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a b s t r a c t

For a given multi-dimensional data set, a group skyline query returns the optimal groups not
dominated by any other group of equal size. The group skyline query is a powerful tool in many
applications that call for optimal groups. However, it is common to return a large number of results
which make users overwhelmed since it prevents them from making quick and rational decisions.
To address this problem, we first identify and formulate a top k group skyline (TkGSky) query which
returns k optimal groups dominating the highest number of points in the given data set. Next, new
pruning strategies are presented to reduce the search space. Then, we propose efficient algorithms
by exploiting novel techniques including a grouping strategy, a hybrid strategy, and a point-based
replacement strategy, respectively. Finally, we also develop an approximate algorithm to further
improve the TkGSky query performance. The performance of the proposed algorithms is studied by
extensive experiments over synthetic and real datasets.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

The skyline query reports the best points (skylines) that are
not dominated by any other point in a given data set [1]. It is
a powerful tool in many decision making applications [2,3] and
receives growing attention in the database community. However,
the skyline query and its variants mainly focus on analyzing
individual points [4]. Accordingly, they cannot be utilized in many
real-life applications that require to select a point group.

In [4], Liu et al. formulated the G-Skyline (GSky) query by
generalizing the original definition of skyline to the group-based
skyline (G-Skyline). Given two groups G and G′ of equal size, G
dominates G′ if and only if each point p∈G dominates or is equal
to some point p′∈G′, and for at least one point p, p dominates p′.
A group is called G-Skyline if it is not dominated by any other
group of the same size.
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Example. The GSky query can apply in many real-life applica-
tions including a coach building a basketball team, an advertising
company selecting billboards to serve its advertisements, and
an organizer selecting some hotels for cooperation, etc. Consider
an organizer of a conference needs to choose three hotels for
cooperation. Fig. 1(a) depicts a hotel data set H={h1, h2, . . . , h14}

that contains fourteen candidate hotels (data points). Each hotel
is with two features (dimensions), distance to the destination
and price. Without loss of the generality, small values of the two
attributes are preferable. The hotels h1, h2, h3, and h4 which are
not dominated by any other hotel are the skylines. As shown in
Fig. 1(c), the GSky query presented in [4] returns the hotel groups
{h1, h2, h3}, {h1, h2, h4}, {h1, h3, h4}, and {h2, h3, h4} that only con-
sist of skylines. Moreover, it could also get the G-Skylines, such
as {h3, h4, h6}, {h1, h4, h7}, {h4, h7, h11}, to name just a few, which
contain non-skylines. Consider the G-Skyline G={h3, h4, h6}. The
non-skyline h6 and its parent h3 are both included in the G-
Skyline G. For the hotel groups not in Fig. 1(c), they are not
G-Skylines because of being dominated by at least a hotel group
of equal size. For instance, the hotel group {h1, h5, h6} is not
a G-Skyline. This is since it is dominated by the hotel group
{h1, h3, h5} for h3≺h6.

Compared to the group queries in [2,5,6], the GSky query
proposed in [4] could get more comprehensive results. As well as
the G-Skylines only consisting of skylines, it also reports the G-
Skylines that include non-skyline points. However, the G-Skyline
query may return a large number of results especially over a data
set with a large cardinality, high dimensionality, or with a large
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Fig. 1. The G-Skyline query example of a hotel set.

group size. In the experiments, over the anti-correlated datasets
with k=3, d=3, and N=40 000, the number of the G-Skylines is
up to several tens of millions.

A large number of G-Skylines could create emotional stress
to users and act as powerful barriers to rational decisions as
pointed out in [7]. To address this issue, Liu et al. [4] developed
an interesting variant of the GSky query, namely PG-Skyline. It
reports partial G-Skylines due to a pg-dominance operator. Given
two groups G and G′ of size l and a parameter p for p≤l, G pg-
dominates G′ if for groups Gp⊆G and G′p⊆G

′ with |Gp|=|G′p| = p,
Gp≺gG′p. Although this approach is useful to reduce the GSky
query results, it is difficult for users to specify the parameter p
and it cannot report manageable size of results.

1.2. Our contributions

To resolve this problem, we investigate the GSky query with
a size constraint and formulate a top k GSky (TkGSky) query. To
improve the query performance, we first propose some pruning
strategies to narrow the search space, and then present effi-
cient algorithms based on new techniques such as the grouping
strategy, the hybrid strategy, and the point-based replacement
strategy.

In brief, our contributions are summarized as follows.

• We formulate the top k GSky (TkGSky) query to retrieve k
G-Skylines with the highest number of dominated points.
• We exploit the properties of the TkGSky query and develop

some prune strategies to reduce the search space.
• We propose three efficient algorithms, which are a fast

algorithm (FA), a hybrid algorithm (HA), and a point-based
replacement (PR) algorithm for the TkGSky query.
• We present an approximate algorithm to further improve

the TkGSky query performance.
• We conduct an extensive experimental study to verify the

effectiveness and efficiency of the proposed algorithms.

The rest of the paper is organized as follows. In Section 2, we
review the related work. In Section 3, we introduce the TkGSky
query and its properties. In Section 4, we design efficient exact
and approximate algorithms for the TkGSky query. In Section 5,
we evaluate performance of the proposed algorithms by exten-
sive experiments. In Section 6, we conclude the paper and also
expatiate the directions for future work.

2. Related work

In this section, we overview the closely related work about the
TkGSky query.

2.1. Traditional skyline queries

The approaches for traditional skyline queries can be classified
into two categories which are index-independent algorithms and
index-based algorithms [8]. The OSP algorithm in [3] is consid-
ered the most efficient approach without an index. Among the
index-based algorithms, the BBS algorithm in [1] based on R-
tree is progressive and acknowledged to be I/O optimal. Recently,
the skyline query receives growing attention, and many skyline
query variants have been proposed. Gao et al. [8] researched
the reverse k-skyband and ranked reverse skyline query. In [9–
15], the skyline queries over distributed or parallel environments
were investigated.

The traditional skyline query always returns a large number
of query results. To resolve this problem, many approaches were
proposed to identify k representative results with the highest
dominant capacity or the maximum diversity. Lu et al. [16] con-
cerned the case when the actual cardinality of skyline query
results is less than the desired cardinality k. Gao et al. [17]
introduced the most desirable skyline object (MDSO) query to
return the most preferable k skyline objects. They presented a
new ranking criterion that considers, for each skyline object s,
the number of the objects dominated by s and their accumulated
weights. Bai et al. [18] were concerned about calculating the k
representative skylines over data streams. In addition, Magnani
et al. [19] focused on the representative skyline queries in terms
of both the significance and diversity of results.

2.2. Group skyline queries

Group skyline queries are very important in many applications
that need to compute optimal groups of points. The existing
group skyline query can be classified into the following two
categories.

The first category uses an aggregate point to represent a
group. The dominance relationship of groups depends on the
traditional dominance relationship of the aggregate points. Chung
et al. [5] extended the traditional skyline query and formulated
a combinatorial skyline query, namely CSQ, which is to find the
outstanding skyline combinations. Magnani et al. [20] introduced
the aggregate skyline query that merges two basic database op-
erators, skyline and group by. Zhang et al. [6] focused on the
novel problem that aims to report k tuple groups dominated
by no other group of equal size. The dominance test is also on
the basis of the aggregate-based group dominance relationship.
Jiang et al. [21] defined a top-k combinatorial metric skyline
(kCMS) query to find k combinations of data points according to
a monotonic preference function. Each combination returned by
the kCMS query has the query object in its metric skyline. In the
group skyline query above, it is difficult to specify an appropriate
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aggregate function. Moreover, it may overlook significant groups
that contain non-skylines [4]. In [22], we formulated a top k
favorite probabilistic products query which computes k favorite
products due to the preferences of different customers. After that,
in [23], we investigated a constrained optimal product combina-
tion problem under price promotion. In [24], Zeng et al. proposed
a novel M-Skyline query model based on sunk cost. This query can
offer backup recommendation.

The second category defines the dominance relationship be-
tween two groups due to the pair-wise dominance between
points in these groups [25]. Liu et al. [4] first formulated the
G-Skyline (GSky) query based on this new definition of group
dominance. They presented a directed skyline graph (DSG) to
capture the dominant relationship between points within the first
l skyline layers for group size l. The DSG is efficient to speed
up the GSky query. Yu et al. [25] defined the multiple skyline
layers, and presented two fast algorithms to compute the G-
skylines due to the observation that skyline points contribute
more to skyline groups compared to non-skyline points. Recently,
Wang et al. [26] developed the minimum g-skyline support struc-
ture, called MDG, without redundant points. Compared to the
traditional skyline computation, the G-skyline is much more
complicated and expensive. To accelerate the G-Skyline query,
Zhu et al. [27] developed parallel G-Skyline query algorithms for
multicore processors.

2.3. Top k dominating queries

The top k dominating query returns k data objects with the
highest number of objects dominated in a given data set. By
combining the advantages of both the top k query and the skyline
query, the top k dominating query has the nice properties that
are the number of results is controllable, the result is scaling
invariant, and no user-defined ranking function is required.

In recent years, the top k dominating query receives growing
attention in database fields. Tiakas et al. [28] formulated the top
k dominating query in metric space and proposed progressive
algorithms which can report the query results in a progressive
manner. Miao et al. [29] investigated the top k dominating queries
over incomplete data where the data have some missing dimen-
sional value(s). To improve the query performed on massive data,
Han et al. [30] studied top k dominating query on massive data.
They proposed the novel table-scan-based algorithm where the
early termination approach is introduced.

The continuous top k dominating queries were researched in
[31]. Santoso et al. [31] proposed a new indexing structure, the
close dominance graph (CDG), to provide comprehensive infor-
mation about the dominance relationship between points. He
et al. [32] researched the why-not top k dominating query which
helps users to know why their expected results not in the query
results. Moreover, the top k dominating query over uncertain
data has been researched in [33]. Zhan et al. [33] defined a new
model for the top k dominating query on multi-dimensional un-
certain data, and applied some simple statistics information of the
objects to boost the query performance. Amagata et al. [34] re-
searched the top k dominating query in distributed environments.
As well as an exact algorithm, they also present approximate
algorithms to get better query performance with sacrificing some
accuracy of the results.

The frequently used symbols are summarized in Table 1.

3. The TkGSky query problem

In this section, we formulate the TkGSky query, and introduce
the direct skyline graph proposed in [4].

Table 1
The summary of frequently used notations.

Notation Definition

D The dataset
N The size of the dataset
G The group of points
l The group size
k The number of returned results
SLi The ith skyline layer
Score(G) Score of the group G
Scoreu(G) Upper bound of Score(G)
p.layer The skyline layer that the point p belongs to
ParSet(p) The parent set of p
ChilSet(p) The child set of p
DChilSet(p) The direct child set of p

Fig. 2. The skyline layers of the hotel set in Fig. 1.

3.1. Problem definition

Given a d-dimensional dataset D, a point p∈D is denoted as
<p[1], p[2], . . . , p[d]>. Here p[i] is the ith dimensional value of p
for 1≤i≤d. Without loss of the generality, small value is preferred
in each dimension. A point p′ dominates another point p, denoted
as p′≺p, if and only if for all i, p′[i]≤p[i] and for at least one i,
p′[i]<p[i] for 1≤i≤d [35]. The point not dominated by any other
point is called skyline.

Definition 1 (Skyline Layer). Given a dataset D and a parameter l,
the first skyline layer SL1 includes all the skylines of D, and the ith
skyline layer SLi consists of the skylines of D−

⋃i−1
j=1 SLj for 1<i≤l.

In Fig. 1, the hotels could be organized as four skyline layers
which are SL1= {h1, h2, h3, h4}, SL2={h5, h6, h7}, SL3={h8, h9, h10,

h11}, and SL4={h12, h13, h14} as depicted in Fig. 2.

Definition 2 (Group Dominance [4]). Given two l-point groups
G,G′⊆D, G g-dominates G′, denoted as G≺gG′, if and only if
there are two permutations of G and G′, G={p1, p2, . . . , pl} and
G′={p′1, p

′

2, . . . , p
′

l}, satisfying pi⪯p′i for 1≤i≤l and pi≺p′i for at
least one i. Here pi⪯p′i means that pi≺p′i or pi is equal to p′i .

Definition 3 (Group Skyline Query, GSky). Given a dataset D and a
group size l, the GSky query returns l-point groups G⊆D that are
not g-dominated by any other group of size l, formally,

GSky(D, l)={G⊆D|∄G′⊆D,G′≺gG, |G|=|G′|=l}.

The G-Skyline is the group G not g-dominated by any other group
of equal size.



4 Z. Yang, X. Zhou, K. Li et al. / Knowledge-Based Systems 182 (2019) 104795

For two hotel groups {h1, h2, h3} and {h5, h6, h8}, we have
G≺gG′ because h1≺h5, h2≺h8, and h3≺h6. Therefore, {h5, h6, h8}

is not a G-Skyline. The group {h1, h2, h3} not dominated by any
other group of equal size is a G-Skyline.

Definition 4 (Top k Group Skyline Query, TkGSky). Given a dataset
D and a parameter k, the TkGSky query returns k G-Skylines, G,
such that they have the highest scores. The score of a group G is
defined as

Score(G)=
⏐⏐ ∪p∈G {p′∈P−G, p≺p′}

⏐⏐.
(Search result diversification has become important for improving
user satisfactory, and we pick out only one of the G-Skylines with
the same scores.)

Going back to the example in Fig. 1 with l=3 and k=2, for the
hotel group {h1, h2, h3}, its score is Score({h1, h2, h3})=|{h5, h6,
h8, h9, h10, h12, h13, h14}|=8. After computing the scores of other
hotel groups that are G-Skylines, we have the G-Skylines {h1, h3,
h4}, {h2, h3, h4}, {h1, h2, h4}, {h3, h4, h6}, {h3, h4, h7} with top 2
highest scores. Because the hotel groups {h1, h3, h4} and {h2, h3,
h4} are with a same score, we only choose one of them. Similarly,
one of the hotel groups {h1, h2, h4}, {h3, h4, h6}, and {h3, h4, h7} is
selected randomly and returned.

Lemma 3.1. Given a G-Skyline G⊆D with G1=G∩SL1, it holds that

Score(G)=Score(G1)−|G−G1|

=|∪p∈G1{p
′
∈D−G, p≺p′}|.

(1)

Proof. Due to Definition 4, we have

Score(G)=|∪p∈G{p′∈D−G, p≺p′}|
=|∪p∈G1∪(G−G1){p

′
∈D−G, p≺p′}|

=|
(
∪p∈G1{p

′
∈D−G, p≺p′}

)
∪
(
∪p∈G−G1{p

′
∈D−G, p≺p′}

)
|.

(2)

For any point p′∈G−G1, there is at least one point p∈G1 satisfying
p≺p′. For a given point p′′ with p′≺p′′, we have p≺p′′ due to the
transitivity of the dominance relationship. This means that the
points dominated by p′ are also dominated by p, and we have
{p′′∈D, p′≺p′′}⊂{p′′∈D, p≺p′′}. Then, we have

(
∪p∈G−G1{p

′
∈D−G,

p≺p′}
)
⊂
(
∪p∈G1{p

′
∈D−G, p≺p′}

)
, and this lemma holds in

turn. □

Lemma 3.1 aforementioned can be utilized to reduce the cost
of computing the scores of candidate groups in the TkGSky query.
For instance, we have Score({h2, h3, h6})=Score({h2, h3})−|{h6}|

=7. due to Lemma 3.1.

3.2. The directed skyline graph (DSG)

In [4], it organizes the skyline layers by a directed skyline
graph (DSG) where a node represents a point and an edge repre-
sents the dominance relationship between two different points.
Besides, it also introduces that each G-Skyline of size l only
contains the points within the first l skyline layers [4], and the
DSG is built over the first l skyline layers. The structure of each
node is [layer index, point index, parent set, child set]. Here the
layer index is the skyline layer that the point lies on and the point
index uniquely identifies the point. Additionally, the parent and
child set is defined as follows.

Definition 5 (Parent Set, ParSet). Given a point p∈D, the parent
set of p includes all the points dominating p, formally,

ParSet(p)={p′∈D|p′≺p}.

Fig. 3. The DSG of the hotel set in Fig. 1.

Moreover, for a point group P ′⊆D, we have

ParSet(P ′)= ∪p∈P ′ ParSet(p).

Definition 6 (Child Set, ChiSet). Given a point p∈D, the child set
of p contains all the points dominated by p, and it can be defined
as

ChiSet(p)={p′∈D|p≺p′}.

Moreover, for a point group P ′⊆D, the child set is

ChiSet(P ′)= ∪p∈P ′ ChiSet(p).

The DSG in [4] is useful to accelerate the GSky query, and it can
be reused very well in the GSky queries where the group sizes are
no more than l. To process the GSky query with an arbitrary size,
we create the DSG over the entire dataset. Consequently, when
processing the DSG query with size larger than l, it is unnecessary
to update the DSG by adding more skyline layers in advance.
Additionally, it is helpful to compute the score of each G-Skyline.
This is since all the children of the points are pre-computed and
stored in the corresponding nodes.

Fig. 3 shows the DSG over the hotel set H in Fig. 1. The
edges of the DSG represent the dominance relationship between
different hotels. For instance, the edge h1→h5 means that h5 is
dominated by h1. In the node representing h5, it stores its parent
set {h1, h2, h3} and its child set {h12} as well as its layer index 2
and point index 5.

4. Approaches for the TkGSky query

In this section, we propose three algorithms, i.e., the fast algo-
rithm (FA), hybrid algorithm (HA), and point-based replacement
(PR) algorithm, for the TkGSky Query.

4.1. The fast algorithm

In this subsection, we propose the FA to process the TkGSky
Query. In the FA, the grouping strategy and the upper bound
pruning strategy are introduced to improve the query perfor-
mance.

Due to Definition 4 and Lemma 3.1, for a given G-Skyline
G, its score is closely related to the dominance capacity of the
points p∈SL1∩G. Inspired by this, we divide the G-Skylines G
into groups according to |SL1∩G|. Moreover, the following up-
per bound pruning strategy is utilized to identify and prune
unqualified G-Skylines as soon as possible.
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Definition 7 (Upper Score of a Group G, Scoreu(G)). For a given
group G of size l, the upper score of G can be computed as

Scoreu(G) =
∑

p∈G∩SL1

|ChiSet(p)|−(l−|G∩SL1|).

For the G-Skyline {h1, h3, h6}, we have

Scoreu({h1, h3, h6})=|ChiSet(h1)|+|ChiSet(h3)|−(3−|{h1, h3}|)=9.

Lemma 4.1. For a given G-Skyline G, it can be pruned safely if
Scoreu(G) is less than the current kth largest score r.

Proof. Since Score(G)≤Scoreu(G) and Scoreu(G)<r , it holds that
Score(G)<r . Hence G is not a result of the TkGSky query due to
Definition 4, and this lemma holds. □

Algorithm 1 The Fast Algorithm (FA) for TkGSky
Input: A DSG DS over D, group size l, and the number of results k
Output: k G-Skylines with the highest scores
1: Compute the G-Skylines by the UWise+ algorithm [4]
2: Part the G-Skylines into l groups and initialize a set Vi to store the

groups containing i points within SL1 for 1≤i≤l
3: Initialize a max-heap H to store the G-Skylines with top k highest

scores
4: Initialize the kth highest score r←0
5: for i←l to 1 do
6: if Vi is not empty then
7: for each G-Skyline G∈Vi do
8: if Scoreu(G)≥r then
9: Score(G)←Score(G)−|G−G∩SL1| //Lemma 3.1

10: if Score(G)≥r then
11: Update H and r using <G, Score(G)>
12: Return k G-Skylines with the highest scores from H

As illustrated in Algorithm 1, the FA first computes and divides
the G-Skylines G due to |G∩SL1| (Lines 1 and 2). In Line 1, the
UWise+ algorithm [4] is applied to compute all the G-Skylines.
Line 3 initializes a max-heap H to store the G-Skylines with top k
highest scores. The kth highest score r is initialized to 0 in Line 4.
Lines 5 to 11 are a for loop that computes the G-Skylines with top
k highest scores. Here i varies from l to 1. This means the groups
with more points within SL1 are given priority to be processed.
If Vi is not empty, Lines 7 to 11 are executed to compute the G-
Skylines G∈Vi whose scores exceed r . For each G-Skyline G∈Vi,
Line 8 checks whether its upper bound of score is no less than r .
If it returns ‘‘no’’, G is pruned due to Lemma 4.1, otherwise Line 9
computes the accurate score of G based on Lemma 3.1. Then, Lines
10 and 11 pick out the groups G with Score(G)≥r and update H
and r using <G, Score(G)>. At last, we select k G-Skylines with
different scores from H , and return them as the final results.

Example. Consider the example in Fig. 1 with k=3 and l=2. The
FA first computes the hotel groups that are G-Skylines and part
them into 3 groups due to |G∩SL1|. We have V1={{h4, h7, h11}},
V2 = {{h1, h3, h6}, {h2, h3, h6}, {h3, h4, h6}, {h1, h4, h7}, {h2, h4,

h7}, {h3, h4, h7}}, and V3={{h1, h2, h3}, {h1, h2, h4}, {h1, h3, h4},

{h2, h3, h4}} . The hotel groups G∈V3 are processed firstly. The
hotel groups {h1, h2, h4}, {h1, h3, h4}, and {h2, h3, h4} are inserted
into H since they have top 2 highest scores. The current 2nd high-
est score is 9. Next, the hotel groups {h3, h4, h6} and {h3, h4, h7}

within V2 are inserted into H . Then, the hotel group {h4, h7, h11}

∈V1 is pruned directly because Scoreu({h4, h7, h11})=Score({h4})
−(3−|{h7, h11}|)=5<9. Finally, we get the hotel groups {h1, h2,

h4}, {h1, h3, h4}, {h2, h3, h4}, {h3, h4, h6}, and {h3, h4, h7} which
have top 2 highest scores. By selecting two G-Skylines with
different scores, we get the final TkGSky query results.

Complexity. The FA computes the G-Skylines by applying
the UWise+ algorithm in [4]. The UWise+ algorithm generates
candidate groups incrementally. It first generates

(h̄
1

)
unit group

sets only consisting of one unit group of the point p∈SL1. Here h̄ is
the total cardinality of the points within SL1. Then, by combining
these unit groups of size 1, new unit group sets including two unit
groups are generated. The maximum size of these unit group sets
is
(h̄
2

)
. Similarly, we have the maximum size of unit group sets of

size i is
(h̄
i

)
for 1≤i≤l. In conclusion, the time complexity of the

UWise+ algorithm is

O

(
l∑

i=1

(
h̄
i

))
≤O(2h̄).

Next, the G-Skylines with top k highest scores are computed in
Lines 2 to 11. Assume that the number of the G-Skylines is h̄g . It
costs O(h̄g ) to part the G-Skylines into l groups. The time cost of
creating the max-heap H is O( ˆ̄hg ) where ˆ̄hg is the number of first
accessed points p∈Vl whose upper scores exceed r . In worst case,
the time cost of updating the max-heap H is O(log(h̄g− ˆ̄hg )). For
h̄g<

(h̄
l

)
and ˆ̄hg≤h̄g , the cost of Lines 2 to 11 of the FA is

O
(
h̄g+ ˆ̄hg+ log(h̄g− ˆ̄hg )

)
<O
(
h̄
l

)
.

The time complexity of the FA is O
(
2h̄
+
(h̄
l

))
=O(2h̄).

4.2. The hybrid algorithm

The FA in Section 4.1 needs to compute all the G-Skylines
first, then identifies the G-Skylines with top k highest scores.
In this subsection, we propose the hybrid algorithm, called HA,
which merely generates the G-Skylines that are likely to be the
final TkGSky query results. Besides, we present a new algorithm,
namely GSky, which can compute the G-Skylines directly and
progressively.

The HA algorithm is developed based on the following prop-
erties and lemma.

Propety 1. For a given group G⊆SL1 of size l, it can be returned
as a G-Skyline directly.

Propety 2. For a given G-Skyline G of size l, G contains i points
within SL1 for 1≤i≤l.

Lemma 4.2. For a G-Skyline G with G1=G∩SL1, G is not a final
result of the TkGSky query if Score(G1)−(l−|G1|)<r. Here r is the
current kth highest score.

Proof. Due to Lemma 3.1, the score of the G-Skyline G is com-
puted as

Score(G)=Score(G1)−|G−G1|=Score(G1)−(l−|G1|).

On the assumption that Score(G1)−(l−|G1|)<r , it holds that
Score(G)<r . Therefore, G is not a final result due to Definition 4
and this lemma holds. □

As shown in Algorithm 2, the HA first initializes a max-heap
H to store the G-Skylines with top k highest scores (Line 1). Line
2 initializes the kth highest score r to 0. Then, Line 3 generates
the G-Skylines G⊆SL1 of size l directly. Lines 4 to 8 pick out the
G-Skylines with top k highest scores and add them to the heap
H . The left part of the HA (Lines 9 to 14) is an iteration procedure
to generate other G-Skylines whose scores may exceed r . In each
iteration, it generates groups G1 that consist of i points within the
first skyline layer SL1. Here i is reduced from l−1 to 1 by a step of
1. By this way, the G-Skylines that are likely to have large scores
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Algorithm 2 Hybrid Algorithm (HA) for TkGSky
Input: A DSG DS over D, group size l, and the number of results k
Output: k G-Skylines with the highest scores
1: Initialize a max-heap H=∅ to store the G-Skylines with top k highest

scores
2: Initialize the kth highest score r←0
3: Generate G-Skylines G⊆SL1 of size l //Property 1
4: for each G-Skyline G do
5: if Scoreu(G)≥r then
6: Score(G)←Score(G)−|G−G∩SL1| //Lemma 3.1
7: if Score(G)≥r then
8: Update H and r using <G, Score(G)>
9: for i←l−1 to 1 do

10: Generate groups G1⊆SL1 of size i //Property 2
11: Add the groups G1 with Score(G1)−(l−i)≥r into Vi due to Lemma

4.2 and sort them in non-increasing order of their scores
12: Generate G-Skylines G by invoking the GSky Generator algorithm

with the inputs Vi, l, and DS
13: for each G-Skyline G do
14: Update H and r using <G, Score(G)>
15: Return k G-Skylines with the highest scores from H

are generated in priority. If Score(G1)−(l−i)≥r , the groups G1 are
inserted into Vi according to Lemma 4.2. Thereafter, the groups
within Vi are sorted in non-increasing order of their scores. Line
12 invokes the GSky algorithm illustrated in Algorithm 3 to com-
pute the G-Skylines G with taking into account the groups within
Vi. Lines 13 and 14 update H and r using the new G-Skylines. At
last, H contains all the final results of the TkGSky query.

To generate the G-Skylines G containing a specialized group
G1, we present the GSky algorithm based on the layered strategy.

Definition 8 (Direct Child Set, DChiSet). Given an point p′, p′ is a
direct child of p if there is an edge directly connecting the nodes
of p and p′ in the DSG. For a given point p, its direct child set
DChiSet(p, i) contains all the direct children of p in the ith skyline
layer SLi. Besides, for a given group G, we have the direct child set

DChiSet(G, i)=
⋃
p∈G

DChiSet(p, i).

Taking into account the hotel h4 in Fig. 3, we have DChiSet(h4,

2)={h7}. For the hotel group {h2, h3}, it holds DChiSet({h2, h3}, 3)
={h8, h9, h10}.

Definition 9 (Maximum Layer). For a given group G, its maximum
layer is denoted as

max_layer(G)=max
p∈G

p.layer.

Here p.layer is the skyline layer that the point p belongs to.

For the hotel group {h3, h6}, max_layer({h3, h6})=max
{h3.layer, h6.layer}=2.

As depicted in Algorithm 3, the GSky algorithm takes the direct
graph DS, the group size l, and the set V as the inputs. If V is not
empty, Lines 2 to 11 are executed to generate G-Skylines based on
each group within V . For each group G′∈V , Line 4 computes the
direct child set of G′ over the (max_layer+1)th skyline layer. Lines
5 to 11 take into account the groups DC ′⊆DChiSet(G′,max_layer
+1) of size not more than k−|G′|. For the groups DC ′ satisfying
ParSet(DC ′)⊆G′, new groups G′′ are generated by merging it with
G′. If the groups G′′ contains less than l points, then it is added to
V . The new groups G′′ of size l are returned as G-Skylines. At last,
Line 12 updates V by removing the groups G′ from it.

Algorithm 3 G-Skyline (GSky) Generator Algorithm
Input: A DSG DS over D, group size l, and a group set V
Output: G-Skylines that contain some group within V
1: while V is not empty do
2: for each candidate group G′ in V do
3: max_layer←maxp∈G′ p.layer
4: Compute DChiSet(G′,max_layer+1)
5: for each DC′⊆DChiSet(G′,max_layer+1) with |DC′|≤k−|G′| do
6: if ParSet(DC′)⊆G′ then
7: Generate a new group G′′←G′∪DC′

8: if |G′′|<l then
9: Add G′′ into V

10: else
11: Report G′′ of size l as G-Skylines
12: V←V−{G′}

Example. Reconsider the example in Fig. 1. The HA first gen-
erates the hotel groups {h1, h2, h3}, {h1, h2, h4}, {h1, h3, h4}, and
{h2, h3, h4} that only consist of points within SL1. The hotel groups
{h1, h2, h4}, {h1, h3, h4} and {h2, h3, h4} with top 2 highest scores
are inserted into the max-heap H . Now, the current 2th high-
est score r=Score({h1, h2, h3})=9. Next, the hotel group {h3, h4}

that contains two points within the first skyline layer SL1 are
generated and added to V2. We have V2={{h3, h4}}. Then, by
applying the GSky algorithm, we build the G-Skylines based on
the group {h3, h4}∈V2. For the group {h3, h4}, its direct child set in
the 2nd skyline layer is {h5, h6, h7}. Since ParSet(h6)⊆{h3, h4} and
ParSet(h7)⊆{h3, h4}, we can get two new G-Skylines {h3, h4}∪{h6}

={h3, h4, h6} and {h3, h4}∪{h7}={h3, h4, h7}. Moreover, the ho-
tel groups {h1}, {h2}, {h3}, and {h4} that contain only one point
within SL1 are not taken into account. This is because the scores
of the G-Skylines generated based on them are all less than r=9
due to Lemma 4.2. In this example, the FA needs to generate all
the 11 G-Skylines while the HA in this section only generates 6
G-Skylines.

Complexity. In the HA, Lines 3 to 8 costs O
(h̄1

l

)
to generate

the G-Skylines consisting of l points within the first skyline layer
SL1, and use them to create and update the max-heap H . Lines
9 to 14 are a for loop. Line 10 generates the groups containing
i points within SL1 and it costs O

(h̄1
i

)
. Line 12 invokes the GSky

algorithm to generate the G-Skylines based on the candidate
groups within the set Vi. Taking into account each group within
Vi for 1≤i≤l−1, new candidate groups are generated by adding
corresponding direct children. This costs O

((h̄1
i

)
×|DC ′|

)
. Suppose

that the maximum size of candidate groups generated on a group
G′∈Vi is ∂i. We have the time complexity of the GSky algorithm
is O

((h̄1
i

)
×∂i

)
. The cost of updating H in Line 14 is equal to

O
((h̄1

i

)
×∂ih

)
where h is the maximum height of H . Therefore, the

time complexity of the HA is

O

((
h̄1

l

)
+

l−1∑
i=1

((
h̄1

i

)
+

(
h̄1

i

)
×∂i+

(
h̄1

i

)
×∂i×h

))
<O
(
h∂2h1

)
for ∂=max ∂i.

4.3. The point-based replacement algorithm

In this subsection, we develop the point-based replacement
algorithm, called PR, for the TkGSky query. In the PR, the G-
Skylines G only consisting of points within the first skyline layer
are generated first. Then, based on these G-Skylines, other G-
Skylines that are likely to be the final query results are generated
by the following point-based replacement strategy.
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Lemma 4.3. Given a G-Skyline G of size l, a point p∈G that domi-
nates no other point within G, and a point p′ with ParSet(p′)⊆G−{p},
we can get a new G-Skyline G′ by merging G−{p} with {p′}.

Proof. Since G is a G-Skyline of size l, for any point p̂∈G, we
have ParSet(p̂)⊆G. Because p∈G and p dominates no other point
within G, G−{p} is a G-Skyline of size l−1. For the point p′ with
ParSet(p′)⊆G−{p}, it holds that G′=(G−{p})∪{p′} is dominated by
no other group of equal size and it is a G-Skyline of size l on basis
of Definition 4. Therefore, this lemma holds. □

For the G-Skyline G={h1, h3, h4} in Fig. 1, the hotel h1∈G is not
dominated by other hotel h3, h4∈G and the hotel h7 is a child of
h4 satisfying ParSet(h7)={h4}⊆G−{h1}. According to Lemma 4.3,
we have another hotel group (G−{h1})∪{h7}={h3, h4, h7} which
is a G-Skyline.

Lemma 4.4. For G-Skylines G⊆SL1 whose scores are no more than
the current kth largest score r, it holds that the G-Skylines G′ with
G′∩SL1⊂G∩SL1 are not final results of the TkGSky query and could
be pruned safely.

Proof. Since G′∩SL1⊂G∩SL1, it holds Score(G′)<Score(G) due
to Eq. (2). For Score(G)≤r , we have Score(G′)<r and G′ could
be pruned safely due to Definition 4. Therefore, this lemma
holds. □

Due to Lemma 4.4, for two given G-Skylines G and G′ with
G⊆SL1 and G′∩SL1⊂G∩SL1, G′ could be pruned safely if Score(G)
<r . This means that the new G-Skylines G′ by replacing some
point within G are not final results of TkGSky, and we only need
to compute and store the G-Skylines G⊆SL1 with top k highest
scores.

In Fig. 1, {h1, h2, h3} is a G-Skyline. Since Score({h1, h2, h3})=8
<r=9, the G-Skylines {h1, h3, h6} and {h2, h3, h6}with {h1, h3, h6}

∩SL1⊆{h1, h2, h3} and {h2, h3, h6}∩SL1⊆{h1, h2, h3} are not the
final results of the TkGSky query with k=2 based on Lemma 4.4.

Algorithm 4 Point-based Replacement (PR) Algorithm for TkGSky
Input: A DSG DS over D, group size l, and the number of results k
Output: k G-Skylines with the highest scores
1: Sort the points p∈SL1 in non-decreasing order of Score(p)
2: Initialize a max-heap H=∅ to store the G-Skylines with top k highest

scores and initialize the kth highest score r←0
3: Generate the G-Skylines G⊆SL1 of size l //Property 1
4: for each G do
5: if Scoreu(G)≥r then
6: Score(G)←Score(G)−|G−G∩SL1| //Lemma 3.1
7: if Score(G)≥r then
8: Update H and r using <G, Score(G)>
9: Initialize a max-heap H ′←H and a set V←∅

10: while H ′ is not empty do
11: Remove top entry <G, Score(G)> from H ′
12: for each point p∈G do
13: if Score(G−{p})≥r and p⊀p′ for p′∈G then
14: if G−{p}/∈V then
15: Add p to a set R and insert G−{p} into V
16: Sort the points p∈R in non-ascending order of Score(G−{p})
17: for each p∈R do
18: Add the point p′ with ParSet(p′)⊆G−{p} to G−{p} to form a new

G-Skyline G′′ //Lemma 4.4
19: if Score(G′′)≥r then
20: Update H , H ′, and r using <G′′, Score(G′′)>
21: R←R−{p}
22: Return k G-Skylines with the highest scores from H

As illustrated in Algorithm 4, the PR first sorts the points
within the first skyline layer SL1 in non-ascending order of their
scores. Line 2 initializes a max-heap H to store the G-Skylines
with the top k highest scores, and initializes the kth highest score

r to 0. Line 3 generates the G-Skylines G of size l satisfying G⊆SL1.
Then, the G-Skylines G with top k highest scores are computed
and stored in the max-heap H . Line 9 initializes a max-heap H ′
to the max-heap H . Lines 10 to 21 are an iteration procedure to
generate other G-Skylines that may have top k highest scores.
If H ′ is not empty, the top entry is removed and we get the G-
Skyline G with the highest score. Next, Lines 12 to 15 compute
each point p∈G that can be replaced based on Lemma 4.3. If the
score of G−{p} exceeds r , there is not any point p′∈G dominated
by p, and the group G−{p} is not in the set V , then the point p is
added to the set R and the group G−{p} is inserted to V . Here the
set V is utilized to store the candidate groups G−{p} that have
been taken into account to reduce redundant computation. The
group G−{p}∈V can be overlooked because all the correspond-
ing G-Skylines based on the group G−{p} have been generated
before. Line 16 sorts the points p∈R in non-ascending order of
Score(G−{p}). Lines 17 to 21 are executed to generate new G-
Skylines G′′ whose scores are no less than r . A new G-Skyline G′′
is built by replacing one point p∈G with a point p′ whose parents
are all contained in G−{p} at a time. If DomSize(G′′) exceed r , then
G′′ are added to the max-heap H ′. Besides, H could be refreshed
by <G′′, Score(G′′)>. At last, H contains all the G-Skylines with
top k highest scores.

Example. In Fig. 1, the hotel groups {h1, h3, h4}, {h2, h3, h4}, and
{h1, h2, h4} are generated and inserted into H since they have top
2 highest scores. These groups only consist of points within the
first skyline layer SL1. Here we have r=Score({h1, h2, h4})=9. The
max-heap H ′ is initialized to H . Next, the hotel group G={h1, h3,

h4} which has the highest score is removed from H ′. The hotel
h1 within {h1, h3, h4} is added to the set R since Score({h1, h3, h4}

−{h1})=10>r= 9, h1 cannot dominate h3 and h4, and {h1, h3, h4}

−{h1}={h3, h4} is not contained in V . For the hotel h3, it is
not added to the set R because the score of {h1, h2, h3}−{h3}

is less than r=9. Similarly, the hotel h4 is not added to R, and
we have R={h1}. By removing h1∈R, we have G−{h1}={h3, h4}.
New G-Skylines {h3, h4, h6} and {h3, h4, h7} are gained by merg-
ing {h3, h4} with {h6} and {h7}, respectively. Here the parents
of {h6} or {h7} are both contained in G−{h1}. Now we have
V={{h3, h4}}. The G-Skyline G={h1, h3, h4} or {h1, h2, h4} is not
taken into account in this replacing process because Score(G−{p})
is less than r=9 for each point p∈G. After this replacing pro-
cess, the new G-Skylines {h3, h4, h6} and {h3, h4, h7} are added
to the heap H . Finally, the max-heap H contains the G-Skylines
{h1, h3, h4}, {h2, h3, h4}, {h1, h2, h4}, {h3, h4, h6}, and {h3, h4, h7}

which are with top 2 highest scores.

Complexity. The PR costs O(h1 log h1) to sort the points within
SL1 where h1=|SL1|. Lines 3 to 8 costs O

(h̄1
l

)
to generate the G-

Skylines consisting of l points within SL1, and use them to create
and update the max-heap H . Assume that the maximum size of
H is NH and for each group G from H , it generates at most β new
G-Skylines by the point-based replacement strategy. The cost of
updating H is O(βNH logNH ). Consequently, the time complexity
of PR is

O

(
h̄1 log h̄1+

(
h̄1

l

)
+βNH logNH

)
=O
(
2h̄1+βNH logNH

)
.

4.4. The approximate point-based replacement algorithm

From the experimental results, it is time-consuming when
processing the TkGSky query over a data set with a large group
size, high dimensionality, or large cardinality. This is similar to
other group skyline queries and their variants. Consider accu-
rate results are not required in many real-life applications. In
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Table 2
System Parameters.
Parameters Values

Dimensionality(d) 2, 3, 4, 5
Group size (l) 2, 3, 4, 5
Number of returned results (k) 20, 40, 60, 80, 100
Cardinality (N) for Cor 20,000, 40,000, 60,000, 80,000, 100,000
Cardinality (N) for Ind and Ant 2000, 4000, 60,000, 80,000, 100,000

this subsection, we propose an approximate point-based replace-
ment (APR) algorithm to process the TkGSky query. In the APR
algorithm, we apply the α-allowance technique [36] to boost
the TkGSky query performance. This is because the quality of
approximate results for the α-allowance method is very high.

The pseudo codes of the APR and PR algorithms are similar.
However, the APR algorithm is different from the PR algorithm in
the following aspects. As well as the inputs of the PR algorithm,
it takes a parameter α as an important input. Here 0<α≤1. The
APR algorithm first sorts points p∈SL1 in descending order of their
scores. Here SL1 contains all the points within the first skyline
layer. Then, it selects top α×100 percentage for 0<α≤1 of the
points p∈SL1 and stores these points in a new set SL′1. In line 3 of
the APR algorithm, only the points p∈SL′1 are taken into account.

5. Performance evaluation

Our experiments use both synthetic and real-life datasets.
A number of experiments have been completed on synthetic
datasets with three popular distributions: Independent (Ind), Cor-
related (Cor), and Anti-correlated (Ant) following the closely re-
lated work in [4]. Furthermore, the real data set, NBA in [4], is
also adopted. Specifically, three attributes including the numbers
of points scored, rebounds, and assists are taken into account.

To the best of our knowledge, this is the first work for the
TkGSky query. In this paper, we extend the UWise+ algorithm [4]
for the G-Skyline query, and develop FA by integrating the group
strategy and the upper bound pruning strategy. In addition, FA is
taken as a baseline. In the following experiments, we evaluate the
performance of the following algorithms.

• FA: The Fast Algorithm (FA) in Section 4.1.
• HA: The Hybrid Algorithm (HA) in Section 4.2.
• PR: The Point-based Replacement (PR) algorithm in Sec-

tion 4.3.
• APR: The Approximate Point-based Replacement (APR) algo-

rithm in Section 4.4.

The experiments were performed on a PC with Intel R⃝ CoreTM
I7-6700T 2.81 GHz CPU (contains 4 cores), 8GB main memory,
and under the Microsoft Windows 7 operation system.

In order to compare the results in different scenarios, we
tested one parameter at a time by varying all of its possible values
while fixing the other three parameters to their default values,
listed in bold. The four parameters with their possible values are
listed in Table 2. The range of the cardinality of the Cor datasets
is different from that of the Ind and Ant datasets which is similar
to [26]. This is because the proposed algorithms over large Ind
and Ant datasets need unacceptable query time. In the following
experiments, the default values of N over the Ind and Ant datasets
are set to 1000, and the default value of k is 10.

5.1. Performance on synthetic datasets

In this subsection, we evaluate the performance of the pro-
posed algorithms in processing the TkGSky query. We research
the effect of the parameters including the dimensionality d, the
cardinality of the data set N , the group size l, and the number of
returned results k.

5.1.1. Effect of dimensionality d
In the first set of experiments, we investigate the influence of

the dimensionality d on the performance of the three algorithms.
Fig. 4 shows the query time of the proposed algorithms with
varying d from 2 to 6 by a step of 1 on Ind, Cor, and Ant,
respectively.

The dimensionality d has a great impact on the performance
of FA, HA, and PR. As d increases, the number of points within the
first l=4 skyline layers grows sharply, and the size of G-Skylines
grows in turn. Therefore, the query time of the three algorithms
all increases with the growth of d. HA and PR require less time
than FA. This is as expected because FA needs to compute all the
G-Skylines while HA and PR only generate partial G-Skylines that
are most likely to be the final results. Besides, PR performs best
among the three algorithms.

There is also an interesting phenomena that over the Ind
datasets, query time of HA and PR reduces as d varying from 5
to 6. The time cost of computing the G-Skylines increases as the
dimensionality d grows [4]. However, comparing to the Ind data
set with d=5, it may need much less time to compute the scores
of the G-Skylines over the Ind data set with d=6. This is because
the points within the G-Skylines may have less children, and the
time cost to compute the scores of the G-Skylines is reduced.

5.1.2. Effect of Cardinality N
In the second set of experiments, we evaluate the impact of

the cardinality N on the performance of the proposed algorithms.
For the Ind and Ant datasets, we vary N from 2000 to 10000

by a step of 2000. Besides, for the Cor datasets, the cardinality N
is changed from 20000 to 100000 by a step of 20000. Similar
to [26], we offer this different setting because the query time
of the proposed algorithms over large Ind and Ant datasets is
unacceptably long.

Fig. 5 depicts the query time of the proposed algorithms with
the growth of N . Over the Ind, Cor, and Ant datasets, the query
time of all the algorithms increases as the cardinality N grows.
The HA and PR algorithms both outperform the FA algorithm.
Again, PR has the best performance.

Over the Ind and Cor datasets, PR has a definite advantage with
comparison to HA. However, over the Ant datasets, the query time
of PR is close but also less than that of HA. The reason is that both
HA and PR require most of the time to compute the G-Skylines
G⊆SL1 with top k highest scores, and the time to compute the left
G-Skylines is too short.

5.1.3. Effect of group size l
In the third set of experiments, we study the effect of the

group size l on the performance of the proposed algorithms with
l varying from 2 to 6 by a step of 1.

Fig. 6 shows the query time of FA, HA, and PR as the growth
of l over the Ind, Cor, and Ant datasets, respectively. The group
size l affects the performance of the three algorithms significantly.
This is the same as the dimensionality d. The G-Skylines only
contain the points within the first l skyline layers. As l increases,
the size of candidate groups dramatically increases, the size of the
G-Skylines becomes large with the increase of l, and the time cost
to compute the scores of the G-Skylines increases in turn. Again,
PR outperforms the other two algorithms in terms of query time.
The Ant datasets need much more query time than the Ind and
Cor datasets.

5.1.4. Effect of number of returned results k
In the fourth set of experiments, we evaluate the performance

of FA, HA, and PR by varying k from 20 to 100 by a step of 20.
Fig. 7 illustrates the query time of the proposed algorithms

over the Ind, Cor, and Ant datasets, respectively. The three algo-
rithms are not very sensitive to different k values. This is similar
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Fig. 4. Query time vs. Dimensionality d.(a) Ind. (b) Cor. (c) Ant.

Fig. 5. Query time vs. Cardinality N . (a) Ind. (b) Cor. (c) Ant.

Fig. 6. Query time vs. Group size l. (a) Ind. (b) Cor. (c) Ant.

to the top k dominating query [37]. As k grows, the query time of
the proposed algorithms over the Ind and Cor datasets increases
slightly. But, over the Ant datasets, the query time grows sig-
nificantly as the increase of k. With varying k, PR has the best
performance among the three algorithms.

5.2. Performance of the APR algorithm

In this subsection, we evaluate the APR algorithm by com-
paring them with the PR algorithm in term of processing time
and approximate ratio (AR). Here, the approximate ratio is the
percentage of the approximate results returned by APR that also
exist in the exact results. The larger approximate ratio, the better
quality of the approximate results.

Fig. 8 and Tables 3 to 6 depict results of the APR algorithm by
varying α from 0.9 to 0.5. With the reduction of α, the processing
time of APR decreases. The is because only α×100 percent of the
points within SL1 are considered, and partial candidate groups are
generated. When α is set to no less than 0.5, APR can get good
approximate ratio that is mostly close to 1.

Table 3
Approximate ratio of APR vs. Cardinality N .
N APR (0.9) APR (0.8) APR (0.7) APR (0.6) APR (0.5)

2000 1.00 1.00 1.00 1.00 0.90
4000 1.00 1.00 1.00 1.00 1.00
6000 1.00 1.00 1.00 1.00 0.40
8000 1.00 1.00 1.00 1.00 1.00
10,000 1.00 1.00 1.00 1.00 0.60

Table 4
Approximate ratio of APR vs. Dimensionality d.
d APR (0.9) APR (0.8) APR (0.7) APR (0.6) APR (0.5)

2 1.00 0.70 0.40 0.40 0.40
3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00

5.3. Performance on the NBA data set

In this subsection, we study the performance of the proposed
algorithms over the real data set, NBA [4]. Basketball is a team
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Fig. 7. Query time vs. Number of returned results k. (a) Ind. (b) Cor. (c) Ant.

Fig. 8. Query time of the APR algorithm. (a) Cardinality N . (b) Dimensionality d. (c) Group size l (d) Number of returned results k.

Table 5
Approximate ratio of APR vs. Group size l.
l APR (0.9) APR (0.8) APR (0.7) APR (0.6) APR (0.5)

2 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 0.80
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00

Table 6
Approximate ratio of APR vs. Number of returned results k.
k APR (0.9) APR (0.8) APR (0.7) APR (0.6) APR (0.5)

20 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 1.00 1.00
60 1.00 1.00 1.00 1.00 1.00
80 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00

sport in which two teams, most commonly of five players each.
Therefore, we set the group size l=5 in the experiments.

Fig. 9 illustrates the query time of the proposed exact algo-
rithms with varying the cardinality N and the number of re-
sults k, respectively. Besides, the experimental results of the APR
algorithm are shown in Fig. 10.

The experimental results on NBA are consistent with the ones
obtained from the experiments on the synthetic datasets. From
Fig. 9(a), the query time of all the algorithms increases as the
cardinality N grows. The number of returned results k has not a
significant influence on the performance of the exact algorithms
as shown in Fig. 9(b). From Fig. 9, FA requires the most query
time, and PR needs the minimal query time among the three exact
algorithms.

Fig. 10 shows experimental results of the APR algorithm over
NBA with the growth of the cardinality N . When N increases, the
query time of APR with different α all increases. Again, k has
a little effect on the performance of APR. Besides, the larger α
makes the less query time of APR. In most cases, we can get all
the results of the TkGSky query by the APR algorithm if α is larger
than 0.5 (see Tables 7 and 8).

5.4. Summary

As analyzed above, over the Ind, Cor, and Ant datasets, the
query time of the proposed algorithms all increases as the growth
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Fig. 9. Experimental results of the proposed exact algorithms over NBA. (a) Cardinality N . (b) Number of returned results k.

Fig. 10. Experimental results of APR over NBA. (a) Cardinality N . (b) Number of returned results k.

Table 7
Approximate ratio vs. Cardinality N over NBA.
N APR (0.9) APR (0.8) APR (0.7) APR (0.6) APR (0.5)

1000 1.00 1.00 1.00 1.00 1.00
2000 1.00 1.00 1.00 1.00 1.00
3000 1.00 1.00 1.00 0.80 0.40
4000 1.00 1.00 1.00 1.00 1.00
5000 1.00 1.00 1.00 0.90 0.50

Table 8
Approximate ratio vs. Number of returned results k over NBA.
k APR (0.9) APR (0.8) APR (0.7) APR (0.6) APR (0.5)

20 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 1.00 1.00
60 1.00 1.00 1.00 1.00 1.00
80 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00

of the dimensionality d, the cardinality N , and the group size l.
The three algorithms are not sensitive to the number of results
k. The dimensionality d and the group size l have great impacts
on the performance of the proposed algorithms. Among FA, HA,
and PR, PR has the best performance. The PR algorithm always
costs the least query time and is the most stable. In addition, all
the algorithms need much more query time to process the Ant
datasets compared with the Ind and Ant datasets.

The TkGSky query may cost a long time especially for the
datasets with large cardinality, high dimension d, or large group
size l. This has two reasons: firstly, it is time-consuming to
compute the score of each candidate group G. For a candidate
group G, all the points dominated by any point p∈G need to be
identified; secondly, the number of the candidate groups grows
sharply as the cardinality, dimension d, or group size l increases.
A large number of candidate groups will also make the query time
prohibitively long.

6. Conclusions

Group skyline query is a powerful tool for analyzing groups of
different points. In [4], Liu et al. formulated the GSky query which
can report much more comprehensive results than other group
skyline queries. However, the GSky query may return numerous
results which make users overwhelmed. In this paper, we inves-
tigate the GSky query with a size constraint. We formulate the
TkGSky query that aims to retrieve manageable size of optimal
groups. Besides, we develop three algorithms, where the upper
bound pruning, hybrid strategy, and point-based replacement
strategy are applied, for the TkGSky query. Experimental results
demonstrate that the proposed algorithms are efficient and scal-
able. An interesting future work is to consider the TkGSky query
in a parallel or distributed environments to get better scalability
for data sets with large cardinality or high dimensionality. Be-
sides, it is also significant to introduce the group rating prediction
in [38] to the TkGSky query.
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