
Knowledge and Information Systems (2021) 63:1471–1496
https://doi.org/10.1007/s10115-021-01562-8

REGULAR PAPER

Progressive approaches to flexible group skyline queries

Zhibang Yang1 · Xu Zhou2 · Kenli Li2 · Yunjun Gao4 · Keqin Li2,3

Received: 14 August 2019 / Revised: 6 March 2021 / Accepted: 13 March 2021 / Published online: 9 April 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
The G-Skyline (GSky) query is formulated to report optimal groups that are not dominated
by any other group of the same size. Particularly, a given group G1 dominates another group
G2 if for any point p ∈ G1, p dominates or equals to points p′ ∈ G2; at the same time, there
is at least one point p dominating p′. Most existing group skyline queries need to calculate an
aggregate point for each group. Compared to these queries, the GSky query is more practical
because it avoids specifying an aggregate function which leads to miss important results
containing non-skyline points. Thismeans theGSky query can getmuchmore comprehensive
query results which not only contain the G-Skylines consisting of skyline points but also the
G-Skylines including non-skyline points. Here, a non-skyline point is dominated by another
point in a given data set. However, the GSky query usually returns toomany results, making it
a big burden for users to pick out their expected results. To address these issues, we investigate
a flexible group skyline query, namely Flexible G-Skyline (FGSky) query, which is flexible
and practical for directly computing the optimal groups on the basis of user preferences.
In this paper, we formulate the FGSky query, identify its properties, and present effective
pruning strategies. Besides, we propose progressive algorithms for the FGSky query where a
grouping strategy and a layered strategy are utilized to get better query performance. Through

B Xu Zhou
zhxu@hnu.edu.cn

Zhibang Yang
yangzb@ccsu.edu.cn

Kenli Li
lkl@hnu.edu.cn

Yunjun Gao
gaoyj@zju.edu.cn

Keqin Li
lik@newpaltz.edu

1 Hunan Province Key Laboratory of Industrial Internet Technology and Security, Changsha
University, Changsha 410003, Hunan, China

2 School of Information Science and Engineering, Hunan University, Changsha 410082, Hunan,
China

3 Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

4 College of Computer Science, Zhejiang University, Hangzhou 310027, Zhejiang, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01562-8&domain=pdf

1472 Z. Yang

extensive experiments on both synthetic and real data sets, we demonstrate the efficiency,
effectiveness, and progressiveness of the proposed algorithms.

Keywords Data management · Group skyline · Query processing

1 Introduction

The skyline query is an important tool in decisionmaking applications [1]. It aims at capturing
superior points (skylines) which are not dominated by another in a given data set. For two
given multi-dimensional points p and p′, p dominates p′ denoted as p ≺ p′ if for all the
dimensions p is not worse than p′ and there is at least on one dimension p is better than p′.
However, there are many real-life applications requiring to get groups of prominent points. In
these applications, the skyline query cannot be applied directly for it can only get individual
points but not point groups. In order to achieve this goal, many group skyline queries [2–5]
have been formulated. Most of them need to compute aggregate points of candidate groups
of points and identify the optimal groups due to the dominance relationship of the aggregate
points. These group skyline queries face the difficulty of specifying an appropriate aggregate
function. Besides, they may miss some significant results that users are interested in.

To overcome the difficulty of the group skyline queries in [2–5] and get much more
comprehensive results, the G-Skyline (GSky) query is proposed by Liu et al. [6] for the first
time. The GSky query aims to pick out optimal groups based on a new operator of group
dominance. Consider two given groupsG1 andG2 of size k. The groupG1 dominates another
group G2 if for any point p ∈ G1, p dominates or equals points p′ ∈ G2; at the same time,
there is at least one point p dominating p′. A group including k points is called G-Skyline
if it is not dominated by any other group of the same size. From this definition, the groups
only consisting of by skyline points are G-Skylines. Besides, a G-Skyline G may contain
non-skyline points that are only dominated by another point in the G-Skyline G but are not
dominated by any point outside G.

Figure 1 illustrates an example of the GSky query. As shown, the hotel data set H =
{h1, h2, . . . , h11} contains eleven hotels (data points). For simplicity, we take two types of
dimensions in hotels into account, which are distance and price. Without loss of generality,
a cheap hotel close to the destination is considered preferred. The hotels h1, h2, h3, and h4
are skylines as there is no hotel in the given hotel set dominating them. For a travel agency,
it is common to pick out more than one hotel for cooperation. Assume that it needs to select
4 hotels. According to dominance relationships between different hotel groups of size 4, we
get all the optimal hotel groups (G-Skylines) depicted in Fig. 1b. Other groups consisting
of 4 hotels are not G-Skylines, and they are not shown in the figure. Take the hotel group
{h3, h4, h10, h11} as an example, it cannot be aG-Skyline because it is dominated by the group
{h3, h4, h7, h11} for h7 ≺ h10. Compared to the hotel h10, the hotel h7 is both cheaper and
closer to the destination. Aswell as the hotel group {h1, h2, h3, h4} consisting of hotels which
are skylines, the left G-Skylines, such as {h1, h2, h3, h5}, {h1, h2, h4, h5}, {h1, h2, h3, h6},
just to name a few, contain non-skyline hotels that are only dominated by other hotels in the
same G-Skyline. For instance, the G-Skyline G = {h1, h2, h3, h5} contains the non-skyline
h5 dominated by two hotels h1 and h2; however, the hotels outside G cannot dominate h5.
Figure 1b illustrates the non-skyline hotels included in each G-Skyline.

In comparison with the group skyline queries presented in [2–5], the GSky query exempts
users from selecting the aggregate function and can get much more comprehensive query

123

Progressive approaches to flexible group skyline queries 1473

G-Skylines non-Skylines
{h 1, h 2, h 3, h 4}
{h 1, h 2, h 3, h 5} h 5

{h 1, h 2, h 4, h 5} h 5

{h 1, h 2, h 3, h 6} h 6

{h 2, h 3, h 4, h 6} h 6

{h 1, h 2, h 4, h 7} h 7

{h 1, h 3, h 4, h 7} h 7

{h 2, h 3, h 4, h 7} h 7

{h 3, h 4, h 7, h 11} h 7, h 11

Price($)0

20

40

60

80

40 80 120 160 200

h5

h7

h6

h2

h1

h10

h9

Distance to the destination (miles)

h8

h11h3

h4

(a) (b)

Fig. 1 Example of the GSky query

results. After Liu et al. presented the GSky query, there are many follow-up studies [6–
8]. However, from the experimental results in [6–8], the GSky query faces the problem of
combinatorial explosion and the size of the G-Skylines may become excessively large. For
a given data set D containing 100 skyline points with k = 3, the number of G-Skylines is(100

3

) = 161, 700 at least. Obviously, it is a huge burden for users to process all theG-Skylines
manually and then make a rational decision.

To help the users make a quick and rational decision, we could adjust the algorithms pro-
posed in [6–8] to process the G-Skyline query and pick out the results due to user preferences.
However, this method may generate many redundant G-Skylines and cost much to identify
the final query results. Moreover, it cannot get any result until the end of the query procedure,
which leaves plenty of room for improving the progressiveness.

In recent years, to improve the databases’ usability, why-not questions have received
growing attention [9–16]. A why-not query is to help users know why some expected results
aremissed and then refine corresponding queries to ensure reporting these results [9]. Inspired
by but different from thewhy-not queries,we investigate a newGSkyquery, called FlexibleG-
Skyline (FGSky) query to compute the expected optimal groups satisfying user preferences.
The GSky query in [6] is a special case of the FGSky query without taking into account user
preferences.

Different from the GSky query, the FGSky query can get refined results due to user
specified preferences. This is significant to lighten the burden of the user when making a
final decision. Besides, it is much more appropriate to the applications as follows.

Application 1 In some real-life applications, the user may expect certain points contained
in the GSky query results. Consider the hotel example in Fig. 1. A travel agency may expect
long-term cooperative hotels appearing in the selected hotel group. In Fig. 1, let the hotel h5
be the expected hotel. This means that it requires to compute the optimal hotel groups of size
4 which contain the hotel h5. Therefore, the hotel groups {h1, h2, h3, h5} and {h1, h2, h4, h5}
including the hotel h5 are expected results of the travel agency.

123

1474 Z. Yang

Application 2 The data set is usually updated in practical applications. After an update
operator, we need to perform the GSky query over the new data set. However, the new GSky
query always retrieves a large number of query results identical with the GSky query over
the old data set before updating. This brings a lot of redundant computation cost. To improve
usability of the query results, the FGSky query could be applied to compute new G-Skylines
that contain the updated points. As an example, in Fig. 1, assume the travel agency selects the
hotel set {h1, h2, h3, h6} at first. In the process of cooperation, the hotel h6 is closed down
suddenly. To reuse the old GSky query results, the G-Skylines containing the hotel h6 and
the hotels h8, h9 dominated by h6 are removed. In Fig. 1b, the old G-Skylines except the
G-Skylines {h1, h2, h3, h6} and {h2, h3, h4, h6} could be returned directly. Besides, we need
to generate new G-Skylines that include the hotels h8 or h9.

For a given user-specified preference set P and group size k, to get the FGSky query
results, the intuitive method is to compute the G-SkylinesG of size k−|P| and then generate
candidate groups by merging them with the set P . The groups returned by this method are
the FGSky query results as they meet the user requirement. However, this method may miss
some results.

In the above example, for a given user expected hotel set {h4} and the group size k = 3,
the G-Skylines of size k − 1 = 2 need to be computed and merged with {h4} to get the
final FGSky query results. In [6], the authors introduced that the G-Skylines with size k only
contain points belonging to the first k skyline layers. Accordingly, the G-Skylines with size 2
only include the points of the 1st and 2nd skyline layer, and the hotel set {h4, h7, h11} which
is a FGSky query result is overlooked. This is because the hotel h11 ∈ {h4, h7, h11} is in the
3rd skyline layer.

To the best of our knowledge, we investigate the FGSky query for the first time in the
literature. The FGSky query is more practical to the GSky query proposed in [6]. In the
FGSky query, user preferences are taken into account to compute the optimal groups that
the user expects. The GSky query in [6] is a special case of the FGSky query when the user
preference set is empty. In addition, the FGSky query is applicable to many applications
where data sets are frequently updated.

The FGSky query has a different goal with the GSky query. The state-of-the-art algorithm,
G-MDS [8], for the GSky query cannot be utilized to process the FGSky query directly. In
this paper, we first extend G-MDS and propose the extended G-MDS algorithm, called
EGM, for processing the FGSky query. The EGM algorithm takes the minimum dominance
graph (MDG) [8] to organize the given data set. Next, we propose a layered minimum
dominance graph (LMDG) to refine MDG by introducing the layered strategy to MDG to
remove redundant edges. Based on LMDG, we apply a grouping strategy to the FGSky query
and develop the GCQ algorithm to further improve the effectiveness and progressiveness of
the FGSky query. The GCQ algorithm generates abundant candidate groups at first, and then
identifies the final FGSky query results. Last, different from the GCQ algorithm, we propose
the layered FGSky query (LCQ) algorithm which only generates the candidate groups with
high possibilities to be the final results. From experimental results, the LCQ algorithm can
get best performance among the proposed algorithms.

Specially, our work has the following contributions.

• We propose the FGSky query to get the optimal results satisfying user preferences.
• We investigate the properties of the FGSky query and present effective pruning strategies

to cut down the search space.
• We develop effective and progressive algorithms to process the FGSky query where the

grouping strategy and the layered strategy are utilized.

123

Progressive approaches to flexible group skyline queries 1475

• We use both synthetic and real data sets in the experiments to verify the performance of
the proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews related work on the
FGSky query. Section 3 introduces the FGSky query and its properties. Section 4 proposes
three algorithms for the FGSky query. Section 5 evaluates the performance of the proposed
algorithms. Section 6 concludes this paper.

2 Related work

In this section, we summarize the work related to group skyline queries and why-not queries.

2.1 Group skyline queries

The group skyline query is a useful tool to analyze optimal groups of points. There has been
abundant work about the group skyline query. In [17], Wu et al. studied how to create com-
petitive products that are not dominated by any exiting product in the market. In [18], Su et
al. focused on the top k combinatorial skyline query that aims to compute the combinatorial
skyline tuples with highest aggregate values on a certain attribute. In [4], Magnani et al. pro-
posed a new aggregate skyline query by merging the skyline query and the group by operator.
In [5], Zhang et al. focused the query that retrieves k tuple groups not being dominated by
another group of the same size.

As pointed out in [6], most of the traditional group skyline queries may miss some results.
This is because the dominance relationship between groups depends on the traditional domi-
nance relationship between corresponding aggregate points. Here, the attributes of aggregate
points are computed by the aggregate values of attributes of all points within the groups. To
resolve this problem, Liu et al. [6] developed the pareto group-based skyline (GSky) query
through introducing a new operator named group dominance. The GSky query is more practi-
cal with comparing to traditional group skyline queries, which need to calculate an aggregate
point for each group. It is because the GSky query is exempt from specifying an aggregate
function that leads to miss important results containing non-skyline points. Therefore, it can
getmuchmore comprehensive query resultswhich not only contain theG-Skylines consisting
of skyline points but also the G-Skylines including non-skyline points.

To efficiently process the GSky query, Liu et al. [6] proposed a directed skyline graph
(DSG) to organize the first k skyline layerswhere k is the group size. Based onDSG, the point-
wise algorithm and the unit-wise algorithm for the GSky query were presented. Although
the two algorithms can process the GSky query effectively, they lack progressiveness and
cannot get any result until the end of the algorithm. To further improve the progressiveness
and efficiency of the algorithms in [6], we developed the layered unit-based (LU) algorithm
[19] by introducing the layered optimum strategy. Different from the algorithms in [6], the
LU algorithm can get better performance which benefits from only generating candidate
groups that have large possibly to be the final results. Recently, Wang et al. [8] further refined
DSG in [6] and introduced the minimum dominance graph (MDG). It organizes the points
that are dominated by less than k points in two parts , the left part and the right part. The
MDG is considered as the minimum G-Skyline support structure. In addition, they improved
the G-Skyline query performance by employing a skyline combination-based optimization
strategy. In [20], Zhu et al. designed a parallel approach to the GSky query.

123

1476 Z. Yang

Apart from the work about the GSky query, there are also somework on important variants
of the GSky query. The GSky query always retrieves too numerous results to make users
overwhelmed. To address this concern, top k GSky queries are investigated in [21,22]; these
queries compute the k best groupswith themaximumdominated points. Furthermore, in [23],
Yu et al. formulated a representative G-Skyline that represents the contour of the G-skyline.
Moreover, they presented a group-based clustering algorithm to compute these representative
G-Skylines.

Different from the above research on the GSky query and the variants in [21–23], in this
paper we mainly investigate a novel variant of the GSky query, named the FGSky query, for
the first time. The FGSky query aims to obtain optimal groups that users expect based on
their preferences.

2.2 Why-not queries

Why-not queries are utilized to analyze the reason of excluding certain expected answers from
the final query results. Besides, it could guide users to reformulate the expected results for
satisfying their practical demand. The why-not queries are usually classified into categories
including manipulation identification, database modification, and query refinement [13,24].
In the following, we summarize the why-not queries using the query refinement method
which are close related to our work.

There is abundant work about query refinement such as the why-not question on SPJA
query [16], reverse skyline query [10], top k query [9,25], top k dominating query [25],
reverse top k query [11,13], similar graph [14], spatial keyword query [15], spatial keyword
top k query [12], metric probabilistic range query [26], and range-based skyline query in
road network [24]. Recently, in [27,28], Chen et al. were concerned about the direction-
aware why-not spatial keyword top k query problem. In [13], Liu et al. also researched the
why questions on the reverse top k query that aims to eliminate the unexpected points from
the final query results. The focuses of the why-not queries aforementioned are to compute
appropriate parameters for corresponding queries to ensure returning all the user expected
results. For example, in the why-not reverse skyline query, it helps users get their expected
results by modifying the why-not point or the query point.

It is worth noticing that our work in this paper is related to the why-not queries, but they
have significant differences. In our work, we aim to retrieve the G-Skylines satisfying user
preferences directly. To achieve this goal, it is unnecessary to modify the parameters in the
proposed FGSky query. Accordingly, the exiting approaches to the above why-not queries
are not applicable to the FGSky query.

Table 1 illustrates the frequently used symbols in this paper.

3 The flexible group skyline query

In this section, we formulate the flexible group skyline (FGSky) query, where the user pref-
erences are introduced into the GSky query. The GSky query can be considered as a special
case of the FGSky query with an empty user preference set.

Definition 3.1 (Skyline Query [1]) For a given data set D in d-dimensional space, the skyline
query aims to pick out points p ∈ D that are not dominated by points p′ ∈ D − {p}.
Assume that for each dimension of the points within D, small value is preferred. The point
p′ dominates another point p, denoted as p′ ≺ p, if it holds that for all i , p′[i] ≤ p[i] and

123

Progressive approaches to flexible group skyline queries 1477

Table 1 Summary of frequently used notations

Notation Definition

D Data set

N Cardinality of data set

k Group size

G Group of points

SLi The i th skyline layer

P Preference set containing all the user expected points

u p Unit group of p

AncSet(p) Ancestor set of p

PreG Preference group consists of the points within P and AncSet(P)

DChiSet(p, i) Direct child set of p over the i th skyline layer

there is at least one i , p′[i] < p[i]. Here, 1 ≤ i ≤ d . The points p ∈ D not dominated by
any other point p′ are called skylines.

Consider the example in Fig. 1, the hotel h1 is a skyline since it is not dominated by any
other hotel in the given hotel data set. Similarly, the hotels h2, h3, and h4 are also returned
as skylines. However, the other hotels hi for 5 ≤ i ≤ 11 are not skylines since they are
dominated by at least one hotel. For instance, the hotel h8 is dominated by the hotel h1 and
h5 because its price and distance are both larger than those of h1 or h5.

Definition 3.2 (Skyline layer) For a given data set D and a parameter k, the first skyline layer
SL1 contains skylines of D. The skyline layer SLi includes points that are dominated by at
least one point within SL j but are not dominated by any point within D − ∪1≤x≤ j−1SLx for
1 < i ≤ k and 1 ≤ j ≤ i − 1.

In Fig. 1, the hotel data set is organized in three skyline layers SL1 = {h1, h2, h3, h4},
SL2 = {h5, h6, h7}, and SL3 = {h8, h9, h10, h11}. Consider two attributes, the price and the
distance to destination, of the hotels. Each hotel within SL2 is dominated by at least one hotel
within SL1 and is not dominated by any hotel within SL2 and SL3.

Definition 3.3 (Ancestor Set, AncSet) For a given point p ∈ D, the ancestor set of p, denoted
as AncSet(p), contains all the points dominating p. Moreover, for a set P ′ ⊆ D, its ancestor
set is

AncSet(P ′) = ∪p∈P ′AncSet(p).

Definition 3.4 (Group Dominance [6]) For two given k-point groups G,G ′ ⊆ D, G
g-dominates G ′, denoted as G≺gG ′, if there are permutations of G and G ′, G =
{p1, p2, . . . , pk} and G ′ = {p′

1, p′
2, . . . , p′

k}, satisfying pi � p′
i for 1 ≤ i ≤ k and

pi ≺ p′
i for at least one i . Here, pi � p′

i means that pi ≺ p′
i or pi is equal to p′

i . The
k-point group G that is g-dominated by no other group of the same size is called G-Skyline.

Based on Definition 3.4, the G-Skyline is defined as follows.

Definition 3.5 (G-Skyline [6]) The groups G that are not g-dominated by another group of
equal size.

123

1478 Z. Yang

For two groups G = {h1, h2, h3, h4} and G ′ = {h1, h5, h6, h7}, we have G≺gG ′ because
h2 ≺ h5, h3 ≺ h6, and h4 ≺ h7. The hotel group G is a G-Skyline because there is not any
group of size 4 dominating it.

Definition 3.6 (User preference set) A user preference set is defined as a point set P , which
includes all the points the user expects to be contained in the optimal groups.

The preference set in Definition 3.6 is used to represent user preferences.
To get the optimal groups that a user expects, a naive approach consists of two steps:

computing all the G-Skylines and picking out the ones meeting user preferences. Although
the naive algorithm is efficient, it has a lot of room to be improved in both efficiency and
progressiveness. This is because it needs to generate a large number of candidate groups,
most of which are not the final results. Besides, it cannot get any result until the end of the
query procedure.

Consider the example in Fig. 1 with P = {h1}. It first generates all the 9 G-Skylines and
then identifies the ones containing the hotel h1. For the FGSky query in this paper, only 6
G-Skylines are generated with the EGM algorithm in Sect. 4.2. Besides, the user expected
results could be computed and outputted progressively.

Definition 3.7 (Flexible Group Skyline Query, FGSky): Given a data set D, a parameter k,
and a user preference set P ⊆ D including all the points expected, the FGSky query returns
point groups G ⊆ D of size k such that G are not dominated by another group of size k and
G contain all the points within P , formally,

FGSky(D, P, k) = {G ⊆ D|�G ′ ⊆ D,G ′ ≺g G, P ⊆ G, |G| = |G ′| = k}.
Going back to the example in Fig. 1 with k = 4 and the user preference hotel set P = {h4},

the FGSky query retrieves the hotel groups {h1, h2, h3, h4}, {h1, h2, h4, h5}, {h2, h3, h4, h6},
{h1, h2, h4, h7}, {h1, h3, h4, h7}, {h2, h3, h4, h7}, and {h3, h4, h7, h11}, each of which con-
tains the hotel h4 and is dominated by no other hotel group of the same size.

4 Approaches to the FGSky query

The naive algorithm for the FGSky query is to compute the G-Skylines directly and then
find out the ones satisfying the user preferences. Although this algorithm is efficient, it needs
to generate a large number of unqualified candidate groups which are not the final results.
Additionally, it cannot get any result until the end of the query procedure.

In this section, we first adjust the state-of-the-art algorithm, G-MDS in [8], and develop
the extended G-MDS algorithm for the FGSky query. After that, we present the group FGSky
query algorithm and the layered FGSky query algorithm which boost the query performance
by applying the grouping and layered strategies.

4.1 The extended G-MDS (EGM) algorithm

In this subsection, we first introduce the minimum dominance graph (MDG) proposed in
[8]. Then, we modify the state-of-the-art algorithm, G-MDS [8], and develop the extended
G-MDS (EGM) algorithm for the FGSky query.

The G-MDS algorithm takes MDG that organizes all the points only dominated by less
than k points as an input. Based on MDG, it sorts all the points in MDG in descending order

123

Progressive approaches to flexible group skyline queries 1479

Fig. 2 MDG of the hotel data set
in Fig. 1

h1

h2

h3

h4

h5

h6

h7

h11

Skylines Non-Skylines

of the sizes of their ancestors. Then, for each point p ∈MDG, new candidate groups are
generated recursively in a depth-first manner by adding p and its ancestors.

4.1.1 The minimum dominance graph

Recently,Wang et al. [8] introduced aminimumdominance graph (MDG)which is considered
as the minimum g-skyline support structure without redundancy. Similar to DSG in [6], the
structure of each node inMDG includes four components, including layer index, point index,
ancestors, and descendants. The layer index is the skyline layer, and the point index is a
unique identifier assigned to each point. Besides, the ancestors and descendants are points
dominating a given point and points dominated by the same point, respectively. The edges
represent the dominance relationship between points.

Theorem 4.1 (Verification theorem [8]) Let D be a set of d-dimensional data points and G
be a k-point group of D. G is a G-skyline if and only if for each point p ∈ G there exists no
point outside G that dominates p.

In a G-SkylineG of size k, each point p ∈ G and all the points dominating p are contained
in G due to Theorem 4.1. Accordingly, each point p ∈ D dominated by more than k − 1
points cannot be contained in a G-Skyline. For example, with k = 4 the hotel h10 does not
exist in MDG shown in Fig. 2. This is because for any G-Skyline including h10, the hotels
h2, h3, h4, h7 dominating h10 are all contained in G. Therefore, the size of G is at least 5
which contradicts the assumption that k = 4. Inspired by this observation, MDG only takes
into account the points dominated by at most k − 1 points. As depicted in Fig. 2 with k = 4,
MDG only includes the hotels dominated by less than four hotels, and the hotels h8 , h9,
and h10 are excluded from MDG. In addition, the hotels are divided into two parts, the left
part contains all the hotels h1 to h4 that are skylines and non-skylines h5, h6, h7, and h11 are
included in the right part.

4.1.2 The extended G-MDS (EGM) algorithm

Due to Definition 3.7, the FGSky query is much more complicated than the GSky query, and
the state-of-the-art algorithm, the G-MDS algorithm in [8], cannot process the FGSky query
directly. We could generate all the G-Skylines by G-MDS and pick out the ones that the user
expects. However, this approach generates numerous G-Skylines that are not the final results.
As a result, it costs much time to identify the final result. To get better query performance,

123

1480 Z. Yang

we extend the G-MDS algorithm and develop the EGM algorithm based on new properties
of the FGSky query.

Lemma 4.2 For a given preference set P and a FGSky query result G, it holds that
AncSet(P) ⊆ G.

Proof Due to Definition 3.7, if a point p ∈ P is contained in the FGSky query resultG which
is a G-Skyline, then AncSet(p) ⊆ G. Therefore, AncSet(P) ⊆ G and this lemma holds. 	

Definition 4.1 (Preference Group, PreG): Given a preference set P , the preference group is
denoted as

PreG(P) = P ∪ AncSet(P).

In Fig. 1, for a hotel preference set {h5}, we have PreG({h5}) = {h5} ∪ AncSet({h5}) =
{h1, h2, h5}.

Algorithm 1 Extend G-MDS (EGM) Algorithm
Require: A MDG MD, group size k, and a preference set P
Ensure: All the FGSky query results
1: Compute the preference group PreG←P ∪ AncSet(P)

2: Sort points p ∈ MD − PreG with |AncSet(p) − PreG| ≤ k − |PreG| − 1 in non-increasing order of
|AncSet(p)| and store the points p within a candidate point set CandP

3: for Each point p ∈ CandP do
4: Compute a candidate group G←{p} ∪ AncSet(p)
5: if |G ∪ PreG| = k then
6: Report the group G
7: else
8: if |G ∪ PreG| < k then
9: FGSkyGenerator(CandP, G, PreG, k)
10: end if
11: end if
12: end for

The EGM algorithm depicted in Algorithm 1 first computes the preference group PreG
by merging P and its ancestor set AncSet(P). Next, the points in MD − PreG are ranked
in non-increasing order of the sizes of their ancestor sets. The candidate point set CandP is
utilized to store these ordered points p whose sizes of ancestors outside PreG are no more
than k − |PreG| − 1. This can ensure that the sizes of the candidate groups G are no more
than k, where the candidate groups are generated in lines 3 to 12 by merging {p}, the ancestor
set AncSet(p), and the preference group PreG. Last, the candidate group G with size k is
reported as a final result. If the size of G is less than k, the FGSkyGenerator algorithm as
shown in Algorithm 2 is invoked to generate new candidate groups.

The FGSkyGenerator algorithm depicted in Algorithm 2 takes the candidate point set
CandP, the candidate group G, the preference group PreG, and the group size k as inputs.
It first identifies the point plast which is the last point within the group G. Then, points
p′ ∈ CandP ranked after the point plast are considered, and new groups G are generated by
merging G, p′ and their ancestor sets. Finally, the groups G ∪PreG of size k are reported as
the final results. Besides, if the sizes of G∪PreG are less than k, FGSkyGenerator is invoked
recursively.

Example Continuing the example in Fig. 1 with k = 4 and P = {h1}, the EGM algorithm
first computes the preference hotel group PreG = P ∪ AncSet(P) = {h1}. Then, we get

123

Progressive approaches to flexible group skyline queries 1481

Algorithm 2 FGSkyGenerator Algorithm
Require: A candidate point set CandP, a candidate group G, a preference group PreG, and group size k
Ensure: FGSky query results
1: plast is the last point within G
2: for Each point p′ ∈ CandP ranked after plast do
3: if p′ /∈G then
4: Compute a new group G←G ∪ {p′} ∪ AncSet(p′)
5: if |G ∪ PreG| = k then
6: Report G as a final result
7: else
8: if |G ∪ PreG| < k then
9: FGSkyGenerator(CandP, G, PreG, k)
10: end if
11: end if
12: end if
13: end for

Fig. 3 Example of the EGM algorithm

hotels h ∈ MD − PreG satisfying |AncSet(h) − PreG| ≤ k − |PreG| − 1 = 2. This means
that outside the preference set PreG there are at most 2 hotels dominating h. For instance, the
hotel h11 is pruned for it is dominated by three hotels that are h3, h4 and h7. The candidate
groups containing h11 and the preference group PreG = {h1} must include at least 5 hotels
that are h1, h3, h4, h7, h11. Accordingly, h11 is not included in any G-Skyline with size 4
and can be pruned safely. After ranking these hotels h by their sizes of ancestors, we gain a
candidate hotel set CanP = {h5, h6, h7, h2, h3, h4}. The hotels within CanP are visited in
sequence. Figure 3 shows the steps of the EGM algorithm when visiting the first hotel h5.
For the hotel h5, we have a candidate group G = {h5}∪AncSet(h5) = {h1, h2, h5}. Through
merging the preference group {h1} and the candidate group {h1, h2, h5}, we can get a group
G = {h1, h2, h5}with size 3. Since |G| = 3 < k = 4, new candidate groups are generated by
adding one of the unvisited hotels h ∈ CanP − {h5} = {h6, h7, h2, h3, h4} and its ancestors
to G at a time. By merging {h1, h2, h5} with {h6} ∪ AncSet({h6}) = {h2, h3, h6}, we get a
new hotel group {h1, h2, h3, h5, h6}which is pruned as an unqualified group directly. This is
since its size is larger than k = 4. Similarly, the group {h1, h2, h4, h5, h7} that is generated
by adding h7 and its ancestors to G = {h1, h2, h5} is pruned. Consider the hotel h2. Because
h2 ∈ G, {h2} could be pruned safely. This is because merging {h2} and its ancestors to G
cannot bring new candidate groups. Next, based on the hotels h3 and h4, we get two hotel
groups {h1, h2, h3, h5} and {h1, h2, h4, h5} which could be returned as the FGSky query
results. Finally, based on the remaining hotels within CanP, the other generated and reported
query results are {h1, h2, h3, h6}, {h1, h2, h4, h7}, {h1, h3, h4, h7}, and {h1, h2, h3, h4}.

123

1482 Z. Yang

Fig. 4 LMDG of the hotel set in
Fig. 1 SL1

h1 h2

h5 h7 SL2

h3

SL3

h6

h11

h4

Complexity The EGM algorithm first costs O(N ′× log N ′) where N ′ is the cardinality
of the points within MD but not included in PreG to sort the points p ∈ MD − PreG.
We use the set CandP to store all the points after sorting. Then, the points p ∈ CandP
are processed sequentially. For the i th point pi ∈ CandP, it needs to select at most ki =
k − |PreG| − |AncSet(pi)| − 1 points from CandP − ∪i

j=1{p j }. This costs O
(

(N ′−i
ki

)
)
for

pi . Therefore, taking into account all the points within CandP, it needs O

(
∑N ′

i=1

(N ′−i
ki

))
.

Therefore, the time complexity of the EGM algorithm is O

(
N ′ × log N ′ + ∑N ′

i=1

(N ′−i
ki

))
.

4.2 The group FGSky query algorithm

Although MDG contains no redundant points, it includes redundant edges. As shown in
Fig. 2, as well as the edge h4 → h11, it also contains two edges h4 → h7 and h7 → h11.
To further refine MDG, we introduce a layered strategy where the points are organized in
different skyline layers to MDG in [8] and produce a layered minimum dominance graph
(LMDG). Then, to further improve the FGSky query performance, the Group FGSky Query
algorithm is developed.

4.2.1 The layered minimum dominance graph

In this paper, we adjust MDG [8] and introduce a layered MDG, namely LMDG, to organize
the data set. In LMDG, the points dominated by at most k−1 points are divided into different
skyline layers. In addition, we refine the structure of each node as [layer index, point index,
ancestors, direct children]. Here, each node stores the ancestors and direct children instead
of all the descendants in the DSG. The direct child set is defined as follows.

Definition 4.2 (Direct child set) For two given points p and p′, p′ is a direct child of p if
there is an edge between the nodes of p and p′ in the DSG . The direct child set of a point p,
DChiSet(p, i), is composed of the direct children of p in the i th skyline layer. Besides, for
a given point group G, its direct child set is DChiSet(G, i) = ⋃

p∈G DChiSet(p, i).

Figure 4 shows LMDG over the hotel data set H in Fig. 1. It contains 3 skyline layers
SL1 = {h1, h2, h3, h4}, SL2 = {h5, h6, h7}, and SL3 = {h11}. The edges in LMDG represent
the dominance relationship between different hotels. For instance, the edge h3→h6 means
that the hotel h6 is dominated by the hotel h3. In the node representing h11, as well as the

123

Progressive approaches to flexible group skyline queries 1483

layer index 3 and point index 11, it stores the ancestor set {h3, h4, h7} and its direct child set
is empty.

4.2.2 The group FGSky query algorithm

In this subsection, we propose the group FGSky query (GCQ) algorithm based on the fol-
lowing lemmas and theorems. In the GCQ algorithm, we employ LMDG to organize the data
sets and introduce the grouping strategy for boosting the query performance.

Lemma 4.3 For a given group G, it is a G-Skyline if AncSet(p) ⊆ G for each p ∈ G [6].

Definition 4.3 (Unit Group [6]) Given a point p ∈ D, the unit group of p is denoted as

u p = {p} ∪ AncSet(p).

Theorem 4.4 (Verification of the G-Skyline [6]) For a given group G = {p1, p2, . . ., pk}, it
is a G-Skyline, if and only if | ∪k

i=1 ui | = k where ui is the unit group of the point pi .

Lemma 4.5 For a preference set P and groups G ⊆ SL1, the group G ′ = P∪AncSet(P)∪G
is a FGSky query result if and only if |G ′| = k.

Proof Due to Definition 3.7, if G ′ is a FGSky query result, then G ′ is a G-Skyline that is
not dominated by any other G-Skyline of size k, and G ′ contains all the points within the
preference set P . For each point p ∈ G ′, we have p ∈ P , p ∈ AncSet(P) or p ∈ G. If p ∈ P ,
it holds that AncSet(p) ⊆ AncSet(P) ⊆ G ′. When p ∈ AncSet(P), then p dominates some
points within P , and each ancestor of p is also included in the set AncSet(P) due to Lemma
4.3. On assumption that p ∈ G, there is no point dominating p since G ⊆ SL1 where SL1
contains all the points within the first skyline layer. As analyzed above, each point within
G ′ and its ancestors are both contained in G ′, and G ′ is a G-Skyline based on Theorem 4.4.
Since G ′ is a G-Skyline that contains the preference set P , G ′ is a FGSky query result. 	

As listed in Algorithm 3, the GCQ algorithm first processes the points p ∈ SL1 and
generates groups G ⊆ SL1 − PreG of size i for 1 ≤ i ≤ k′. Here, PreG consists of the
preference set P and its ancestor set. Besides, k′ is equal to k − |PreG| because the final
FGSky query results contain at most k−|PreG| points within SL1. The groups G are divided
into different groups according to their sizes (line 3). This means that the groupsG containing
i points within SL1 are inserted to the set Vi . To improve the progressiveness of the FGSky
query, the groups within Vk′ are considered at first (lines 4 to 7). We could get some FGSky
query results by merging G and the set PreG for each G ⊆ Vk′ due to Lemma 4.5, and k′ is
refreshed as k′ −1. Lines 8 to 26 are a for loop to compute the left FGSky query results based
on candidate groups within Vi for 1 ≤ i ≤ k′. To boost the progressiveness of the GSky
query, the set Vi containing more points within SL1 is given priority to be processed. If Vi is
not empty, new candidate groups are built by merging each group G ′ ∈ Vi with some direct
children of p ∈ G ′ (lines 10 to 24). In line 11, maxlay is initialized as the max skyline layer
that the points p ∈ G ′ belong to. After that, the candidate set CanP is computed as the direct
child set which contains all direct children of points within G ′ ∪ PreG in the (maxlay+1)th

skyline layer. For each subsetDC′ of CanPwith size no more than k′ − |G ′|, if each ancestor
of the points p ∈ DC′ is contained in G ′ or PreG (line 14), then a new group G ′′ is built by
merging G ′ and DC′ (line 15). The group G ′′ of size k′ is merged with PreG to get a new
result of the FGSky query (line 19), and the group of size less than k′ is inserted to Vi as a

123

1484 Z. Yang

Algorithm 3 Group FGSky Query (GCQ) Algorithm
Require: A LMDG LM over D, group size k, and a preference set P
Ensure: FGSky query results
1: Compute the preference group PreG←P ∪ AncSet(P)

2: k′←k − |PreG|
3: Generate candidate groups G ⊆ SL1 − PreG of size i and insert them into a set Vi for 1 ≤ i ≤ k′
4: if Vk′ is not empty then
5: Report groups G ∪ PreG for G ∈ Vk′ due to Lemma 4.5
6: k′←k′ − 1
7: end if
8: for i←k′ to 1 do
9: if Vi is not empty then
10: for Each group G′ in Vi do
11: maxlay←maxp∈G′ p.layer
12: CanP←DChiSet(G′ ∪ PreG,maxlay+1)
13: for Each DC′ ⊆ CanP with |DC′| ≤ k′ − |G′| do
14: if AncSet(DC′) ⊆ G′ ∪ PreG then
15: Generate a new candidate group G′′←G′ ∪ DC′ due to Lemma 4.3
16: if G′′ < k′ then
17: Insert G′′ to the set Vi
18: else
19: Report G′′ ∪ PreG if |G′′| = k′
20: end if
21: end if
22: end for
23: Vi←Vi − {G′}
24: end for
25: end if
26: end for

new candidate group (line 17). In line 23, the set Vi is updated by removing the group G ′
which has been processed.

Example Back to the example of Fig. 1 with k = 4 and P = {h1}, the GCQ algorithm first
computes the preference hotel group PreG = {h1} and k′ = 4− |PreG| = 3. Next, the hotel
groups G ⊆ SL1 − PreG = {h2, h3, h4} of size not more than k′ = 3 are generated and
divided into three hotel sets V1 = {{h2}, {h3}, {h4}}, V2 = {{h2, h3}, {h2, h4}, {h3, h4}}, and
V3 = {{h2, h3, h4}}. Here, the hotel group set Vi for 1 ≤ i ≤ 3 consists of hotel groups that
contain only i hotels in the first skyline layer SL1. The set Vi containing hotel groups with
large sizes is given priority to be processed. This contributes to improve the progressiveness
of the FGSky query.

The hotel groups in V3 are considered firstly. The hotel group {h2, h3, h4} ∈ V3 includes
3 hotels h2, h3, h4 ∈ SL1. By merging {h2, h3, h4} and the preference set PreG = {h1},
we get a FGSky query result which is {h1, h2, h3, h4}. Then, the hotel groups within V2 are
taken into account. Figure 5 shows the steps of the GCQ algorithm when visiting the hotel
groups within V2. For the hotel groupG ′ = {h2, h3},maxlay = maxh∈G ′ h.layer = 1 and the
candidate hotel set CanP = DChiSet(G ′ ∪PreG, 2) = DChiSet({h1, h2, h3}, 2) = {h5, h6}.
The hotel set {h5, h6} contains all the direct children of hotels within {h1, h2, h3} in the 2nd
skyline layer. There are two hotel groups, {h5} and {h6}, which are subsets of {h5, h6} with
sizes not more than k′ − |G ′| = 3 − 2 = 1. For AncSet({h5}) = {h1, h2} ⊆ G ′ ∪ PreG =
{h1, h2, h3}, we could add h5 to {h1, h2, h3} directly to generate a new candidate hotel group
{h1, h2, h3, h5}. Similarly, by merging {h6} and {h1, h2, h3}, we get another candidate group
{h1, h2, h3, h6}. The hotel groups {h1, h2, h3, h5} and {h1, h2, h3, h6}where each hotel is not

123

Progressive approaches to flexible group skyline queries 1485

Fig. 5 Example of the GCQ algorithm

dominated by other hotels outside the groups could be reported as final FGSky query results
directly. Taking into account the hotel group {h2, h4} ∈ V2, we have the candidate setCanP =
DChiSet({h1, h2, h4}, 2) = {h5, h6, h7}. The hotel groups {h5}, {h6}, and {h7} are subsets
of {h5, h6, h7}, and their sizes are all less than k′ − |G ′| = 1. For the hotels h5 and h7 whose
ancestors are all contained in {h1, h2, h4}, they could be added to {h1, h2, h4} to generate two
new hotel groups {h1, h2, h4, h5} and {h1, h2, h4, h7} which are final FGSky query results.
However, since h3, one of the ancestors of h6, is not included in {h1, h2, h4}, h6 could be
pruned safely. Based on the last hotel group {h3, h4} with V2, we could gain a new FGSky
query result {h1, h3, h4, h7}. Finally, the hotel groups in V1 are considered. By merging the
hotel group {h4} ∈ V1 and its direct child set {h7}, we have a new candidate group {h4, h7}
and maxlay = maxh∈{h4,h7} h.layer = 2. Since DChiSet({h4, h7},maxlay+1) = {h11} and
h3 one of the ancestors of h11 is not contained in {h4, h7}, we could not get any new FGSky
query result based on {h4}. In addition, there is no FGSky query result generated based on
other hotel groups within V1.

Complexity The GCQ algorithm generates candidate groups containing i points within SL1
and it costs O(

(h1
i

)
) where h1 = |SL1 − PreG| and 1 ≤ i ≤ k′ = k − |PreG|. Then,

based on each group G ′ within Vi for 1 ≤ i ≤ k′ − 1, new candidate groups are generated
by adding corresponding direct children. This costs O

(|Vi |×|DC′|) where the groups DG′
denote subsets of the direct child set of G ′ ∪ PreG over the (maxlay + 1)th skyline layer.
Suppose that the maximum size of candidate groups generated on a group G ′ ∈ Vi is ∂i .
Therefore, the time complexity of the GCQ algorithm is

O

(k′∑

i=1

((
�1
i

)
× ∂i

))
< O

(
2h1 × ∂

)

for ∂ = max ∂i .

123

1486 Z. Yang

4.3 The layered FGSky query algorithm

In the GCQ algorithm, it generates abundant candidate groups at first and then identifies the
final FGSky query results. To further improve the query performance, we propose the layered
FGSky query (LCQ) algorithm which generates the FGSky query results directly.

Lemma 4.6 For a given G-Skyline G and a user preference set P satisfying P ⊆ G, it holds
that |G ′| ≤ k − |PreG| where the group G ′ ⊆ SLi ∩ G for 1 ≤ i ≤ k.

Proof On the assumption that G ′ ⊆ SLi ∩G, each point p ∈ G ′ lies on the i th skyline layer.
Besides, the following relation holds,

|G ′ ∪ AncSet(G ′) ∪ PreG| ≤ |G ′| + |AncSet(G ′) ∪ PreG| ≤ k.

The above equation can be rewritten as:

|G ′| ≤ k − |AncSet(G ′) ∪ PreG| ≤ k − |PreG|.
In case AncSet(G ′) ⊆ PreG, there are at most k − |PreG| points p ∈ G contained in SLi and
this lemma holds. 	

Theorem 4.7 Consider a given G-Skyline G = {p1, p2, . . . , pk}. The points pi ∈ G for
1 ≤ i ≤ k are all in the first k skyline layers [6].

According to Lemma 4.6, each FGSky query result contains at most k − |PreG| points
within SLi for 1 ≤ i ≤ k. Here, PreG consists of the user-specified set P and its ancestor set
AncSet(P).

From Theorem 4.4, a G-Skyline could be generated by combining different unit groups.
Inspired by this, in the following LCQ algorithm, we generate the FGSky query results
through computing unit group sets in a bottom-up manner. When taking into account the
unit group u p of points p within the i th skyline layer SLi , it creates candidate FGSky query
results by merging u p with the unit groups uq of points q belonging to the j th skyline layer
SL j . Here, it holds that j ≤ i .

As shown in Algorithm 4, the LCQ algorithm first combines the set P and AncSet(P) to
get the preference group PreG. Lines 2 to 21 are a for loop that takes into account the unit
groups within different skyline layers separately. Due to Lemma 4.6, the groupsG∪PreG are
generated and reported as FGSky query results for each G ⊆ SL1 −PreG of size k − |PreG|
(Lines 4 and 5). Thereafter, other FGSky query results are generated based on the unit groups
within SLi for 1 < i ≤ k (lines 7 to 19). It computes the unit group set Ui including all the
unit groups of the points p ∈ SLi − PreG. Then, the unit group sets U ′ ⊆ Ui are generated
(line 8). According to Lemma 4.6, the size of U ′ is at most k − |PreG|. For each unit group
setU ′, a candidate group G ′ is built by merging PreG and all the unit groups withinU ′. Last,
the group G ′ of size k is returned as a final FGSky query result due to Theorem 4.5 (Line
12). In addition, for the group G ′ with |G ′| < k, new groups G ′′ are computed by invoking
the LCQ algorithm recursively. The groups G ′′ whose sizes are equal to k are reported as the
final FGSky query results.

Example Consider the example in Fig. 1 with k = 4 and P = {h1} again. The pref-
erence group PreG is computed as P ∪ AncSet(P) = {h1}. Then, the hotels within
SL1−PreG = {h2, h3, h4} are taken into account firstly.We generate hotel group {h2, h3, h4}
of size k − |PreG| = 3 over the hotels in SL1 − PreG = {h2, h3, h4}. Based on Lemma 4.6,
the hotel group PreP ∪ {h2, h3, h4} = {h1, h2, h3, h4} only including k = 4 hotels within

123

Progressive approaches to flexible group skyline queries 1487

Algorithm 4 Layered FGSky Query (LCQ) Algorithm
Require: A LMDG LM over D, a group size k, and a user preference set P
Ensure: FGSky query results
1: Compute the preference group PreG←P ∪ AncSet(P)

2: for i←1 to k do
3: if i = 1 then
4: Generate groups G ⊆ SL1 − PreG of size k − |PreG|
5: Report groups G ∪ PreG as FGSky query results
6: else
7: Compute a unit group set Ui←{u p |p ∈ SLi − PreG}
8: Generate unit group sets U ′ ⊆ Ui of sizes at most k − |PreG| due to Lemma 4.6
9: for each U ′ do
10: Generate a candidate group G′←PreG ∪ ⋃

u∈U ′ u
11: if |G′| = k then
12: Report the group G′ as a FGSky query result
13: else
14: if |G′| < k then
15: Generate groups G′′←LCQ(LM, k, G′)
16: Report the groups G′′ as FGSky query results if |G′′| = k
17: end if
18: end if
19: end for
20: end if
21: end for

Fig. 6 Example of the LCQ algorithm

the first skyline layer SL1 could be reported as a final result. Then, the hotels h5, h6, and h7
within the 2nd skyline layer are considered. We get the unit group set U2 = {u5, u6, u7} =
{{h1, h2, h5}, {h2, h3, h6}, {h4, h7}}. Based on Lemma 4.6, a FGSky query result contains at
most k − |PreG| = 4 − 1 = 3 hotels within the 2nd skyline layer SL2. Accordingly, a unit
group setU ′, where each unit group contains at most three unit groups fromU2, is computed.
Here, we have U ′ = {{u5}, {u6}, {u7}, {u5, u6}, {u5, u7}, {u6, u7}, {u5, u6, u7}}.

Figure 6 shows the steps of the LCQ algorithm when visiting the first three unit
groups {u5}, {u6}, and {u7} of U ′. By merging each unit group u ∈ U ′ with the prefer-
ence hotel set PreG = {h1}, we have new candidate groups, {h1, h2, h5}, {h1, h2, h3, h6},
{h1, h4, h7}, {h1, h2, h3, h5, h6}, {h1, h2, h3, h4, h5, h7}, {h2, h3, h4, h6, h7}, and {h1, h2,

123

1488 Z. Yang

h3, h4, h5, h6, h7}. The hotel group {h1, h2, h3, h6} of size 4 can be reported as a final FGSky
query result. However, the hotel groups {h1, h2, h3, h5, h6}, {h1, h2, h3, h4, h5, h7}, {h2, h3,
h4, h6, h7}, {h1, h2, h3, h4, h5, h6, h7} are pruned directly because their sizes are larger than
4. Consider the hotel groups {h1, h2, h5} and {h1, h4, h7} of size less than 4.Newhotel groups
are computed by invoking the LCQ algorithm recursively. Through invoking LCQ(LM, 4,
{h1, h2, h5}), two new hotel groups {h1, h2, h3, h5} and {h1, h2, h4, h5} are generated by
merging {h1, h2, h5} and hotel groups, {h3} and {h4}, of size k − |{h1, h2, h5}| = 1 over the
hotel set SL1 − {h1, h2, h5} = {h3, h4}. The sizes of {h1, h2, h3, h5} and {h1, h2, h4, h5}
are both k = 4, and they could be reported as final results. For the hotels h6, h7 ∈
SL2 − {h1, h2, h5}, we get a unit group set U2 = {u6, u7} = {{h2, h3, h6}, {h4, h7}}. Here,
the unit of h5 is ignored since h5 has been contained in the hotel set {h1, h2, h5}. Thereafter,
the unit group set U ′ = {{u6}, {u7}} of size at most k − |PreG| = 1 is computed. Through
merging {h1, h2, h5} and each unit group set in U ′, respectively, we have two new hotel
groups {h1, h2, h3, h5, h6} and {h1, h2, h4, h5, h7} with size 5>k, and they could be pruned
directly. Similarly, for the hotels within SL3, we gain U3 = {u11} and U ′ = {{u11}} where
u11 = {h3, h4, h7, h11}. The hotel group {h1, h2, h5} ∪ u11 = {h1, h2, h3, h4, h5, h7, h11}
with size larger than 4 could be pruned directly. Finally, based on the hotel group {h1, h4, h7},
the hotel groups {h1, h2, h4, h7} and {h1, h3, h4, h7} are generated and returned as final
FGSky query results.

Complexity Let hi denote the cardinality of points within the i th skyline layer for 1 ≤ i ≤ k.
The LCQ algorithm first generates groups G which are subsets of the point set SL1 − PreG.
The sizes of these groups G are all equal to k′ = k − |PreG|. This costs O((h1

k′
))
. The left of

the LCQ algorithm is a for loop. In the for loop, it requires O(|Ui |+ |U |) to compute the unit
group setU and the unit group setsU ′ where |Ui | = hi and |U ′| = (hi

k′
)
. For each unit group

set U ′, assume that there are at most ∂i candidate groups generated. Accordingly, based on
the unit group set U , it costs O

((hi
k′
)×∂i

)
to generate new candidate groups. Therefore, the

for loop costs

O

(k∑

i=2

(
|Ui |+|U | +

(
hi
k′

)
× ∂i

))
= O

(k∑

i=2

(
hi+

(
hi
k′

)
+

(
hi
k′

)
× ∂i

))
.

In summary, the time complexity of the LCQ algorithm is

O

((
h1
k′

)
+

k∑

i=2

(
hi +

(
hi
k′

)
+

(
hi
k′

)
× ∂i

))
.

4.4 Extension

The FGSky query is more practical than the GSky query for two reasons: It can obtain results
that the user expects, and it is also appropriate to the case where data are frequently updated.
However, it may also face the problem of returning a prohibitively large number of results,
which prevents users from making quick and rational decisions. To alleviate this problem, in
this subsection, we discuss the FGSky query with a size constraint.

In the following,wepresent theTop l FlexibleGroupSkylineQuerywhich aims to compute
l G-Skylines that both satisfy user preferences and have the largest dominance ability.

Definition (Top l Flexible Group Skyline Query, TlFGSky): Given a data set D, two
parameters k and l, and a user preference set P ⊆ D, the TlFGSky query returns l point
groups G ⊆ D, such that G are not dominated by another group of size k, G contain all

123

Progressive approaches to flexible group skyline queries 1489

Table 2 System parameters

Parameter Values

Data set dimensionality(d) 3, 4, 5, 6

Group size (k) 3, 4, 5, 6

Size of the unit set uP (|uP |) 1, 2, 3, 4

Cardinality for Ind data sets (N) 200000, 400000, 600000, 800000

Cardinality for Ant data sets (N) 20000, 40000, 60000, 80000

points within P , and G have the highest scores. Here, the score of a group G is defined as

Score(G) = ∣
∣ ∪p∈G {p′ ∈ P − G, p≺p′}∣∣. (1)

In case G-Skylines with the same dominance size are tie at rank l-th, only some of them
are selected randomly and returned as the final TlFGSky query results.

In Fig. 1, we consider the T1FGSky query with l = 1 and k = 4. Due to
Equation (1), we have the score of the hotel group {h1, h2, h3, h4} is Score({h1,
h2, h3, h4}) = |{h5, h6, h7, h8, h9, h10, h11}| = 7. Similarly, we have Score({h1, h2, h3,
h5}) = Score({h1, h2, h3, h6}) = Score({h3, h4, h7, h11}) = 6. For other G-Skylines shown
in Fig. 1b, their scores are all equal to 7. Finally, we will choose one G-Skyline with score 7
randomly and return it as the final result of the T1FGSky query.

5 Performance evaluation

This section evaluates the performance of our algorithms in terms of query time (QT) and
progressiveness. Here, QT represents the time between the submission of a query quest and
the return of all the final query results. Similar to [29,30], the progressiveness is measured by
QT as how many points reported by FGSky query during the query processing. In addition,
we also show the number of the final FGSky query results (NR).

We have implemented all the algorithms for processing the FGSky query by C++. All the
experiments were performed on a PC that is with the Intel(R) Core(TM) I5-3330S 2.7GHz
CPU, 4GB main memory, and runs the Windows 7 operating system.

5.1 Performance on synthetic data sets

We generate the synthetic data sets by following the approach adapted in [1] and have com-
pleted a great number of experiments on the synthetic data sets with two popular distributions,
i.e., independent (Ind) and anti-correlated (Ant). In the Ind data sets, each attribute value is
generated independently on a uniform distribution, and for the Ant data sets, a point is good
in one dimension but is bad in one or all of the other dimension(s) [11]. The points within
the data sets are selected randomly to generate the user-specified point set P .

In each experiment, we vary one parameter at a time, while the other parameters are fixed
to the default values, listed in bold. The parameters and their possible values are depicted in
Table 2. The unit set uP is computed as ∪p∈Pu p , where u p = {p} ∪ AncSet(p). Here, the
values of all the parameters are set by referring to the related work [5,6,8,31].

123

1490 Z. Yang

(a) Ind (b) Ant (c) Number of results

Fig. 7 Experimental results versus dimensionality d

As shown in Table 2, we use different ranges of N for the Ind and Ant data sets. This is
since it costs unacceptable QT when processing large Ant data sets.

5.1.1 Experimental results by varying dimensionality d

In the first part of experiments, we study the impact of the dimensionality d on the proposed
algorithms when processing the data sets with k = 6, |uP | = 2, and d is varied from 3 to 6
by a step of 1.

As shown in Fig. 7, NR and QT increase with the growth of d . The dimensionality d
impacts the performance of the EGM, LCQ, and GCQ algorithms obviously. As expected,
the performance of the three algorithms all degrades when the dimensionality is increasing.
The reason is that the sizes of the indexes, MDG and LMDG, grow in an exponential rate as
d increases. Accordingly, much more candidate groups need to be created and checked. Both
the LCQ and GCQ algorithms perform better than the EGM algorithm which demonstrates
the effectiveness of the proposed pruning strategies, the layered strategy and grouping strat-
egy. From Fig. 7a, b, the LCQ algorithm is better than the GCQ algorithm for processing
Ind data sets, but, when processing the Ant data sets, the GCQ algorithm outperforms the
LCQ algorithm. This interesting phenomenon is due to the data distribution. Furthermore,
compared to the GCQ algorithm, the LCQ algorithm owns a poorer performance in most
cases. This is because the LCQ algorithm invokes itself recursively to generate candidate
groups which brings many repetitive but redundant computation cost.

5.1.2 Experimental results by varying group size k

In the secondpart of experiments,we explore the impact of the group size k on theperformance
of the proposed algorithms. Specifically, k varies from 3 to 6 by a step of 1 with d = 3 and
|uP | = 2.

Figure 8 presents the experimental results about FGSky query as k grows. As show in the
figure, the performance of the proposed algorithms is significantly affected by the group size
k. As the increase of k, NR and QT of the three algorithms grow in turn. The reason is that
in the FGSky query, the points of the first k skyline layers SLi for 1 ≤ i ≤ k are considered.
As k grows, cardinality of candidate groups consisting of points p ∈ SLi increases rapidly,
and QT of the proposed algorithms grows in turn. Again, in most cases, the LCQ algorithm
performs the best over Ind data sets, and the GCQ algorithm is the best to process the Ant
data sets.

123

Progressive approaches to flexible group skyline queries 1491

(a) Ind (b) Ant (c) Number of results

Fig. 8 Experimental results versus group size k

(a) Ind (b) Ant (c) Ind (d) Ant

Fig. 9 Experimental results versus cardinality N

5.1.3 Experimental results by varying |uP|

In the third part of experiments, we inspect the performance impact of |uP | for the proposed
algorithms by increasing |uP | from 1 to 5.

Table 3 illustrates NR and QT of the three algorithms with varying |uP |. Different from
the terms d and k, QT of the three algorithms reduces significantly as |uP | increases. This is
as expected; for a given point set P , any FGSky query result of size k has contained all points
in the unit set uP . Accordingly, we only need to compute the other k − |uP | points from
MDG− uP or LMDG− uP . The larger |uP | is, the less candidate groups are computed and
checked. In addition, NR reduces as |uP | raises. In most cases, the GCQ algorithm requires
the least QT in comparison with the EGM and LCQ algorithms by varying |uP | from 1 to 4.

5.1.4 Experimental results by varying the cardinality N

In the fourth part of experiments, we examine the effect of the cardinality N on the perfor-
mance of the three algorithms. Considering the query time, we varied N from 200000 to
800000 for Ind data sets, and for Ant data sets, N is changed from 20000 to 100000.

Figure 9 depicts NR and QT of the three algorithms for different values of N . The effect of
cardinality N is not as important as that of the dimensionality d and the group size k. When
N goes up, in most cases, QT of the proposed algorithms raises obviously, and NR grows
also. For the Ind data sets, the LCQ algorithm owns the best scalability for the cardinality N .
The GCQ algorithm behaves best when processing the Ant data sets.

5.1.5 Performance in comparison with the Naive algorithm

In this subsection, we add a baseline algorithm, namely Naive, in the experiments. The
Naive algorithm generates all the G-Skylines by G-MDS [8], which is the state-of-the-art
algorithm for the GSky query, and then picks out the ones that the user expects. We study the

123

1492 Z. Yang

Ta
bl
e
3

E
xp
er
im

en
ta
lr
es
ul
ts
ve
rs
us

|u P
|

|u P
|

In
d

A
nt

N
R

E
G
M
(s
)

L
C
Q
(s
)

G
C
Q
(s
)

N
R

E
G
M
(s
)

L
C
Q
(s
)

G
C
Q
(s
)

1
29

,6
51

,8
55

9.
60

55
7.
33

34
0.
74

01
–

–
–

–

2
1,
96

3,
21

1
0.
63

48
0.
41

96
0.
22

81
1,
94

1,
99

6,
24

8
57

2.
21

50
10

6.
60

10
49

.4
12

9

3
28

3,
18

5
0.
02

99
0.
02

79
0.
07

07
16

,5
87

,9
47

5.
83

90
6.
23

08
0.
38

74

4
75

75
0.
00

11
0.
00

28
0.
01

17
11

1,
95

7
0.
03

73
0.
21

75
0.
00

68

123

Progressive approaches to flexible group skyline queries 1493

(a) Dimensionality (b) Group Size (c) Cardinality (d) |up|

Fig. 10 Experimental results over Ind data sets

Table 4 Experimental results
versus k over the Hou

k NR EGM(s) LCQ(s) GCQ(s)

3 287 0.0002 0.0042 0.0016

4 41,264 0.0106 0.0108 0.0026

5 4,086,756 1.2049 0.4293 0.1630

6 310,560,542 96.8637 25.0351 34.8211

Table 5 Experimental results
versus |uP | over the Hou |uP | NR EGM(s) LCQ(s) GCQ(s)

1 286,107,869 79.4381 2.8683 10.9210

2 3,962,986 1.1575 0.4242 0.1287

3 41,838 0.00999 0.0214 0.0028

4 288 0.00039 0.0059 0.00223

performance of our proposed algorithms in comparison with the Naive algorithm over Ind
data sets. The experimental parameters are set due to the query time of the Naive algorithm.

As shown in Fig. 10, the three proposed algorithms all outperform the Naive algorithm
with varying the dimensionality d (N = 20000, k = 4, |uP | = 2), the group size k (N =
200000, d = 3, |uP | = 2), the cardinality N (d = 3, k = 4, |uP | = 2), and the size of uP

(N = 200000, d = 3, k = 6). In most cases, the proposed algorithms, EGM, GCQ, and
LCQ, are three orders of magnitude faster than the Naive algorithm.

5.2 Performance on the real data sets

Furthermore, the proposed algorithms are also evaluated based on household (Hou) which
is a real data set that is also utilized in [30]. The Hou contains tuples of the percentage of
an American families annual income. Its cardinality is 127,000. We takes into account the
attributes including the expenditures of gas, electricity, water, and heating. In this subsection,
we report the experimental results on the Hou data set.

Tables 4 and 5 show QT of the three algorithms on the Hou data set. The results over the
real data set are consistent with the ones of the experiments on the Ind and Ant data sets.
As k increases, NR and QT of the proposed algorithms grow clearly. Most of the time, the
GCQ algorithm requires the least QT with changing k from 3 to 6. In addition, NR and QT
of the proposed algorithms reduce when varying |uP | from 1 to 4. With the growth of |uP |,
the GCQ algorithm needs the least QT.

123

1494 Z. Yang

(a) Ind (b) Ant (c) Hou

Fig. 11 Progressiveness comparison

5.3 Progressiveness performance

In this set of experiments, we analyze the progressiveness of the EGM, GCQ, and LCQ
algorithms through evaluating QT by changing the number of reported FGSky query results
(NR). The accumulated QT of the algorithms is reported as NR grows. For two algorithms,
when returning the same number of query results the one needs less QT is considered having
better progressiveness. As depicted in Fig. 11, when returning the same number of the FGSky
query results, the GCQ algorithm always needs the minimal QT. This indicates the GCQ
algorithm has the best progressiveness among the proposed algorithms.

6 Conclusions

In this paper, we investigate the FGSky query. Particularly, the FGSky query reports the
expected G-Skylines which can satisfy the user preferences. To process the FGSky query,
effective algorithms which can output the final query results progressively are proposed. In
addition, we demonstrate the effectiveness, efficiency, and progressiveness of the proposed
algorithms by extensive experiments.

As shown in the experimental results, the FGSky query requires too long query time over
high-dimensional data sets which will influence its practicality. To address this problem, one
approach is to apply dimensionality reduction techniques to covert the date sets to subspaces
with lower dimensionality as mentioned in [32]. In addition, we could design approximate
algorithms to get good query performance. It is a significant and challenge work to process
the FGSky query over high dimensionality. We will take it as our further work.

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable and helpful
comments on improving the manuscript. The research was supported by the NSFC (Grant Nos. 61802032,
61772182, 61602170), the Key Program of NSFC (Grant No. 61432005), the International (Regional) Coop-
eration and Exchange Program of NSFC (Grant No. 61661146006), the Emergency Special Project of NSFC
(Grant No. 61751204), the Key Area Research Program of Hunan (2019GK2091), and the Hunan Province
Key Laboratory of Industrial Internet Technology and Security (2019TP1011). Xu Zhou is the corresponding
author of this paper.

References

1. Borzsony S, Kossmann D, Stocker K (2001) The skyline operator. In: Proceedings of the international
conference on data engineering, pp 421–430

123

Progressive approaches to flexible group skyline queries 1495

2. Chung Y-C, Su I-F, Lee C (2013) Efficient computation of combinatorial skyline queries. Inf Syst
38(3):369–387

3. Im H, Park S (2012) Group skyline computation. Inf Sci 188:151–169
4. Magnani M, Assent I (2013) From stars to galaxies: skyline queries on aggregate data. In: Proceedings

of the international conference on extending database technology. ACM, pp 477–488
5. Zhang N, Li C, Hassan N, Rajasekaran S, Das G (2014) On skyline groups. IEEE Trans Knowl Data Eng

26(4):942–956
6. Liu J, Xiong L, Pei J, Luo J, Zhang H (2015) Finding pareto optimal groups: group-based skyline. In:

Proceedings of the international conference on very large data bases, vol 8, no 13
7. Xu Z, Li K, Yang Z, Xiao G, Li K (2018) Progressive approaches for pareto optimal groups computation.

IEEE Trans Knowl Data Eng 99:1
8. Wang C, Wang C, Guo G, Ye X, Yu PS (2018) Efficient computation of g-skyline groups. IEEE Trans

Knowl Data Eng 30(4):674–688
9. HeZ,LoE (2012)Answeringwhy-not questions on top k queries. In: Proceedings of the IEEE international

conference on data engineering (ICDE), pp 750–761
10. Islam MS, Zhou R, Liu C (2013) On answering why-not questions in reverse skyline queries. In: Pro-

ceedings of the IEEE international conference on data engineering (ICDE), pp 973–984
11. Gao Y, Liu Q, Chen G, Zheng B, Zhou L (2015) Answering why-not questions on reverse top k queries.

In: Proceedings of the international conference on very large data bases (VLDB), vol 8(7), pp 738–749
12. Chen L, Lin X, Hu H, Jensen CS, Xu J (2015) Answering why-not questions on spatial keyword top k

queries. In: Proceedings of the IEEE international conference on data engineering (ICDE), pp 279–290
13. Liu Q, Gao Y, Zheng B, Zhou L (2016) Answering why-not and why questions on reverse top k queries.

VLDB J 25(6):867–892
14. Islam MS, Liu C, Li J (2016) Efficient answering of why-not questions in similar graph matching. In:

Proceedings of the IEEE international conference on data engineering (ICDE), pp 2672–2686
15. Chen L, Xu J, Jensen CS, Li Y (2016) Yask: a why-not question answering engine for spatial keyword

query services. In: Proceedings of the international conference on very large data bases (VLDB), vol
9(13), pp 1501–1504

16. Tran QT, Chan CY (2010) How to conquer why-not questions. In: Proceedings of the ACM SIGMOD
international conference on management of data (SIGMOD)

17. Wan Q, Wong RC-W, Ilyas IF, Özsu MT, Peng Y (2009) Creating competitive products. Proc VLDB
Endow 2(1):898–909

18. Su I-F, Chung Y-C, Lee C (2010) Top-k combinatorial skyline queries. In: Database systems for advanced
applications. Springer, pp 79–93

19. ZhouX,LiK,YangZ,XiaoG, LiK (2018) Progressive approaches for pareto optimal groups computation.
IEEE Trans Knowl Data Eng 31(3):521–534

20. ZhuH, Zhu P, LiX, LiuQ,XunP (2017) Parallelization of group-based skyline computation formulti-core
processors. Concurr Comput Pract Exp 29(3):e4195

21. Zhu H, Zhu P, Li X, Liu Q (2017) Top k skyline groups queries. In: Proceedings of the ninth international
conference on extending database technology (EDBT)

22. Zhu H, Li X, Liu Q, Xu Z (2019) Top-k dominating queries on skyline groups. IEEE Trans Knowl Data
Eng 32:1431–1444

23. YuW, Liu J, Pei J, Xiong L, Chen X, Qin Z (2019) Efficient contour computation of group-based skyline.
IEEE Trans Knowl Data Eng 32:1317–1332

24. Miao X, Gao Y, Guo S, Chen G (2018) On efficiently answering why-not range-based skyline queries in
road networks. IEEE Trans Knowl Data Eng 30(99):1

25. He Z, Lo E (2014) Answering why-not questions on top k queries. IEEE Trans Knowl Data Eng
26(6):1300–1315

26. Chen L, Gao Y,Wang K, Jensen CS, Chen G (2016) Answering why-not questions on metric probabilistic
range queries. In: Proceedings of the IEEE international conference on data engineering (ICDE), pp 767–
778

27. Chen L, Li Y, Xu J, Jensen CS (2017) Direction-aware why-not spatial keyword top-k queries. In: Pro-
ceedings of the IEEE international conference on data engineering (ICDE), pp 107–110

28. Chen L, Li Y, Xu J, Jensen CS (2018) Towards why-not spatial keyword top k queries: a direction-aware
approach. IEEE Trans Knowl Data Eng 30(99):796–809

29. Ding X, Jin H (2012) Efficient and progressive algorithms for distributed skyline queries over uncertain
data. IEEE Trans Knowl Data Eng 24(8):1448–1462

30. Zhou X, Li K, Zhou Y, Li K (2016) Adaptive processing for distributed skyline queries over uncertain
data. IEEE Trans Knowl Data Eng 28:371–384

31. Ren W, Lian X, Ghazinour K (2019) Skyline queries over incomplete data streams. VLDB J 28:961–985

123

1496 Z. Yang

32. Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems. ACM
Trans Database Syst 30(1):41–82

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Progressive approaches to flexible group skyline queries
	Abstract
	1 Introduction
	2 Related work
	2.1 Group skyline queries
	2.2 Why-not queries

	3 The flexible group skyline query
	4 Approaches to the FGSky query
	4.1 The extended G-MDS (EGM) algorithm
	4.1.1 The minimum dominance graph
	4.1.2 The extended G-MDS (EGM) algorithm

	4.2 The group FGSky query algorithm
	4.2.1 The layered minimum dominance graph
	4.2.2 The group FGSky query algorithm

	4.3 The layered FGSky query algorithm
	4.4 Extension

	5 Performance evaluation
	5.1 Performance on synthetic data sets
	5.1.1 Experimental results by varying dimensionality d
	5.1.2 Experimental results by varying group size k
	5.1.3 Experimental results by varying |uP|
	5.1.4 Experimental results by varying the cardinality N
	5.1.5 Performance in comparison with the Naive algorithm

	5.2 Performance on the real data sets
	5.3 Progressiveness performance

	6 Conclusions
	Acknowledgements
	References

