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Abstract The tile assembly model is a novel biological computing model where infor-
mation is encoded in DNA tiles. It is an efficient way to solve NP-complete problems
due to its scalability and parallelism. In this paper, we apply the tile assembly model to
solve the minimum and exact set cover problems, which are well-known NP-complete
problems. To solve the minimum set cover problem, we design a MinSetCover system
composed of three parts, i.e., the seed configuration subsystem, the nondeterministic
choice subsystem, and the detection subsystem. Moreover, we improve the MinSet-
Cover system and propose a MinExactSetCover system for solving the problem of
exact cover by 3-sets. Finally we analyze the computation complexity and perform
a simulation experiment to verify the effectiveness and correctness of the proposed
systems.

Keywords NP-complete problem · Minimum set cover problem ·
Exact set cover problem · The tile assembly model · Parallel computing

1 Introduction

With the strength of parallel and high-density computing provided by molecules, DNA
computing has been successfully used to solve many NP-complete problems such as
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Molecular solutions for minimum and exact cover problems 977

the RSA public-key cryptosystem [1,2], the discrete logarithm problem [3], the vertex
coloring problem [4], the elliptic curve discrete logarithm problem [5], the classical
Ramsey number problem [6], and the maximum clique problem [7]. Furthermore, the
DNA algorithms for the clustering problem [8,9] and the decision making problem
[10] have been proposed.

The tile assembly model is an important DNA computing model. Now, researchers
are gradually paying more attention to the tile assembly model, because it is molecular-
scalable, autonomous, and partially programmable [11–14]. Based on the mathemati-
cal concept of Wang tiles, Winfree et al. [11] first proposed an approach of computation
by self-assembly tiles, and then developed a universal tile assembly system. In brief,
the tile assembly model first uses the DNA tile’s sticky ends to store a set of informa-
tion and then processes this information by the DNA tile’s self-assembly operations
[12–14].

Since then, many biological systems have used the tile self-assembly model for
solving NP-complete problems. Brun [15] showed the ability of DNA comput-
ing for arithmetic operations with the tile assembly model. Consequently, he was
able to solve the subset sum problem [16], the factoring problem [17], and the
satisfiability problem [18] using 2D DNA self-assembly tiles. Later, Zhang et al.
[19] used the DNA self-assembly tiles to solve the graph coloring problem. More-
over, Cheng et al. [20] successfully solved the subset-product problem, and Cui
et al. [21] also solved the maximum clique problem using the DNA tile assembly
model.

On the other hand, the minimum set cover problem is a famous NP-hard combinato-
rial optimization problem. Recently, the authors of [22,23] proposed DNA computing
algorithms to solve the minimum set cover problem. The proposed algorithms are all
based on the sticker-based model’s space solution and the Adleman–Lipton model’s
biological operations. Because of the model’s limitations, the proposed algorithms
have the disadvantages of high error rate, difficulty of operating, and the need of
human intervention.

To the best of our knowledge, solving the minimum set cover problem with the tile
assembly model has not been studied so far. In this paper, we utilize this model to
solve two famous NP-complete problems, which are the minimum set cover problem
and the problem of exact cover by 3-sets. Firstly, we propose a novel MinSetCover
system for the minimum set cover problem. The MinSetCover system is composed of
three parts, which are the initial subsystem, the nondeterministic choice subsystem,
and the detection subsystem. Then we improve the present MinSetCover system and
design a MinExactSetCover system in the tile assembly mode for solving the exact
cover by 3-sets, which is also composed of three subsystems. Finally, we analyze the
complexity of our proposed systems and do some experimental work to show our
system’s correctness and efficiency.

The rest of this paper is organized as follows. Section 2 introduces the tile assem-
bly model in detail. Section 3 presents the MinSetCover system and its complexity
analysis. Section 4 explains the MinExactSetCover system design and its complex-
ity analysis. Section 5 shows the simulation experiment. The conclusions and future
works are drawn in Sect. 6.
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Fig. 1 DNA tile and its abstract representation

2 Tile assembly model

The tile assembly model is an extension of another model proposed by Wang [11],
and was fully defined by Rothemund and Winfree. The tile assembly model which
was designed to model self-assembly of molecules such as DNA is a formal model of
crystal growth [11]. The definitions used here are similar to those defined in [16–18].
In this section, we present the DNA tile, the mathematical abstract model, and the
relevant biological operations.

2.1 DNA tile

Different from other DNA computing models, in the tile assembly model information
is encoded to different DNA tiles and then stored in the tiles’ stick ends. Therefore,
the DNA tiles can be implemented by double-crossover (DX) molecules with four
sticky ends. These DNA tiles can stick together according to their four sides’ binding
domains. The four sticky ends of DX molecules can be encoded correspond to the
labels on the four sides of the Wang tiles (see Fig. 1).

2.2 The mathematical abstract model

Let � be a finite alphabet representing the DNA tiles’ binding domains where
null ∈ �. We use the 4-triple 〈σN ,σE,σS,σW 〉 ∈ �4 to represent the four sticky
ends of a tile in four directions. For convenience, we also denote an empty tile as
〈null, null, null, null〉 and there will be no tile sticking to the empty tile. A position
is an element in the two-dimensional plane Z 2 and the set of the directions. A direc-
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Molecular solutions for minimum and exact cover problems 979

tion set D = {N , E, S, W } is a set of 4 functions from one position to another; such
that, N (x, y) = (x, y + 1), E(x, y) = (x + 1, y), S(x, y) = (x, y − 1), W (x, y) =
(x −1, y). Moreover, the positions (x, y) and (x̄, ȳ) are neighbors if ∃d ∈ D such that
d(x, y) = (x̄, ȳ). Also, If d ∈ D for a tile t , we define bdd(t) as the binding domains
of the tile t on the d’s side and bdd(t) ∈ �.

A strength function g: � × � → R, where g is commutative and R is the set of
the natural numbers that denotes the strength of the binding domains. Let σ, σ ′ ∈ �,
then g satisfies the following characteristics:

• g(null, σ ) = 0
• if g(σ, σ ′) = 0, then σ �= σ ′
• ∀σ �= null, then g(σ, σ ) = 1
• ∀σ �= σ ′, then g(σ, σ ′) = 0

Let τ be the temperature such that for all σ if g(σ, σ ) = 1 and τ = 2 then a tile t can
be attached only at positions with matching binding domains of other tiles in at least
two adjacent positions.

Let T be a set of tiles. We define the configuration C of T as a function AC (x, y) :
Z × Z → T , which has the following characteristics: if (x, y) ∈ Z2, and AC (x, y) �=
empty then (x, y) ∈ C ; if there is only a finite number of different (x, y) ∈ C then
C is a finite set. Thus, if C is a configuration, then a tile t can be attached to C in a
position (x, y) and generate a new configuration C ′ when the following conditions are
satisfied:

• (x, y) /∈ C
• d ∈ D′, d ∈ D, g(bdd(t), bdd−1(AC (d̄(x, y)))) ≥ τ

• ∀(u, v) ∈ Z2, (u, v) �= (x, y), AC ′(u, v) = AC (u, v)

• AC ′(u, v) = t

That is, a tile can attach to a configuration only at an empty position if and only
if the total strength of the appropriate binding domains on the tiles in neighboring
positions meets or exceeds the temperature τ .

Finally, according to the theoretical description of Wang, a tile system S can be
denoted as a 3-triple 〈T, g, τ 〉, where T is the set of tiles, g is the energy function, τ

is the temperature and τ ∈ N. Let Seed be the seed configuration that represents the
input information. One may attach tiles of T to Seed, and then a series of different
configurations are generated. After the repeated attachments of tiles, we gain a final
configuration that contains the output information of our problem.

2.3 Tile assembly model’s biochemical operations

In the tile assembly model, it needs the biological operations in the following:

(1) Amplify: Given a tube T , the operation, amplify (T, T1, T2), will produce two new
tubes T1 and T2 by polymerase chain reaction (PCR), so that T1 and T2 are totally
a copy of T (T1 and T2 are now identical) and T becomes empty tube. We usually
make use of the amplify operation to get many copies of DNA tiles.
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980 X. Zhou et al.

(2) Merge: Given tubes T1 and T2, the operation yields ∪(T1, T2), where ∪(T1, T2) =
T1 ∪ T2. This operation is to pour two tubes into one, without any change in the
individual strands.

(3) Extract: Given two test tubes T1 and T2, T2 = extract (T1). This operation extracts
DNA strands with specific features from the tube T1 by the magnetic isolation
method and put them into the tube T2. In the tile assembly model, this operation
is always used to extract the final configuration with special DNA tiles.

(4) Anneal: Given a test tube T , this operation is used to turn DNA molecules from
single-stranded into double-stranded by lowering the temperature. This operation
plays an important role in the process of self-assembly.

(5) Fluorescent labeling: Given a test tube T , this operation is used to identify the
process of covalently attaching a fluorophore to the tiles.

(6) Agarose gel electrophoresis: Given a test tube T , this operation is used to separate
the DNA molecules according to the molecular size.

(7) Read: Given a tube T , the operation can describe a single molecule contained in
tube T by gene-sequencing technology such as chain termination method. Even
if T contains many different molecules each encoding a different set of bases, the
operation can give an explicit description of exactly one of them.

3 Solving the minimum set cover problem using tile assembly model

3.1 Definition of the minimum set cover problem

Minimum set cover problem (MinSCP) [22,23]: Given a finite set S, such that S =
{s1, s2, . . . , sn}, and sets C1, C2, . . . , Ck are subsets of S. A set cover is a collection
C of some of the sets from C1, C2, . . . , Ck whose union is the entire universe S. The
minimum set cover problem is to find a minimum-size set cover for S.

For example, given a finite set S{1, 2, 3, 4} and a collection C{{1}, {2}, {1, 2},
{3, 4}}. The minimum-size set cover for S is {{1, 2}, {3, 4}}.

It’s worth mentioning that, finding a minimum-size set cover is a famous NP-
complete problem [22], and it is widely used for applications such as fault diagnostic,
pattern recognition, machine learning, and so on.

3.2 Solving minimum set cover problem using tile assembly model

For the sake of solving the minimum set cover problem with the tile assembly model,
we should go through a few steps as follows.

Firstly, we design an initial subsystem to generate the seed configuration that stores
the input information of our problem. In a seed configuration, we need to express all
the elements of S and sets C1, C2, . . . , Ck . For this purpose, we generate the tiles
as shown in Fig. 2 and make multiple copies of them. Then we put these copies of
tiles in a test tube by the merge operation. After the anneal operation, we get the seed
configurations.

The second step is to design a nondeterministic choice subsystem to produce all
the set cover schemes for our problem. To achieve this, we design the tiles shown in
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Fig. 2 The set of the seed tiles in the initial subsystem. a Tile �start ; b Tiles �si where 0 ≤ i ≤ n; c Tiles
�C j where 1 ≤ j ≤ k; d Tile �Choose; e tile �RowEnd; f tile �ColumnEnd
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Fig. 3 where C1
j is used to express the situation that the set C j is in the fixed set cover

scheme and C0
j is used to describe the set C j not in the fixed set cover scheme. By the

amplify operation we make multiple copies of the tiles in Fig. 3. After the merge and
the anneal operation, we get the solution configurations that express all the set cover
schemes. Furthermore, the nondeterministic choice subsystem can get all the set cover
schemes in parallel.

It is useful to identify the legal set cover schemes in a way that allows selecting the
legal ones, so we design the detection subsystem. For some problems, only a small
fraction of the exponentially many solution configurations would represent the results
of our problem, and finding the small fraction would be difficult. Finding a successful
computation by sampling the crystals at random would require time exponential in
the input [24]. Thus, we will design a special identifier tile to identify the solution
quickly. After applying the merge operation and the anneal operation, we can gain
the solution configurations. By the fluorescent labeling operation and the agarose gel
electrophoresis operation, we can separate the solution configurations according to the
molecular size. By applying the exact operation, we can get the legal configurations.
Lastly, the read operation is used to read out the results of our problem.

3.3 MinSetCover system implementation

Given a finite set S{s1, s2, . . . , sn}, and a collection C{C1, C2, . . . , Ck} where n is the
number of elements in S and k is the number of sets in C . In this section, we introduce
a MinSetCover system using the tile assembly model which is composed of the initial
subsystem, the nondeterministic choice subsystem, and the detection subsystem. The
three subsystems above are described in detail as follows.

3.3.1 The initial subsystem

To solve the MinSCP problem, we need to find out a collection C of some of the
sets from C1, C2, . . . , Ck whose union is the entire universe S. Thus, every seed
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982 X. Zhou et al.

configuration in the initial subsystem produced by the seed tiles should involve all the
elements of S and the sets from C . In this subsystem, we encode the inputs as the
L-configuration, in which the elements of the set S are encoded in the 0th row with a
unique tile for each element and the sets C1, C2, . . . , Ck are encoded in the 0th column
with a unique tile for each set. So the position (−i − 1, 0) represents the i th element
of set S for 1≤ i ≤ n, the position (0, j) represents the j th set C j of collection C
where 1≤ j ≤ k.

Figure 2 shows the seed tiles used by the initial subsystem. The tile �start is used to
express the start of the self-assembly. The tile �si = 〈si , null, #, #〉 is used to express
the element si of the set S and it has the N , W and E sticky ends; where bdN (�si ) = si

and 1 ≤ i ≤ n. The required number of the type of the tiles �si is n.

The tile �C j = 〈|, |, C j , null〉 is applied to encode the set C j of collection C where
bdW (�C j ) = C j and 1 ≤ j ≤ k. The required number of the type of the tiles �C j is
k.

The tiles shown in Fig. 2c–f are four helper tiles which are the same for all n and
k. The help tile �Choose = 〈Choose, null, #, #〉 is used to help choosing the set C j

nondeterminately where 1 ≤ j ≤ k.
Besides, the tiles �RowEnd and �ColumnEnd are used to express the end of

the assembly in the 0th column and the 0th row, respectively, and �RowEnd =
〈|, null, null, #〉, �ColumnEnd = 〈null, |, #, null〉.

As shown in Fig. 2, the number of types in Tinitial is O(n + k)

Based on the design of the tiles above, we define the initial subsystem that encodes
the input for the MinSCP problem as follows.

Theorem 3.3.1 Let �initial = {si , C j , #, |} where 1 ≤ i ≤ n and 1 ≤ j ≤ k, Tinitial
be the set of tiles over �initial as shown in Fig. 2 where ginitial = 1 and τinitial = 2.
Then the initial subsystem I nitialSystem = 〈Tinitial, ginitial, τinitial〉 generates the
seed configuration.

Proof Let Tinitial be the set of tiles shown in Fig. 2 and I ni tialSystem =
〈Tinitial,ginitial, τinitial〉. As shown in Fig. 2, the tiles in I ni tialSystem are with the
south and east sides as the input sides, the north and west sides as the output sides.

The I ni tialSystem is designed to create the seed configuration for MinSetCover
problem. The process of the self-assembly in the I ni tialSystem is begin at the tile
�start. Let the position of the tile �start be (0, 0), then N (0, 0) = (0, 1), W (0, 0) =
(−1, 0). As Fig. 2a shows, bdN (�start) = |. According to the definition of function
g, g(bdN (�start), bdS(�C j )) = 1, after the anneal operation, the tiles �C j will be
attached to the tile �start on its north side.

Consider the tiles that are in column 0 of the seed configuration. The tiles attached
to the 0th column are used to encode the set C j . Let Cseed be a seed configuration
in the I ni tialSystem, ACseed(0, j) = �C j and bdW (ACseed(0, j)) = C j . Moreover,
according to the set of tiles �C j , bdS, (�C j ) = |, where 1 ≤ j ≤ k, the tiles that can
attach in column 0, through positions (0, 1) to (0, k), are only the �C j tiles, so ACseed
(0, j) = �C j , where 1 ≤ j ≤ k and ACseed(0, k + 1) = 〈null, |, #, null〉. After one
of the boundary tile �ColumnEnd, which is 〈null, |, #, null〉, attached to the position (0,
k+1), the self-assembly will end in the 0th column.
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Molecular solutions for minimum and exact cover problems 983

Consider the tiles that are included in the 0th row of the seed configuration. The tile
�Choose will be attached to the position (−1, 0). Figure 2 shows, bdW (�start) = #.
Then according to the seed tiles, bdW (�si ) = #, so the only tiles �si that can be
attached in row 0, in positions (−2, 0) through (−n − 1, 0). That is ACseed (−i − 1,
0) = �si for 1≤ i ≤ n, ACseed(−n − 2, 0) = 〈|, null, null, #〉. After one of the
boundary tile �RowEnd, which is 〈|, null, null, #〉, attached to the position (−n − 2,
0), the self-assembly will end in the 0th row.

Therefore, let Cseed be a seed configuration, then there are some position (x, y) ∈ Z2

such that:

(1) ACseed(0, 0) = �start, where �start is the start of the self-assembly.
(2) ACseed(−1, 0) = �Choose, where �Choose is a helper tile.
(3) ACseed(−n − 2, 0) = �RowEnd, which means the end of self-assembly in row 0.
(4) ACseed(0, k+1) = �ColumnEnd, which means the end of self-assembly in column 0.
(5) For all −n − 1 ≤ x ≤ −2, ACseed(x, 0) = �si , where �si is used to encode the

element of the set S.
(6) For all 1≤ y ≤ k, ACseed(0, y) = �C j , where �C j is used to encode the set C j

from the collection C .
(7) For all the other positions (x, y) ∈ Z

2, (x, y) /∈ Cseed.

3.3.2 The nondeterministic choice subsystem

The NondeterChoiceSystem is designed to create the solution configurations that
express all the set cover schemes for MinSetCover problem based on the seed con-
figurations. The nondeterministic choice subsystem NondeterChoiceSystem takes the
seed configurations produced by the InitialSystem as its input. The main idea of the
nondeterministic choice subsystem NondeterChoiceSystem is to have the choice tiles
shown in Fig. 3 attach nondeterministically in column −1 of the seed configurations
to select the sets C1, C2, . . . , Ck .

The choice tiles shown in Fig. 3 are used to choose the set C j nondeterministically
and produce all the set cover schemes.

The blue tiles �C1
j = 〈Choose, Choose, C1

j , C j 〉 are used to express the situation

that the set C j is in the fixed set cover scheme; where bdW (�C1
j ) = C1

j and 1 ≤ j ≤ k.

The required number of the type of the tiles �C1
j is k.

The gray tiles �C0
j = 〈Choose, Choose, C0

j , C j 〉 are applied to describe the set

C j not in the fixed set cover scheme, where bdw (bdw(�C0
j ) = C0

j and 1 ≤ j ≤ k.

The required number of the type of the tiles �C0
j is k.

The tile shown in Fig. 3c is a helper tile which is the same for all n and k. The
help tile �2Choose = 〈null, Choose, #, #〉 is a boundary tile and used to end the
assembly in column −1.

Based on the design of the tiles above, the number of types of the choice tiles is
O(k).

Theorem 3.3.2 Let �Nondeter = {Choose, C1
j , C0

j , C j , #}, TNondeter be the set of tiles
over �Nondeter as shown in Fig. 3 where gNondeter = 1 and τNondeter = 2. Then the
nondeterministic choice subsystem NondeterChoiceSystem = 〈TNondeter, gNondeter,
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984 X. Zhou et al.

τNondeter〉 generates a non-certain solution space of the set cover problem and produce
all the solution configurations that express the set cover schemes.

Proof Let NondeterChoiceSystem = 〈TNondeter, gNondeter, τNondeter〉. As shown in
Fig. 3, the tiles in NondeterChooseSystem are with south and east sides as the input
sides, north and west sides as the output sides.

Note that gDetect = 1, τDetect = 2 and the seed configurations generated by the initial
subsystem in the shape of L . A tile can only be attached to the seed configurations
when its south and east neighbors exist, and if its appropriate binding domains match
those neighbors’ appropriate binding domains.

By Theorem 3.3.1, the initial system InitialSystem can generate the seed config-
uration. The seed configuration in the InitialSystem is in the shape of a horizontally
reflected L . The tiles in the row 0 encode all the elements of the set S and the tiles in
the column 0 express all the sets C j of the collection C .

In the following, we examine the procedure of the self-assembly in the system
NondeterChoiceSystem. According to the condition that a tile t which is attached to
the configuration C to produce a new configuration.

d ∈ D′, d̄ ∈ D, g(bdd(t), bdd−1(AC (d̄(x, y)))) ≥ τ

So the position that the first tile can attach to a seed configuration is at the posi-
tion (−1, 1) and then growth is allowed along the north direction and west direction,
respectively.

Let Cseed represent a seed configuration. Consider the tiles that can be attached to
column −1. Since bdW (ACseed(0, j)) = C j , where 1 ≤ j ≤ k, the tiles that can stick
to column −1, in position (−1, 1) through (−1, k), should be with the east binding
domain C j . Because bdE (�C1

j ) = bdE (�C0
j ) = C j , the tiles �C1

j and �C0
j can

be attached to Cseed nondeterministically in column −1, in position (−1, 1) through
(−1, k), where 1 ≤ j ≤ k.

Because the seed configuration has a north binding domain Choose, by induction,
the tiles with σN = σS = Choose can be attached. After the tiles �C1

j or �C0
j are

attached, the Choose binding domain will propagate to the north of the tile in position
(−1, j). By attaching the tile �C1

j or �C0
j , respectively, it is nondeterministic to choose

the set C j . The nondeterministic choice subsystem can get all the set cover schemes
parallelly.

Let CSolution be a solution configuration. So there are some position (x, y) ∈ Z2

such that:

(1) For all 1 ≤ y ≤ k, ACSolution(−1, y) = �C1
j or �C0

j , where �C1
j is used to

express the situation that the set C j is in the fixed set cover scheme, �C0
j is used

to express the situation that the set C j is not in the fixed set cover .
(2) ACSolution(−1, k + 1) = �2Choose, where �2Choose is a helper tile.

3.3.3 The detection subsystem

The detection subsystem is designed to find out the legal configurations. Taking the
solution configurations produced by the NondeterChoiceSystem as its input, the main
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Fig. 4 The detection tiles in TDetect a–e Tiles �detect ; f Tiles �suc; g–h Tiles �output; i �2
end

idea of the detection subsystem DetectSystem is to have detection tiles shown in
Fig. 4 attach nondeterministically to the solution configurations to generate the final
configurations and identify the legal configurations.

The detection tiles shown in Fig. 4 are used to drive the decision whether a solution
configuration, which is produced by the NondeterChoiceSystem, meets the conditions.
In more details, we use the detection tiles showed in Fig. 4 to determine whether the
union of a collection C of some of the sets from C1, C2, . . . , Ck is the entire universe
S.

The scarlet tiles 〈si , si , C1
j , C1

j 〉 and 〈si , si , C0
j , C0

j 〉 represent that the set C j does
not cover the element si . The two tiles imply that there is no association between the
set C j and the element si , where 1 ≤ i ≤ n; 1 ≤ j ≤ k. The number of these tile
types isn × k.

The green tile 〈O K , si , C1
j , C1

j 〉 denotes that the set C j covers the element si , σN =
OK, σN �= σS and σW = σE . The Label OK is used to express that we have find out
one set from the collection C which covers the element si . The required number of
the green tiles is n × k.

The two types of orange tile 〈OK, OK, C1
j , C1

j 〉 and 〈OK, OK, C0
j , C0

j 〉 show that
one element si has been covered by some set from the collection C, σN = σS =
O K , σW = σE and the required number of tiles is k.

The red SUC tile 〈null, |, null, #〉 is a special identifier tile to identify the legal
configuration which are the same for all n and k.

The two white tiles 〈|,|, null, C1
j 〉 and 〈|,|, null, C0

j 〉 are the tiles which store the

output information, σN = σS = |, σE = C0
j or C1

j . The white tile 〈null, O K , #, #〉
is a help tile that is the same for all k. The required number of the white tiles equals
2k + 1.

Therefore, the number of the type of the detection tiles is O(n × k).

Theorem 3.3.3 Let �Detect = {si , C1
j , C0

j , O K , |, #}, TDetect be the set of tiles over
�Detect as shown in Fig. 4 where gDetect = 1 and τDetect = 2. Then the detection sub-
system Detect System = 〈TDetect, gDetect, τDetect〉 takes the solution configurations
generated by the NondeterChoiceSystem as its input and then produces the final con-
figurations and identifies the legal configuration with the red SUC tile as the identifier
tile.
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Proof Let Detect System = 〈TDetect, gDetect, τDetect〉. In the following, we examine
the procedure of the self-assembly in the system DetectSystem. According to the
condition that a tile t which is attached to the configuration C to produce a new
configuration.

d ∈ D′, d̄ ∈ D, g(bdd(t), bdd−1(AC (d̄(x, y)))) ≥ τ

So the position that the first tile can attach to a solution configuration is the (−2, 1). Let
CSolution represent the solution configuration generated by the system NondeterChoic-
eSystem. The system DetectSystem can produce the final configurations by attaching
the detection tiles to the solution configurations.

Note that, the detection tiles that can be attached to column −3 and column −n −1,
are similar to the column −2. We examine the tiles that can be attached to column
−2, in position (−2, 1) through (−2, k + 1). Because in column −1, in position
(−1, 1) through (−1, k + 1), the west binding domains of the tiles are Ci

j where 1

≤ j ≤ k and i ∈ {0, 1}, only the tile t, bdE (t) = Ci
j , can be attached to the column

−2.
Hence, if bdE (t) = C0

j there are two kinds of tiles, 〈si , si , C0
j , C0

j 〉 and 〈OK, OK,

C0
j , C0

j 〉 that can be attached to column −2. If the element si of the set S does not exist
in the subset C j or the subset C j does not exist in the fixed set cover scheme, the tile
〈si , si , C0

j , C0
j 〉 will be attached to column −2. When the element si of the set S has

been covered and the subset C j does not exist in the fixed set cover scheme, the infor-
mation ‘OK’ will be delivered from button to the top by the tile 〈O K , O K , C0

j , C0
j 〉.

When bdE (t) = C1
j , there are three kinds of tiles, 〈OK, si , C1

j , C1
j 〉, 〈si , si , C1

j , C1
j 〉

and 〈OK, OK, C1
j , C1

j 〉 that can be attached to the column−2. The tile 〈OK, si , C1
j , C1

j 〉
will be attached to column −2 when the subset C1

j exists in the solution for the set
cover problem and it also covers the element si of the set S. If the subset C j covers the
element si of the set S, the tile 〈si , si , C1

j , C1
j 〉 will be attached to column −2. When

the element si of the set S has been covered and the subset C j exists in the fixed set
cover scheme, the information ‘OK’ will be delivered from button to the top by the
tile 〈O K , O K , C1

j , C1
j 〉.

Consider the tiles that can be attached to column −n − 2. Since bdN (ACseed
(−n − 2, 0)) = | The tiles that can stick to column −n − 2, in position (−n − 2,1)
through (−n − 2, k), should be with the south binding domain |. The white tile t with
bdN (t) = bdS(t) = | and bdE (t) = Ci

j , where 1 ≤ j ≤ k and i ∈ {0, 1} can be

attached. By induction, after the tiles 〈|,|, null, Ci
j , 〉 attaching, the | binding domain

will propagate to the north of the tile in position (−n − 2, k).
Consider the tiles that can be attached to row k+1. Since bdW (ACseed(−1, k + 1)) =

#, the tiles that can stick to row k+1 in position (−2, k + 1) through (−n − 2, k + 1)
should be with the east binding domain #. By induction, the white tile t with
bdW (t) = bdE (t) = # and bdS(t) = O K can be attached. These tiles will prop-
agate the # binding domain to the west of tile in position (−n − 1, k + 1).

The SUC tile has an east binging domain # and south binding domain |. Thus, it
can only be attached to position (−n − 2, k + 1) and only if the west binding domain
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of the tile in position (−n −1, k +1) is #, so the tile can be attached if all the elements
in the set S are covered by the fixed set cover scheme.

Since every possible set cover scheme will be explored nondeterministically, if
every element in the set S is covered by the fixed set cover scheme, then the SUC tile
will be attached. If there is one or more element in the set S not covered by the fixed
set cover scheme, then the SUC tile will never be attached. The SUC tile can help us
to identify the legal final configurations.

Let CFinal be a legal final configuration. Then there are some (x , y) ∈ Z2 such that:

(1) For all 1 ≤ y ≤ k, ACFinal(−n − 2, y) = �output where �output store the output
information.

(2) For all −n − 1 ≤ x ≤ −1, 1 ≤ y ≤ k, ACFinal(x, y) = �detect where the tiles in
�detect are used to detect the configurations.

(3) For all −n − 1 ≤ x ≤ −1, ACFinal(x, k + 1) = �2
end where �2

end means the end
of the self-assembly in row k + 1

(4) ACFinal(−n − 2, k + 1) = �suc where �suc is used to identify the legal configura-
tions.

(5) For all the other positions (x, y) ∈ Z
2, (x, y) /∈ CFinal.

3.4 Complexity analysis of the MinSetCover system

The complexity of the presented system using the tile assembly model is commonly
measured in terms of the assembly time, the computation space, and the types of tiles
[16–18]. In this paper, we also analyze the successful rate of the proposed MinSetCover
system.

Lemma 3.4.1 The assembly time of the proposed set cover system is O(k) and the
space complexity is O(n × k) where n is the number of elements in S and k is the
number of sets in C.

Proof The proposed set cover system is composed of three parts which are the initial
subsystem, the nondeterministic choice subsystem and the detection subsystem. The
initial subsystem generates the seed configurations that are also L-configuration. The
length of the button row is n + 3 and the height of the rightmost column is k+2.
Taking in account all the tiles in Tdetect, we can get that the pairs (bdS(t), bdE (t))
are unique. Hence, by attaching the tiles from Tdetect to a seed configuration, there
will be a unique final configuration produced. The final configurations that contain the
red SUC tile 〈null, |, #, null〉 with the are the complete (n + 3) × (k+2) rectangle.
The complete rectangle’s depth is k+2, so the assembly time is O(k). The area of the
complete rectangle is (n + 3) × (k + 2) = nk + 2n + 3k + 6 so the space complexity
is O(n × k).

Lemma 3.4.2 For all the n ∈ N and k ∈ N, we assume that each tile that can be
attached to a configuration at a certain position with a uniform probability distribution.
The probability that a single nondeterministic execution of the proposed set cover
system succeeds in attaching a SUC tile is at least 0.5k where k is the number of sets
in C.
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Proof Only the tiles in column −1 are attached nondeterministically, and at each of
these positions there are exactly two choices of tile t , which are 〈Choose, Choose,
C0

j , j〉 and 〈Choose, Choose, C1
j , j〉. So the probability of the correct tile to be

attached at each location is 0.5 and there are exactly k places where such tiles can
be attached. Thus, if there exist an answer of the set cover problem, at least 0.5k of
the assemblies attaching a SUC tile.

Lemma 3.4.3 The proposed set cover system uses O(n × k) distinct tiles where n is
the number of elements in S and k is the number of sets in C.

Proof The proposed set cover system consists of three parts, which are the initial
subsystem, the nondeterministic choice subsystem, and the detection subsystem. The
initial subsystem needs n + k +4 distinct tiles, the nondeterministic choice subsystem
needs 2q + 1 distinct tiles, and the detection subsystem needs 2n × k + 4 × k + 2
distinct tiles. Hence, the proposed set cover system needs (n + k + 4) + (2k + 1) +
(2nk + 4k + 2) = 2n × k + 7 × k + n + 7 distinct tiles. Therefore, the proposed set
cover system uses O(n × k) distinct tiles.

4 Solving the problem of exact cover by 3-sets using the tile assembly model

The minimum 3-set exact cover problem is also a famous NP-complete problem. In
this section, we introduce a new solution for this problem using the tile assembly
model.

4.1 Definition of the 3-set exact cover problem [23]

Assume S is a finite set, S = {s1, s2, . . . , s3n} and si is an element in S for 1 ≤ i ≤ 3n.
We denote as the cardinality of S by |S| such that |S| = 3n. Suppose that a collection
C is {C1, C2, . . . , Ck}, where C j is a subset of S for 1 ≤ j ≤ k ≤ j ≤ k and Cj
contains three elements. We denote the cardinality of C by |C | such that |C | = k.

Minimum 3-set extract cover problem: A 3-set extract cover for S is a sub-
collection Csub ⊆ C and Csub = {C ′

1, C ′
2, . . . , C ′

m} where |Csub| = m. On the assump-
tion that ∪C ′

i = S, Csub is a 3-set extract cover for S and every element in S occurs
in exactly one member of Csub. The minimum 3-set exact cover problem is to find a
minimum-size 3-set exact cover for S.

For example, a finite set S is {1, 2, 3, 4, 5, 6} and a collection C is {{1, 2, 3}, {2, 3, 4},
{3, 4, 5}, {4, 5, 6}} for S. The minimum-size 3-set exact cover for S is {{1, 2, 3},
{4, 5, 6}}. It’s worth mentioning that finding a minimum-size 3-set exact cover is
proved to be a NP-complete problem in [23].

4.2 Solution implementation

In this section, we design a MinExactSetCover system using the tile assembly model
which is also composed of the initial subsystem, the nondeterministic choice sub-
system, and the detection subsystem. The seed configuration and the nondetermin-
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Fig. 5 The detection tiles in TExtractDetect a–e Tiles�Extractdetect; f–g Tiles�Extractoutput; i �Extractsuc

istic choice subsystem are similar to the corresponding subsystem of the proposed
MinSetCover system. In the initial subsystem of MinSetCover system, it uses the
tile 〈si , null, #, #〉 to represent the different element in set S while the tile 〈(S, si ),
null, #, #〉 is used to represent the different element in the corresponding subsys-
tem of the MinExactSetCover system. The nondeterministic choice subsystems of
the MinSetCover system and the MinExactSetCover system are the same. Further-
more, we design a new detection subsystem to identify the legal configurations in the
following.

The detection subsystem is also designed to find out the legal configurations. Taking
the solution configurations produced by the NondeterChoiceSystem as its input, the
main idea of the detection subsystem ExtractDetectSystem is to have detection tiles
shown in Fig. 5 attach nondeterministically to the solution configurations to generate
the final configurations and identify the legal configurations.

The detection tiles shown in Fig. 5 is used to drive the decision whether a solution
configuration, which produced by the NondeterChoiceSystem, meets the conditions.

The scarlet tiles 〈(S, si ), (S, si ), C1
j , C1

j 〉 and 〈(S, si ), (S, si ), C0
j , C0

j 〉 express that
the set C j does not cover the element si . The two tiles imply that there is no association
between the set C j and the elementsi , where1 ≤ i ≤ 3n; 1 ≤ j ≤ k. The number of
these tile types is 3 n × k.

The green tile 〈(S, si ), (O K , si ), C1
j , C1

j 〉 denotes that the set C j covers the element
si . The Label OK is used to express that we have find out one set from the collection
C which covers the element si . The required number of the green tiles is 3n × k.

The two types of orange tile 〈(O K , si ), (O K , si ), C1
j , C1

j 〉 and 〈(OK, si ), (OK, si ),

C0
j , C0

j 〉 show that one element si has been covered by some set from the collection
C and the set C j does not contain the element si , and the required number of tiles is
3n × k.

The two white tiles 〈|, |, null, C1
j 〉 and 〈|,|, null, C0

j 〉 are the tiles which store the
output information. The white tile 〈null, (O K , si ), #, #〉 is a help tile that is the same
for all k. The required number of the white tiles equals 2k + 3n.

The red SUC tile 〈null, |, null, #〉 is a special identifier tile to identify the legal
configuration which are the same for all n and k.

Therefore, the number of types of the detection tiles is O(n × k).
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Lemma 4.2.1 Let �ExtractDetect = {S, si , C1
j , C0

j , O K , |, #}, TExtractDetect be the set of
tiles over �ExtractDetect as shown in Fig. 5 where gExtractDetect = 1 and τExtractDetect =
2. Then the new detection subsystem Extract Detect System = 〈TExtractDetect,

gExtractDetect, τExtractDetect〉 identifies the legal configurations and produce the final
configurations.

Proof Let TExtractDetect be the set of tiles shown in Fig. 5 where gExtractDetect = 1,

τExtractDetect = 2, and ExtractDetectSystem= 〈TExtractDetect, gExtractDetect, τExtractDetect〉.
Note that gExtractDetect = 1, τExtractDetect = 2 and the seed configurations generated

by the initial subsystem are in the shape of L . A tile can only be attached to the seed
configurations when its south and east neighbors exist, and if its appropriate binding
domains match those neighbors’ appropriate binding domains.

By Theorem 3.3.1, the initial system InitialSystem can generate the seed config-
uration. The seed configuration in the InitialSystem is in the shape of a horizontally
reflected L . The tiles in row 0 encode all the elements of the set S and the tiles in
column 0 express all the sets C j of the collection C . By Theorem 3.3.2, the Nondeter-
ChoiceSystem takes the seed configurations produced by the InitialSystem as its input
and is designed to create the solution configurations that express all the extract set
cover schemes for MinExactSetCover problem based on the seed configurations.

Let CExactSolution represent the solution configuration generated by the system Non-
deterChoiceSystem. The system ExtractDetectSystem can produce the final configu-
rations by attaching the detection tiles to the solution configurations. In the following,
we examine the procedure of the self-assembly in the system ExtractDetectSystem.

Consider the tiles that attached to column −3 to column −n−1. The tiles which can
be attached to column −3 to column −n−1 are similar to the column −2. We examine
the tiles that can be attached to column −2, in position (−2, 1) through (−2, k+1).
Because in column −1, position (−1, 1) through (−1, k+1), the west binding domains
of the tiles is Ci

j where 1 ≤ j ≤ k and i ∈{0,1}, only the tile t , bdE (t) = Ci
j can be

attached to the column −2.
Hence, when bdE (t) = C1

j there are three kinds of tiles, 〈(S, si ), (S, si ), C1
j , C1

j 〉,
〈(OK, si ), (S, si ), C1

j , C1
j 〉 and 〈(OK, si ), (OK, si ), C1

j , C1
j 〉 which can be attached to

column −2. The tile 〈(OK,si ), (S, si ), C1
j , C1

j 〉 can be attached to column −2 when
the subset C j exists in the solution for the 3-set extract cover and it also covers the
element si of the set S. If the C j covers the elementsi of the set S, after the tile 〈(OK,
si ), (S, si ), C1

j , C1
j 〉 attached to column −2, the information (OK, si ) will be delivered

from button to top by the tile 〈(OK, si ), (OK, si ), C1
j , C1

j 〉.
If bdE (t) = C0

j there are two kinds of tiles, 〈(S, si ), (S, si ), C0
j , C0

j 〉 and 〈(OK,si ),

(OK, si ), C0
j , C0

j 〉 which can be attached to column −2. If the element si of the set S
does not exist in C j , or C j does not exist in the solution for the set cover problem for
1 ≤ i ≤ 3n, 1 ≤ j ≤ k, after the tile 〈(S, si ), (S, si ), C0

j , C0
j 〉 or 〈(OK,si ), (OK,si ),

C0
j , C0

j 〉 attached to column −2, the information (S, si ) or (OK, si ) will be delivered
from button to top.

Consider the tiles that can be attached to column −3n−2. Since bdN (ACExtractDetect
(−3n − 2, 0)) = |. The tiles that can stick to column −3n − 2 in position (−3n − 2, 1)
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through (−3n − 2, k) should be with the south binding domain |. The white tile t with
bdN (t) = bdS(t) = | and bdE (t) = Ci

j , where 1 ≤ j ≤ k and i ∈{0,1} can be

attached. By induction, after the tiles 〈|, |, null, Ci
j , 〉 attaching, the | binding domain

will propagate to the north of the tile in position (−3n − 2, k).
Consider the tiles that attached to row k+1. Because bdW (ACExtractDetect (0, k+1))

= #, the tile t with bdW (t) = bdE (t) = # and bdS(t) = (OK, si ) can be attached to
row k + 1. By induction, the tile t with bdW (t) = bdE (t) = # will propagate the #
binding domain to the west of tile in position (−3n − 1, k+1).

The SUC tile has an east binging domain # and south binding domain |; thus,
it can only be attached in position (−3n − 2, k+1) and only if bdW (ACExtractDetect
(−3n − 1, k+1)) = # and bdN (ACExtractDetect (−3n − 2, k)) = |, so the SUC tile can
be attached if all the elements in the set S are covered by the fixed set cover scheme.

Since every possible set cover scheme will be explored nondeterministically, if
every element in the set S is covered by the fixed set cover scheme only once, the
SUC tile will be attached. Otherwise, if there is one or more element in the set S
that is not covered by the fixed set cover scheme or covered more than once, then the
SUC tile will never be attached. The SUC tile can help us to identify the legal final
configurations.

Let CExtractDetect be a legal final configuration. So there are some (x, y) ∈ Z2 such
that:

(1) For all 1 ≤ y ≤ k, ACExtractDetect (−3n−2, y) = �ExtractOutput where �ExtractOutput
stores the output information for MinExactSetCover

(2) For all −3n − 1 ≤ x ≤ −1 and 1 ≤ y ≤ k, ACExtractDetect (x, y) = �Extractdetect
where the tiles in �Extractdetect are used to detect the configurations.

(3) For all −3n − 1 ≤ x ≤ −1, ACExtractDetect(x, k+1) = 〈null, (OK, si ), #, #〉
(4) ACExtractDetect (−3n −2, k+1) = �ExtractSuc where �ExtractSuc contains the SUC tile

〈null, |, #, null 〉.
(5) For all other positions (x , y) ∈ Z

2, (x, y) /∈ CExtract Detect (x, y).

4.3 Complexity analysis of the MinExtractSetCover system

In this section, we will analyze the assembly time, the computation space, and the dis-
tinct tiles of the proposed MinExtractSetCover system. Besides, we will also analyze
the solution space and the successful rate of the proposed set cover system.

Lemma 4.3.1 The assembly time of the proposed MinExtractSetCover system is O(k)

and the space complexity is O(n × k) where 3n is the number of elements in S and k
is the number of sets in C.

Proof The proof is similar to that of Theorem 3.3.1.

Lemma 4.3.2 For all the n ∈ N and k ∈ N, we assume that each tile that may be
attach to a configuration at a certain position with a uniform probability distribution.
The probability that a single nondeterministic execution of the proposed MinExtract-
SetCover system succeeds in attaching a SUC tile is at least 0.5k where k is the number
of sets in C.
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Proof The proof is similar to that of Theorem 3.3.2.

Lemma 4.3.3 In the proposed 3-set extract cover system, it uses O(n × k) distinct
tiles where n is the number of elements in S and k is the number of sets in C.

Proof The proposed set cover system consists of three parts which are the seed con-
figuration subsystem, the nondeterministic choice subsystem and the detection sub-
system. The seed configuration subsystem needs 3n + k+4 distinct tiles, the non-
deterministic choice subsystem needs 2k+1 distinct tiles and the detection subsys-
tem needs 6nk+4k+2 distinct tiles. Hence, the proposed set cover system needs
(3n + k+4)+(2k+1)+(6nk+4k+2) = 6nk+7k + 3n+3 distinct tiles. Thus, the pro-
posed set cover system uses O(n × k) distinct tiles.

5 Experiments

In this section, we will simulate the proposed systems in Sects. 3 and 4. According
to the methods of Winfree’s [11] and Brun’s [13–18] to simulate the tile assembly
system, we divide our experiments into three steps: firstly, to design the DNA tiles
used; secondly, to explain the experiment procedure; and finally, to utilize Xgrow
Simulator [24,25] developed by Winfree’s research group to test the effectiveness of
our systems.

5.1 Solving the minimum set cover problem

Consider that a finite set S is {1, 2, 3, 4} and a collection C is {{1}, {2}, {1, 2}, {3, 4}}.
Assume si is an element in S for 1 ≤ i ≤ 4 and the set C j ⊆ C where 1 ≤ j ≤ 4. In
this section, we will simulate the proposed MinSetCover system.

5.1.1 Tile code for MinSetCover problem

The MinSetCover system is composed of the initial subsystem, the nondeterministic
choice subsystem, and the detection subsystem. The tiles used in the three subsystems
are designed, respectively, as follows.

To encode the elements of the set S on the horizontal row and the sets C j on the
vertical column, we design nineteen initialization tiles which are illustrated in Fig. 6.
Consider our example of the MinSetCover problem, there are twelve tiles also used in
the initial subsystem (Fig. 6).

The nondeterministic choice subsystem uses three types of tile which are shown
in Fig. 3. For our example of the MinSetCover problem, there are nine tiles used in
the nondeterministic choice subsystem (Fig. 7). The blue tiles are used to express the
situation that the set C j is in the set cover scheme and the gray tiles are applied to
describe the set C j not in the set cover scheme.

The detection subsystem uses nine types of tile which are shown in Fig. 4. Based
on the tile’s application, we divide the tiles of the detection subsystem to three groups
as follows.
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Fig. 7 The tiles used in the nondeterministic choice subsystem for our problem

In the first group, there are some tiles used to detect whether or not C j covers the
element si for si ⊆{1, 2, 3, 4} and C j ⊆{{1}, {2}, {1, 2}, {3, 4}}. For our example
of the MinSetCover problem, we have the tiles shown in Fig. 8a. Shown in Fig. 8a, the
crimson tiles represent C j does not cover si and the green tiles represent C j covers si

for si ⊆ {1, 2, 3, 4} and C j ⊆{{1}, {2}, {1, 2}, {3, 4}}.
In the second group, there are some tiles used to deliver the covering state of the

elements si for si ⊆{1, 2, 3, 4}. As shown in Fig. 8b, the yellow tiles are used to transit
the covering state of si for si ⊆ {1, 2, 3, 4}.

In the last group, as shown in Fig. 8c there are some white tiles used as the boundary
tiles and there is a red tile with value SUC used to identify the legal configurations.

5.1.2 MinSetCover solution procedure

The MinSetCover system proposed here is composed of initial subsystem, the nonde-
terministic choice subsystem, and the detection subsystem. In the following, we will
describe the process of our problem by the MinSetCover system.

Firstly, by running the initial subsystem, we will get the seed configuration for our
problem (see Fig. 9). The seed configuration is a L-Configuration and the 0th row
mainly encode the elements si of the set S for 1 ≤ i ≤ 4, the 0th column is mainly
encode the sets C j for 1 ≤ j ≤ 4.

Secondly, after obtaining the seed configurations, we will execute the nondeter-
ministic choice subsystem and choose C j by attaching the tiles shown in Fig. 7 to
the seed configurations nondeterminately. Thus, we will get all the solution config-
urations which represent the solution space for our problem. Figure 10 shows two
of the solution configurations which represent the solution {C3, C4} and {C1, C4},
respectively.
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(a) The tiles used to detect whether or not Cj covers the element si for si ⊆ ⊆

⊆

{1, 2, 3, 4} and Cj {{1}, {2}, {1, 2}, {3, 4}}

(b) The yellow tiles used to deliver the covering state of the element si for si {1, 2, 3, 4} 
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(c) The white tiles used as the boundary tiles and the red tile used to identify the legal configurations

Fig. 8 The tiles used in the detection subsystem of our problem

Lastly, the detection subsystem is used to identify the legal configurations and get
the legal solution space of our problem. The final configurations are generated by the
detection subsystem and the configurations with red tile 〈null, |, null, #〉 with value SUC
are the legal configurations and represent the satisfiable solutions for the MinSetCover
problem. As shown in Fig. 11, the final configurations represent the solution {C3, C4}
and {C1, C4}, respectively, Where the final configuration for {C3, C4} contains a red
tile 〈null, |, null, #〉 with value SUC. Thus, {C3, C4} is the satisfiable solution for our
problem.

5.1.3 MinSetCover system simulation

In this section, we will use the Xgrow Simulator [24] developed by Winfree’s research
group to test the effectiveness of the proposed MinSetCover system.

Figure 12a shows the solution configuration that represents the collection {C3, C4}
and after attaching the corresponding DNA tiles we get final configuration shown in
Fig. 12b. Because the red SUC tile involved in the final configuration of collection
{C3, C4}, the collection {C3, C4} is a satisfiable answer of our problem. Figure 12c
shows the solution configuration of the collection {C1, C4} and its final configura-
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Fig. 9 The seed configuration generated by the initial subsystem for our problem
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Fig. 10 The solution configuration for {C3, C4} and {C1, C4}, respectively

tion shown in Fig. 12d and does not contain the red SUC tile. Hence, the collection
{C1, C4} is not an answer of our problem.

5.2 Solving the extract cover by 3-sets problem

Assume we have a finite set S {1, 2, 3, 4, 5, 6}, a collection C is {{1, 2, 3}, {2, 3, 4},
{3, 4, 5}, {4, 5, 6}} where si is an element in S for 1 ≤ i ≤ 6 and the set C j ⊆ C
for 1 ≤ j ≤ 4. In this section, we will simulate the proposed MinExtractSetCover
system.
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Fig. 11 The final configuration for {C3, C4} and {C1, C4}, respectively

(a)  The solution configuration of {C3, C4} (b)  The final configuration of {C3, C4}

(c)  The solution configuration of {C1, C4} (d)  The final configuration of {C1, C4}

Fig. 12 The results of simulating the MinSetCover system by Xgrow

5.2.1 Tile code for MinExactSetCover problem

The proposed MinExactSetCover system is composed of the initial subsystem, the
nondeterministic choice subsystem, and the detection subsystem.

The seed configuration and the nondeterministic choice subsystem are similar to
the corresponding subsystem of MinSetCover system. In the initial subsystem of Min-
SetCover system, it uses the tile 〈si , null, #, #〉 to represent different elements in set
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S while the tile 〈(S, si ), null, #, #〉 is used to represent different elements in the
corresponding subsystem of the MinExactSetCover system where si is an element
in S.

The tiles used in the initial subsystem here are shown in Fig. 13. You can notice
that, the tiles 〈(S, si ), null, #, #〉 are used to represent the elements in the set S where
si ⊆{1, 2, 3, 4, 5, 6}. The tiles 〈|, |, C j , #〉 are used to represent the different sets C j

where C j ⊆{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}} and 1 ≤ j ≤ 4. The left four
types of tile which are shown in Fig. 13 are used as the boundary tiles.

The nondeterministic subsystems of the MinSetCover system and the MinExact-
SetCover system are the same. The tiles used in the MinExactSetCover system for our
problem are shown in Fig. 14.

Lastly, in the proposed MinExactSetCover system, we have designed a new detec-
tion subsystem to identify the legal configurations. The detection subsystem involves
the tiles shown in Fig. 14 which are used to detect whether or not C j covers the element
si for si ⊆{1, 2, 3, 4, 5, 6},C j ⊆ {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}}, 1 ≤ i ≤ 6
and 1 ≤ j ≤ 4.

As shown in Fig. 15a, the tiles are used to detect the legal solutions. If C j exists
in the solution and it also covers si , then the green tile 〈(OK,si ), (S, si ), C1

j , C1
j 〉 is

attached to the seed configuration. If C j does not exist in the solution or it does not
cover si , the crimson tile 〈(S, si ), (S, si ), C1

j , C1
j 〉 and 〈(S, si ),(S, si ), C0

j , C0
j 〉 will be

attached to the seed configuration, respectively.
The yellow tiles shown in Fig. 15b are used to deliver the covering state of si . At

last the white tiles and the SUC tile in Fig. 15c are used to detect and identify the legal
configurations.
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Fig. 13 The tiles used in the initial subsystem for MinExactSetCover problem

Fig. 14 The tiles used in the nondeterministic choice subsystem for MinExactSetCover problem
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(a) The tiles used to detect whether or not Cj covers the element si for si ⊆
⊆

⊆

{1, 2, 3, 4, 5, 6},

Cj {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}}

(b) The tiles used to deliver the covering state of the element si for si {1, 2, 3, 4, 5, 6}
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Fig. 15 The tiles used in the detection subsystem
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Fig. 16 The seed configuration for our problem which are generated by the initial subsystem

5.2.2 MinExtractSetCover solution procedure

The MinExtractCover system here is composed of the initial subsystem, the nonde-
terministic choice subsystem, and the detection subsystem. In the following, we will
describe the solution procedure.

Firstly, by running the initial subsystem, we will get the seed configuration for our
problem (see Fig. 16). The seed configuration is a L-Configuration and the 0th row
mainly encode the elements si of the set S for 1 ≤ i ≤ 6, the 0th column is mainly
encode the sets C j for 1 ≤ j ≤ 4.

Secondly, after obtaining the seed configurations, we will execute the nondeter-
ministic choice subsystem and choose C j by attaching the tiles shown in Fig. 14 to
the seed configurations nondeterminately. Thus, we will get all the solution configu-
rations which represent the solution space for our problem. Figure 17 shows two of
the solution configurations which represent the solution {C1, C4} and {C1, C2, C4},
respectively.

The final configurations are generated by the detection subsystem and the config-
urations with red SUC tile 〈null, |, null, =〉 are the legal configurations and represent
the satisfiable solutions for the MinExtractSetCover problem. As shown in Fig. 18, the
final configurations represent the solution {C1, C4} and {C1, C2, C4}, respectively.
The final configuration for {C1, C4} contains a red tile 〈null, |, null, =〉 with value
SUC, so {C1, C4} is the satisfiable solution for our problem.

5.2.3 MinExtractSetCover system simulation

In this section, we will also use the Xgrow to test the effectiveness of the MinExtract-
SetCover system.
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(a) The solution configuration for {C1, C4}
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(b) The solution configuration for {C1, C2, C4}

Fig. 17 The solution configurations for {C1, C4} and {C1, C2, C4} which are generated by the nondeter-
ministic subsystem

Figure 19a shows the solution configuration that represents the collection {C1, C4}.
After attaching the corresponding DNA tiles we get final configuration shown in
Fig. 19b. Because of the red SUC tile containing in the final configuration of collection
{C1, C4}, the collection {C1, C4} is a satisfiable answer of our problem.

Figure 19c shows the solution configuration of the collection {C1, C2, C4} and
Fig. 19d shows its final configuration which does not contain the red SUC tile. Hence,
the collection {C1, C2, C4} is not an answer of our problem.
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(a) The final configuration for {C1, C4}
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(b) The final configuration for {C1, C2, C4}

Fig. 18 The final configuration for {C1, C4} and {C1, C2, C4}, respectively

6 Conclusion and future work

In this paper, we designed a MinSetCover system using the tile assembly model where
the MinSetCover system is composed of three subsystems which are the initial sub-
system, the nondeterministic choice subsystem, and the detection subsystem. Also, we
have proved that the MinSetCover system uses O(nk) distinct tiles with O(k) assem-
bly time, O(nk) space complexity, and the least successive rate 0.5k where n is equal
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(a)  The solution configuration for {C1, C4} (b)  The final configuration for {C1, C4}

(c)  The solution configuration for {C1, C2, C4} (d)  The final configuration for {C1, C2, C4}

Fig. 19 The results of simulating the MinExtractSetCover system by Xgrow

to |S| and k is equal to |C |. Then, by improving the proposed MinSetCover system, we
also designed a MinExtractSetCover system which needs O(nk) distinct tiles, O(k)

assembly time, O(nk) space complexity, and the least successful rate 0.5k , where n is
equal to |S| and k is equal to |C |. Finally, we verified our contribution through a set
of simulation experiments using Xgrow kit.

According to the well-known research achievements about the tile assembly model
[11–18], we can find out that the number of distinct tiles needed in the tile assembly
systems is one of the most important performance indexes. It is worthwhile to reduce
the distinct tiles requested in the tile assembly’s system [18]. In [18], Brun have solved
the satisfiability problem using the tile assembly model with a constant-size tile set.
Thus, based on the work of [21] and the development of DNA computing [25–27], our
future work is to improve the presented systems and design more effective systems
with a constant-size tile set.

Acknowledgments This research is supported by the key Project of National Natural Science Founda-
tion of China under grant 61133005, the Project of National Natural Science Foundation of China under
grant 61173013 and 61202109, the Project of the Office of Education in Zhejiang Province under grant
Y201226110.

123

Author's personal copy



Molecular solutions for minimum and exact cover problems 1003

Appendix

The simulation results by running the Xgrow simulator for solving our problem above
(Figs. 20, 21).

(a)  The solution configuration for {C3, C4} (b)  The final configuration for {C3, C4}

(c) The solution configuration for {C1, C4} (d) The final configuration for {C1, C4}

Fig. 20 The results of simulating the MinSetCover system by Xgrow

123

Author's personal copy



1004 X. Zhou et al.

(a)  The solution configuration for {C1, C4} (b) The final configuration for {C1, C4}

(c)  The solution configuration for {C1, C2,C4} (d)  The final configuration for {C1, C2, C4}

Fig. 21 The results of simulating the MinExtractSetCover system by Xgrow
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