
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Slack allocation algorithm for energy minimization in cluster systems
Yikun Hu a, Chubo Liu a,b, Kenli Li a,b,c,∗, Xuedi Chen a, Keqin Li a,d
a College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
b National Supercomputing Center in Changsha, Hunan, China
c CIC of HPC, National University of Defense Technology, Changsha 410073, China
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• An energy-aware scheduling algorithm called EASLA is proposed.
• The main idea of the EASLA is to distribute slacks to tasks.
• The maximum set of independent tasks is involved.

a r t i c l e i n f o

Article history:
Received 12 March 2015
Received in revised form
11 July 2016
Accepted 31 August 2016
Available online xxxx

Keywords:
Cluster computing
Directed acyclic graph
Dynamic voltage/frequency scaling
Energy aware scheduling
Service level agreement

a b s t r a c t

Energy consumption has been a critical issue in high-performance computing systems, such as clusters
and data centers. An existing technique to reduce energy consumption of applications is dynamic
voltage/frequency scaling (DVFS). In this paper, we present a novel algorithm called EASLA for energy
aware scheduling of precedence-constrained applications in the context of Service Level Agreement (SLA)
on DVFS-enabled cluster systems. Due to the dependencies among tasks and makespan extension, there
may be some underused slacks. The main idea of the EASLA algorithm is to distribute each slack to
a set of tasks and scale frequencies down to try to minimize energy consumption. Specifically, it first
finds the maximum set of independent tasks for each task, and then iteratively allocates each slack
to the maximum independent set whose total energy reduction is the maximal. Randomly generated
graphs and two real-world applications are tested in our experiments. The experimental results show
that our scheduling algorithm can save up to 22.68% and 12.01% energy consumption compared with the
GreedyDVS and EvenlyDVS algorithms respectively in homogeneous environments, and 12.33% energy
consumption compared with the EES algorithm in heterogeneous environments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the development of high-performance computing (HPC),
more and more energy has been consumed by large-scale clus-
ter systems, which raises various economical, environmental and
system availability concerns [1,2]. According to statistics, the to-
tal energy consumption in information and communication tech-
nology (ICT) industry is about 868 billion, which is roughly 5.3%
of the world total energy consumption in 2008. According to the

∗ Corresponding author at: College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha 410082, China.

E-mail addresses: yikunhu@hnu.edu.cn (Y. Hu), liuchubo@hnu.edu.cn (C. Liu),
lkl@hnu.edu.cn (K. Li), chenxuedi@hnu.edu.cn (X. Chen), lik@newpaltz.edu (K. Li).

current increasing trend, by 2025, the total energy consumption in
ICT industry will be four-fold increase on 2008 levels [3,4]. Addi-
tionally, energy consumption translates into high carbon emissions
and results in high cooling cost [5]. Furthermore, the temperature
of computing systems will ascend sharply due to large amount of
energy consumption. Evidence shows that the expected failure rate
doubles for every 10 °C increased temperature [6]. This greatly af-
fects the system reliability and availability, and eventually does
harm to system performance. Therefore, it is important to study
the strategy of reducing energy consumption in high-performance
computing.

Energy awareness for parallel applications has been a growing
concern for a decade. System-level power-saving methods includ-
ing Dynamic Power Management (DPM) [7] and Dynamic Volt-
age/Frequency Scaling (DVFS) [1,8,9] have been investigated and

http://dx.doi.org/10.1016/j.future.2016.08.022
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.08.022
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:yikunhu@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:chenxuedi@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.future.2016.08.022

2 Y. Hu et al. / Future Generation Computer Systems () –

developed. The core idea of DPM is to turn off the idle computing
nodes. However, this method is only suitable for the situation in
which most of the idle periods are very long. For the scheduling of
a precedence-constrained application, the idle time between the
execution of two tasks is often short and DPM is not suitable. Dif-
ferent fromDPM, the DVFS technique can assign different frequen-
cies to each task, which gives us a useful way to minimize energy
consumption of applications.

In this paper, we use DVFS technique to reduce energy con-
sumption while considering service level agreement (SLA), which
is measured by two metrics: makespan and energy consump-
tion. Obviously, there exists a tradeoff between these two met-
rics. In our architecture model, a customer can negotiate with
a service provider about Quality of Service (QoS) of his applica-
tion by determining makespan extension rate. For example, the
customer agrees to accept additional 10% of makespan to reduce
more energy consumption. Under this situation, we propose an
energy-performance tradeoff scheduling algorithm (EASLA),which
uses DVFS technique to try to minimize energy consumption. Our
scheme addresses the scheduling in a differentway comparedwith
most of the relevant algorithms for discrete voltage clusters. First,
it finds the maximum set of independent tasks for each task to in-
crease parallelism for using slacks. Second, it also allocates slacks
to non-critical tasks to minimize energy consumption instead of
only the critical ones.

The main contributions of this paper are summarized as
follows:

• Unlike the most existing studies for DAG applications, we try to
allocate a slack to tasks belonging to themaximum independent
set of a task.

• We develop a novel energy-aware scheduling algorithm called
EASLA, which can be adapted for a wide range of DAG applica-
tions.

• We carry out extensive experiments to verify the effective-
ness of our algorithm under different circumstances: randomly
generated graphs as well as graphs of real-world problems
with various characteristics, homogeneous resources in terms
of speed and energy consumption, or heterogeneous resources.

2. Related work

Manyworks have been investigated for energy reduction based
on continuous DVFS assumption. Zhang et al. introduced a linear
programming (LP) based formulation to solve the continuous
voltage DVFS [6]. Kang et al. developed a path based DVFS
algorithm to try to minimize energy requirement while meeting
the deadline constraints at the same time [10]. Aupy et al. proposed
several polynomial time scheduling algorithms, which try to
minimize energy consumption under the condition of a prescribed
makespan bound and a reliability threshold [11]. Baskiyar et al.
used the heterogeneous earliest finish time (HEFT) heuristic as an
initial scheduling algorithm to minimize makespan, then voltage
scaling was performed to reduce power consumption without
performance degradation [12,13]. However, these algorithms focus
on continuous frequency and voltage systems. For discrete DVFS
consideration, the problem becomes more complex.

For the discrete frequency and voltage situation, the authors
in [14–18,1,8,19] considered the scheduling and proposed some al-
gorithms. Kimura et al. proposed an energy reduction algorithm, in
which the suitable frequency among the discrete set of processor’s
frequencies is chosen for each task according to its slack time [14].
Rizvandi et al. introduced a slack reclamation algorithmwhich uses
a linear combination of themaximumandminimumprocessor fre-
quencies to decrease energy consumption [15]. Chowdhury et al.
allocated the slack time to tasks according to the decreasing order

of their finish times [16]. Wang et al. evenly distributed the free
slack obtained by makespan extension to critical tasks, and then
distributed the slack occurred due to dependencies among tasks
to non-critical tasks [17]. The core idea of all these algorithms is
to utilize idle time slots (slack) to lower down supply voltage (fre-
quency/speed). However, most of them ignore the variable energy
profiles of tasks on different processors during slack allocation or
do not take into account the non-critical tasks for using idle time
slots. Due to the dependencies among tasks, there may be many
situations in which the sum of energy reduction of several tasks
(i.e., a task set that can execute in parallel whether the tasks be-
longing to the set are critical or not) can be higher than the energy
reduction of critical tasks. Our scheme addresses the above issues
and effectively allocates the slack to gain more energy reduction
for precedence-constrained applications in discrete frequency and
voltage systems.

Many studies on cluster and cloud computing use DVFS
technique in the context of Service Level Agreement (SLA) [20–25].
SLA is an agreement between a service provider and customers,
specifying the level of delivered services [26,27]. It can be decided
bymany different QoS parameters, such as deadline [21], response
time [22], and so on. Wu et al. proposed an algorithm to assign
resources for tasks obeying the SLA [20]. In this algorithm, the tasks
are deployed to fewer computing nodes with lower SLA level, and
then appropriate frequencies are selected for the computing nodes
via DVFS. Kim et al. proposed DVFS scheduling algorithms for bag-
of-tasks applications to try to minimize energy consumption with
deadline constraints [21]. Gao et al. proposed a dynamic resource
management scheme which takes advantage of both DVFS and
server consolidation to achieve energy efficiency while satisfying
response-time-based SLAs [22]. In our work, we also consider the
energy reduction problem in the context of SLA.

The remainder of this paper is organized as follows. In Sec-
tion 3, we introduce the systemmodel and formulate the schedul-
ing problem. In Section 4, we describe the proposed EASLA
algorithm and discuss its performance. Section 5 gives the simula-
tion results compared with GreedyDVS and EvenlyDVS algorithms
in homogeneous environments, and the EES algorithm in hetero-
geneous environments. Finally, Section 6 presents the conclusion
and future work.

3. Systemmodel and problem formulation

In this section, we introduce the system model and formulate
the scheduling problem.

3.1. Architecture model

In this subsection, we introduce the architecture model of
our scheduling environment. As shown in Fig. 1, the architecture
model, which is similar to [17], consists of three layers: user
layer, scheduling layer, and resource layer. The user layer is in
charge of submitting tasks. The scheduling layer, which is used
to assign tasks appropriately, consists of two components—a
makespan and energy estimator and our scheduling strategy. The
resource layer consists of multiple processing elements (PEs) and
is responsible for task execution. The needed PEs are allocated to
users exclusively for some duration of time.

Next, we describe the task execution process in the scheduling
model mentioned above. First, tasks with computation time and
dependency relations, and theneedednumber of PEs are submitted
by users. Second, the information of tasks and PEs are sent to
the scheduler and it uses an estimator to evaluate the makespan
and energy consumption. Third, the estimator gives the evaluated
results back to the user. Fourth, the user negotiateswith the service
provider about the makespan extension rate, which presents the

Y. Hu et al. / Future Generation Computer Systems () – 3

Fig. 1. Architecture model.

QoS parameter. After an agreement is reached, the QoS parameter
is delivered to the scheduler. Fifth, the scheduler allocates each
task in the application with frequency and sequence information
to an appropriate PE. Finally, the computing resources begin to
execute tasks and return the results to users.

3.2. Application model

In general, a precedence-constrained application can be pre-
sented by a directed acyclic graph (DAG) G(V , E), which consists of
a set of nodes V = {vi} (i ∈ {0, 1, . . . , n− 1}) and a set of directed
edges E. The set of nodes represents the parallel tasks in an appli-
cation. An edge e(i, j) from task vi to vj represents the dependency
and inter communication between these two tasks. Here vi is called
a predecessor of vj and vj is called a successor of vi. In this paper,
we assume that the DAG has a single-entry task and a single-exit
task. If there are multi-entry (multi-exit) tasks, they are connected
to an entry (exit) task with no computation and communication
cost, which does not affect the schedule.

Theweight on task vi denoted aswi represents the computation
time when vi is executed at the highest frequency. Let cij be
the weight of edge e(i, j), which represents the communication
time [17]. However, the communication time is only needed
when two tasks are assigned to different PEs. In other words,
the communication time is ignored when two tasks are assigned
to the same PE. Fig. 2 gives an example of DAG to represent
the application model. For each node, the data in the upper part
presents the task ID and the data in the lower part presents
the computation time. The data on each edge represents the
communication time, i.e., cij.

3.3. Cluster model

Similar to [17], a cluster system consists of multiple PEs, which
are fully interconnected with the same communication links. Each
PE has a set of supply voltages from V1 to Vm and a set of
corresponding frequencies from f1 to fm in decreasing order. The
values of voltage levels and corresponding frequencies are discrete.
Table 1 shows an example of four voltage and frequency levels. As
clock frequency transition time is negligible (e.g., 10–150 µs [1]),
we ignore the time in our study. We also assume that data can
be transmitted from one PE to another while the recipient PE is
executing a task, which is possible in many computing systems.

3.4. Energy model

Our energy model is derived from the power consumption
model in CMOS logic circuits. In general, the power consumption

Fig. 2. A simple DAG representing precedence-constraint application.

Table 1
An example of a PEs operating points.

Frequency (GHz) 1.0 0.8 0.7 0.5
Voltage (V) 1.5 1.3 1.1 0.9

of CMOS circuits is represented by Pc = ACV 2f , where A is
the percentage of active gates, C is the total capacitance load,
V is the supply voltage, and f is the processor frequency [28].
Processor power consumption is dominated by Pc , which is mainly
affected by the supply voltage. Therefore, the reduction of voltage
would be most influential to lower power consumption. For a DAG
application which consists of n tasks, the total energy consumed
by executing all the tasks is defined as

ENactive =

n−1
i=0

Phighest · wi =

n−1
i=0

ACV 2
highest fhighest · wi, (1)

wherewi is the computation time of task vi executed at the highest
frequency. Since PEs also consume a certain amount of energy
while idling, we denote Pidle as the idle-energy consumption rate,
where Pidle = ACV 2

lowest flowest . Denote p as the number of PEs, the
total energy consumption of all the PEswhile idling can be depicted
as

EN idle = Pidle

p · makespan −

n−1
i=0

wi

. (2)

Consequently, the total energy consumption of the application
running on the PEs can be expressed as

EN = ENactive + EN idle. (3)

Note that this energy consumption model is compatible with
DVFS technology. In our energy model, PEs have several voltage
and frequency levels, and a scheduling algorithm may choose the
appropriate voltage and frequency to save energy. For a task vi
executed at frequency fk, wedenote the voltage asV i

k, the frequency
as f ik , and the corresponding computation time as wi

k, where wi
k =

wifhighest/f ik . In that case, Phighest is replaced by P i
k, where P i

k =

AC(V i
k)

2f ik . The corresponding computation time wi is replaced
with wi

k.

3.5. Problem formulation

The energy-performance tradeoff scheduling problem stated
before is formally defined as follows. Give an application consists
of n parallel tasks, the required number of PEs p, the schedule

4 Y. Hu et al. / Future Generation Computer Systems () –

length of a best effort schedule makespanbest , and the negotiated
makespan extension rate η, allocate the slacks to the appropriate
tasks for downscaling their frequencies to try to minimize energy
consumption. More formally, the problem can be formulated as
follows:

Minimize

EN = ENactive + EN idle

=

n−1
i=0

m
k=1

βikP i
kw

i
k

+ Pidle

p · makespan −

n−1
i=0

m
k=1

βikw
i
k

, (4)

subject to

makespan ≤ makespanbest · (1 + η), (5)
m

k=1

βik = 1, βik ∈ {0, 1}, ∀vi ∈ V . (6)

The timing constraint is enforced by (5). Since the available
frequency range is finite and discrete, we use boolean variable βik
as an indicator to reflect which frequency level k is used for task vi.
Assume we select a special f ij for task vi in the above formulation,
then the corresponding P i

j and wi
j are fixed. The question becomes

to assign different frequencies to each task to try to minimize
energy consumption without violating the timing constraint.

4. Algorithm design

In this section, we present the details of our algorithm EASLA.
The algorithm takes the output schedule of ETF (Earliest Task
First) algorithm as an initial input schedule. Our algorithm for en-
ergy minimization is an iterative approach that allocates a certain
amount of slack to a task or a subset of tasks for frequency down-
scaling. In each iteration, a task (a subset of tasks) which can use
its (their) slack to get the maximal energy reduction is (are) cho-
sen to downscale frequency (frequencies). The EASLA algorithmac-
tually contains two algorithms—frequency downscaling under the
condition of not changingmakespan algorithm, NCM for short, and
frequency downscaling using accepted makespan extension algo-
rithm, UAME for short. The former uses the slack which is caused
by precedence relations among taskswhile the latter uses the slack
which is caused bymakespan extension.

4.1. The outline of EASLA

The outline of EASLA is given in Algorithm 1. In the algorithm,
Step 1 calls the NCM algorithm which is presented in Algorithm
2. In Algorithm 2, only the tasks which can use their slacks to
scale down frequencies by at least one level are considered. Step
2 calls the UAME algorithm which is presented in Algorithm 3. In
Algorithm 3, every task can potentially use the slack caused by
makespan extension to scale down frequency. The execution of the
NCM algorithm precedes the execution of the UAME algorithm to
expectmore energy saving by reducing thepossibility of redundant
slack allocation to the same tasks. Step 3 calls the NCM algorithm
again, which is designed to take full advantage of slacks. Because
there may be some slacks which are not large enough for even
one task to scale down frequency by one level, we can integrate
some small slacks to a large one and assign the new slack to an
appropriate task.

Algorithm 1 : EASLA
Require:

The output schedule of the ETF algorithm;
makespanbest ;
The negotiated makespan extension rate η.

Ensure:
A task schedule.

1: Call the NCM algorithm for frequency downscaling with
makespanbest unchanged

2: Call the UAME algorithm for frequency downscaling using
acceptedmakespan extension

3: Call the NCM algorithm for frequency downscaling with
extendedmakespan unchanged

Fig. 3. A Gantt chart scheduled by the ETF algorithm.

4.2. Task scheduling algorithm

The ETF algorithm [29] is a list based algorithm, and has two
main steps. It first assigns a priority value, which can be computed
by the bottom level method or the top level method [30], to each
task. Then the ETF algorithm repeats the process of allocating a
remaining task with the highest priority to a PE, which has the
earliest available time. The algorithm terminates when all of the
tasks are assigned to the PEs. In this paper, we use the bottom level
method, in which the rank value of each task is recursively defined
by

rank(vi) = wi + max
vj∈succi

(cij + rank(vj)), (7)

where succ i is the set of direct successors of task vi and cij is the
communication time between task vi and vj. The rank is computed
by traversing the DAG upward, beginning from the exit task, vexit ,
whose rank is expressed as follows:

rank(vexit) = wexit . (8)

After a valid schedule is generated by the ETF algorithm and the
order of tasks on a PE is determined, an edge is inserted from task vi
to task vj if vi and vj are on the same PE and the former is scheduled
just ahead of the latter [31]. Therefore, the edges represent all the
precedence constraints in the original DAG application as well as
execution ordering information in the initial schedule. We can use
a Gantt chart to display time slots for task execution and data
communication on multiple PEs. Fig. 3 gives an example of an
initial schedule (Fig. 2 executed on three PEs) obtained by the ETF
algorithm.

4.3. Available slack for a task

Notice that, the earliest start time of a task vi is limited by the
earliest finish time of the front adjacent task pPredi on the same PE,

Y. Hu et al. / Future Generation Computer Systems () – 5

and the earliest finish times of all its direct predecessors. Therefore,
the earliest start time of task vi can be expressed as

EST i =

0, vi = ventry;

max

EST pPredi + wpPredi ,

max
vj∈predi

EST j + wj + cji

, otherwise; (9)

where predi is the set of direct predecessors of task vi.
Similarly, the latest finish time of a task vi is limited by the latest

start time of the latter adjacent task pSucc i on the same PE, and the
earliest start times of all its direct successors. Therefore, the latest
finish time of task vi can be expressed as

LFT i =

makespan, vi = vexit;

min

LFT pSucci − wpSucci ,

min
vj∈succi

LFT j − wj − cij

, otherwise; (10)

wheremakespan is the time overhead to complete all tasks.
For each task vi, due to the difference between the latest finish

time (LFT i) and the earliest start time (EST i), we can calculate the
slack of task vi as

slacki = LFT i − EST i − wi, (11)

where wi is the corresponding computation cost.
The energy reduction of task vi is defined by the difference of

its original energy consumption and expected energy consump-
tion after allocating slacki. However, slacks of some tasks are over-
lapped. So we can try to find tasks which can share slack together
for each task. We use a matrix to present the relationship which is
described in the next subsection.

4.4. Compatible task matrix

The matrix represents the list of tasks which can share slack
together for each task or vice versa. The compatiblematrix of aDAG
application consisting of n tasks is defined by

Mn =

m0 0 m0 1 · · · m0 n−1
m1 0 m1 1 · · · m1 n−1

·

·

·

·

·

·

·

·

mn−1 0 mn−1 1 · · · mn−1 n−1

 , (12)

where mij indicates whether task vi and task vj can be slack-
sharable. If the value of element mij is set to one, it indicates that
vi and vj can share slack together because they are independently
executed and their slacks are not overlapped. Otherwise, adding
the slack to both of them will postpone the starting times of
subsequent tasks and eventual violate the timing constraint. This
corresponds to the problem of the reachability relation of a DAG.
If vj is reachable from vi or vi is reachable from vj, it means that vi
and vj cannot share slack together. The matrix can be generated by
performing a transitive closure on the DAG [10]. Fig. 4 shows the
compatible task matrix for the example in Fig. 3.

4.5. Slack allocation for frequency down-scaling

This subsection discusses slack allocation for frequency down-
scaling.

Algorithm 2 represents the procedure of the NCM algorithm.
The inputs of the algorithm are Γ and makespan. Γ represents
a schedule of parallel tasks. In Step 1 of Algorithm 1, Γ is the
schedule of the ETF algorithm and the corresponding makespan
is makespanbest . In Step 3 of Algorithm 1, Γ is the schedule of
Algorithm 3 and the corresponding makespan is the extended
makespan. The task list denoted as L is initialized with all tasks in
the application. The ESTs (LFTs) of tasks are computed by Eq. (10)

Fig. 4. Compatible task matrix for an example in Fig. 3.

Algorithm 2 : NCM(Γ , makespan)
Require:

Γ ,makespan.
Ensure:

A task schedule.
1: Initialize L = {v0, v1, . . . , vn−1}

2: Sort all tasks such that rank(v0) ≥ rank(v1) · ·· ≥ rank(vn−1)
(SRank())

3: while L ≠ ∅ do
4: for Each vk in the order of SRank() do
5: Compute EST k by Equation (10)
6: end for
7: for Each vk in the reverse order of SRank() do
8: Compute LFT k by Equation (11)
9: end for

10: Compute slackk (vk ∈ L) by Equation (9)
11: for Each vk ∈ L do
12: if vk can not be scaled down then
13: Delete vk from L
14: else
15: Use slackk to compute ERk
16: end if
17: end for
18: vj = argmax

vi

q(vi) by Eq. (13)

19: Scale down f jcurrent and update V j
current and w

j
current

20: Delete vj from L
21: end while

(11) in non-increasing (non-decreasing) order of rank denoted as
SRank(), which can be done in timeO(n+e), where n is the number
of tasks and e is the number of edges. Whenever a task is unable
to scale frequency down, it is deleted from L. Denote q (vi) as the
energy reduction of task vi by using slacki. In each iteration, the task
vj (vj ∈ L) which can use its slack to get maximal energy reduction
is chosen to scale frequency down, i.e., vj is chosen as follows:

vj = argmax
vi∈L

q(vi). (13)

Then the algorithm updates the frequency, voltage and computa-
tion time of vj. The algorithm terminates when L becomes empty.

Algorithm 3 represents the procedure of the UAME algorithm.
At the beginning of each iteration, it first finds a maximum set
of independent tasks for each task (Step 1) [32]. We denote
the maximum independent set for vi as MIS i. It can be used to
maximize slack which can get more energy reduction. Even if
the increased slack is not large enough for a task to scale down
frequency by one level, it may be used at next iterations [33]. The
number of tasks in MIS i (i ∈ {0, 1, . . . , n − 1}) is restricted by the

6 Y. Hu et al. / Future Generation Computer Systems () –

Algorithm 3 : UAME
Require:

The output schedule of NCM algorithm, time_extesion.
Ensure:

A task schedule.
1: Find_MIS()
2: Initialize L = {v0, v1, . . . , vn−1}, ACT = {0, 0, ..., 0}, US =

{0, 0, ..., 0}
3: while L ≠ ∅ do
4: for Each vk ∈ L do
5: if f kcurrent == f1 then
6: Delete vk from L
7: else
8: actk = wk

current ·
f kcurrent

f kcurrent−1
− wk

current

9: slackk = actk − usk
10: if slackk > time_extension then
11: Delete vk from L
12: else
13: Use slackk to calculate OERk
14: end if
15: end if
16: end for
17: MISj = argmax

MISi
u(MISi) by Eq. (15)

18: for Each vk ∈ MIS j do
19: Scale down f kcurrent
20: Update V k

current , w
k
current , and usk

21: end for
22: time_extension− = slackj
23: end while

number of PEs. The reason behind lies in the fact that there is at
most one task on each PE that can be added toMIS i. The compatible
matrix can also provide the information of independence relations
among tasks.

Denote tpj (i ∈ {0, 1, . . . , p − 1}) as the set of tasks executed
on processing element PEj. Assuming that task vi is on processing
element PEj, i.e., vi ∈ tpj. We try to find themaximum independent
set for task vi (MIS i), which is initialized as an empty set. At first, we
add task vi to MIS i, and then try to find the unique task candidatel
on each of the other processing elements PEl (l ∈ {0, 1, . . . , p−1},
and l ≠ j), which satisfies

candidatel = argmin
vk∈tpl

(h(vk)), (14)

where h(vk) = EFT i − EST k, vk ∈ tpl, and EST k ≤ EFT i. If candidatel
is slack-sharable with all the tasks inMIS i, add it to MIS i.

Algorithm 3 first initializes the task list with all the tasks in the
application and the added computation time of tasks, i.e., ACT =

{actk} (i ∈ {0, 1, . . . , n− 1}), and the unused slack, i.e., US = {usk}
(i ∈ {0, 1, . . . , n − 1}), to zero. Whenever a task is unable to
scale frequency down, it is deleted from L. Denote OERi as the over
energy reduction of all tasks in MIS i to scale down frequency by
one level when sharing slacki. In each iteration, choose the task vj
(vj ∈ L) with maximum value of OERj to allocate its slack to all the
tasks in MIS i, i.e.,

vj = argmax
vi∈L

u(MIS i), (15)

where u(MIS i) = OERi. Then the algorithm updates the frequency,
voltage, computation time and unused slack of the tasks in MIS j.
The time extension is divided by the allocated slack slackj at the
end of the iteration. The iteration stops when L becomes empty.

(a) The Gantt chart after Step 1 of Algorithm 1.

(b) The Gantt chart after Step 3 of Algorithm 1.

Fig. 5. A task schedule for Fig. 2 using the EASLA algorithm.

4.6. Performance evaluation

In this subsection, we discuss the qualitative implications of
schedules that EASLA generates. The discussion is led with an
illustrative example and the time complexity analysis.

4.6.1. An illustration
Consider the DAG application in Fig. 2 executed on three PEs.

The information of the PEs is listed in Table 1. Fig. 3 gives the initial
schedule obtained by ETF algorithm. At the beginning, all tasks are
executed at the highest frequency. The makespanbest is 23 and the
total energy consumption is 99.9. The makespan extension is 2.3
(withmakespan extension rate of 0.1). Fig. 4 shows the compatible
task matrix for Fig. 3. In Step 1 of Algorithm 1, tasks 2, 3, 4, 7
and 8 are considered. Fig. 5(a) shows the Gantt chart after Step
1. The energy consumption is 82.80. The improvement of power
consumption after Step 1 is, therefore, 17.29%. Fig. 5(b) shows the
Gantt chart after Step 3 in Algorithm 1. The Gantt chart after Step
2 is the same with Fig. 5(b) except that the frequency of task 9
is f1. The energy consumption is 70.35. Thus, the improvement
on power consumption of our algorithm is 29.58% with makespan
extension rate of 0.1.

4.6.2. Time complexity
Next, we discuss the time complexity of our algorithm EASLA

(Algorithm 1).
According to Algorithm2, Step 1 (Initialization) requiresO(n) to

complete, where n is the number of tasks. Step 2 (Sorting) requires
O(n log(n)) to complete. Steps 3–21 are the iteration process. The
upper bound of the iteration is O(n). Because in each iteration,
one task is chosen and this is a nonrepeatable scenario. In each
iteration, Steps 4–6 and Steps 7–9 require O(n + e) to complete,
where e is the number of edges. The inner for loop (Steps 11–17)
requires O(n) to complete. Thus, the time complexity of NCM is
O(n(n + e) + n log(n) + n).

Y. Hu et al. / Future Generation Computer Systems () – 7

According to Algorithm 3, Step 1 is to find the maximum set of
independent tasks for each task. The number of elements in the
set is confined by the number of processor p, so Step 1 requires
O(np) to complete. Step 2 (Initialization) requiresO(n) to complete.
The time complexity of iteration (Steps 3–23) is confined by the
number of frequency levelsm and the number of tasks n. Consider
the situation that starting from f1, all tasks are scaled down to fm,
then they have no chance to be scaled down. In each iteration,
there will be at least one task to scale down frequency by at least
one level. Hence, the loose upper bound of the time complexity is
O(n2m). The time complexity of UAME is O(n2m + np + n).

Thus, the time complexity of EASLA is O(n2m + n(e + p +

log(n)) + n).

5. Extension to heterogeneous environment

In this section, we present the version of our proposed
method applied on heterogeneous computing environment. We
mainly present the different parts compared with homogeneous
environment.

5.1. Differences on cluster model

Similar to cluster model in heterogeneous environment (Sec-
tion 3.3), a cluster system consists of p heterogeneous PEs, which
are fully connected with the same communication links. Denote
the PE set as SPE , i.e., SPE = {1, . . . , p}. Each PE l (l ∈ SPE) has
a set of supply voltages, which is denoted as Vl =

Vl1, . . . , Vlml

,

and a set of corresponding frequencies Fl =

fl1, . . . , flml

, where

ml is the number of voltage (frequency) levels of PE l. The volt-
ages and corresponding frequencies are discrete. We further de-
note the set of voltage (frequency) levels of PE l (l ∈ SPE) as
Ll,level = {1, . . . ,ml}.

5.2. Differences on energy model

Our energy model is derived from the power consumption
model in CMOS logic circuits. In general, the power consumption
of CMOS circuits of PE l (l ∈ SPE) is represented by Pl = AlClV 2

l fl,
where Al is the percentage of active gates, Cl is the total capacitance
load, Vl is the supply voltage, and fl is the processor frequency of
PE l [28,18]. Processor power consumption is dominated by the
power consumption of CMOS circuits, which is mainly affected by
the supply voltage. Therefore, the reduction of voltage would be
most influential to lower power consumption. There are n tasks
and letN be the task set, i.e.,N = {1, . . . , n}. DenoteΦl (Φl ⊆ N)
as the set of tasks on PE l (l ∈ SPE), then the total energy consumed
by executing all the tasks on PE l is defined as

EN l,active =

i∈Φl

Pl,highest · wi

=

i∈Φl

AlClV 2
l,highest fl,highest · wi, (16)

where wi is the computation time of task i executed at the highest
frequency, and we obtain the total energy by executing all the n
tasks as

ENactive =

l∈SPE

EN l,active

=

l∈SPE

i∈Φl

AlClV 2
l,highest fl,highest · wi. (17)

Since PEs also consume a certain amount of energy while idling,
we obtain the power consumption of PE l (l ∈ SPE) on idle state as

Pl,idle = AlClV 2
l,lowest fl,lowest . The total energy consumption of all the

PEs while idling can be depicted as

EN idle =

l∈SPE

Pl,idle

makespan −

i∈Φl

wi

. (18)

Consequently, the total energy consumption of the application
running on the PEs can be expressed as

EN = ENactive + EN idle. (19)

Notice that this energy consumption model is compatible with
DVFS technology. In our energy model, each PE has several voltage
and frequency levels. A scheduling algorithm is to choose the
appropriate voltage and frequency to save energy. Note that after
an initial allocation, i.e., allocating tasks on PEs, we do not move
a task among PEs. We just try to take advantages of slacks among
the tasks. For a task i (i ∈ N) executed at PE l (l ∈ SPE) with
frequency fl,k, denote the corresponding computation time as wi

k,
where wi

l,k = wifl,highest/fl,k. In that case, Pl,highest is replaced by Pl,k,
where Pl,k = AlClV 2

l,kfl,k. The corresponding computation time wi is
replaced with wi

l,k.

5.3. Differences on problem formulation

The energy-performance tradeoff scheduling problem stated
before is formally defined as follows. Given an application consists
of n parallel tasks, the required number of PEs p, the schedule
length of a best effort schedule makespanbest , and the negotiated
makespan extension rate η, after an initial schedule8 = (Φl)l∈SPE ,
allocate the slacks to the appropriate tasks for downscaling
their frequencies to try to minimize energy consumption. More
formally, the problem can be formulated as follows:

minimize EN = ENactive + EN idle

=

l∈SPE

i∈Φl

k∈Ll,level

β i
kPl,kw

i
l,k

+

l∈SPE

Pl,idle

makespan −

i∈Φl

k∈Ll,level

β i
kw

i
l,k

 ,

(20)

s.t.makespan ≤ makespanbest · (1 + η), (21)
k∈Φl

β i
k = 1, β i

k ∈ {0, 1} , ∀l ∈ SPE, ∀i ∈ Φl. (22)

The timing constraint is enforced by (21). Since the available
frequency range after an initial schedule is finite and discrete, we
use boolean β i

k as an indicator to reflect which frequency level k
is used for task i on the allocated PE l. The question becomes to
assign different frequencies to each task to try to minimize energy
consumption without violating the time constraint.

5.4. Same algorithm application

After the previous derivations on heterogeneous computing
environment. We can apply the proposed EASLA algorithm
for homogeneous situation on the heterogeneous environment,
because the EASLA algorithm is unrelated to specific derivations.

6. Simulation and results

This section presents the simulation results obtained from our
EASLA scheme. We compare the EASLA algorithm with two other

8 Y. Hu et al. / Future Generation Computer Systems () –

Table 2
Voltage-relative speed pairs.

Level Pair1 Pair2 Pair3
Voltage (V) Frequency (GHz) Voltage (V) Frequency (GHz) Voltage (V) Frequency (GHz)

1 1.50 2.0 1.20 1.8 1.484 1.4
2 1.40 1.8 1.15 1.6 1.436 1.2
3 1.30 1.6 1.10 1.4 1.308 1.0
4 1.20 1.4 1.05 1.2 1.180 0.8
5 1.10 1.2 1.00 1.0 0.956 0.6
6 1.00 1.0 0.90 0.8
7 0.90 0.8

algorithms—EvenlyDVS [17] and GreedyDVS [16] in homogeneous
environments, and the EES algorithm [18] in heterogeneous
environments. In this work, we implement all these algorithms
by C language and execute them on simulation environments to
obtain the results. The EvenlyDVS algorithm evenly distributes the
free slack obtained by makespan extension to critical tasks, and
then distributes the slack occurred due to dependencies among
tasks to non-critical tasks. GreedyDVS allocates the slack to tasks
according to the decreasing order of their finish times. Both of them
are designed for homogeneous environments. The EES algorithm
evenly distributes the slack time between the makespan and the
deadline to every task, and then tries to schedule the tasks nearby
running on a uniform frequency for global optimality, which is
designed for heterogeneous environments.

To test the performance of the scheduling algorithms, we sim-
ulate a cluster system with DVFS-enabled PEs. Three real hetero-
geneous PEs are chosen for our study and their voltage–frequency
pairs are presented in Table 2. The PEs we choose in sequence are
AMD Athlon-64, AMD Turion MT-34 [17] and Pentium M.

The performance is measured in terms of normalized total
energy saving. Here, we define a parameter energy-saving-ratio
ESR as the energy saving metric:

ESR =
EETF − E

EETF
, (23)

where EETF is the energy consumption of the ETF algorithm with
all tasks executed at the highest frequency, and E is the energy
consumption of a compared algorithm with DVFS scheme. The
makespan extension is determined by: makespan ≤ (1 + η) ·

makespanbest , where makespanbest is the schedule length of a best
effort ETF schedule.We provide experimental results formakespan
extension rates equal to 0.0 (nomakespan extension), 0.05, 0.1, 0.2,
0.3, and 0.4.

We consider two sets of graphs as the workflow applications
for testing the algorithms: randomly generated application graphs
and graphs that represent real-world applications.

6.1. Randomly generated application graphs

For the generation of randomgraphs,which are commonly used
to compare scheduling algorithms, three fundamental character-
istics of the DAG are considered: DAG size, n, communication to
computation cost ratio, CCR, and parallelism factor, λ [7,30,34].

In our experiments, the method of generating random graphs
is the same as [7]. Graphs were generated for all combinations of
the above parameters. The number of nodes in DAG ranges from
100 to 800. To generate a DAG of a given number, the number of
levels is determined by the parallelism factor λ(0.5, 1.0, 2.0, 5.0)
firstly, and then the number of tasks at each level is determined.
Edges are only generated between the nodes in the adjacent
levels, obeying 0-1 distribution. The computation costs are taken
randomly from a uniform distribution [10, 60] around 30. Thus
the average computation cost is 30. The communication costs are

also randomly selected from a uniform distribution, whose mean
depends on CCR(0.2, 0.5, 1.0, 2.0) and the average computation
cost. Every set of the above parameters is used to generate 100
random graphs in order to avoid scattering effects and then the
average result is computed.

6.2. Performance results in homogeneous environments

In homogeneous environments, each PE is modeled with AMD
Athlon-64. The information of AMD Athlon-64 is shown in Table 2.

6.2.1. Random application performance results
The first set of experiments compares the energy savings of

algorithms with respect to various graph sizes (see Fig. 6). The
performance on energy saving of EASLA outperforms EvenlyDVS
and GreedyDVS for various numbers of tasks. For instance, when
the makespan extension rate is 0.4, the ESR of EASLA algorithm is
greater than the EvenlyDVS and GreedyDVS algorithms by: (9.97%,
18.06%), (9.53%, 16.55%), (9.97%, 15.14%), and (10.35%, 14.16%),
for number of tasks of 100, 200, 400 and 800, respectively. We
can observe that the energy savings of all the three algorithms
tend to increase with the increase of makespan extension rate.
However, the results of our proposed EASLA algorithm always
outperform those of the others, which show the efficiency of the
EASLA algorithm. The reason behind lies in that in our proposed
algorithm, we try to allocate a slack to the tasks belonging to a
maximum independent set, in which all the tasks can share the
slack without overlaps.

The second set of experiments compares the energy savings
of algorithms with respect to different number of PEs (see
Fig. 7). When the makespan extension rate is 0.4, the ESR of
EASLA algorithm is greater than the EvenlyDVS and GreedyDVS
algorithms by: (9.97%, 15.14%), (8.55%, 17.65%), (8.03%, 19.54%),
and (7.83%, 17.48%), for number of PEs of 10, 20, 30 and 40,
respectively. We can also observe that the energy saving increases
with the increase of the number of PEs, even though there is no
makespan extension. The reason behind lies in the fact that when
the number of PEs increases, there may be less tasks allocated on
each PE. This implies that the earliest start time of a task takes less
chances to be limited by the finish time of the front adjacent task
on the same PE. Namely, a task can start in earlier time.

In the third group of experiments, we compare the energy
savings of algorithms with respect to various CCRs. Table 3 shows
the ESRs of the EASLA, EvenlyDVS and GreedyDVS algorithms for
various CCRs at different makespan extension rates. When the
makespan extension rate is 0.4, the ESR of EASLA algorithm is
greater than the EvenlyDVS and GreedyDVS algorithms by: (9.97%,
15.14%), (9.61%, 14.04%), (7.86%, 12.09%), and (8.86%, 11.77%), for
CCR of 0.2, 0.5, 1 and 2 respectively.

In the fourth group of experiments, we compare the energy
savings of algorithms with respect to various parallelism degrees
(see Fig. 8). When the makespan extension rate is 0.4, the ESR of
EASLA algorithm is greater than the EvenlyDVS and GreedyDVS

Y. Hu et al. / Future Generation Computer Systems () – 9

Fig. 6. Energy saving with respect to various numbers of tasks (10 PEs, CCR = 0.2, PARAFAC = 2).

Fig. 7. Energy saving with respect to various numbers of PEs (400 tasks, CCR = 0.2, PARAFAC = 2).

10 Y. Hu et al. / Future Generation Computer Systems () –

Table 3
ESRs of EASLA, EvenlyDVS and GreedyDVS for various CCRs at different makespan extension rates (400 tasks, 10 PEs, PARAFAC = 2).

CCR 0.2 0.5 1 2 0.2 0.5 1 2

Makespan extension rate = 0.1 Makespan extension rate = 0.2

EASLA 12.44% 11.94% 14.52% 18.68% 20.72% 20.93% 22.10% 27.54%
EvenlyDVS 6.03% 7.93% 11.59% 15.43% 13.70% 14.97% 18.11% 22.12%
GreedyDVS 4.42% 5.61% 9.01% 13.05% 8.70% 10.22% 13.93% 18.66%

Makespan extension rate = 0.3 Makespan extension rate = 0.4

EASLA 27.16% 27.85% 29.10% 34.42% 32.69% 33.74% 35.62% 41.27%
EvenlyDVS 20.61% 21.33% 24.08% 28.30% 22.72% 24.13% 27.76% 32.61%
GreedyDVS 13.04% 14.28% 18.19% 23.64% 17.55% 19.70% 23.33% 29.44%

Fig. 8. Energy saving with respect to various parallelism degrees at differentmakespan extension rates (400 tasks, 10 PEs, CCR = 0.2).

algorithms by: (4.45%, 13.88%), (7.4%, 15.24%), (9.97%, 15.14%),
and (11.73%, 14.94%), for parallelism degree of 0.5, 1, 2 and 5
respectively. It is also observed that the EASLA algorithm can get
higher percentage improvement over the EvenlyDVS algorithm as
the increase of the parallelism degrees. Since a high parallelism
degree application has more independent tasks which is beneficial
for our EASLA algorithm to take full advantage of slacks.

6.2.2. Comparison of energy saving for real-world applications
In this subsection, two real-world applications are tested. One is

the application of a molecular dynamic code algorithm [7], which
consists of 41 tasks. The other is the DSP application of sonar data
processing [35], which consists of 119 tasks. The number of PEs is
varied to 4 and 6 for the former application, and to 5 and 10 for the
latter application.

Table 4 shows the percentage improvement of EASLA over
EvenlyDVS and GreedyDVS for various values of makespan
extension rates as well as various numbers of PEs for themolecular
dynamic code algorithm and DSP based application. The results are
consistent with the results for randomly generated applications.

Our EASLA algorithm outperforms the other two algorithms for
both applications. For instance, for 0.4 extension rate, the EASLA
algorithm improves by 10.01%–12.01% compared with EvenlyDVS,
and 12.36%–22.68% compared with GreedyDVS.

6.3. Performance results in heterogeneous environments

In this subsection, we use six sizes of random DAG tasks for
our experiments, which are 30, 100, 200, 300, 500, and 1000. We
choose three real PEs to simulate a heterogeneous environment
and their voltage–frequency pairs are presented in Table 2. The
number of PEs in the following experiments is set as {6, 30, 30,
30, 30, 60}, respectively. We compare the energy savings of the
EASLA algorithm with the EES algorithm. As we do experiments
in heterogeneous environments, we exchange the ETF algorithm
to HEFT algorithm, which provides a good quality of schedules for
DAGs in heterogeneous environments [30].

The results are shown in Fig. 9. Based on the observations
from these figures, we can find that our EASLA algorithm can
save more energy than the EES algorithm in any case. On the one

Y. Hu et al. / Future Generation Computer Systems () – 11

Table 4
Percentage improvement of EASLA over EvenlyDVS and GreedyDVS for DAGs generated by real-world applications.

PEs Makespan extension rate(η)
0.00 0.05 0.1 0.2 0.3 0.4

Molecular 4 EvenlyDVS 0.12 5.21 8.31 8.58 7.61 10.60
GreedyDVS 0.66 6.90 11.37 17.63 20.44 20.77

6 EvenlyDVS 0.41 5.50 8.55 9.17 8.11 10.02
GreedyDVS 2.17 8.58 13.19 19.54 22.32 22.68

DSP 5 EvenlyDVS 0.05 4.14 6.88 7.61 7.57 10.01
GreedyDVS 0.11 4.00 6.41 9.70 12.12 13.17

10 EvenlyDVS 0.34 4.28 6.63 8.63 9.91 12.01
GreedyDVS 0.49 3.93 5.68 8.58 11.14 12.36

Fig. 9. Energy saving of EASLA and EES for various numbers of tasks andmakespan extension rates in heterogeneous environments.

hand, the difference between the results of EASLA algorithm and
EES algorithm tends to increase with the increase of makespan
extension rate and our algorithm can save up to 12.33% energy

consumption over EES when the makespan extension rate reaches
0.4 with 1000 tasks. On the other hand, at first, the saved energy
also slightly increases with the increase of number of tasks (30,

12 Y. Hu et al. / Future Generation Computer Systems () –

100, and 200). However, when the number of tasks is large enough,
e.g., 200, 300, 500, the saved energy is almost kept unchanged. The
reason behind lies in thatwhen the number of tasks is large enough
while the number PEs keeps the same, less slacks can be used to
adjust frequency to save energy. Furthermore, when the number
of PEs increases (see 1000 tasks with 60 PEs), the saved energy also
tends to slightly increase.

7. Conclusion

A good energy aware scheduling strategy on DVFS-enabled
cluster systems can reduce much energy consumption, which
decreases the operational cost, reduces environmental pollution,
and increases the system reliability. In this paper, we propose an
energy-performance tradeoff scheduling algorithm EASLA, which
tries to minimize energy consumption within certain extension
rate of makespan. The proposed scheduling algorithm can be
efficiently applied to applications that can be represented by
a DAG. DAGs can represent a large number of applications.
For instance, it can be used for DSP applications in sonar data
processing, the molecular dynamic code algorithm, the Gaussian
elimination algorithm, and decomposition of a large matrix.
Randomly generated graphs and two real-world applications are
adopted in our experiments to evaluate the performance of the
proposed algorithm. Through the experimental results, EASLA can
reduce energy consumption by up to 22.68% and 12.01% compared
with GreedyDVS and EvenlyDVS algorithms in homogeneous
environments, and 10.49% energy consumption comparedwith the
EES algorithm in heterogeneous environments.

In the future work, we are planning to test the algorithm
on variable degrees of heterogeneity among PEs and subtasks.
Furthermore, we will consider individual components such as
disks and memory to reduce energy consumption.

Acknowledgments

A preliminary version of this manuscript was presented on
the 20th IEEE International Conference on Parallel and Distributed
Systems (ICPADS 2014).

The research was partially funded by the Key Program
of National Natural Science Foundation of China (Grant Nos.
61133005, 61432005), the National Natural Science Foundation
of China (Grant Nos. 61370095, 61472124), the National High-
tech R&D Program of China (Grant No. 2014AA01A302), and the
International Science & Technology Cooperation Program of China
(Grant No. 2015DFA11240, 2014DFBS0010).

References

[1] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2011) 1374–1381.

[2] X. Zhu, C. He, K. Li, X. Qin, Adaptive energy-efficient scheduling for real-time
tasks on DVS-enabled heterogeneous clusters, J. Parallel Distrib. Comput. 72
(6) (2012) 751–763.

[3] Y. Ma, B. Gong, L. Zou, Energy-optimization scheduling of task dependent
graph on DVS-enabled cluster system, in: ChinaGrid Conference (ChinaGrid),
2010 Fifth Annual, IEEE, 2010, pp. 183–190.

[4] G. von Laszewski, L. Wang, Greenit service level agreements, in: Grids and
Service-Oriented Architectures for Service Level Agreements, Springer, 2010,
pp. 77–88.

[5] D. Gmach, Y. Chen, A. Shah, J. Rolia, C. Bash, T. Christian, R. Sharma, Profiling
sustainability of data centers, in: 2010 IEEE International Symposium on
Sustainable Systems and Technology, (ISSST), IEEE, 2010, pp. 1–6.

[6] Y. Zhang, X.S. Hu, D.Z. Chen, Task scheduling and voltage selection for
energy minimization, in: Proceedings of the 39th Annual Design Automation
Conference, ACM, 2002, pp. 183–188.

[7] J. Mei, K. Li, K. Li, Energy-aware task scheduling in heterogeneous computing
environments, Cluster Comput. (2013) 1–14.

[8] S. Baskiyar, R. Abdel-Kader, Energy aware dag scheduling on heterogeneous
systems, Cluster Comput. 13 (4) (2010) 373–383.

[9] D. Zhu, R. Melhem, B. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems, IEEE
Trans. Parallel Distrib. Syst. 14 (7) (2003) 686–700.

[10] J. Kang, S. Ranka, Slack allocation algorithm for parallel machines, J. Parallel
Distrib. Comput. 70 (1) (2010) 23–34.

[11] G. Aupy, A. Benoit, Y. Robert, Energy-aware scheduling under reliability
and makespan constraints, in: 2012 19th International Conference on High
Performance Computing, (HiPC), IEEE, 2012, pp. 1–10.

[12] S. Baskiyar, K.K. Palli, Low power scheduling of dags to minimize finish times,
in: High Performance Computing-HiPC 2006, Springer, 2006, pp. 353–362.

[13] C. Liu, K. Li, C. Xu, K. Li, Strategy configurations of multiple users competition
for cloud service reservation, IEEE Trans. Parallel Distrib. Syst. 27 (2) (2016)
508–520.

[14] H. Kimura, M. Sato, Y. Hotta, T. Boku, D. Takahashi, Emprical study on reducing
energy of parallel programs using slack reclamation by dvfs in a power-
scalable high performance cluster, in: 2006 IEEE International Conference on
Cluster Computing, IEEE, 2006, pp. 1–10.

[15] N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Y.C. Lee, Linear combinations of
dvfs-enabled processor frequencies to modify the energy-aware scheduling
algorithms, in: 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, (CCGrid), IEEE, 2010, pp. 388–397.

[16] P. Chowdhury, C. Chakrabarti, Static task-scheduling algorithms for battery-
powered DVS systems, IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 13 (2)
(2005) 226–237.

[17] L.Wang, S.U. Khan, D. Chen, J. Kołodziej, R. Ranjan, C.-z. Xu, A. Zomaya, Energy-
aware parallel task scheduling in a cluster, Future Gener. Comput. Syst. 29 (7)
(2013) 1661–1670.

[18] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, X. Huang, Enhanced energy-efficient
scheduling for parallel applications in cloud, in: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
(ccgrid 2012), IEEE Computer Society, 2012, pp. 781–786.

[19] M.Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.-G. Talbi, A.Y. Zomaya, D. Tuyttens,
A parallel bi-objective hybrid metaheuristic for energy-aware scheduling
for cloud computing systems, J. Parallel Distrib. Comput. 71 (11) (2011)
1497–1508.

[20] C.-M. Wu, R.-S. Chang, H.-Y. Chan, A green energy-efficient scheduling
algorithm using the dvfs technique for cloud datacenters, Future Gener.
Comput. Syst. 37 (2014) 141–147.

[21] K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks applications
with deadline constraints on dvs-enabled clusters., in: CCGRID, Vol. 7, 2007,
pp. 541–548.

[22] Y. Gao, H. Guan, Z. Qi, T. Song, F. Huan, L. Liu, Service level agreement based
energy-efficient resource management in cloud data centers, Comput. Electr.
Eng. 40 (2014) 1621–1633.

[23] M. Marzolla, R. Mirandola, Dynamic power management for qos-aware
applications, Sustain. Comput.: Inf. Syst. 3 (4) (2013) 231–248.

[24] M.E. Haque, K. Le, Í. Goiri, R. Bianchini, T.D. Nguyen, Providing green slas in
high performance computing clouds, in: Green Computing Conference (IGCC),
2013 International, IEEE, 2013, pp. 1–11.

[25] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing,
Future Gener. Comput. Syst. 28 (5) (2012) 755–768.

[26] J. Cao, K. Hwang, K. Li, A.Y. Zomaya, Optimal multiserver configuration for
profit maximization in cloud computing, IEEE Trans. Parallel Distrib. Syst. 24
(6) (2013) 1087–1096.

[27] S. Tang, J. Yuan, C.Wang, X.-Y. Li, A framework for amazon ec2 bidding strategy
under sla constraints, IEEE Trans. Parallel Distrib. Syst. 25 (1) (2014) 2–11.

[28] R. Ge, X. Feng, K.W. Cameron, Performance-constrained distributed DVS
scheduling for scientific applications onpower-aware clusters, in: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, IEEE Computer Society,
2005, p. 34.

[29] H. El-Rewini, H.H. Ali, T. Lewis, Task scheduling in multiprocessing systems,
Computer 28 (12) (1995) 27–37.

[30] H. Topcuoglu, S. Hariri, M.-y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst.
13 (3) (2002) 260–274.

[31] J. Luo, N.K. Jha, Power-profile driven variable voltage scaling for heterogeneous
distributed real-time embedded systems, in: 16th International Conference on
VLSI Design, 2003. Proceedings, IEEE, 2003, pp. 369–375.

[32] S. Sakai, M. Togasaki, K. Yamazaki, A note on greedy algorithms for the
maximum weighted independent set problem, Discrete Appl. Math. 126 (2)
(2003) 313–322.

[33] H. Yu, Y. Ha, B. Veeravalli, Quality-driven dynamic scheduling for real-time
adaptive applications on multiprocessor systems, IEEE Trans. Comput. 62 (10)
(2013) 2026–2040.

[34] Y. Xu, K. Li, L. He, T.K. Truonn, A dag scheduling scheme on heterogeneous
computing systems using doublemolecular structure-based chemical reaction
optimization, J. Parallel Distrib. Comput. 73 (9) (2013) 1306–1322.

[35] C.M.Woodside, G.G. Monforton, Fast allocation of processes in distributed and
parallel systems, IEEE Trans. Parallel Distrib. Syst. 4 (2) (1993) 164–174.

http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref1
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref2
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref3
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref4
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref5
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref6
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref7
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref8
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref9
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref10
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref11
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref12
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref13
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref14
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref15
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref16
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref17
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref18
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref19
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref20
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref22
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref23
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref24
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref25
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref26
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref27
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref28
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref29
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref30
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref31
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref32
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref33
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref34
http://refhub.elsevier.com/S0167-739X(16)30294-1/sbref35

Y. Hu et al. / Future Generation Computer Systems () – 13

YikunHu is currentlyworking towards the Ph.D. degree at
Hunan University, China. His research interests are mainly
in parallel and distributed processing, Cluster, Grid and
Cloud computing.

Chubo Liu is currently working toward the Ph.D. degree at
Hunan University, China. His research interests are mainly
in modeling and scheduling for distributed computing
systems, Approximation and random algorithms, Grid
and Cloud computing. He is a programming lover and
interested in design of algorithms. Game theory is also
included in his current research interests.

Kenli Li received the Ph.D. in computer science from
Huazhong University of Science and Technology, China, in
2003, and the M.Sc. in mathematics from Central South
University, China, in 2000. He was a visiting scholar at
University of Illinois at Champaign and Urbana from 2004
to 2005. Now he is a professor of Computer science
and Technology at Hunan University, associate director
of National Supercomputing Center in Changsha, a senior
member of CCF. His major research includes parallel
computing, high-performance computing, Grid and Cloud
computing. He has published more than 150 research

papers in international conferences and journals such as IEEE-TC, IEEE-TPDS, IEEE-
TSP, JPDC, ICPP, CCGrid. He is an outstandingmember of CCF. He is a senior member
of the IEEE and serves on the editorial board of IEEE Transactions on Computers.

Xuedi Chen is currentlyworking toward theM.S. degree at
Hunan University of China. Her research interests include
scheduling for distributed computing systems and parallel
algorithms.

Keqin Li is a SUNY Distinguished Professor in computer
science. Now he is also a professor of Computer science
and Technology at Hunan University. His research in-
terests are mainly in design and analysis of algorithms,
parallel and distributed computing, and computer net-
working. He has contributed extensively to processor al-
location and resource management; design and analy-
sis of sequential/parallel, deterministic/probabilistic, and
approximation algorithms; parallel and distributed com-
puting systems performance analysis, prediction, and
evaluation; job scheduling, task dispatching, and load bal-

ancing in heterogeneous distributed systems; dynamic tree embedding and ran-
domized load distribution in static networks; parallel computing using optical
interconnections; dynamic location management in wireless communication net-
works; routing and wavelength assignment in WDM optical networks; energy-
efficient power management and performance optimization. His current research
interests include lifetime maximization in sensor networks, file sharing in peer-
to-peer systems, and cloud computing. He has published over 235 journal articles,
book chapters, and research papers in refereed international conference proceed-
ings. He has received several Best Paper Awards for his highest quality work. He is
currently on the editorial board of IEEE Transactions on Parallel and Distributed Sys-
tems, Journal of Parallel and Distributed Computing, International Journal of Parallel,
Emergent and Distributed Systems, International Journal of High Performance Comput-
ing and Networking, and Optimization Letters.

	Slack allocation algorithm for energy minimization in cluster systems
	Introduction
	Related work
	System model and problem formulation
	Architecture model
	Application model
	Cluster model
	Energy model
	Problem formulation

	Algorithm design
	The outline of EASLA
	Task scheduling algorithm
	Available slack for a task
	Compatible task matrix
	Slack allocation for frequency down-scaling
	Performance evaluation
	An illustration
	Time complexity

	Extension to heterogeneous environment
	Differences on cluster model
	Differences on energy model
	Differences on problem formulation
	Same algorithm application

	Simulation and results
	Randomly generated application graphs
	Performance results in homogeneous environments
	Random application performance results
	Comparison of energy saving for real-world applications

	Performance results in heterogeneous environments

	Conclusion
	Acknowledgments
	References

