 4 KB makes little sense
because most OS align files on 4 KB boundaries. A smaller
block size will not be likely to achieve higher deduplication
ratio. A large block size is not preferable either, since it will
reduce deduplication ratio, although the IO performance
will be much better than a small block size.

Liquid is compiled with block size as a parameter. This
makes it more adaptive to choose different block size under
different situation. Based on our experience, it is advised to
use a multiplication of 4 KB between 256 KB and 1 MB to
achieve good balance between IO performance and
deduplication ratio.

3.3.3 Optimizations on Fingerprint Calculation
Deduplication systems usually rely on comparison of data
block fingerprints to check for redundancy. The fingerprint
is a collision-resistant hash value calculated from data
block contents. MD5 [26] and SHA-1 [12] are two cryptog-
raphy hash functions frequently used for this purpose.
The probability of fingerprint collision is extremely small,

Fig. 1. Liquid architecture.
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many orders of magnitude smaller than hardware error
rates [25]. So we could safely assume that two data blocks
are identical when they have the same fingerprint.

The calculation of fingerprint is relatively expensive. It
is a major bottleneck for real time deduplication. To avoid
such expensive fingerprint calculations while a VM image
is being modified, Liquid delays fingerprint calculation for
recently modified data blocks, runs deduplication lazily
only when it is necessary.

The client side of Liquid file system maintains a shared
cache, which contains recently accessed data blocks. Data
blocks in a shared cache are read-only and shared among
all VM images currently opened. When being requested for
a data block, Liquid first tries to look it up in a shared
cache. A cache miss will result in the requested data block
being loaded into the shared cache. When the shared cache
is filled up, cached data blocks are replaced using the least
recently used (LRU) [9] policy. This layer of caching
mechanism improves reading performance of VM images
and ensures smooth operation of VMs.

Another portion of memory is used by the client side of
Liquid file system as private cache, which contains data blocks
that are only accessible from individual VM images. Private
cache is used to hold modified data blocks, and delay
fingerprint calculation on them. When a data block is
modified, it is ejected from the shared cache if present, added
to the private cache, and assigned a randomly generated
private fingerprint instead of calculating a new fingerprint on-
the-fly. This modified data block will then be referred to by the
private fingerprint, until it is ejected from the private cache.
The private fingerprint differs from normal fingerprint only
by a bit flag, and part of it is generated from an increasing
globally unique number, which guarantees that no collision
will occur. The modified data block will be ejected from
private cache when a hypervisor issues a POSIX flush()
request, or the private cache becomes full and chooses to eject
it based upon the LRU policy. Only then will the modified
data block’s fingerprint be calculated. This layer of caching
mechanism improves writing performance of VM images and
avoids repeated invalid fingerprint calculation to ensure the
effectiveness of deduplication.

In order to speed up a deduplication process, Liquid
uses multiple threads for fingerprint calculation. One of the
concurrent threads calculates the fingerprint for one data
block at one time, so multiple threads will process different
data blocks currently. When ejecting modified data blocks
from private cache, instead of ejecting a single element as in
conventional LRU implementations, Liquid ejects multiple
data blocks in one round. The ejected data blocks are
appended into a queue, and analyzed by multiple finger-
print calculation threads. With this approach, we achieved
linear speedup by increasing the number of fingerprint
calculation threads, until the memory bandwidth is
reached. Since fingerprint calculation is CPU intensive,
and would probably contend with hypervisors, it is also
possible to do fingerprint calculation on GPU instead of on
CPU [18].

Based on our experience, 256 MB of shared cache and
256 MB of private cache would be sufficient for most cases.
A group of four fingerprint calculation threads will
provide good IO performance.

3.3.4 Storage for Data Blocks
Deduplication based on fixed size chunking leads to
numerous data blocks to be stored. One solution is to store
them directly into a local file system, as individual files.
This approach will lead to additional management over-
head in a local file system. Even though file systems such as
ReiserFS [6] and XFS [7] have been designed to be friendly
to small files, there will still be overhead on the frequent
open(), close() syscalls and Linux kernel vnode layer.
Moreover, most Linux file system implementations use
linked lists to store meta data of files under a directory [21],
so file look-up will have a time complexity of OðnÞ.

An alternative solution would be combining multiple small
data blocks together into a single file, and managing them
within the file. Storing data blocks into a database system
would be one such solution, but the complex transaction logic
of database systems incurs unnecessary overhead.

Liquid implements its own storage module for data
blocks. Data blocks are split into groups according to their
fingerprints. Three files are created for each group, i.e., an
extent file containing all the data blocks’ content, an index
file mapping a fingerprint to corresponding data block’s
offset and reference count, and a bitmap file indicating if
certain slot in the extent file is valid.

The bitmap file and index file are small enough to be
loaded into memory. For example, with 256 KB data block
size, and 1 TB size of unique data blocks, we will only have
an index file size of 80 MB, and a bitmap file size of 512 KB.
As shown in Fig. 2, look-up by fingerprint could get the
block’s address with hashing, and the whole time com-
plexity isOð1Þ. Deleting a data block is as simple as flipping
a bit flag in the bitmap file. When inserting a new data
block, Liquid first seeks for unused slots by checking the
bitmap file, and reuses any invalid slot. If no reusable slot is
found, a new slot is appended to accommodate the data
block. After a new data block is inserted, its corresponding
bit flag in the bitmap file will be set, indicating the slot to be
under use. Liquid borrows much from dynamic memory
allocation algorithms, and uses a free list to track unused
slots with Oð1Þ time complexity.

3.4 File System Layout
All file system meta data are stored on the meta server.
Each VM image’s meta data are stored in the meta server’s

Fig. 2. Process of look-up by fingerprint.
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local file system as individual files, and organized in a
conventional file system tree. User-level applications are
provided to fetch VM meta data files stored on the meta
server, or to publish a newly created VM image by pushing
its meta data to the meta server.

The client side of Liquid file system could cache portions
of file system meta data for fast accesses. For most cases,
only meta data of a single VM image or a subdirectory
containing VM images will be cached on client side. Liquid
follows the common practice in source code management
systems, where a client modifies a local copy of portions of
the whole project, and publishes the modification to others
by committing to a central repository. A Liquid client
fetches portions of file system meta data from the meta
server, which contains directory listing, file attributes, and
set of data block fingerprints needed by the VM image
being accessed. After meta data are prepared, a Liquid
client then fetches data blocks from data servers and from
peer client nodes (see Section 3.5.2 for details). Note that
only data blocks not present on local cache will be fetched.
When a VM is stopped, modified meta data and data blocks
will be pushed back to the meta server and data servers,
which ensures that the modification on the VM image is
visible to other client nodes.

Locking is provided to ensure the Assumption 1 given in
Section 3.1 not being validated. In order to publish new
versions of a VM image, a client needs to hold the edit token
for that VM image. The edit token is transferred to a client
node where the VM image is being modified, and returned
to the meta server after modifications on the VM image are
pushed back. Failure to acquire the edit token indicates that
the VM image is currently being used by some VM running
on a client node. As stated in Assumption 1, under this
situation, the VM image cannot be used by another VM.

3.5 Communication among Components

3.5.1 Heartbeat Protocol
The meta server in Liquid is in charge of managing all data
servers. It exchanges a regular heartbeat message with each
data server, in order to keep an up to date vision of their
health status.

The meta server exchanges heartbeat messages with
data servers in a round-robin fashion. This approach will
be slow to detect failed data servers when there are many
data servers. To speedup failure detection, whenever a data
server or client encounters connection problem with another
data server, it will send an error signal to the meta server. A
dedicated background daemon thread will immediately send
a heartbeat message to the problematic data server and
determines if it is alive. This mechanism ensures that failures
are detected and handled at an early stage. The round-robin
approach is still necessary since it could detect failed data
servers even if no one is communicating with them.

3.5.2 P2P Data Block Sharing
One advantage of Liquid is its P2P data block sharing
scheme. Liquid alleviates burden on data servers by
sharing data blocks among all client nodes in a peer-to-
peer fashion, eliminating network IO bottlenecks. However,
existing peer-to-peer distribution protocol such as BitTorrent
[2] will not perform well in this case because of the sheer

number of data blocks and corresponding meta data tracking
overhead. Moreover, existing protocols do not utilize
deduplication info available for VM images. Liquid imple-
ments its own peer-to-peer distribution protocol with
inspiration from BitTorrent protocol. Each client node or a
data server is a valid data block provider, and publishes a
Bloom filter [3] where the fingerprints of all their data blocks
are compacted into.

A Bloom filter uses an array ofm bits, all set to 0 initially,
to represent the existence information of n fingerprints. k
different hash functions must also be defined, each of
which maps a fingerprint to one of the m array positions
randomly with a uniform distribution. When adding a new
fingerprint into the Bloom filter, the k hash functions are
used to map the new fingerprint into k bits in the bit vector,
which will be set as 1 to indicate its existence. To query for a
fingerprint, we feed it to each of the k hash functions to get
k array positions. If any of the bits at these positions is 0, the
element is definitely not in the set; otherwise, if all are 1,
then either the element is in the set, or the bits have been to
1 by chance during the insertion of other elements. An
example is given in Fig. 3, representing the set x; y; z. The
olid, dashed, and dotted arrows show the positions in the
bit array that each set element is mapped to. The element w
is not in the set x; y; z, because it hashes to one bit-array
position containing 0.

Bloom filters have false positives. According to [3], the
probability of false positive is given as

1� 1� 1

m

� �kn !k

’ 1� e�knm
� �k

: (1)

For the case of 256 KB block size, 40 GB unique data blocks,
4 hash functions in Bloom filter, and a constraint of less than
1 percent false positive rate, we could calculate that the
Bloom filter should contain at least around 1, 724, 000 bits,
which is about 210 KB in size. In practice, we choose a
Bloom filter size of 256 KB.

Each client maintains connections to a set of peer clients
tracked by the meta server, and periodically updates its
copy of peer clients’ Bloom filters. When fetching a data
block by its fingerprint, it checks existence of the finger-
print among peer clients’ Bloom filters in a random order,
and tries to fetch the data block from a peer if its Bloom
filter contains the requested fingerprint. If the data block is
not found among peers, the client will go back to fetch the
data block from data servers. Checking peers and data
servers in a random order eliminates the possibility of

Fig. 3. Example of a Bloom filter [3].
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turning them into hot spots, and brings little additional cost
because of its simplicity.

3.5.3 On-Demand Data Block Fetching
Liquid uses the copy-on-read technique to bring data
blocks from data servers and peer clients to local cache on
demand as they are being accessed by a VM. This technique
allows booting a VM even if the data blocks in the VM
image have not been all fetched into local cache, which
brings significant speedup for VM boot up process.
Moreover, since only the accessed portion of data blocks
are fetched, network bandwidth consumption is kept at a
low rate, which is way more efficient than the approach of
fetching all data blocks into local cache and then booting
the VM.

However, on-demand fetching has a relatively low read
performance compared with fully cached VM images. This
is because a cache miss will result in an expensive RPC call
for fetching the data block being requested. This incurs
several times longer IO delay compared with local disk IO.
However, this problem will not impair IO performance
greatly, since only the first access to such data blocks will
affect IO performance. As the frequently used data blocks
are fetched, IO performance will return to the normal level.

3.6 Fast Cloning for VM Images
The common practice for creating a new VM is by copying
from a template VM image. Most VM images are large,
with sizes of several GB. Copying such large images byte-
by-byte would be time consuming. Liquid provides an
efficient solution to address this problem by means of fast
cloning for VM images.

The VM disk images, as seen by Liquid, are represented by
a meta data file containing references to data blocks. Simply by
copying the meta data file and updating reference counting in
data block storage, we could achieve cloning of a VM image.
Since the underlying data block storage is a content address-
able storage [25], the cloned VM image is by nature a copy-on-
write product, which means that modification on the cloned
image will not affect the original image. Due to the small sizes
of meta data, VM images could be cloned in several
milliseconds in the users’ view.

3.7 Fault Tolerance
Liquid provides fault tolerance through data replication,
data migration, and hot backup of the meta server.

Data blocks are stored in two replicas, in case some data
server crashes. When the meta server detects failure of a
data server, it immediately contacts other data servers
containing replicated data blocks, and sends instructions to

create new replicas. Most data blocks have a replication
count of more than two, since they also exist on multiple
client nodes. Even if all data servers crash, those blocks are
still available through the P2P block sharing protocol.

When a data server is planned to be offline, its data
blocks could be migrated to other data servers. This is done
by simple copying the extent files to other data servers, and
merging with existing extent files on destination data
servers. Taking a data server offline with planning enables
Liquid to handle re-replication work gracefully.

The meta server is a critical component in Liquid. It
achieves high availability with a hot backup shadow meta
server. Every meta data mutation is performed on both
meta servers to ensure a consistent file system view. The
shadow meta server exchanges heartbeat messages with
the meta server periodically. When the primary meta
server is failing, the shadow meta server will take over and
operate in read-only mode until an administrator sets up a
shadow meta server for it. The other components will
discover the failure of the origin meta server, and switch to
work with the new meta server.

3.8 Garbage Collection
Liquid uses reference counting extensively to track usage
of each data block, and removes unused garbage data block
when running out of space.

For client side of Liquid file system, the data block
storage contains reference counting of each data block.
When a data block’s reference count drops to zero, it is
considered to be a garbage data block. Garbage data blocks
are not immediately removed, since they might be used
again some time later. Those garbage data blocks will only
be removed when the client cache is nearly full, and the
extent file containing data blocks will be compacted to
reduce storage consumption.

For data servers, they are not responsible for collecting
reference counting of data blocks. The reference counting of all
data blocks is maintained by the meta server, and it
periodically issues garbage collection requests to data servers.
Based on the data server’s fingerprint range, the meta server
will generate a Bloom filter containing all the valid data blocks
inside the range. The Bloom filter is then randomly sent to one
of the replicas, and an offline garbage collection is executed
based on data block membership in the Bloom filter.

4 PERFORMANCE EVALUATION

4.1 Experiment Environment
To evaluate Liquid’s design, we conducted a few experi-
ments on a set of 8 blades connected by 1 GB Ethernet. Each

Fig. 4. IO performance under different data block size.
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blade has 4 Xeon X5660 CPUs, 24 GB DDR3 memory, and a
500 GB hard drive (Hitachi HDS721050CLA362). The
blades are running Ubuntu 11.04 with Linux kernel version
2.6.38. The benchmarks include PostMark [19], Bonnie++
[11], Linux booting, and Linux kernel compilation.

4.2 Deduplication Block Size Choice
Data block size has a direct impact on disk IO performance and
deduplication ratio. A proper choice of data block size needs
to balance these two factors in order to achieve the best result.

Fig. 4 provides an analysis of IO performance under
different data block sizes. The statistic results are obtained
by reading data blocks stored in client side of Liquid file
system’s local cache. A smaller data block size results in
more frequent random access operations, and in turn
degrades IO performance. With the increase of data block
size, IO performance gradually improves, and stabilizes
after it reaches 256 KB.

On the other hand, smaller data block size has the benefit
of better redundancy. Fig. 5 presents deduplication ratio
under different data block size. The results are obtained by
running deduplication on a set of 183 VM images totaling 2.
31 TB. This collection of VM images includes OS of Microsoft
Windows, Ubuntu, RedHat, Fedora, CentOS, and openSUSE.
The number of each OS image is shown in Table 1. The
applications such as Microsoft Office, MATLAB, Apache,
Hadoop, MPI, etc. are installed in these OS images randomly.
A disk cluster size of 4 KB is used in all VM, so deduplication
data block size smaller than 4 KB will not bring more
advantages. For data block size larger than 4 KB, the
deduplication ratio drops quickly.

Based on our experience, data block size in the range
256 KB � 1 MB achieves moderate IO performance and
deduplication ratio, satisfying common applications.

4.3 VM Benchmark
In order to illustrate the difference in IO performance under
different storage policies, we conducted a few experiments
inside VM.

The first benchmark is against VM disk IO performance.
Bonnie++ is an open-source benchmark suite that is aimed
at performing a number of simple tests of hard drive and
file system IO performance. PostMark is also a common
benchmark for file system developed by NetApp. We ran
Bonnie++ and PostMark benchmarks on native disk in host
machine, raw format VM image, qcow2 format VM image,
and raw format image stored in Liquid with different data
block size in range 16 KB � 2 MB. The VM images are
created with a size of 50 GB, formatted as an ext4 file
system. The VM is assigned 2 GB memory and 1 vCPU,
running Ubuntu 10.10 with Linux kernel 2.6.35. The results
are shown in Figs. 6 and 7.

Native IO on host machine has the best performance. It
is the criterion to evaluate other storage policies. The raw
image format provides good read and write performance.
For qcow2 format images and raw images stored in Liquid,
write performance is degraded due to the frequent need to
allocate new data block. However, Liquid writes a little
faster than qcow2 because of its caching mechanism, even if
it is running expensive deduplication process concurrently.
Read performance sees weaker impact compared to that of
write, because the data being accessed is likely to be cached
by OS. A moderate data block size (256 KB, 512 KB) will result
in efficient use of cache, while large data block size causes
lower cache hit rate, and small data block size results in
additional overhead due to frequent random seeks.

In addition to Bonnie++ and PostMark benchmark, we
also conducted a set of comprehensive benchmarks based
on VM Booting and Linux source code compilation. This
benchmark set is both CPU and IO intensive and is
representative for most use cases. The Linux kernel source
code used in these benchmarks is version 3.0.4. Benchmark
results are shown in Fig. 8, with time normalized according
to the longest sample.

Fig. 5. Deduplication ratio under different data block size.

TABLE 1
Number of Each OS Image

Fig. 6. Bonnie++ benchmark result in VM.
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For VM booting benchmark, raw image format provides
the best result, followed by qcow2 format. Booting a VM
stored on Liquid takes longer time, because the cache layer
has not gotten enough data blocks to accelerate IO
performance. Smaller data blocks result in longer boot
phase, because more random access requests will be issued
to fetch all the data blocks needed during VM boot phase.

Untaring and compiling Linux kernel source code shows
that Liquid has better performance than qcow2 image
format. The caching layer inside Liquid which holds
modified data blocks contributed to this result. These two
benchmarks generate a lot of small files, which in turn
create a lot of new data blocks. Liquid caches these data
blocks in memory instead of immediately writing to local
disk, in case subsequent writings are issued to these data
blocks. New data blocks are written to disk in batch when
memory cache becomes full. This mechanism avoids
frequent IO request to a local disk, and thus guarantees
better performance for VM.

4.4 Network Transfer
To evaluate the P2P data block sharing protocol imple-
mented in Liquid, we record the total time used to transfer
an 8 GB VM image from one node to other seven nodes.
The VM image being transferred is a newly installed
Ubuntu 10.10 instance. A moderate data block size of
256 KB is used by Liquid for this benchmark. Results are
shown in Fig. 9.

Direct copying by the scp utility takes the longest time,
with the source node being a hot spot and its network
bandwidth saturated. NFS faces the same problem, but has
better performance than scp due to its implementation
optimization. BitTorrent protocol eliminates hot spots by
spreading network burden across all nodes, and brings

significant speedup compared to scp and NFS. However,
the redundancy is not utilized by BitTorrent protocol, and
all the redundant zero data blocks are all transferred
through a network. Liquid client avoids fetching redun-
dant data blocks multiple times, and achieves much better
distribution speed than plain BitTorrent protocol.

VM boot benchmark is used to evaluate on-demand
fetching, with results shown in Fig. 10. Compared with
normal VM booting where all data blocks inside the VM
image have already been fetched to local cache, VM booting
with on-demand fetching takes several times longer
duration. This is caused by the additional overhead to
request missing data blocks from other nodes, which incurs
a longer delay than local disk IO delay. As data block size
decreases, local cache miss increases and leads to more
frequent IO through a network, thus results in a longer
VM boot phase. However, the whole VM boot time (the
downloading image time and the VM boot time) has been
shortened while the data block size is between 512 k and
2 M. In fact, the on-demand fetching scheme also speeds
up the virtual machine startup speed.

5 RELATED WORK

Currently, there are a lot of papers, which focus on
distribute file systems. GFS [16], HDFS [28], and OpenStack
[24] provide high availability by replicating stored data
into multiple chunk servers. In Liquid, every client is also a
replica storing data blocks frequently used. This indicates
that Liquid has high fault tolerance capability. Even if all
data servers are down, a client would still be able to fetch
data block from peer clients. Moreover, compared with
these systems, our Liquid has reduced storage consump-
tion by 44 percent at 512 KB data block size, eliminating the

Fig. 7. PostMark benchmark result in VM.

Fig. 8. Linux benchmark result in VM.

Fig. 9. Time used to transfer a VM image.
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influence of back-up copy. Meanwhile, the I/O perfor-
mance loss is just less than 10 percent.

Lustre [27] is a parallel and distributed file system,
generally used for cluster computing. The architecture of
Lustre file system is similar to Liquid, but there are several
important differences. Liquid file system has reduced storage
consumption by using deduplication technology, and solved
the bottleneck problem of metadata server owing to our P2P
data block sharing scheme among all client nodes.

Amazon’s Dynamo [13] used DHT [29] to organize its
content. Data on the DHT are split into several virtual
nodes, and are migrated for load balance in unit of virtual
nodes. Liquid follows this approach by splitting data
blocks into shards according to their fingerprint, and
management of data in unit of shards.

In addition to the common distributed storage systems,
HYDRAstor [14] and MAD2 [31] propose effective distributed
architectures for deduplication. The former uses distributed
hash table to distribute data, and the latter uses Bloom Filter
Array as a quick index to quickly identify non-duplicate
incoming data. However, both of them focus on scalable
secondary storage, which is not suitable for VM images
storage. LiveDFS [23] enables deduplication storage of VM
images in an open-source cloud; however, it only focuses on
deduplication on a single storage partition, which is difficult
to handle the problems in distribute systems.

6 CONCLUSION

We have presented Liquid, which is a deduplication file
system with good IO performance and a rich set of features.
Liquid provides good IO performance while doing dedu-
plication work in the meantime. This is achieved by caching
frequently accessed data blocks in memory cache, and only
run deduplication algorithms when it is necessary. By
organizing data blocks into large lumps, Liquid avoids
additional disk operations incurred by local file system.
Liquid supports instant VM image cloning by copy-on-
write technique, and provides on-demand fetching through
network, which enables fast VM deployment. P2P tech-
nique is used to accelerate sharing of data blocks, and
makes the system highly scalable. Periodically exchanged
Bloom filter of data block fingerprints enables accurate
tracking with little network bandwidth consumption.

Deduplication on VM images is proved to be highly
effective. However, special care should be taken to achieve
high IO performance. For VM images, parts of an image are

frequently modified, because the OS and applications in
VM are generating temporary files. Caching such blocks
will avoid running expensive deduplication algorithms
frequently, thus improves IO performance.

Making the system scalable by means of P2P technique
is challenging because of the sheer number of data blocks to
be tracked. By compacting data block fingerprints into
Bloom filters, the management overhead and meta data
transferred over network could be greatly reduced.
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