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A B S T R A C T

Default detection, a crucial aspect of individual credit scoring, has attracted considerable attention in research.
Previous approaches typically focus on classifying applicants using only explicit attributes, overlooking
the importance of latent relations among them. Concurrently, graph-based techniques have emerged as
promising tools for credit scoring. However, existing graph-based methods often need to be more accurate
in aggregating information from limited neighbors, which can lead to misclassification when the target node
has differently labeled neighbors. Motivated by these challenges, we propose a Local and Global Information-
aware Graph Neural Network (LG-GNN) approach for default detection. By leveraging the loan applicant
relation graph, LG-GNN dynamically learns the representation of the target node from both local and global
perspectives. Furthermore, it adaptively fuses the information from these perspectives and employs contrastive
learning to enhance feature variations. Extensive experiments demonstrate the superiority of LG-GNN over
mainstream methods across several widely used default detection datasets. Specifically, LG-GNN achieves an
average relative performance improvement of 47.9% compared to baselines. Moreover, compared to the most
competitive default detection methods, LG-GNN exhibits an average performance improvement of 11.9%. Our
code is publicly available at https://github.com/BERA-wx/LG-GNN.
1. Introduction

Default detection, which is a process that involves the use of ma-
chine learning techniques to predict the likelihood of individuals or
entities defaulting on their credit obligations, is an essential aspect of
decision-making for consumer finance firms, commercial banks, and
financial institutions (West, 2000; Crook, 2002). It involves analyzing
an individual’s financial status, credit history, and capability to repay
a loan for making informed credit approval or denial decisions.

Approved applicants are denoted as approved samples, while those
whose applications are denied are termed rejected samples. The lending
institution can track the behavior of the approved samples throughout
the loan term and classify timely repayments as non-default samples
and instances of default behavior as default samples. The goal of default
detection is to predict which applicants will become default sam-
ples. Traditional statistical methods like Logistic Regression (LR) (Sohn
et al., 2016) and Linear Discriminant Analysis (LDA) (Altman, 1968)
are frequently used due to their simplicity and interpretability. How-
ever, these methods face challenges when dealing with increasing
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data diversity and populations, which has led to the popularity of
advanced machine learning techniques such as Back Propagation (BP)
Neural Networks, K Nearest Neighbor (KNN), Support Vector Machines
(SVM), and Multi-Layer Perceptron (MLP) for modeling default de-
tection. Conventional machine learning methods for default detection
rely heavily on manual feature engineering and expert knowledge
to extract informative feature sets. On the other hand, deep learn-
ing methods automatically extract features using various end-to-end
paradigms (Scarselli et al., 2008), resulting in the popularity of deep
learning methods in default detection (Mancisidor et al., 2020; Dahooie
et al., 2021; Zhang et al., 2022). For example, TSSMN (Guo et al., 2023)
leverages the transitivity of labels in graph neural networks (GNNs) to
infer loan status directly. Furthermore, previous research typically fo-
cuses on detecting defaulters using explicit attributes. However, nearly
every applicant is connected to others through diverse and far-reaching
connections, such as friendships, kinships, and other latent relations.
Therefore, data for default detection is better represented using graphs
to simulate latent relations (Wu et al., 2024; Shi et al., 2024).
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Table 1
The mean values of the debt-to-income ratio (DTI-Ratio) and employment length (EL)
of the defaulters and the non-defaulters in the Lending Club dataset across different
years.

Year DTI-Ratio (%) EL (year)

Default Non-Default Default Non-Default

2013 18.66 16.90 6.20 6.21
2014 19.55 17.52 6.03 6.08
2015 20.87 18.37 5.90 5.97
2016 20.45 18.11 5.85 6.02
2017 20.21 17.93 5.56 5.89
2018 19.10 17.87 5.64 5.98

Fig. 1. Limited feature variability and context inconsistency. Limited feature variability
is characterized by the constrained difference in features between defaulters and non-
defaulters, illustrated by a substantial overlap of blue and red sample points in the
left plot. Context inconsistency manifests as an abundance of non-defaulters among the
neighbors of defaulters. In the case illustrated in the right plot, Node 1 is categorized
as a defaulter, while its first-order neighbors (Nodes 2 to 6) are all non-defaulters.

Vanilla GNNs have two aspects that merit consideration. Firstly, the
sole reliance on nearby information can lead to homogenization (Zhu
et al., 2020). Herein, the target node continuously assimilates informa-
tion from its neighbors, diminishing differences. Homogenization helps
when neighbors belong to the same category but hinders when they
belong to a different class. Secondly, neighbor-information aggregation
is distance-dependent (Garg et al., 2020), causing rapid attenuation
of contributions from distant neighbors. Consequently, the influence
of far-distance neighbors diminishes quickly, facilitating short-distance
information learning but impeding long-distance information learning.

Moreover, vanilla GNNs encounter two challenges in default de-
tection. Firstly, there is limited feature variability between default
and non-default samples, as defaulters align their features with non-
defaulters to meet loan requirements, limiting the generalization ability
of graph models. Table 1 in the Lending Club dataset shows slight dif-
ferences in average debt-to-income ratio and employment length between
defaulters and non-defaulters. Additionally, Fig. 1 reveals significant
overlap in data distribution, indicating minimal differences between
the two groups. Secondly, there is an issue of context inconsistency
in default detection graphs. Vanilla GNNs find it hard to represent
the node when its nearby neighbors belong to different categories.
Homogenization and distance dependency aggravate the issue, limiting
feature variability and hindering learning from long-distance neigh-
bors. Context inconsistency often arises when defaulters’ neighbors
are mainly non-defaulters since they outnumber defaulters. Node 1 in
Fig. 1 is an example of this, which prevents it from obtaining second-
order neighbors classified similarly to it. Considering these challenges,
vanilla GNNs that heavily rely on nearby neighbor information need
help accurately identifying defaulters in default detection.

Accordingly, we developed LG-GNN, a GNN that combines local and
global perspectives to represent target nodes more comprehensively.
Simultaneously, we employ a contrastive learning strategy to facili-
tate the aggregation of similar samples, reducing the impact of con-
text inconsistency and emphasizing feature disparities among different
class samples. LG-GNN first acquires node-embedded representations
through an embedding layer and then constructs the loan applicant
2

relation graph. Subsequently, it constructs local and global informa-
tion filtering networks to obtain local and global representations of
target nodes. The different representations are combined by dynami-
cally taking a weighted average. Ultimately, the target node features
are updated with the help of contrastive learning, yielding the final
representation.

Overall, LG-GNN has proven effective across seven different
datasets. The results demonstrate significant performance in identify-
ing potential defaulters within the loan applicants. Evaluated using
the common Kolmogorov–Smirnov (KS) metric and compared to tra-
ditional classifiers such as LR, MLP, and XGB, LG-GNN exhibited
a relative average performance increase of 97.15%. Compared to
the most competitive default detection methods, LG-GNN showed an
average performance improvement of 32.85%.

Our main contributions can be summarized as follows:

• We propose a novel LG-GNN method that integrates local and
global information within a graph data structure. Additionally,
we enhance the GNN model with contrastive learning to improve
graph representation learning.

• Our approach effectively mines latent relations from personal
pre-loan attributes using local and global networks. These latent
relations are incorporated into the learning process to enhance
node representation, allowing for effective discrimination even in
context inconsistency.

• Experiments conducted on seven datasets under various condi-
tions consistently demonstrate the effectiveness of LG-GNN com-
pared to mainstream methods for default detection.

The remainder of this paper is structured as follows. Section 2
provides an overview of recent related research. Section 3 describes the
default detection task. Section 4 elaborates on our LG-GNN framework.
In Section 5, we empirically assess LG-GNN’s effectiveness through
experiments. Finally, in Section 7, we summarize our work and explore
potential directions for future research.

2. Related work

In this section, we review some works on default detection and
two important related research aspects: graph neural networks and
contrastive learning.

2.1. Default detection

In default detection, prediction performance mainly relies on high-
quality applicant features and advanced techniques. Various studies
analyze discriminant information, including intrinsic features and ex-
ternal data, for accurate default prediction. Intrinsic features are the
inherent characteristics of an individual that can be used to pre-
dict default. Research such as Liang et al. (2016) and Jones (2017)
identified crucial intrinsic features for corporate default prediction.
Similarly, Xiong et al. (2013) determinant personal features for default
prediction. As for external data, Ma et al. (2018b) utilized phone
usage data, and Sukharev et al. (2020) employed individual transaction
records for personal default detection. The external information serves
the purpose of discovering helpful knowledge in credit analysis and
could also be beneficial complements in default detection.

Some researchers aim to develop advanced detection methods.
There are three categories of mainstream default detection methods:
expert scoring, statistical techniques, and machine learning. Expert
scoring involves evaluating the creditworthiness of an applicant based
on relevant factors. Conventional statistical methods such as LR and
PR are simple and transparent but face challenges when dealing with
extensive and diverse data sets. As more powerful predictions require
more information and better predictors (Ohlson, 1980), machine learn-
ing techniques such as KNN, MLP, and gradient boosting (Jones, 2017)
have become popular methods for default detection. Moreover, there
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is a growing trend toward utilizing semi-supervised (Xiao et al., 2020),
counterfactual (Bueff et al., 2022), and multi-task learning (Liu et al.,
2022) methods to model default detection. However, conventional
machine learning methods for default detection rely heavily on man-
ual feature engineering and expert knowledge to extract informative
feature sets.

Recent studies have demonstrated that Graph Neural Networks
(GNNs) (Scarselli et al., 2008), a type of deep learning model, are
highly effective in processing extensive, diverse, and high-dimensional
data. In contrast to traditional machine learning algorithms, which
assume that instances are independent of one another, default detection
requires a deeper understanding of the complex relationships between
instances. Graphs are a more appropriate way to represent default
detection data due to their expressive power and ability to capture
intricate connections between instances, such as friendship and kinship.
As a result, researchers are actively exploring the potential of GNNs in
default detection to improve credit assessment accuracy. For instance,
they investigate integrated graph representation learning methods (Shi
et al., 2024) and heterogeneous GNNs (Wu et al., 2024).

Despite the proficiency of existing machine and deep learning mod-
els, there are still two pivotal challenges: limited feature diversity and
context inconsistency.

2.2. Graph neural networks

Graph Neural Networks (GNNs) (Scarselli et al., 2008) aggregate
neighboring node features iteratively to model target node representa-
tions in graphs, ensuring stable node states. This inherent characteristic
and strong interpretability (Ying et al., 2019) have made GNNs a
powerful tool for various applications, including credit scoring (Guo
et al., 2023; Shi et al., 2024) and fraud detection (Lakhan et al., 2022).

Diverse methods have been proposed to elucidate the predictions
of GNN-based models, such as XGNN (Yuan et al., 2020), GNNEx-
plainer (Ying et al., 2019), and SubgraphX (Yuan et al., 2021). These
methods offer transparent insights into the decision-making process,
enabling users to understand the rationale behind GNN predictions and
fostering trust in their outcomes.

The Graph Attention Network (GAT) (Veličković et al., 2017) refines
message passing by selectively aggregating features from first-order
neighbors onto target nodes using attention coefficients. This approach
enhances interpretability as the attention mechanism directly reflects
the importance of different regions within the graph (Ying et al.,
2019). However, GAT employs static attention coefficients, limiting
its adaptability. To address this, GATv2 (Brody et al., 2021) intro-
duced dynamic attention. Similarly, GraphSage (Hamilton et al., 2017)
improves dynamic graph node feature learning by extending GCN
to incorporate generalized aggregation functions, achieved through
sampling and inductive learning from neighbors. However, GATs and
GraphSage to learn target node representations are limited by relying
solely on information from nearby neighbors (Zhu et al., 2020; Garg
et al., 2020).

Recent works, such as LGD-GCN (Guo et al., 2022), LGM-GNN (Li
et al., 2023b), and LGGNet (Ding et al., 2023), introduce an inno-
vative approach to acquiring target nodes’ representations through
the integration of local and global perspectives. The method helps to
overcome the limitation of distance in obtaining information. These
methods integrate neighbors’ information with different distances by
aggregating filtered information from local and global perspectives
through concatenation. However, these methods face two issues in
default detection. First, excessive information filtering leads to a loss
of useful information. Second, the concatenation approach may overly
emphasize the effectiveness of the original features, hindering the
learning of node information where original features are less critical
in specific scenarios.
3

2.3. Contrastive learning

Unsupervised contrastive learning (UCL) (Hadsell et al., 2006) is a
popular idea that has been successful in various domains, such as image
classification (Wang et al., 2022; Li et al., 2023a), emotion recogni-
tion (Yang et al., 2023; Shen et al., 2022), and computer vision (Chen
et al., 2020). It achieves representation learning by creating similar
and dissimilar instances and then learning a representation model that
ensures similar instances are projected closely in the embedding space
while dissimilar instances are projected farther apart. To achieve this,
maximizing mutual information is typically used (Hjelm et al., 2018).
One of the examples of UCL is Deep InfoMax (Hjelm et al., 2018), which
maximizes the mutual information between input data and high-level
feature vectors for effective feature representations.

Supervised contrastive learning (SCL) (Khosla et al., 2020) is an
extension of unsupervised contrastive methods. It incorporates label
information to construct positive and negative samples, which take
samples with the same label as positive pairs to calculate contrastive
loss, thus facilitating the model to find the decision boundaries (Gao
et al., 2021; Gunel et al., 2020). The process involves two stages: first,
learning representations through a contrastive loss and then training a
classifier using cross-entropy loss.

Several studies have explored the integration of contrastive learning
with the graph learning process, resulting in the creation of graph
contrastive learning (GCL) (Zhu et al., 2021; You et al., 2020). This
approach has proven particularly beneficial when capturing graph
structure and node attribute information. In the context of default de-
tection, contrastive learning can utilize structure information, attribute
information, and loan status labels from the relation graph formed by
loan applicants, which can help capture the characteristics of different
types of applicants and lead to more accurate inferences about their
loan status.

3. Problem statement

All approved samples are denoted as a set of samples  =
{𝑎1,… , 𝑎𝑁}, where 𝑁 signifies the total number of approved samples.
ach approved sample 𝑎𝑖 corresponds to a feature vector 𝑥𝑖 ∈ R𝑑 ,
here 𝑑 is the feature dimensionality of approved samples. These
pproved samples can be further categorized into two subsets: default
amples, indicated as 𝑥𝑑𝑖 ∈ R𝑑 , and non-default samples, denoted as
𝑛
𝑖 ∈ R𝑑 . For each approved sample 𝑎𝑖, the ground-truth label for its
efault/non-default status is assigned, where 𝑦𝑖 ∈ {0, 1}. Specifically,
𝑖 = 0 represents non-default samples (i.e., 𝑥𝑛𝑖 ∈ R𝑑), while 𝑦𝑖 = 1
orresponds to default samples (i.e., 𝑥𝑑𝑖 ∈ R𝑑). Therefore, the default
etection can be formally framed as a binary classification problem,
here the model is required to perform well on approved samples for
efault loan prediction.

. Methodology

.1. The design of the LG-GNN architecture

This section aims to provide an in-depth explanation of the LG-GNN
rchitecture’s design. As depicted in Fig. 2, the framework of the LG-
NN model proposed in this paper is depicted. The LG-GNN model

s composed of seven components: (1) Features embedding: Using
n embedding method, we transform high-dimensional, sparse feature
ectors of loan applicants into low-dimensional, dense feature vec-
ors. This enhances the model’s learning efficiency by more effectively
apturing applicant characteristics; (2) Loan applicant relation graph
onstruction: We construct a loan applicant relation graph to capture
nter-applicant relationships and feature similarities; (3) Local informa-
ion filtering: Introducing an information filtering mechanism for local
eighbors helps eliminate interference from dissimilar neighbor nodes
n the context of partial context inconsistency, thus refining target node
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Fig. 2. Detailed architecture of the proposed LG-GNN. Firstly, it transforms the raw features of applicants into low-dimensional dense vectors through feature embedding. Secondly,
loan applicant relation graph is constructed based on the similarity of applicant features, serving as an initial noise filter. Thirdly, to address the challenge of context inconsistency,

he model employs a graph to specify the top-k values for local and global information filtering, further refining noise filtering. Fourthly, an adaptive fusion mechanism aggregates
he filtered local and global information, facilitating the update of node features. Fifthly, a loss optimization strategy based on contrastive learning is applied to tackle the limited
eature variability issue. Finally, an MLP-based classifier is employed for loan status inference.
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eature learning; (4) Global information filtering: From a global per-
pective, we comprehensively capture target node features to mitigate
imitations arising from context inconsistency. Simultaneously, we filter
elpful information for target node updates from global neighbors,
educing noise interference; (5) Local and global information fusion:
daptive weight learning is employed to aggregate locally and globally
cquired information for the target node; (6) Default/non-default con-
rastive learning: Contrastive learning is introduced to amplify feature
ifferences between default and non-default samples; (7) Default/non-
efault classification: This component is dedicated to inferring loan
pplicants’ loan status.

.2. Features embedding

This section embeds representations of loan applicants’ original fea-
ures to map high-dimensional discrete features into lower-dimensional
ontinuous vectors. The goal is to preserve relationships while re-
ucing dimensionality. First, given the coexistence of discrete and
ontinuous features and the unsuitability of continuous features for
irect embedding processing, it is imperative to discretize continuous
eatures before embedding operations. Following discretization, the ro-
ustness of features to anomalous data is significantly strengthened (Liu
t al., 2002). Simultaneously, the discretization operation enhances
odel stability and mitigates overfitting risks by reducing the model’s

xcessive reliance on features with larger weights (Chapelle et al.,
014). Therefore, we conduct discretization on continuous features
efore proceeding with embedding operations. For convenience, the
qual-width-based binning (Holte, 1993) is employed. Subsequently, an
mbedding layer is utilized to encode the discretized feature vectors.
pecifically, the embedding layer transforms the feature vector 𝑥𝑖 ∈ R𝑑

of each node into 𝑒𝑚𝑏𝑖 ∈ R𝑑×𝑘, where 𝑘 represents the embedding
dimension. Following this transformation, for the ease of passing the
embedded features to subsequent computational networks and to pre-
vent overfitting, we flatten the embedded features to one dimension,
i.e., 𝑒𝑚𝑏𝑖 ∈ R𝑑𝑘. Consequently, after the features embedding, all sample
eatures, initially denoted as  ∈ R𝑁×𝑑 , are transformed into 𝐸 ∈
R𝑁×𝑑𝑘.

4.3. Loan applicant relation graph construction

The loan applicant relation graph, denoted as  = { , }, is an undi-
ected graph that aims to capture complex relationships among loan
pplicants. Nodes in the graph represent embedding representations of
oth default and non-default samples, i.e., 𝑒𝑚𝑏𝑖 ∈  . Edges between
odes are constructed based on the similarity between according node
airs, with similar nodes connected to form the original graph. Consid-
4

ring the density of edges is crucial for effective representation learning
of nodes in graphs and the problem of limited feature variability and
context inconsistency, we incorporate an edge threshold, 𝑝, to control
dge density and primarily filter useless relationship information. When
he similarity between nodes is high enough, nodes are likelier to
elong to the same type. Therefore, edges remain only if node sim-
larity exceeds the threshold, 𝑝. The original graph is optimized for
onnectivity and meaningful information propagation, followed by an
dge-filtered graph. The process of constructing edges is as follows:

𝑖𝑗 =

{

1 𝑠𝑖𝑚(𝑒𝑚𝑏𝑖, 𝑒𝑚𝑏𝑗 ) > 𝑝

0 otherwise
(1)

here 𝑒𝑖𝑗 ∈ R (𝑒𝑖𝑗 ∈ ) indicates the presence or absence of an edge
etween the node pairs. The similarity function, denoted as 𝑠𝑖𝑚(⋅), is
hosen as the cosine similarity function.

.4. Local information filtering

In constructing the loan applicant relation graph, we initially per-
orm rudimentary clustering based on numerical feature similarity
sing a threshold 𝑝. However, due to context inconsistency, this results
n nodes of different types within similar groups. Therefore, precise
nformation filtering becomes crucial when aggregating information for
arget nodes. We approach information filtering by mining information
n applicant features.

We focus on local information filtering by considering first-order
eighbors, as their influence on target nodes is significant. The first-
rder neighbors comprise the local neighbors whose associations col-
ectively constitute the local network.

To measure the influence of neighbors on target nodes, we introduce
n attention coefficient. This coefficient, denoted as 𝑟(𝑙,𝑘)𝑖𝑗 , is computed
sing a two-layer approach incorporating linear transformations and
n activation function. A multi-head mechanism is implemented to
nhance stability in the learning process. The attention coefficient
ndicates the relevance of information between node pairs, with a
igher value indicating greater relevance. The attention coefficient 𝑟(𝑙,𝑘)𝑖𝑗
etween node 𝑣𝑖 and node 𝑣𝑗 in the 𝑙th graph layer and 𝑘th head is

calculated as follows:

𝑟(𝑙,𝑘)𝑖𝑗 = (𝐖(𝑙,𝑘)
1 )⊤(𝑙𝑒𝑎𝑘𝑦𝑟𝑒𝑙𝑢(𝐖(𝑙,𝑘)

2 [𝜙(𝑙)
𝑖 ⊕𝜙(𝑙)

𝑗 ])) (2)

where 𝐖(𝑙,𝑘)
1 and 𝐖(𝑙,𝑘)

2 are learnable parameters, 𝑟(𝑙,𝑘)𝑖𝑗 ∈ R, and
(⋅)⊤ denotes transposition. The symbol ⊕ represents the concatenation
operation. When 𝑙 = 1, 𝜙(𝑙)

𝑖 = 𝑒𝑚𝑏𝑖 and 𝜙(𝑙)
𝑗 = 𝑒𝑚𝑏𝑗 .

Subsequently, we use the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function to normalize attention
coefficients between node pairs to ensure a consistent comparison. This

(𝑙,𝑘)
normalization process yields the normalized local coefficient, 𝜔𝑖𝑗,𝑙 ∈ R,



Computers and Operations Research 169 (2024) 106738Y. Liu et al.

w
𝑣
a

w
a
f
t
t
n
d

g
e
f
t
f

𝐸

w
R
t
h
𝑣

4

o
w
i
i
t
w
l
e
r
l
f
f

t
m
t
g

f
g
t
𝑟
c
r

𝜔

c
p
a
v
s
t

t
n

𝛾

in the local network. It focuses solely on the target nodes and their
first-order neighbors. The normalization formula is as follows:

𝜔(𝑙,𝑘)
𝑖𝑗,𝑙 = 𝜎(𝑟(𝑙,𝑘)𝑖𝑗 ) =

exp(𝑟(𝑙,𝑘)𝑖𝑗 )
∑

𝑗∈𝑖,𝑙
exp(𝑟(𝑙,𝑘)𝑖𝑗 )

(3)

here 𝑖,𝑙 represents the first-order neighbors of node 𝑣𝑖, including
𝑖, obtained by masking attention coefficients based on the first-order
djacency matrix. A larger 𝜔(𝑙,𝑘)

𝑖𝑗,𝑙 indicates stronger relevance and higher
similarity, and 𝜎(⋅) denotes the softmax function.

Secondly, we employ a top-k-based node importance filtering
method to identify relatively important neighbors of a target node
on the local network, guided by the normalized attention coefficient.
This operation effectively screens out unimportant local neighbors and
eliminates noisy local information. The selection criteria are defined as
follows:

𝑠𝑐𝑜𝑟𝑒(𝑙,𝑘)𝑖𝑗,𝑙 , 𝑖𝑑𝑥
(𝑙,𝑘)
𝑖𝑗,𝑙 = 𝑇 𝑜𝑝𝐾(𝜔(𝑙,𝑘)

𝑖𝑗,𝑙 , 𝐾𝑙𝑜𝑐𝑎𝑙)

𝑝(𝑙,𝑘)𝑙 = min(𝑠𝑐𝑜𝑟𝑒(𝑙,𝑘)𝑖𝑗,𝑙 )

𝐿(𝑙,𝑘)
𝑖𝑗 =

{

𝜔(𝑙,𝑘)
𝑖𝑗,𝑙 𝜔(𝑙,𝑘)

𝑖𝑗,𝑙 > 𝑝(𝑙,𝑘)𝑙

0 otherwise

(4)

here 𝑠𝑐𝑜𝑟𝑒(𝑙,𝑘)𝑖𝑗,𝑙 and 𝑖𝑑𝑥(𝑙,𝑘)𝑖𝑗,𝑙 are the scores and corresponding indexes
fter 𝑇 𝑜𝑝𝐾 pooling and filtering. The hyperparameter 𝐾𝑙𝑜𝑐𝑎𝑙 is the ratio
or filtering the first-order neighbors of the target node. 𝐿(𝑙,𝑘)

𝑖𝑗 represents
he selected first-order neighbors, and 𝑝(𝑙,𝑘)𝑙 is the corresponding local
hreshold. Information from a neighbor node contributes to the target
ode’s feature update only when 𝜔𝑙,𝑘

𝑖𝑗,𝑙 exceeds 𝑝(𝑙,𝑘)𝑙 ; otherwise, it is
isregarded during feature aggregation.

Thirdly, we update the target node’s local feature embedding using a
raph neural network (GNN) with 𝑒𝑙𝑢 activation function. This process
ntails computing a weighted linear combination of corresponding
eature vectors, where the weights are determined by the associated at-
ention coefficients 𝐿(𝑙,𝑘)

𝑖𝑗 . The update is expressed through the following
ormula:

𝑚𝑏(𝑙)𝑖,𝑙 = 𝑒𝑙𝑢
⎛

⎜

⎜

⎝

1
𝐾

𝐾
∑

𝑘=1

∑

𝑗∈𝑖,𝑙

𝐿(𝑙−1,𝑘)
𝑖𝑗 𝐖(𝑙−1,𝑘)

𝐿 𝐸𝑚𝑏(𝑙−1)𝑖,𝑙

⎞

⎟

⎟

⎠

(5)

here 𝐾 represents the number of multi-attention layers, and 𝐖(𝑙−1,𝑘)
𝐿 ∈

𝑑𝑘×ℎ𝑘𝑙 corresponds to the weight matrix for input linear transforma-
ions, with ℎ𝑘𝑙 indicating the dimensionality of the 𝑙th layer in the 𝑘th
ead. The term 𝐸𝑚𝑏(𝑙)𝑖,𝑙 ∈ Rℎ𝑘𝑙 denotes the local representation of node

𝑖, when 𝑙 = 1, 𝐸𝑚𝑏(𝑙)𝑖,𝑙 = 𝑒𝑚𝑏𝑖.

.5. Global information filtering

Due to context inconsistency and the constrained filtering capacity
f local information filtering, local neighbors may still include nodes
ith different labels, leading to several issues. Firstly, solely aggregat-

ng information from local neighbors overlooks effective microscopic
nformation from distant neighbors with the same label and informa-
ion hidden in the macroscopic structure of the entire graph. Secondly,
hen the features of the target node and local neighbors with different

abels share limited variability, the local information filter fails to
ffectively filter out interfering information from such neighbors. This
esults in exacerbating feature similarities between the target node and
ocal neighbors with different labels. Additionally, the local information
ilter is prone to overfitting under interfering information and features
rom applicants in the context.

To address these concerns, we introduce global information filtering
o enrich the representation of the target node by aggregating infor-
ation comprehensively. Adopting a global viewpoint, we consider

he impact of all neighbors on the target node, with all nodes of the
raph collectively forming the global neighbors and their associations
5

orming the global network. Utilizing attention coefficients, 𝑟(𝑙,𝑘)𝑖𝑗 , we
auge the importance of information transmitted from global neighbors
o the target node during information aggregation. The calculation of
(𝑙,𝑘)
𝑖𝑗 for all node pairs is derived according to Eq. (2). To facilitate
omparisons, a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is applied to the global neighbors,
esulting in 𝜔(𝑙,𝑘)

𝑖𝑗,𝑔 ∈ R. The formula is as follows:

(𝑙,𝑘)
𝑖𝑗,𝑔 = 𝜎(𝑟(𝑙,𝑘)𝑖𝑗 ) =

exp(𝑟(𝑙,𝑘)𝑖𝑗 )
∑

𝑗∈𝑖,𝑔
exp(𝑟(𝑙,𝑘)𝑖𝑗 )

, (6)

where 𝑖,𝑔 denotes the global neighbors of node 𝑣𝑖, obtained di-
rectly from the attention coefficients rather than based on high-order
adjacency matrices to enhance the computational efficiency.

To improve generalization and prediction accuracy across varying
data distributions of different samples, we employ a parameter nor-
malization method. We compute a scaled parameter score 𝛽(𝑙,𝑘)𝑖𝑗,𝑔 ∈ R to
measure node pair similarity, which involves a linear transformation
using the 𝑟𝑒𝑙𝑢 function, followed by min–max scaling to constrain it
within the (0, 1) range, as illustrated in the formula below:

𝛼(𝑙,𝑘)𝑖𝑗,𝑔 = 𝑟𝑒𝑙𝑢(‖‖
‖

𝜌(𝑥𝑖) − 𝜌(𝑒𝑚𝑏𝑗 )
‖

‖

‖1
), 𝑗 ∈ 𝑖,𝑔

𝛽(𝑙,𝑘)𝑖𝑗,𝑔 =
𝛼(𝑙,𝑘)𝑖𝑗,𝑔 − min(𝛼(𝑙,𝑘)𝑖𝑗,𝑔 )

max(𝛼(𝑙,𝑘)𝑖𝑗,𝑔 ) − min(𝛼(𝑙,𝑘)𝑖𝑗,𝑔 )

(7)

here, ‖⋅‖1 calculates the 𝐿1 norm of the corresponding vector and 𝜌(⋅)
alculates the 𝐿2 norm of the corresponding vector. 𝛽(𝑙,𝑘)𝑖𝑗,𝑔 is the scaled
arameter score, with min(𝛼(𝑙,𝑘)𝑖𝑗,𝑔 ) as the minimum value and max(𝛼(𝑙,𝑘)𝑖𝑗,𝑔 )
s the maximum value. Since the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function saturates at extreme
alues, we employ the min–max method to scale the values to the
pecified range while preserving differences instead of directly applying
he 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function.

Then, by combining the attention coefficients between nodes and
he normalized scores, we compute the final score, 𝛾 (𝑙,𝑘)𝑖𝑗,𝑔 ∈ R, for global
eighbors:

(𝑙,𝑘)
𝑖𝑗,𝑔 = 1

2

(

𝜔(𝑙,𝑘)
𝑖𝑗,𝑔 +

(

1 − 𝛽(𝑙,𝑘)𝑖𝑗,𝑔

))

(8)

Next, we filter the global neighbors based on the final scores,
selecting those highly similar to the target node. These filtered global
neighbors are considered to possess crucial information at the global
level. We continue to use the top-k-based operation for filtering:

𝑠𝑐𝑜𝑟𝑒(𝑙,𝑘)𝑖𝑗,𝑔 , 𝑖𝑑𝑥
(𝑙,𝑘)
𝑖𝑗,𝑔 = 𝑇 𝑜𝑝𝐾(𝜔(𝑙,𝑘)

𝑖𝑗,𝑔 , 𝐾𝑔𝑙𝑜𝑏𝑎𝑙)

𝑝(𝑙,𝑘)𝑔 = min(𝑠𝑐𝑜𝑟𝑒(𝑙,𝑘)𝑖𝑗,𝑔 )

𝑠(𝑙,𝑘)𝑖𝑗,𝑔 =

{

𝜔(𝑙,𝑘)
𝑖𝑗,𝑔 𝜔(𝑙,𝑘)

𝑖𝑗,𝑔 > 𝑝(𝑙,𝑘)𝑔

0 otherwise

(9)

here, 𝑠(𝑙,𝑘)𝑖𝑗,𝑔 ∈ R represents the ultimately chosen global neighbors, and
𝐾𝑔𝑙𝑜𝑏𝑎𝑙 denotes the ratio for filtering the global neighbors of the target
node with 𝑝(𝑙,𝑘)𝑔 as the corresponding global threshold. Information from
a neighbor node contributes to the target node’s feature update only
when 𝜔𝑙,𝑘

𝑖𝑗,𝑔 exceeds 𝑝(𝑙,𝑘)𝑔 ; otherwise, it is disregarded during feature
aggregation.

To evaluate the significance of the chosen global neighbors, we
employ a softmax normalization process defined as follows:

𝐺(𝑙,𝑘)
𝑖𝑗 =

𝜎(𝑠(𝑙,𝑘)𝑖𝑗,𝑔 )

𝑡
=

exp(𝑠(𝑙,𝑘)𝑖𝑗,𝑔 )

𝑡
∑

𝑗∈𝐸𝑖
exp(𝑠(𝑙,𝑘)𝑖𝑗,𝑔 )

(10)

here, 𝐺(𝑙,𝑘)
𝑖𝑗 ∈ R represents the weight of the last selected nodes, and 𝑡

represents the global temperature coefficient, and in our experiment,
we set its value to 0.001. To ensure numerical stability during the
softmax operation, particularly when 𝑠(𝑙,𝑘)𝑖𝑗,𝑔 values are close to zero, we
introduce a temperature coefficient to control the smoothness, which
helps maintain stability during the computation.
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Subsequently, we employ the GNN framework to aggregate infor-
mation from the global neighbor nodes and the target node, obtaining
the global feature embedding for the target node:

𝐸𝑚𝑏(𝑙)𝑖,𝑔 = 𝑒𝑙𝑢
⎛

⎜

⎜

⎝

1
𝐾

𝐾
∑

𝑘=1

∑

𝑗∈𝑖,𝑔

𝐺(𝑙−1,𝑘)
𝑖𝑗 𝐖(𝑙−1,𝑘)

𝐺 𝐸𝑚𝑏(𝑙−1)𝑖,𝑔

⎞

⎟

⎟

⎠

(11)

here 𝐖(𝑙−1,𝑘)
𝐺 ∈ R𝑑𝑘×ℎ𝑘𝑙 corresponds to the weight matrix for input

inear transformations. The term 𝐸𝑚𝑏(𝑙)𝑖,𝑔 ∈ Rℎ𝑘𝑙 denotes the global
epresentation of node 𝑣𝑖, when 𝑙 = 1, 𝐸𝑚𝑏(𝑙)𝑖,𝑔 = 𝑒𝑚𝑏𝑖.

.6. Local and global information fusion

So far, we have obtained two distinct representations of node 𝑣𝑖:
he local representation, 𝐸𝑚𝑏(𝑙)𝑖,𝑙 , and the global representation, 𝐸𝑚𝑏(𝑙)𝑖,𝑔 .
ur current task is to merge these two representations to obtain a
ore comprehensive node representation. However, due to the is-

ue of inconsistency, the importance of local and global information
aries among different nodes. Therefore, we need to dynamically learn
he weights that balance the roles of local and global information
n information fusion, and we employ the attention mechanism. The
alculation of the weight balancing parameter is as follows:
(𝑙)
𝑖 = 𝜎(𝑙𝑒𝑎𝑘𝑦𝑟𝑒𝑙𝑢(𝐖(𝑙)

3 [𝐸𝑚𝑏(𝑙)𝑖,𝑙 ⊕𝐸𝑚𝑏(𝑙)𝑖,𝑔])) (12)

here 𝛿(𝑙)𝑖 ∈ Rℎ𝑘𝑙 represents the weight of the local representation of
ode 𝑣𝑖, and 𝐖(𝑙)

3 ∈ R2𝑑𝑘×ℎ𝑘𝑙 represent the shared weight matrix.
Finally, we perform local and global information fusion based on

he learned weights, 𝛿(𝑙)𝑖 :

(𝑙)
𝑖 = 𝛿(𝑙)𝑖 𝐸𝑚𝑏(𝑙)𝑖,𝑙 +

(

1 − 𝛿(𝑙)𝑖
)

𝐸𝑚𝑏(𝑙)𝑖,𝑔 (13)

here 𝜙(𝑙)
𝑖 ∈ Rℎ𝑘𝑙 represents the final representation of node 𝑣𝑖.

.7. Default/non-default contrastive learning

In light of the challenges posed by the limited distinctions between
efault samples and non-default samples, accurately classifying such
odes has become a complex task. To amplify the differentiation among
odes with different loan statuses, we leverage contrastive learning.
his approach aims to extract semantic information from nodes with
iverse loan statuses to bring nodes sharing the same loan status labels
nto proximity while pushing apart nodes with dissimilar loan status
abels. Contrastive learning, in turn, amplifies the disparities among
eatures of different node categories. Within the realm of contrastive
earning, we designate node pairs with identical loan status labels as
ositive pairs (i.e., (𝑒𝑚𝑏𝑑𝑖 , 𝑒𝑚𝑏

𝑑
𝑗 ∣ 𝑣𝑖, 𝑣𝑗 ∈  , 𝑖 ≠ 𝑗) or (𝑒𝑚𝑏𝑛𝑖 , 𝑒𝑚𝑏

𝑛
𝑗 ∣

𝑖, 𝑣𝑗 ∈  , 𝑖 ≠ 𝑗)) and those with different loan status labels as negative
airs (i.e., (𝑒𝑚𝑏𝑑𝑖 , 𝑒𝑚𝑏

𝑛
𝑗 ∣ 𝑣𝑖, 𝑣𝑗 ∈ )). The default/non-default contrastive

etwork is formulated as follows:

1 = −E𝑠

⎡

⎢

⎢

⎢

⎣

∑

𝑣𝑗(𝑖)

∈  log
exp

(

𝑠𝑖𝑚
(

𝜙(𝑙)
𝑖 , 𝜙(𝑙)

𝑗(𝑖)

)

∕𝜏
)

∑

𝑣𝑧∈ exp
(

𝑠𝑖𝑚
(

𝜙(𝑙)
𝑖 , 𝜙(𝑙)

𝑧

)

∕𝜏
)

⎤

⎥

⎥

⎥

⎦

, (14)

here 𝑠𝑖𝑚(⋅) represents the similarity function, 𝜏 ∈ R+ is a scalar
emperature parameter. The index 𝑖 denotes the sub-index of the anchor
ode 𝑣𝑖, and the index 𝑗(𝑖) is the sub-indices of the node with the same
abel. The index 𝑧 denotes the sub-index of other nodes except the
nchor node.

.8. Default/non-default classification

Ultimately, we employ the default/non-default classification net-
ork to infer the loan status and compute default and non-default

ample probabilities. This classification network comprises multiple
6

inear layers integrated with an activation function. The first layer
ngages in the multiplication of the ultimate representations, 𝜙(𝑙)
𝑖 ∈ Rℎ𝑙 ,

ith a weight matrix 𝐖(1)
4 ∈ Rℎ𝑙×𝑑1 , followed by activation through

he rectified linear unit (ReLU) function. This layer yields the latent
epresentation of the first layer, 𝑝𝑖,1 ∈ R𝑑1 , where 𝑑𝑡 signifies the di-
ensionality of the 𝑡th layer. Apart from the final layer, the remaining

ayers iteratively update the latent representation in the same way as
he first layer as

𝑖,𝑡 = 𝑟𝑒𝑙𝑢(𝑝𝑖,𝑡−1𝐖
(𝑡−1)
4 ), (15)

here 𝑝𝑖,𝑡 ∈ R𝑑𝑡 . When 𝑡 = 1, 𝑝𝑖,1 = 𝜙(𝑙)
𝑖 .

For the final layer, if we denote the number of layers as 𝑇 , we will
have 𝑑𝑇 = 2. The final output of the default/non-default classification
network will be the non-default probability and the default probability

𝑝𝑖,𝑇 = 𝜎(𝑝𝑖,𝑇−1𝐖
(𝑇 )
4 ), (16)

where 𝑝𝑖,𝑇 ∈ R2. The first dimension, 𝑝(0)𝑖,𝑇 , illustrates the probability of
non-default and the second dimension, 𝑝(1)𝑖,𝑇 , illustrates the probability
of default.

4.9. Model training

For contrastive learning, given the default/non-default label 𝑦𝑖, we
have contrastive loss defined as Eq. (14).

For the prediction of default and non-default labels, when pro-
vided with the default/non-default label 𝑦𝑖 and the output from the
default/non-default classifier, 𝑝𝑖,𝑇 , we obtain the following:

2 = −
𝑁
∑

𝑖=1
𝑝(0)𝑖,𝑇 𝑙𝑜𝑔(𝑦𝑖) + 𝑝(1)𝑖,𝑇 𝑙𝑜𝑔(1 − 𝑦𝑖). (17)

With 𝜂 as a hyperparameter to represent the weight of contrastive
loss and (1−𝜂) representing prediction loss, respectively, we denote the
verall loss function as:

= 𝜂 ⋅ 1 + (1 − 𝜂) ⋅ 2. (18)

. Experiments

In this section, we commence by introducing pertinent datasets,
ollowed by the presentation of empirical experiments to affirm the
fficacy of the LG-GNN model.

.1. Datasets

In our experiments, we validate our proposed LG-GNN by testing it
n seven publicly available real-world datasets.

.1.1. Lending club datasets
Lending Club, a prominent global credit lending company, provides

rare, publicly available real-world dataset.1 This dataset, known as
he Lending Club dataset,2 includes four primary features: Fico score,
ebt-to-income ratio, loan amount, and employment length. Notably,
he debt-to-income ratio is computed as 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐼𝑛𝑐𝑜𝑚𝑒

𝐿𝑜𝑎𝑛𝐴𝑚𝑜𝑢𝑛𝑡 , signifying that
it is a derived variable from the loan amount. To explore distinctions
between default and non-default samples, we present the four features
for defaulters and non-defaulters in the dataset across various years
in Table 1. We have derived three separate subdatasets, Lending1,
Lending2, and Lending3, from the 2013, 2014, and 2015 Lending Club
datasets, respectively.

1 https://www.lendingclub.com/
2 https://www.kaggle.com/wordsforthewise/lending-club

https://www.lendingclub.com/
https://www.kaggle.com/wordsforthewise/lending-club
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Table 2
Performance comparison on Lending Club datasets, evaluated by AUC (%) and KS (%). Average values are also listed.

Type Approach Lending1 Lending2 Lending3 Average

AUC KS AUC KS AUC KS AUC KS

Baseline
LR 59.94 13.53 60.52 15.81 61.67 17.43 60.71 15.59
MLP 59.96 13.77 60.50 15.72 61.54 17.53 60.67 15.67
XGB 59.93 13.62 60.54 15.69 61.34 17.18 60.60 15.50

Semi-Supervised
Learning

ST+LR 60.18 14.02 60.49 15.73 61.87 17.86 60.85 15.87
ST+MLP 60.13 13.89 60.54 15.89 61.71 17.78 60.79 15.85
ST+XGB 60.19 14.11 60.51 15.86 61.83 17.89 60.84 15.95
SS-GMM 60.09 13.75 60.55 15.78 62.06 18.24 60.90 15.92

Counterfactual
Learning

IPS+LR 60.21 13.45 60.36 15.52 61.53 17.59 60.70 15.52
IPS+MLP 60.25 14.58 60.44 16.00 61.59 17.63 60.76 16.07
DR+LR 60.18 13.69 60.32 15.36 61.37 17.41 60.62 15.49
DR+MLP 60.22 14.34 60.48 15.72 61.68 17.72 60.79 15.93
DRJL+LR 60.28 14.53 60.41 15.52 61.42 17.58 60.70 15.88
DRJL+MLP 60.25 14.59 60.54 16.10 61.73 17.81 60.84 16.17
ACL+LR 60.31 14.46 60.49 15.75 61.79 17.88 60.86 16.03
ACL+MLP 60.34 14.63 60.59 15.86 61.85 17.94 60.93 16.14
SRDO+LR 60.24 14.03 60.56 15.74 61.58 17.59 60.79 15.79
SRDO+MLP 60.13 13.59 60.39 15.82 61.47 17.47 60.66 15.63

Multi-Task
Learning

Cross-Stitch 60.33 14.51 60.76 16.54 62.17 18.56 61.09 16.54
MMOE 60.24 14.63 60.62 16.17 62.09 18.31 60.98 16.37
PLE 60.32 14.41 60.71 16.45 61.97 18.04 61.00 16.30
RMT-Net 60.61 15.35 61.02 17.08 62.48 18.97 61.37 17.13

Ours LG-GNN 𝟔𝟏.𝟑𝟖* 𝟐𝟓.𝟏𝟕* 𝟔𝟐.𝟐𝟕* 𝟐𝟓.𝟒𝟐* 𝟔𝟐.𝟗𝟐* 𝟐𝟑.𝟓𝟐* 𝟔𝟐.𝟏𝟗* 𝟐𝟒.𝟕𝟎*

* Denotes statistically significant improvement, measured by t-test with 𝑝-value < 0.01, over the second-best approach on each dataset.
Table 3
Performance comparison on Lending Club datasets, evaluated by Acc. (%) and F1 (%). Average values are also listed.

Type Approach Lending1 Lending2 Lending3 Average

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Baseline
LR 55.60 51.82 56.46 57.70 57.40 52.73 56.49 54.08
MLP 55.80 55.36 56.90 59.23 57.55 59.60 56.75 58.06
XGB 55.83 52.34 56.25 59.20 57.96 58.31 56.68 56.62

Semi-Supervised
Learning

ST+LR 56.01 53.21 57.33 58.92 58.23 58.73 57.19 56.95
ST+MLP 55.87 52.95 57.21 59.33 57.94 57.42 57.01 56.57
ST+XGB 56.14 54.08 57.27 57.85 58.07 59.18 57.16 57.04
SS-GMM 55.63 52.73 57.45 59.76 57.71 57.89 56.93 56.79

Counterfactual
Learning

IPS+LR 56.27 56.64 56.78 59.73 57.34 60.23 56.80 58.87
IPS+MLP 55.74 55.18 56.92 60.22 58.62 61.15 57.09 58.85
DR+LR 55.92 55.92 56.57 60.65 56.98 59.77 56.49 58.78
DR+MLP 56.42 54.75 56.62 60.17 57.77 60.06 56.94 58.33
DRJL+LR 56.15 56.01 56.83 61.24 57.05 59.39 56.68 58.88
DRJL+MLP 56.03 55.88 56.71 60.41 56.87 59.92 56.54 58.74
ACL+LR 55.73 53.97 56.55 59.81 57.23 61.64 56.50 58.47
ACL+MLP 56.36 56.45 56.94 59.98 58.11 60.88 57.14 59.10
SRDO+LR 55.68 54.23 56.61 60.37 56.75 60.51 56.35 58.37
SRDO+MLP 55.86 55.07 56.75 60.79 57.93 60.02 56.85 58.63

Multi-Task
Learning

Cross-Stitch 56.75 57.11 57.14 61.93 58.39 62.05 57.43 60.36
MMOE 56.63 57.25 57.29 61.82 57.93 62.20 57.28 60.42
PLE 56.55 57.37 57.22 62.04 58.21 62.13 57.33 60.51
RMT-Net 56.76 57.49 57.35 62.29 58.96 62.22 57.69 60.67

Ours LG-GNN 𝟓𝟔.𝟖𝟎* 𝟓𝟕.𝟔𝟖* 𝟓𝟕.𝟓𝟎* 𝟔𝟐.𝟑𝟕* 58.90 𝟔𝟐.𝟐𝟓* 𝟓𝟕.𝟕𝟑* 𝟔𝟎.𝟕𝟕*

* Denotes statistically significant improvement, measured by t-test with 𝑝-value < 0.01, over the second-best approach on each dataset.
5.1.2. Home datasets
Home Credit3 is a consumer finance company in Eastern Europe

and Asia, providing financial services and offering the Home dataset,4
a real-world credit scoring dataset. In default detection, the quantity
of features in a dataset significantly impacts the distinction between
defaulters and non-defaulters. More features create more pronounced
differences in their distributions, facilitating easier differentiation. To
model diverse feature distributions, we generated two datasets: Home1,
which includes all features from the Home dataset, and Home2, which

3 https://www.homecredit.net/
4 https://www.kaggle.com/c/home-credit-default-risk
7

5

uses only 50% of the features. The two datasets allow us to assess how
varying feature quantities affect default detection model performance.

5.1.3. PPD datasets
Ppdai5 is a consumer financial technology brand offering short-

term lending services to individuals and businesses. It also provides
open access to a rich dataset of personal credit histories, the PPD6

dataset. Similarly, we generated two datasets to capture diverse feature
distributions: PPD1, encompassing all features from the PPD dataset,

5 https://www.ppdai.com/
6 https://www.heywhale.com/home/competition/

6cd5f02b89b5bd026cb39c9/content/1

https://www.homecredit.net/
https://www.kaggle.com/c/home-credit-default-risk
https://www.ppdai.com/
https://www.heywhale.com/home/competition/56cd5f02b89b5bd026cb39c9/content/1
https://www.heywhale.com/home/competition/56cd5f02b89b5bd026cb39c9/content/1
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and PPD2, utilizing only 50% of the features. The two datasets permit
us to evaluate how varying feature quantities impact the performance
of default detection models.

Overall, there are seven datasets: Lending1, Lending2, Lending3,
Home1, Home2, PPD1, and PPD2. Additionally, We have removed sam-
ples with missing values from all datasets, and we randomly allocated
80% for training, 10% for validation, and 10% for testing in each
dataset.

5.2. Experimental setting and implementation

In our LG-GNN, we empirically set the following hyperparameters
for different datasets: a learning rate of 0.0005 and an input feature
embedding dimensionality of 8. For the GNN part, we utilized two
multi-heads and configured the hidden layer dimensionality as [128,
64]. The batch size was set to 1000 for LendingClub and Home datasets
and 2000 for PPD datasets. The training lasted for 1000 epochs, with
each epoch completing in approximately 0.0527 s for LendingClub,
0.0284 s for Home, and 0.1240 s for PPD datasets. We employed the
Adam optimization algorithm to update network parameters for ef-
fective convergence. Other methods’ hyperparameters were optimized
based on validation set performance. Early stopping, guided by val-
idation set performance, was applied for all methods. Each method
underwent ten runs, randomly selecting a balanced dataset with the
specified batch size. Reported results represent average values from
these runs. Experiments were conducted on a GeForce RTX 4090 GPU
server with 24 GB of memory, powered by an Intel Core 13700KF
CPU, running Windows 11. Programming was done in Python 3.9, using
PyTorch version 2.0.0 for developing and implementing deep learning
algorithms.

5.3. Metrics

We incorporated two additional evaluation metrics, accuracy (Acc.)
and F1-score (F1), alongside the commonly used metrics for default
detection research and prediction, namely the area under the receiver
operating characteristic curve (AUC) and the Kolmogorov–Smirnov
statistic (KS).

1. AUC is an indicator that evaluates the classification performance
of positive and negative classes and can be used to describe the
model’s overall performance.

2. KS evaluates the model’s risk discrimination ability by measur-
ing the difference between the cumulative distribution of true
positive rate and false positive rate and can be used to determine
the threshold for approving loan applications.

3. Accuracy reflects the proportion of correctly classified instances
among all instances, providing a comprehensive measure of
model performance.

4. F1-score balances precision and recall, offering insight into the
model’s overall accuracy in predicting positive instances while
considering false positives and negatives.

5.4. Compared approaches

To assess the performance of LG-GNN, we compared four categories
of methods across seven datasets. These categories encompass baseline,
semi-supervised learning methods, counterfactual learning methods,
and multi-task learning methods. The specific methods are as follows:

• Baselines. This category includes three commonly employed
credit assessment classification methods: Logistic Regression (LR),
8

Multilayer Perceptron (MLP), and XGBoost (XGB).
• Semi-supervised Learning Methods: In this category, we primarily
focus on methods that incorporate Self-Training (ST) (Maldonado
and Paredes, 2010) with LR, MLP, and XGB. Additionally, we
will conduct a comparative analysis with the widely adopted
semi-supervised rejection inference method, SS-GMM (Mancisidor
et al., 2020).

• Counterfactual Approaches: Here, our primary emphasis is on
methods that integrate IPS (Schnabel et al., 2016; Swaminathan
and Joachims, 2015), DR (Jiang and Li, 2016), DRJL (Wang et al.,
2019), ACL (Xu et al., 2020), and SRDO (Shen et al., 2020) with
LR and MLP.

• Multi-Task Approaches: For multi-task approaches, we will con-
sider Cross-Stitch (Misra et al., 2016), MMOE (Ma et al., 2018a),
PLE (Tang et al., 2020) and RMT-Net (Liu et al., 2022).

This structured evaluation will provide a comprehensive understanding
of our experimental results compared to these diverse categories of
methods, aiding in a thorough assessment of our proposed LG-GNN.

5.5. Result analysis

First, Table 2 and Table 3 illustrates the performance across Lend-
ingClub1, LendingClub2, and LendingClub3 datasets. Notably, employ-
ing semi-supervised learning, counterfactual learning, multi-task learn-
ing, and LG-GNN yields substantial enhancements over baseline mod-
els. On the LendingClub1 dataset, LG-GNN relatively improves base-
lines by 84.53% and improves the second-best compared approach
by 63.97%, evaluated by KS. On the LendingClub2 dataset, LG-GNN
exhibits a notable 61.50% improvement over baselines, outperforming
the second-best method by 48.83%, according to the KS. Similarly,
on the LendingClub3 dataset, LG-GNN achieves a significant 35.33%
improvement over baselines, surpassing the second-best method by
23.99%, according to the KS. Based on the KS metric, LG-GNN show-
cases an outstanding 58.46% enhancement over the baseline model,
outperforming the second-best method by 44.18%, highlighting its
efficacy in improving feature distinctions and addressing context in-
consistency. Additionally, across the LendingClub datasets, LG-GNN
showed 2.52%, 12.36%, and 1.93% improvements in the AUC, F-
score, and ACC metrics, respectively, compared to the baseline models.
Compared to the second-best method, LG-GNN showed enhancements
of 1.34%, 0.16%, and 0.08% in the AUC, F-score, and ACC metrics,
respectively.

Second, Table 4 and Table 5 displays a performance compari-
son across the Home1, Home2, PPD1, and PPD2 datasets. Like the
LendingClub datasets, employing semi-supervised learning, counter-
factual learning, multi-task learning, and LG-GNN yields substantial
improvements over baseline models, reinforcing the effectiveness of
these methods in default detection. LG-GNN consistently outperforms
its counterparts. Notably, on the Home1 dataset, LG-GNN exhibits an
impressive 48.33% improvement over baselines, surpassing the second-
best method by 19.57%, according to the KS. On the Home2 dataset,
LG-GNN showcases a remarkable 415.19% improvement, outperform-
ing the second-best method by 29.02%, according to the KS. For
the PPD1 dataset, LG-GNN achieves a substantial 98.36% improve-
ment over baselines, surpassing the second-best method by 25.15%,
according to the KS. On the PPD2 dataset, LG-GNN achieves a note-
worthy 186.84% improvement compared to baselines, surpassing the
second-best method by 33.03%, according to the KS. In summary, LG-
GNN exhibits an outstanding 133.46% enhancement over the baseline
model based on the KS metric, outperforming the second-best method
by 26.51%. Moreover, the LG-GNN model demonstrated notable en-
hancements of 18.05%, 25.76%, and 9.62% in the AUC, F-score, and
ACC metrics, respectively, when compared to the baseline models.
Compared to the second-best method, the LG-GNN model showed
enhancements of 1.73%, 1.18%, and 1.44% in the AUC, F-score, and
ACC metrics, respectively. These results underscore LG-GNN’s ability to
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Table 4
Performance comparison on Home datasets and PPD datasets, evaluated by AUC (%) and KS (%). Average values are also listed.

Type Approach Home1 Home2 PPD1 PPD2 Average

Type Approach AUC KS AUC KS AUC KS AUC KS AUC KS

Baseline
LR 68.05 26.46 54.87 7.42 62.83 19.88 58.80 13.41 61.14 16.79
MLP 67.72 25.82 55.17 7.63 60.80 16.54 58.63 12.75 60.58 15.69
XGB 67.81 26.07 55.60 8.12 63.21 20.93 59.32 14.19 61.49 17.33

Semi-Supervised
Learning

ST+LR 67.88 27.71 66.12 23.96 66.22 23.90 64.57 21.11 66.20 24.17
ST+MLP 67.93 27.56 66.37 24.40 64.35 21.28 64.87 21.40 65.88 23.66
ST+XGB 67.77 27.23 66.60 24.58 66.58 24.71 64.79 21.22 66.44 24.44
SS-GMM 68.59 27.71 66.21 23.61 67.12 25.93 64.50 20.96 66.61 24.55

Counterfactual
Learning

IPS+LR 67.24 24.99 66.26 24.43 69.20 28.43 63.73 19.98 66.61 24.46
IPS+MLP 67.93 25.87 66.37 24.59 69.88 29.32 63.87 20.26 67.01 25.01
DR+LR 67.66 25.23 65.72 24.14 69.66 29.64 63.49 19.95 66.63 24.74
DR+MLP 67.92 25.93 65.87 24.20 69.43 29.39 64.26 21.19 66.87 25.18
DRJL+LR 68.42 27.11 66.67 24.61 69.31 29.10 64.20 21.27 67.15 25.52
DRJL+MLP 68.68 27.97 66.30 24.42 69.57 29.71 64.59 21.58 67.29 25.92
ACL+LR 67.81 25.09 65.97 23.56 68.49 27.54 62.86 19.11 66.28 23.83
ACL+MLP 67.91 25.40 66.59 24.23 69.30 27.69 63.69 19.77 66.87 24.27
SRDO+LR 68.26 26.13 66.14 24.53 69.47 28.60 63.41 19.74 66.82 24.75
SRDO+MLP 67.58 25.49 65.98 24.20 69.62 28.49 63.66 19.90 66.71 24.52

Multi-Task
Learning

Cross-Stitch 66.96 23.81 64.33 21.96 66.71 26.63 60.93 17.06 64.73 22.37
MMOE 63.55 22.49 56.31 14.39 66.09 24.53 56.17 10.54 60.53 17.99
PLE 63.90 21.51 57.63 15.70 65.89 24.61 54.62 9.16 60.51 17.75
RMT-Net 71.99 32.40 71.03 30.84 71.00 30.30 69.44 29.00 70.87 30.64

Ours LG-GNN 𝟕𝟐.𝟔𝟕* 𝟑𝟖.𝟕𝟒* 𝟕𝟐.𝟐𝟔* 𝟑𝟗.𝟕𝟗* 𝟕𝟏.𝟖𝟕* 𝟑𝟕.𝟗𝟐* 𝟕𝟏.𝟓𝟕* 𝟑𝟖.𝟓𝟖* 𝟕𝟐.𝟎𝟗* 𝟑𝟖.𝟕𝟔*

* Denotes statistically significant improvement, measured by t-test with 𝑝-value < 0.01, over the second-best approach on each dataset.
Table 5
Performance comparison on Home datasets and PPD datasets, evaluated by Acc. (%) and F1 (%). Average values are also listed.

Type Approach Home1 Home2 PPD1 PPD2 Average

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Baseline
LR 63.70 46.05 60.60 60.47 49.95 15.38 52.05 35.50 56.58 39.35
MLP 65.10 63.03 60.30 55.65 62.00 57.24 58.85 50.53 61.56 56.61
XGB 64.67 61.82 63.75 57.32 61.63 61.25 60.47 61.38 62.63 60.44

Semi-Supervised
Learning

ST+LR 64.32 62.35 62.31 62.05 63.29 61.86 63.12 60.79 63.26 61.76
ST+MLP 64.98 62.11 61.48 62.45 63.95 62.73 61.89 60.12 63.08 61.85
ST+XGB 63.75 62.77 62.97 62.33 64.17 60.92 62.76 61.25 63.41 61.82
SS-GMM 64.21 61.98 63.12 61.88 63.72 62.11 61.33 61.07 63.10 61.76

Counterfactual
Learning

IPS+LR 63.48 62.64 61.89 63.10 63.83 61.09 61.02 61.91 62.56 62.19
IPS+MLP 64.89 62.19 62.04 63.67 64.59 62.45 62.58 62.38 63.53 62.67
DR+LR 63.51 62.53 61.68 61.93 64.27 62.37 62.39 60.59 62.96 61.86
DR+MLP 64.76 61.76 63.55 63.40 64.88 61.68 63.81 61.94 64.25 62.20
DRJL+LR 63.43 62.92 61.71 61.24 63.41 61.32 61.65 61.09 62.55 61.64
DRJL+MLP 63.95 61.67 62.22 62.87 63.62 62.64 61.21 60.44 62.75 61.91
ACL+LR 64.53 62.26 63.06 62.61 64.78 60.58 60.88 60.27 63.31 61.43
ACL+MLP 63.22 62.49 63.54 62.01 64.35 62.98 62.11 61.73 63.31 62.30
SRDO+LR 64.01 62.03 60.89 61.36 63.05 62.05 62.34 61.40 62.57 61.71
SRDO+MLP 64.63 62.84 63.66 63.18 64.47 60.29 63.72 61.12 64.12 61.86

Multi-Task
Learning

Cross-Stitch 63.87 62.08 60.67 63.01 63.18 60.77 63.59 60.91 62.83 61.69
MMOE 61.23 60.17 61.50 60.99 64.94 61.54 60.94 60.67 62.15 60.84
PLE 61.95 60.25 60.52 61.57 63.37 62.82 62.25 62.16 62.02 61.70
RMT-Net 65.87 62.97 63.83 63.73 65.11 66.72 65.64 65.78 65.11 64.80

Ours LG-GNN 𝟔𝟔.𝟎𝟎* 𝟔𝟑.𝟐𝟏* 𝟔𝟒.𝟓𝟎* 𝟔𝟒.𝟏𝟔* 𝟔𝟔.𝟏𝟓* 𝟔𝟕.𝟔𝟔* 𝟔𝟕.𝟓𝟓* 𝟔𝟕.𝟐𝟑* 𝟔𝟔.𝟎𝟓* 𝟔𝟓.𝟓𝟕*

* Denotes statistically significant improvement, measured by t-test with 𝑝-value < 0.01, over the second-best approach on each dataset.
deliver significant performance gains in datasets with fewer features, as
observed in Home2 and PPD2, emphasizing its proficiency in improving
feature distinctions and mitigating context inconsistency, especially in
scenarios with minimal feature variations and substantial contextual
homogeneity.

These experimental results validate the effectiveness of our pro-
posed LG-GNN method.

5.6. Ablation study

In this section, we present the overall experimental results and
the corresponding analysis of the ablation study on the LG-GNN. We
systematically removed each component of the LG-GNN, evaluating its
performance to gain a comprehensive understanding of the functions
9

and impacts of each module. Detailed experimental results are provided
in Table 6.

5.6.1. Features embedding
The notable impact of Feature Embedding (FE) is evident in the

performance contrast between lines 1 and 2. Compared to a model
utilizing only a default/non-default classifier, FE enriches the model
with more informative feature representations, resulting in a 9.58%
increase in AUC and a 52.66% increase in KS.

5.6.2. Loan applicant relation graph construction
The significant effect of graph construction (GC) is highlighted in

the performance contrast between lines 2 and 3. In contrast to FE alone,
GC considers relationships between different types of loan applicants,
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Table 6
The average performance (%) of LG-GNN across seven datasets, considering different
components of LG-GNN.

Row
Number

Components Performance

FE GC LIF GIF CL AUC KS

1 – – – – – 60.95 16.28
2 ✓ – – – – 66.80 24.85
3 ✓ ✓ – – – 66.90 30.20
4 ✓ ✓ ✓ – – 67.24 31.76
5 ✓ ✓ ✓ ✓ – 67.35 31.80
6 ✓ ✓ ✓ – ✓ 67.53 31.88
7 ✓ ✓ ✓ ✓ ✓ 67.85 32.73

leading to a 0.16% improvement in AUC and a 21.54% improvement
in KS.

5.6.3. Local information filtering
The substantial impact of local information filtering (LIF) is empha-

sized in the performance contrast between lines 3 and 4. Compared
to using FE and GC alone, LIF aids the feature learning process by
reducing noise interference from first-order neighbors in the context
inconsistency scenario, resulting in a 0.51% improvement in AUC and
a 5.16% improvement in KS.

5.6.4. Global information filtering
The significant effect of global information filtering (GIF) is high-

lighted in the performance contrast between lines 4 and 5. Compared
to LIF with GC, GIF enhances the feature learning process by capturing
features from distant neighbors blocked by context inconsistency, lead-
ing to a 0.17% improvement in AUC and a 0.11% improvement in KS
for the model (GLIF with GC).

5.6.5. Default/non-default contrastive learning
The impact of employing contrastive learning (CL) is evident in

the contrasts between lines 4 and 6, as well as lines 5 and 7. CL
combined with LIF and GC brings a 0.44% improvement in AUC and a
0.36% improvement in KS compared to LIF with GC alone. Similarly,
CL combined with GLIF and GC yields a 0.74% improvement in AUC
and a 2.95% improvement in KS compared to GLIF with GC. The above
improvements underscore the importance of focusing on the similarities
and dissimilarities among loan applicants during the feature learning
process.

In summary, optimal performance is attained through the simulta-
neous adoption of FE, GC, LIF, GIF, and CL, which are combined to
form our LG-GNN and demonstrate the reasonableness of our model.

5.7. Hyper-parameter study

This section delves into a detailed examination of the hyperparam-
eters in our proposed LG-GNN model. First, we explore the impact
of graph edge and node selection parameters, namely, 𝑝, 𝐾𝑙𝑜𝑐𝑎𝑙, and
𝐾𝑔𝑙𝑜𝑏𝑎𝑙, on model performance. Second, we investigate the influence of
loss balancing parameters 𝜂 on model performance. Third, we analyze
how the difference between the target node embedding dimension 𝑑
and the layer number 𝑇 of the classifier affects model performance.

5.7.1. Edge and neighbor filtering
In our model, we use three parameters for edge and node filtration.

The first parameter, 𝑝, sets the threshold for establishing edges in the
loan-applicant relation graph. The second and third parameters, 𝐾𝑙𝑜𝑐𝑎𝑙
and 𝐾𝑔𝑙𝑜𝑏𝑎𝑙, are associated with local and global networks, respectively,
and are used to filter neighbors of target nodes. Fig. 3 shows LG-GNN’s
test set performance across varying filtration thresholds. We adjusted
𝑝 within the range of 0.7 to 0.99 for optimal validation set results.
The results emphasize the critical role of the edge filtration threshold
10

𝑝 in LG-GNN’s performance across datasets. A small 𝑝 leads to densely v
Fig. 3. Experimental results of LG-GNN with different edge filtering parameter.

Fig. 4. Experimental results of LG-GNN with varying hyper-parameters: (1) the left
part shows the impact of the local filter parameter 𝐾𝑙𝑜𝑐𝑎𝑙 ; (2) the right part shows the
impact of the global filter parameter 𝐾𝑔𝑙𝑜𝑏𝑎𝑙 .

connected edges, hampering the aggregation of target nodes based on
neighbor node weights. Proper 𝑝 selection is crucial to filter out noise
n the graph.

Moreover, 𝐾𝑙𝑜𝑐𝑎𝑙 and 𝐾𝑔𝑙𝑜𝑏𝑎𝑙 vary from 0.2 to 0.8. Fig. 4 illustrates
G-GNN’s performance on the test set as the filtration thresholds vary.
ithin a certain range, variations in 𝐾𝑙𝑜𝑐𝑎𝑙 and 𝐾𝑔𝑙𝑜𝑏𝑎𝑙 exhibit stable
odel performance across all datasets.

.7.2. Loss balancing
It is essential to consider the impact of the loss balance parameter,

, on the performance of the LG-GNN model. We recommend tuning
his hyperparameter based on a validation set to achieve optimal
erformance. By exploring the best performance on the validation set,
e adjusted 𝜂 in the range of 0.0 to 0.9. Fig. 5 illustrates the relatively

table performance of LG-GNN across varying values of 𝜂, as measured
y both AUC and KS metrics. These limited fluctuations indicate that
ross-entropy loss is dominant during LG-GNN training. In classification
asks, contrastive loss aims to improve feature representation learning,
hile cross-entropy loss directly measures the distributional difference
etween samples. Consequently, cross-entropy loss often plays a dom-
nant role as a supervisory signal during training, guiding the model
oward accurate classification. Contrastive loss, on the other hand,
perates in conjunction with cross-entropy loss to refine the model’s
epresentation space. Fig. 6 shows that increasing 𝜂 initially improves
he performance of LG-GNN, but after a certain point, a further increase
n 𝜂 leads to a decline in performance. Smaller 𝜂 values help LG-GNN to
ocus more on feature representation learning, while excessively large 𝜂

alues can cause overfitting. To highlight the importance of contrastive
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Fig. 5. Experimental results of LG-GNN with different loss balancing parameter,
valuated by AUC.

Fig. 6. Experimental results of LG-GNN with different loss balancing parameter,
valuated by KS.

Fig. 7. Experimental results of LG-GNN with varying hyper-parameters: (1) the left
part shows the impact of the embedding dimension 𝑑; (2) the right part shows the
mpact of the classification layer number 𝑡.

oss, we extracted data from Figs. 5 and 6 and organized it in Tables 7
nd 8. These tables compare the performance of LG-GNN using 2 alone

(𝜂 = 0) versus combined 1 and 2 (𝜂 lies within the range of 0 to 1).
It is observed that the addition of contrastive learning enhances the
model’s performance.

5.7.3. Embedding dimension and classification layer
In this study, our primary focus is enhancing feature embeddings by

incorporating local and global representations of target nodes. These
11
embeddings are constructed based on the initial node embeddings. To
find the ideal dimension, we experimented with dimensions 2, 4, 8, and
16 on a validation set, and the results are shown in Fig. 7. Our findings
demonstrate an optimal dimension for different datasets, leading to the
best model performance. However, if the dimension is too small, it may
miss crucial target information, and if it is too large, it can introduce
redundancy and reduce classification performance.

Furthermore, the performance of LG-GNN exhibits minimal sensitiv-
ity to the classification hierarchy level (𝑇 ). To determine the optimal
configuration, we conducted experiments with 𝑇 values ranging from
2 to 4, selecting the best-performing setup on the validation set. For
simplicity, we chose 𝑇 = 2 and present the corresponding test set
results in Fig. 7. Our experimental results reveal that the choice of 𝑇 has
o significant impact on LG-GNN’s performance; it remains consistent
ithin a certain range, ensuring its applicability across all datasets.

.8. Complexity analysis

We theoretically analyze the space complexity of LG-GNN by fo-
using on the sizes of learnable variables and layer outputs. We omit
ariables with relatively small sizes, such as bias terms.

For the embedding layer, the size of each node’s embedding vector
s 𝑑𝑑𝑘, resulting in a total space complexity of 𝑂

(

𝑁 × 𝑑𝑑𝑘
)

. During local
nd global information filtering, the constructed graph size is 𝑂

(

𝑁2),
eading to a space complexity of 𝑂

(

𝑁2). In the output layers of local
nd global information fusion, each node’s output size is 𝑑ℎ2𝑙

. Since we
et the number of heads as 2, the corresponding space complexity is
(

𝑁 × 𝑑ℎ2𝑙

)

. The space complexity of default/non-default contrastive
earning is 𝑂 (1) as it does not vary with the number of nodes N. For
efault/non-default classification, each node has an output vector size
f 2, resulting in a space complexity of 𝑂 (𝑁 × 2). In summary, the total
pace complexity of LG-GNN is 𝑂

(

𝑁 × 𝑑𝑑𝑘 +𝑁2 +𝑁 × 𝑑ℎ2𝑙
+𝑁 × 2

)

.

. Discussion

Based on graph representation learning, we propose the LG-GNN
ethod, which effectively addresses the default detection task. LG-
NN first captures the latent relations between samples by constructing
nd learning a graph neural network. It then employs contrastive
earning to amplify the differences in sample features. As a result,
G-GNN demonstrates improved average performance compared to
he most competitive default detection methods. The experimental
esults yield two implications: (1) Latent relations exist among loan
pplicants in personal credit, violating the assumption of independent
nd identically distributed samples required by most machine learning
odels. Therefore, it is crucial to select appropriate baseline models

ased on data features and sample distribution characteristics and
esign advanced models. This model can also be effectively applied to
roblems beyond default detection if it satisfies the basic assumptions
nd has suitable data structures. (2) The latent relations among loan
pplicants significantly impact the default detection of individual loan
pplicants. Even implicit relationships extracted from pre-loan features
an be considered supplementary information for pre-loan features in
ndividual default detection.

. Conclusion

In recent years, researchers and practitioners have extensively ex-
lored the essential explicit attributes of instances to enhance personal
efault detection. However, latent relations among instances have of-
en been overlooked, rendering instances no longer independent of
ersonal default detection. Motivated by those, we propose a novel
pproach called the Local and Global Information-Aware Graph Neural
etwork (LG-GNN) for default detection. Unlike existing methods, LG-
NN adopts a holistic strategy by aggregating filtered information from

ocal and global perspectives, enabling LG-GNN to address context
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Table 7
Average AUC (%) of LG-GNN across seven datasets, considering different loss combinations for LG-GNN.

Dataset Lending1 Lending2 Lending3 Home1 Home2 PPD1 PPD2 Average

2 61.03 62.05 62.67 71.93 72.17 70.4 71.19 67.35
1+2 61.38 62.27 62.92 72.67 72.26 71.87 71.57 67.85
Improvement 0.57% 0.35% 0.40% 1.03% 0.12% 2.09% 0.53% 0.74%
Table 8
Average KS (%) of LG-GNN across seven datasets, considering different loss combinations for LG-GNN.

Dataset Lending1 Lending2 Lending3 Home1 Home2 PPD1 PPD2 Average

2 23.80 24.91 23.14 37.67 39.40 36.82 36.84 31.80
1+2 25.17 25.42 23.52 38.74 39.79 37.92 38.58 32.73
Improvement 5.75% 2.04% 1.63% 2.85% 0.99% 2.99% 4.72% 2.95%
inconsistencies in the applicants’ relation graph while leveraging con-
trastive representation learning to enhance feature diversity. According
to empirical experiments conducted on seven datasets with varying
settings, LG-GNN demonstrates a substantial improvement over several
state-of-the-art approaches from different perspectives. Future research
directions will emphasize capturing latent relations among loan appli-
cants using the graph structure and developing effective information
mining strategies for personal default detection.
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